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Abstract 

Finite element (FE) forming simulation offers the possibility of a detailed analysis of the deformation behaviour of continuously fibre-reinforced 
polymers (CFRPs) during forming, in order to predict possible manufacturing effects such as wrinkling or local changes in fibre volume content. 
The majority of macroscopic simulations are based on conventional two-dimensional shell elements with large aspect ratios to model the 
membrane and bending behaviour of thin fibrous reinforcements efficiently. However, without a three-dimensional element approach, stresses 
and strains in thickness direction cannot be modelled accurately. Commercially available linear 3D solid elements for this purpose are rarely 
suitable for forming simulations since they are subjected to several locking phenomena under bending deformation, especially with large aspect 
ratios. To alleviate this problem, so-called solid-shell elements based on the assumed natural strain (ANS) and enhanced assumed strain (EAS) 
method can be used. Therefore, a locking-free explicit reduced-integrated 8-node-hexahedron solid-shell element, based on the initial work of 
Schwarze and Reese (2011), is implemented in the commercially available FE solver Abaqus. Its suitability for macroscopic modelling of the 
forming behaviour of fibrous reinforcements is outlined in this work. The presented element combines the advantages of a locking-free out-of-
plane deformation behaviour of conventional thin shell elements with the advantage of maintaining a fully three-dimensional material model and 
geometry description. 
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1. Introduction 

Finite element (FE) forming simulations can be used to 
analyse the manufacturing process of continuously fibre-
reinforced polymers (CFRPs) and predict effects like fibre 
reorientation or wrinkling. Therefore, state of the art forming 
simulation approaches mainly apply conventional two-
dimensional shell approaches [1] to model the deformation of 
thin fibrous reinforcements, since they allow for high aspect 
ratios, while still accurately describing the membrane and 
bending behaviour. However, those approaches cannot model 
out-of-plane compaction, which is an important forming 

mechanism to predict local fibre volume contents [2] and 
influences the permeability of the reinforcement during 
manufacturing processes such as wet compressions moulding 
[3]. To predict these effects and the final thickness of the part, 
a three-dimensional FE-formulation is necessary.  

The problem with the application of common solid elements 
for composite forming simulations is the occurrence of 
numerical locking phenomena, which cause a too high bending 
stiffness especially for elements with high aspect ratios [4]. An 
approach to alleviate this problem are so-called solid-shell 
elements. These elements combine techniques like reduced 
integration and modifications of the strain field to eliminate 
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geometrical and material locking phenomena [5]. However, 
only little research is focused on the application of solid-shell 
elements for metal forming [6-8] and especially composite 
forming [9].  

The hexahedral solid-shell element proposed by Schwarze 
and Reese [10, 11] and extended to an explicit formulation by 
Pagani et. al. [12] is used in this work. The element is 
developed for large deformations and is based on a reduced in-
plane integration, with an arbitrary number of integration 
points over the thickness together with a suitable hourglass 
stabilization. The key features in the element formulation to 
eliminate locking phenomena are the assumed natural strain 
(ANS) and enhanced assumed strain (EAS) method to improve 
the accuracy for thin shell problems. Furthermore, Taylor 
expansions of the Green-Lagrange strain and second Piola-
Kirchhoff stress along the thickness direction are carried out to 
improve the numerical efficiency. The element was chosen to 
be evaluated for an application in composite forming, due to its 
already successful application in large deformation analysis of 
composite materials [13], but without contact boundary 
conditions, and sheet metal forming [6]. Additionally, 
Robertsson et. al. [8] have demonstrated the good 
expandability of the element formulation for different materials 
by extending it for packaging forming simulations of 
anisotropic paperboard models.  

In comparison, the solid-shell element proposed by Flores 
[7] applies similar techniques to eliminate locking phenomena 
for the element’s top and bottom surface individually and an 
additional assumed strain approximation for the in-plane 
strains. Flores directly compares the element’s behaviour for 
different examples with the work of Schwarze and Reese [11] 
achieving similar results. However, it requires the additional 
tuning of hourglass stabilization parameters.  

The most advanced solid-shell element for composite 
forming of thermoplastic prepreg was proposed by Xiong et. al. 
[9] and is a 6-node prismatic element based on a DKT 
(“Discrete Kirchhoff Theory”) formulation. However, it 
requires an additional global degree of freedom in the element 
centre to avoid thickness locking, in contrast to an internal 
degree of freedom based on the EAS method [12]. 

In this work, initial steps towards an 8-node hexahedral 
solid-shell element suitable for the macroscopic forming 
simulation of thin fibrous reinforcements are presented. For 
this purpose, the selected element formulation is utilized within 
a FE-User-Element (VUEL) in ABAQUS/EXPLICIT. To ensure a 
computationally efficient implementation, a MATHEMATICA-
based programming environment called ACEGEN [14] is used. 
ACEGEN provides a symbolic implementation and 
differentiation combined with a simultaneous runtime-
optimization.  

In the following, the main aspects of the element 
formulation are presented. The locking-free bending behaviour 
of the selected element for high aspect ratios, large 
deformations and low stiffness is shown by a comparison with 
conventional shell and commercially available solid element 
formulations in a cantilever-bending scenario. Finally, the 
solid-shell element is applied to forming simulation of a 
generic geometry, and its suitability for macroscopic forming 
simulation is evaluated.  

Nomenclature – Solid-Shell element 

•̂ Tensor in Voigt notation 
•̅ Tensor in isoparametric coordinates 
•dev Deviatoric part of a tensor 
•c Compatible part of a tensor 
•e Enhanced part of a tensor 
•∗ Quantity related to out-of-plane integration 
•hg Quantity related to hourglass stabilization 
 
𝑎𝑎 Aspect ratio 
𝑔𝑔ext Virtual work of external loading 
𝐽𝐽0 Jacobian determinant at the element centre 
𝑤𝑤e Enhanced degree of freedom 
𝜇𝜇eff
hg  Effective shear modulus 
{𝜉𝜉, 𝜂𝜂, 𝜁𝜁} Isoparametric coordinates 
 
𝒖𝒖 Displacement vector 
𝝃𝝃∗ Normal through the element centre 
 
𝑬𝑬 Total Green-Lagrange strain tensor 
𝑺𝑺  Second Piola-Kirchhoff stress tensor 

2. Solid-Shell element 

As mentioned above the solid-shell element originally 
proposed by Schwarze and Reese [10] was chosen for the study 
in this work. It is derived from the standard isoparametric 8-
node hexahedral brick-element with tri-linear shape functions 
and is based on the two-field variational functionals [15] 

𝑔𝑔1(𝒖𝒖, 𝑬𝑬𝑒𝑒) = ∫ (𝑺𝑺(𝑬𝑬)   ⋅ 𝛿𝛿𝑬𝑬𝑐𝑐 + 𝜌𝜌0𝒖̈𝒖 ⋅ 𝜹𝜹𝜹𝜹 )𝑑𝑑𝑑𝑑 + 𝑔𝑔𝑒𝑒𝑒𝑒𝑒𝑒
𝑉𝑉0

= 0 (1) 

𝑔𝑔2(𝒖𝒖, 𝑬𝑬𝑒𝑒) = ∫ 𝑺𝑺(𝑬𝑬) ⋅ 𝛿𝛿𝑬𝑬𝑒𝑒 𝑑𝑑𝑑𝑑
𝑉𝑉0

= 0, (2) 

where 𝑔𝑔ext  denotes the virtual work of external loading and 
𝑺𝑺(𝑬𝑬) the second Piola-Kirchhoff stress tensor. According to 
the EAS concept, the Green-Lagrange strain tensor 𝑬𝑬 is 
additively split 𝑬𝑬 = 𝑬𝑬c + 𝑬𝑬e , into a compatible part 𝑬𝑬c(𝒖𝒖) , 
depending solely on the displacement vector 𝒖𝒖 , and an 
enhanced part 𝑬𝑬e(𝑤𝑤e) , depending on a single additional 
enhanced degree of freedom 𝑤𝑤e , leading to the second 
variational functional, cf. Equation 2.  

The element uses a reduced in-plane integration and a full 
integration (at least 2 integration points) in thickness direction. 
This results in all integration points being located on the normal 
through the centre of the element, defined in isoparametric 
coordinates (𝜉𝜉1 = 𝜉𝜉, 𝜉𝜉2 = 𝜂𝜂 and 𝜉𝜉3 = 𝜁𝜁) by 𝝃𝝃∗ = {0,  0,  𝜁𝜁}⊤, as 
illustrated in Figure 1 (a). This integration scheme was 
demonstrated to be computationally efficient and suitable for 
explicit dynamics simulation by Pagani et al. [12]. 
Additionally, it captures nonlinearities in the thickness 
direction for thin structures very well, compared to 
commercially available explicit reduced-integration elements 
that mostly use a single integration point in the element centre.   
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Fig. 1. Isoparametric solid-shell element | (a) Element nodes 1-8 and 
integration points IP, (b) Sampling points for the ANS method 

The ANS method is adopted for the compatible strains in the 
isoparametric domain 𝑬̅𝑬c . The strain components prone to 
locking phenomena are evaluated at specific sample points 
along the element edges at which the respective locking does 
not occur, cf. Figure 1 (b), and interpolated by means of bi-
linear shape functions. This is used for the transverse normal 
components 𝐸̅𝐸c 𝜁𝜁𝜁𝜁  (sample points 𝐼𝐼1 = 𝐴𝐴, 𝐵𝐵, 𝐶𝐶, 𝐷𝐷) to eliminate 
curvature-thickness locking, as proposed by Betsch and Stein 
[16], and for the transverse shear components 𝐸̅𝐸c 𝜂𝜂𝜂𝜂  and 𝐸̅𝐸c 𝜉𝜉𝜉𝜉  
(sample points 𝐼𝐼2 = 𝐸𝐸, 𝐹𝐹, 𝐺𝐺, 𝐻𝐻  and 𝐼𝐼3 = 𝐽𝐽, 𝐾𝐾, 𝐿𝐿,𝑀𝑀 
respectively) to alleviate transverse-shear locking, as first 
proposed for shell elements by Bathe and Dvorkin [17]. These 
modifications result in:  

𝐸̅𝐸𝑐𝑐 𝜁𝜁𝜁𝜁𝐴𝐴𝐴𝐴𝐴𝐴 =  ∑
1
4 (1 + 𝜉𝜉𝐼𝐼1𝜉𝜉)(1 + 𝜂𝜂𝐼𝐼1𝜂𝜂)𝐸̅𝐸𝑐𝑐 𝜁𝜁𝜁𝜁

𝐼𝐼1  ,
𝐷𝐷

𝐼𝐼1=𝐴𝐴
 (3) 

𝐸̅𝐸𝑐𝑐 𝜂𝜂𝜂𝜂𝐴𝐴𝐴𝐴𝐴𝐴 =  ∑ 1
4 (1 + 𝜉𝜉𝐼𝐼2𝜉𝜉)(1 + 𝜁𝜁𝐼𝐼2𝜁𝜁)𝐸̅𝐸𝑐𝑐 𝜂𝜂𝜂𝜂

𝐼𝐼2
𝐻𝐻

𝐼𝐼2=𝐸𝐸
 , (4) 

𝐸̅𝐸𝑐𝑐 𝜉𝜉𝜉𝜉𝐴𝐴𝐴𝐴𝐴𝐴 =  ∑
1
4 (1 + 𝜂𝜂𝐼𝐼3𝜂𝜂)(1 + 𝜁𝜁𝐼𝐼3𝜁𝜁)𝐸̅𝐸𝑐𝑐 𝜉𝜉𝜉𝜉

𝐼𝐼3
𝑀𝑀

𝐼𝐼3=𝐽𝐽
 . (5) 

The ANS method results in constant transverse normal 
strain 𝐸̅𝐸c 𝜁𝜁𝜁𝜁ANS  in the out-of-plane-direction 𝜁𝜁 , while the normal 
in-plane strains 𝐸̅𝐸c 𝜉𝜉𝜉𝜉  and 𝐸̅𝐸c 𝜂𝜂𝜂𝜂  remain linear with respect to 
their corresponding isoparametric coordinate 𝜉𝜉  and 𝜂𝜂. 
Therefore, to avoid volumetric locking phenomena, the 
enhanced strain tensor 𝑬̅𝑬e is constructed to extend 𝐸̅𝐸𝜁𝜁𝜁𝜁  by a 
linear component. This requires only a single enhanced degree 
of freedom, which results in Voigt notation (•̂) to:  

𝑬̂̅𝑬𝑒𝑒 = 𝑩̂̅𝑩𝑒𝑒𝑤𝑤𝒆𝒆 with 𝑩̂̅𝑩𝑒𝑒 = {0,  0,  𝜁𝜁, 0,  0,  0}⊤. (6) 

A main advantage of this simple formulation for 𝑬̂̅𝑬e , as 
shown by Pagani et al. [12], is that 𝑤𝑤e can be estimated within 
a single iteration of an explicit dynamic integration scheme, 
due to the small explicit time step size. 

To further increase the numerical efficiency, a Taylor 
expansion of the compatible Green-Lagrange strain with 
respect to the element centre 𝝃𝝃 = 𝟎𝟎 is carried out  

𝑬̂𝑬𝑐𝑐 ≈ 𝑬̂𝑬𝑐𝑐
0 + 𝜁𝜁𝑬̂𝑬𝑐𝑐

𝜁𝜁 + 𝜁𝜁2𝑬̂𝑬𝑐𝑐
𝜁𝜁𝜁𝜁

⏟            
𝑬̂𝑬𝑐𝑐
∗

 

+𝜉𝜉𝑬̂𝑬𝑐𝑐
𝜉𝜉 + 𝜂𝜂𝑬̂𝑬𝑐𝑐

𝜂𝜂 + 𝜉𝜉𝜉𝜉𝑬̂𝑬𝑐𝑐
𝜉𝜉𝜉𝜉 + 𝜂𝜂𝜂𝜂𝑬̂𝑬𝑐𝑐

𝜂𝜂𝜂𝜂 + 𝜉𝜉𝜉𝜉𝑬̂𝑬𝑐𝑐
𝜉𝜉𝜉𝜉 ⏟                          

𝑬̂𝑬𝑐𝑐
ℎ𝑔𝑔

 , 
(7) 

where 𝑬̂𝑬𝐜𝐜(•)  are constant tensors. The compatible Green-
Lagrange strain is separated into a part related to the out-of-
plane integration 𝑬̂𝑬c∗  and a part unaffected by the numerical 
integration 𝑬̂𝑬chg, which is essential to the hourglass stabilization 
of the reduced integration scheme.  

 Similar to Equation 7, a Taylor expansion of the second 
Piola-Kirchhoff stress along the out-of-plane direction 𝝃𝝃∗  is 
carried out 

𝑺̂𝑺 ≈ 𝑺̂𝑺(𝑬𝑬∗)⏟  
𝑺̂𝑺∗

+ 𝜕𝜕𝑺̂𝑺 𝜕𝜕𝑬̂𝑬|𝝃𝝃=𝝃𝝃∗⏟    
𝑪̂𝑪∗

(𝜉𝜉𝑬̂𝑬𝑐𝑐𝜉𝜉 + 𝜂𝜂𝑬̂𝑬𝑐𝑐𝜂𝜂 + 𝜂𝜂𝜂𝜂𝑬̂𝑬𝑐𝑐𝜂𝜂𝜂𝜂 + 𝜉𝜉𝜉𝜉𝑬̂𝑬𝑐𝑐𝜉𝜉𝜉𝜉) 

    = 𝑺̂𝑺∗ + 𝑺̂𝑺ℎ𝑔𝑔  , 

(8) 

where the stress tensor is separated into the parts related to out-
of-plane integration 𝑺̂𝑺∗  and hourglass stabilization 𝑺̂𝑺hg . The 
complexity of the hourglass stabilization part is reduced by 
replacing the material tangent 𝑪̂𝑪∗  with a constant deviatoric 
matrix 𝑪̂𝑪hg = 𝜇𝜇eff

hg 𝑰̂𝑰dev, defined by an effective shear modulus 
𝜇𝜇eff
hg  and the deviatoric part of the fourth-order identity tensor 

in Voigt notation 𝑰̂𝑰dev. This method results in a locking-free 
hourglass part of the stress and in combination with the 
constant tensors 𝑬̂𝑬𝐜𝐜(•), resulting from the Taylor approximation 
in Equation 7, allows for an analytical integration of the 
hourglass parts of Equation 1. Thereby, the effective shear 
modulus is adaptively calculated by  

𝜇𝜇𝑒𝑒𝑒𝑒𝑒𝑒
ℎ𝑔𝑔 =∑(12

√𝑺𝑺
∗ 𝑑𝑑𝑑𝑑𝑑𝑑 ⋅ 𝑺𝑺∗ 𝑑𝑑𝑑𝑑𝑑𝑑
𝑬𝑬∗ 𝑑𝑑𝑑𝑑𝑑𝑑 ⋅ 𝑬𝑬∗ 𝑑𝑑𝑑𝑑𝑑𝑑)|

𝑖𝑖

𝜔𝜔𝑖𝑖
𝑛𝑛𝐼𝐼𝐼𝐼

𝑖𝑖
  (9) 

where 𝑛𝑛IP  is the number of integration points and 𝜔𝜔𝑖𝑖  the 
respective weighting factors.  

Finally, Equations 1 and 2 have to be discretized and solved 
on element level. Therefore, the infinitesimal volume element 
on element level is approximated by d𝑉𝑉e ≈ 𝐽𝐽0dΩe, where the 
Jacobian determinant is replaced by its value in the element 
centre 𝐽𝐽0 = 𝐽𝐽|𝜉𝜉=𝜂𝜂=𝜁𝜁=0 . The discretized weak element 
formulation corresponding to Equation 1 and 2 can be 
approximated as follows: 

𝑮𝑮1 = 𝑹𝑹𝑢𝑢∗ + 𝑹𝑹𝑢𝑢ℎ𝑔𝑔 + 𝑴𝑴𝒖̈𝒖 − 𝑮𝑮𝑒𝑒𝑒𝑒𝑒𝑒 = 𝟎𝟎 and 𝐺𝐺2 = 0 , (10) 

with 𝑴𝑴  being the element mass matrix and 𝑮𝑮ext  being the 
external element force vector. The internal forces related to the 
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out-of-plane integration 𝑹𝑹u
∗ , the hourglass stabilization 𝑹𝑹u

hg 
and the enhanced part 𝐺𝐺2 are derived as 

𝑹𝑹𝑢𝑢
∗ = ∫ (𝑩̂𝑩𝑐𝑐

0 + 𝜁𝜁𝑩̂𝑩𝑐𝑐
𝜁𝜁 + 𝜁𝜁2𝑩̂𝑩𝑐𝑐

𝜁𝜁𝜁𝜁)
⊤1

−1
𝑺̂𝑺∗𝑑𝑑𝑑𝑑 4𝐽𝐽0 , (11) 

𝑹𝑹𝑢𝑢
ℎ𝑔𝑔 = 8

3 (𝑩̂𝑩𝑐𝑐
𝜉𝜉⊤

𝑪𝑪ℎ𝑔𝑔𝑬𝑬𝑐𝑐
𝜉𝜉 + 𝑩̂𝑩𝑐𝑐

𝜂𝜂⊤𝑪𝑪ℎ𝑔𝑔𝑬𝑬𝑐𝑐
𝜂𝜂) 𝐽𝐽0  

        + 8
9 (𝑩̂𝑩𝑐𝑐

𝜉𝜉𝜉𝜉⊤
𝑪𝑪ℎ𝑔𝑔𝑬𝑬𝑐𝑐

𝜉𝜉𝜉𝜉 + 𝑩̂𝑩𝑐𝑐
𝜂𝜂𝜂𝜂⊤

𝑪𝑪ℎ𝑔𝑔𝑬𝑬𝑐𝑐
𝜂𝜂𝜂𝜂) 𝐽𝐽0 ,  

(12) 

𝐺𝐺2 = ∫ 𝑩̂𝑩𝑒𝑒
⊤1

−1
𝑺̂𝑺∗𝑑𝑑𝑑𝑑 4𝐽𝐽0 , (13) 

where the 𝑩̂𝑩c
(•)  matrices represent the relation between the 

respective strains 𝑬̂𝑬c
(•)  and displacements 𝒖𝒖,  according to 

𝑬̂𝑬c
(•) = 𝑩̂𝑩c

(•)𝒖𝒖. 
The main advantages of the solid-shell element formulation 

above, is the possibility to use a fully three-dimensional 
constitutive law for the relation 𝑺̂𝑺∗ (cf. Equation 8) and 
therefore describe the behaviour in thickness direction 
compared to conventional shell elements. Additionally, the 
locking-free deformation behaviour allows for a larger aspect 
ratio of the element and thus a reduction of the computational 
effort in forming simulations compared to commercially 
available solid elements.  

3. Numerical studies 

The formulation of the solid-shell element outlined above is 
implemented within a FE-User-Element (VUEL) in 
ABAQUS/EXPLICIT and verified by numerical case studies. In 
order to investigate the influence of a locking-free deformation 
behaviour on macroscopic forming simulations as isolated as 
possible, a simple elastic isotropic material behaviour is 
utilized.  

In the following, the locking-free bending behaviour is 
presented by means of a comparison to conventional shell and 
commercially available solid elements in a cantilever-bending 
scenario. Subsequently, the forming behaviour is evaluated by 
comparing the simulation results of a hemisphere test.  

3.1. Cantilever-bending test 

The macroscopic forming behaviour of thin fibrous 
reinforcements is characterised by a high in-plane stiffness in 
fibre direction combined with a low bending stiffness. Since 
locking phenomena are mainly prevalent in bending dominated 
deformations, it is therefore necessary to have a completely 
locking-free element formulation in order to not overestimate 
the low bending stiffness of composite pre-products at 
processing conditions. 

As a first example, the out-of-plane bending behaviour of a 
cantilever plate strip under a tip load is investigated. The plate 
strip, as illustrated in Figure 2, has a width of 𝑤𝑤 = 10 mm, a 
length of 𝑙𝑙 = 60 mm, a thickness of 𝑡𝑡 = 0.3 mm, and a tip load 
of 𝐹𝐹 = 0.4 mN  is applied. A Young’s modulus of 𝐸𝐸 =

100 MPa  and Poisson ratio of 𝜈𝜈 = 0.3  is chosen to test the 
bending behaviour for low stiffness. 

 

 

Fig. 2. Cantilever plate strip | Geometry and load 

The beam is discretized by only one element in thickness 
and width direction. The number of elements in length 
direction and therefore the element’s aspect ratio 𝑎𝑎 = 𝑙𝑙e/𝑡𝑡 is 
varied between 𝑎𝑎 ∈ {2.5, 5, 10, 20, 40}  to study the 
convergence behaviour. The solid-shell element (𝑛𝑛IP = 3) is 
compared to in ABAQUS/EXPLICIT commercially available 
reduced integrated shell (S4R) and solid (C3D8R) elements, as 
well as a fully integrated solid element (C3D8) and a reduced 
integrated solid element with an enhanced hourglass 
stabilization (C3D8R-Enh). The C3D8R-Enh element 
introduces up to six additional internal degrees of freedom 
based on the EAS method, to augment the hourglass 
stabilization forces of the C3D8R element [18]. The results of 
this study for the tip displacement are shown in Figure 3. 

 

 

Fig. 3. Cantilever-bending test | Results for the conventional shell (S4R), 
solid-shell and different commercially available solid (C3D8, C3D8R and 
C3D8R-Enh) elements 

As expected, the shell element achieves a converged 
solution already for very high aspect ratios and is used in this 
comparison as the desired reference solution, based on the 
assumption that it has a locking-free out-of-plane bending 
behaviour. 

The C3D8-element behaves too stiff due to locking effects 
and even for an aspect ratio as low as 2.5 is unsuited for this 
bending problem. In comparison to the fully integrated solid, 
the reduced integrated solid element with only one integration 
point (C3D8R) achieves a slightly better solution for high 
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aspect ratios. However, for low aspect ratios a single element 
with only one integration point over the thickness is unable to 
model a pure bending deformation and as a result behaves 
completely compliant. Therefore, the reduced integrated solid 
element is subjected to locking phenomena for high aspect 
ratios and not suitable to model a pure bending behaviour for 
low aspect ratios.  

The result of the C3D8R-Enh element is the best 
commercially available solid element for very high aspect 
ratios and it is able to model the cantilever-bending with results 
close to the reference solution for small aspect ratios, despite a 
reduced integration scheme with a single integration point.  

The best results are achieved by the solid-shell element 
presented in Section 2. For an aspect ratio under 𝑎𝑎 ≤ 10 its tip 
displacement is close to the reference solution and converges 
towards the shell’s solution for 𝑎𝑎 ≤ 5.  

3.2. Hemisphere test  

The influence of a locking-free element formulation on the 
macroscopic forming behaviour is investigated in a numerical 
study by means of a hemisphere test. A single layer with a 
thickness of 𝑡𝑡 = 0.3 mm and the same material parameters as 
in Section 3.1 is used. An aspect ratio of 𝑎𝑎 = 10 was chosen to 
reduce the computational effort, while still ensuring a nearly 
locking-free bending deformation for the solid-shell element, 
based on the results of Section 3.1.  

Figure 4 shows the deformation during the forming 
simulation for a remaining tool stroke Δ𝑢𝑢 of 7 mm, 3.5 mm and 
0.0 mm for all elements investigated in Section 3.1. In 
agreement with the results of Boisse et al. [19], the bending 
behaviour has a significant influence on the distinct wrinkling 
pattern for the different element types.  

Based on the assumptions and results of Section 3.1, again, 
the shell element (S4R) is used as the desired reference 
solution. During its forming simulation a very high number of 
small wrinkles are developed in all directions. 

An increase in size and decrease of the number of wrinkles 
is observed for the fully integrated solid element (C3D8), 

which shows a stiffer behaviour in the cantilever-bending test 
(cf. Figure 3). However, the general orientation of the onset of 
wrinkles is similar to the results of the shell element.  

The deformation behaviour of the reduced integrated solid 
element (C3D8R) is completely different compared to all other 
examined elements. The orientation of the onset of wrinkles is 
only perpendicular to the edges of the thin sheet and they are 
perfectly straight compared to the rather irregular wrinkling 
pattern of the reference solution. This again indicates that a 
single layer of C3D8R elements with only one integration point 
in thickness direction is not suitable to model bending 
dominated problems.  

The results of the solid element with enhanced hourglass 
stabilization (C3D8R-Enh) and of the solid-shell element are 
very similar to each other. For both element types, the locations 
as well as size of wrinkling is in good agreement with the 
reference shell element. 

The hemisphere tests show that the element formulation and 
thus locking-free bending behaviour for larger aspect ratios has 
a significant influence on the macroscopic forming behaviour, 
even for a simple linear isotropic material model. 

4. Conclusion and outlook 

This work presents an initial study on a solid-shell element 
for the macroscopic forming simulation of thin fibrous 
reinforcements. Compared to a conventional shell element, the 
advantage of a three-dimensional element formulation is its 
capability to model strains in thickness direction and to predict, 
e.g., out-of-plane compaction. However, commercially 
available solid elements are prone to locking phenomena under 
bending deformation. Therefore, a solid-shell element 
formulation was selected from literature, and its main aspects 
relevant for a locking-free behaviour are highlighted. The 
effects of a locking-free behaviour were investigated in a 
numerical study, by comparison to conventional shell and 
commercially available solid elements. The advantage of solid-
shell elements compared to commercially available solid 
elements in the modelling of bending dominated problems was 

Solid-Shell C3D8R C3D8C3D8R-EnhS4R

∆u = 7.0 mm

∆u = 3.5 mm

∆u = 0.0 mm

Fig. 4. Hemisphere test | Results for a remaining tool stroke Δ𝑢𝑢 of 7.0 mm, 3.5 mm and 0.0 mm for the conventional shell (S4R), solid-shell and different 
commercially available solid (C3D8, C3D8R and C3D8R-Enh) elements 
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shown and the necessity of a suitable element formulation for 
macroscopic forming applications was demonstrated.  

The solid-shell element analysed in this work is shown to be 
suitable to model the deformation behaviour of high aspect 
ratios with a prediction accuracy comparable to conventional 
shell elements. This locking-free behaviour is a necessary 
prerequisite to model the deformation of thin fibrous 
reinforcements efficiently. However, the results were only 
shown for a simple linear elastic material model and need to be 
re-evaluated for a highly anisotropic material behaviour more 
comparable to fibrous reinforcements, which will be a scope of 
future investigations.  

Additionally, like standard shell approaches the presented 
element formulation cannot be applied directly to fibrous 
reinforcements, which require a decoupling of the membrane 
and bending behaviour due to their high tensile stiffness in fibre 
direction and comparably low bending stiffness [20]. This 
requirement was one of the reasons for the decision to 
implement a FE-User-Element based on the selected element 
formulation, rather than applying a commercially available 
solid element. As shown in Section 3, there are solid elements 
(C3D8R-Enh) commercially available, which are similarly 
suited for bending dominated problems as the presented solid-
shell element. However, since the C3D8R-Enh element has 
only one single integration point and performs well in bending 
scenarios purely because of the enhanced hourglass parts of the 
stress, a decoupling of the membrane and bending behaviour 
would not be possible within this single element.  

In comparison, the presented solid-shell element is locking-
free in all parts of the stress and utilizes a variable number of 
integration points in thickness direction. These features in 
combination with the already performed Taylor expansion in 
thickness direction should allow for a decoupling of the 
bending and membrane behaviour within a single element. This 
will be the main focus of future work in order to meet the 
prerequisites for a macroscopic forming simulation of thin 
fibrous reinforcements.  

Furthermore, the benefits of modelling the thickness 
direction will be investigated in the context of composite 
forming. Since state of the art forming approaches are mainly 
based on shell elements and therefore often limited in the 
consideration of the out-of-plane behaviour. The utilization of 
a fully three-dimensional approach should enable a better 
approximation of forming effects like local thickness changes 
and fibre volume content [2], by investigating the compaction 
behaviour.  
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