KIT | KIT-Bibliothek | Impressum | Datenschutz

Gate-defined superconducting nanostructures in bilayer graphene weak links

Kraft, Rainer

Abstract (englisch):
State-of-the-art edge-connected graphene/hexagonal boron nitride van der Waals heterostructures provide low contact resistivity, high charge carrier mobilities as well as a large mean free path. In combination with their high device geometry flexibility they appear thus to be predestined for realizing high-quality tunable weak links in Josephson junctions, which can be readily implemented into superconducting circuits for quantum technological applications. However, designing gate-controlled nanostructures in monolayer graphene remains a serious challenge due to its lack of a band gap which hinders the confinement of charge carriers. The present thesis aims to address this shortcoming by establishing bilayer graphene as a suitable alternative. Unlike the single-layer relative, bilayer graphene offers the opportunity to open an electronic band gap by breaking the layer symmetry which is possible with the ease of exposing electric displacement fields across the two layers. In this regard, employing the combination of locally defined back and top gate architectures allows to design electrostatically induced nanostructures based on spatial band structure engineering.
... mehr

Open Access Logo


Volltext §
DOI: 10.5445/IR/1000119140
Veröffentlicht am 19.05.2020
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Nanotechnologie (INT)
Publikationstyp Hochschulschrift
Publikationsdatum 19.05.2020
Sprache Englisch
Identifikator KITopen-ID: 1000119140
HGF-Programm 43.21.03 (POF III, LK 01)
Carbon Nanosystems
Verlag Karlsruhe
Umfang XI, 170 S.
Abschlussart Dissertation
Fakultät Fakultät für Physik (PHYSIK)
Institut Institut für Nanotechnologie (INT)
Prüfungsdatum 22.11.2019
Referent/Betreuer Prof. W. Wernsdorfer
Projektinformation DFG, DFG EIN, DA 1280/3-1
Schlagwörter hBN-encapsulated bilayer graphene, van der Waals heterostructure, electrostatic confinement, proximity-induced superconductivity, (superconducting) quantum point contact, superconducting magneto-interferometry
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page