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Abstract

Travel time distributions (TTDs) are concise descriptions of transport processes in catch-

ments based on water ages, and they are particularly efficient as lumped hydrological

models to simulate tracers in outflows. Past studies have approximated catchment TTDs

with unimodal probability distribution functions (pdf) and have successfully simulated

tracers in outflows with those. However, intricate flow paths and contrasting water

velocities observed in complex hydrological systems may generate multimodal age distri-

butions. This study explores the occurrence of multimodal age distributions in hydrologi-

cal systems and investigates the consequences of multimodality for tracer transport.

Lumped models based on TTDs of varying complexity (unimodal and multimodal) are

used to simulate tracers in the discharge of hydrological systems under well-known con-

ditions. Specifically, we simulate tracer data from a controlled lysimeter irrigation

experiment showing a multimodal response and we provide results from a virtual

catchment-scale experiment testing the ability of a unimodal age distribution to simulate

a known and more complex multimodal age system. Models are based on composite

StorAge Selection functions, defined as weighted sums of pdfs, which allow a straightfor-

ward implementation of uni- or multi-modal age distributions while accounting for

unsteady conditions. These two experiments show that simple unimodal models provide

satisfactory simulations of a given tracer, but they fail in reproducing processes occurring

at different temporal scales. Multimodal distributions, instead, can better capture the

detailed dynamics embedded in the observations. We conclude that experimental knowl-

edge of flow paths and the systematic use of data from multiple, independent tracers

can be used to validate the assumption of water age unimodality. Multimodal age distri-

butions are more likely to emerge in landscapes where the distributions of flow path

lengths and/or water velocities are themselves multimodal. In general, age multimodality

may not be particularly pronounced and detectable, unless comparable amounts of water

with contrasting ages reach a given outflow.
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1 | INTRODUCTION

The representation of hydrological systems in mathematical terms

is a challenging task that deals with the complexity of the natural

environment (Bras, 2015; Clark et al., 2017; Dooge, 1986). Spatially

implicit mathematical descriptions (e.g., lumped models) are widely

used because they prove suitable to summarise hydrological pro-

cesses at different scales (Hrachowitz & Clark, 2017). Transfer

functions that relate system inputs to system outputs by an integral

operation are particularly widespread in hydrology, notably for

problems like flow and solute response of a catchment to precipita-

tion events. Although the flow and solute responses are mathemat-

ically formulated with transfer functions in an almost identical way,

the meaning of these functions is contrasting (Botter, Bertuzzo, &

Rinaldo, 2010). The flow response deals with the celerity of pres-

sure propagation, while the solute response deals with the velocity

of water parcels within a catchment (Kirchner, Feng, & Neal, 2000;

McDonnell & Beven, 2014).

Transfer functions are typically modelled as probability distribu-

tion functions (pdf) whose shape is assumed a priori and the relevant

parameters are calibrated to available data. When focusing on the

hydrological response of a catchment to an impulse input, the transfer

function is termed instantaneous unit hydrograph (IUH) and its func-

tional form is often assumed to be a gamma, lognormal or Weibull dis-

tribution. In some cases the shape of the IUH can be obtained starting

from measurable properties of the landscape, such as its geo-

morphologic structure (Rinaldo, Marani, & Rigon, 1991; Rodriguez-

Iturbe & Valdes, 1979). This type of unit hydrographs can have

complex and multimodal shapes that originate from the geomorpho-

logical complexity of a catchment. Tracer hydrology focuses on the

variations in the concentrations of non-ideal tracers like solutes

(e.g., chloride) or ideal tracers like constituents of the water molecule

(e.g., 2H) that are transported with water. The transfer functions that

are relevant to tracers (ideal or not) are termed travel (or transit) time

distributions (TTD). These describe the time that water molecules take

to move through a hydrological control volume (i.e., water ages in out-

flows) and they are used to relate tracer inputs (e.g., stable isotopes or

chloride in precipitation) to tracer outputs (e.g., stable isotopes or

chloride in discharge and evapotranspiration). Many studies employing

TTDs as models of catchment transport have successfully simulated

tracer concentrations in discharge by calibrating TTDs to tracer data

under the assumption of steady-state flow conditions (see McGuire &

McDonnell, 2006; Soulsby, Birkel, Geris, & Tetzlaff, 2015). TTDs are

often assumed to be gamma-distributed because this shape is consis-

tent with the spectral signatures of measured solute time series

(Kirchner et al., 2000; Kirchner & Neal, 2013). Alternatively, various

TTD shapes can be obtained by solving the advection–dispersion

equation under different boundary conditions (Kreft & Zuber, 1978).

These TTDs have been employed in groundwater systems with spe-

cific aquifer configurations (Małoszewski & Zuber, 1982). A compre-

hensive review of steady-state TTDs was provided by Leray, Engdahl,

Massoudieh, Bresciani, and McCallum (2016), who illustrated the

physical meaning and mathematical derivation of several TTD shapes.

If the assumption of steady-state flow conditions is removed

(Botter et al., 2010; Botter, Bertuzzo, & Rinaldo, 2011), the resulting

non-stationary TTDs are expected to have complex and irregular

shapes even when the transport processes are simple (e.g., complete

mixing). In transient hydrological conditions, the shape of non-steady

TTDs cannot be assumed a priori, but StorAge Selection (SAS) func-

tions (Botter et al., 2011; Harman, 2015; Rinaldo et al., 2015; van der

Velde, Torfs, van der Zee, & Uijlenhoet, 2012) can be used to derive

unsteady TTDs (also to derive steady-state TTDs in the particular case

of steady flow conditions; Berghuijs & Kirchner, 2017). SAS functions

can take different mathematical forms and have usually been assumed

to be beta distributions (van der Velde et al., 2012; Visser

et al., 2019), power functions (Benettin et al., 2017; Queloz

et al., 2015) or gamma distributions (Harman, 2015; Wilusz, Harman, &

Ball, 2017). The resulting unsteady TTDs display various peaks

corresponding to the variability of the hydrological fluxes

(i.e., precipitation or discharge). These TTDs may be called ‘instanta-

neous’ because they change at every moment due to temporal

changes in water fluxes or to internal changes in the configuration of

flow paths to the outlet (Kim et al., 2016). Yet, when ‘instantaneous’

TTDs are averaged out to obtain an average (or marginal) TTD, simple

shapes emerge (Benettin, Soulsby, et al., 2017; Remondi, Kirchner,

Burlando, & Fatichi, 2018; van der Velde et al., 2015) and suggest that

it is still possible to approximate transport processes in a catchment

with a single (marginal) TTD.

Whether TTDs are derived by direct calibration to data, by aver-

aging unsteady TTDs starting from SAS functions, or by solving simpli-

fied fluid equations, their shape is often found/assumed to have a

single mode. This seems to suggest that integrating a large number of

contrasting flow paths results, on average, in a seamless distribution

of transit times. But should we expect TTDs to always have simple

shapes in the real world? And what processes can possibly give rise to

multimodality in the TTD? Hydrological landscapes transport water

inputs over a wide range of distances and in highly heterogeneous

media with variable wetness conditions. It is unlikely that the existing

plethora of transport processes always results in age distributions

without multiple distinct and meaningful peaks. In fact, many studies

(see Section 2) proposed to use multimodal age distributions in vari-

ous hydrological systems for a number of physical reasons.

The problem of inferring the true shape of TTDs is made difficult

by a major experimental issue: we cannot measure TTDs in catch-

ments. TTDs can only be measured through tracer mass breakthrough

curves, which is feasible in controlled systems like lysimeters (Pütz

et al., 2016) or small experimental hillslopes (Kendall, McDonnell, &

Gu, 2001; Kim et al., 2016; Rodhe, Nyberg, & Bishop, 1996; Volkmann

et al., 2018). At the catchment scale, TTDs can only be deduced indi-

rectly through aggregated tracer information in inflows and outflows

(Kirchner, 2016). In other words, hypotheses about the TTDs

(e.g., functional form and parameters) cannot be tested by comparing

the assumed TTDs to actual measurements of water ages, but only by

comparing the tracer simulation associated with the assumed TTD to

the tracer observations. The task of deducing TTDs in catchments is

often transformed into a model calibration problem and this may
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overlook parts of the TTDs accounting for a range of transport pro-

cesses not immediately visible in the tracer data (Figure 1). Until we

are able to measure the true shape of an age distribution through a

large-scale tracer experiment, research efforts are needed to assess

the consequences of over-simplified age distributions. This is particu-

larly important as TTDs are seen as a way to simulate solute chemistry

and bridge previously disconnected fields of environmental modelling

(Hrachowitz et al., 2016).

We first provide a reasonable definition of multimodality in the

context of time-variable hydrological fluxes. Then, this study explores

the occurrence of multimodal age distributions in hydrological sys-

tems and investigates the potential of lumped transport models to

account for the causes and for the consequences of multimodality in

tracer transport. We aim to clarify when we should expect to observe

multimodal distributions in a hydrological system and what is the

effect of not accounting for this multimodality.

The remainder of the article is organised as follows: Section 2

reviews previous studies that reported multimodal TTD behaviour.

Section 3 reports the methodology to simulate tracer transport using

TTDs and SAS functions. Section 4 provides modelling results for a

lysimeter tracer experiment characterised by a bimodal tracer break-

through curve, while Section 5 looks into the potential consequences

of simplifying a multimodal TTD with a unimodal TTD by means of a

catchment-scale virtual tracer experiment. A discussion of the results

(Section 6) and a summary of the conclusions (Section 7) close the

article.

2 | ACKNOWLEDGING THE
MULTIMODALITY OF WATER AGE
DISTRIBUTIONS

In various hydrological systems, TTDs are assumed to follow steady-

state models such as the piston flow, the exponential and the disper-

sive models, or combinations of them (Małoszewski & Zuber, 1982).

These analytical distributions work well in many catchments
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F IGURE 1 Visual summary of the process of modelling a hydrological system using lumped models based on TTDs and tracer input–output
relationships. The complexity of discharge generation processes (a–c) results in multimodal TTDs (red histogram). (a) Near stream superficial flow
paths. (b) and (c) Lateral subsurface flow (c is initiated only after a groundwater raise upslope). The TTD model (blue pdf) is a simplification of
reality that works well for simulating (blue curve) a given tracer output measured in a discrete manner (red dots). Adapted from Rodriguez and
Klaus (2019)
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(McGuire & McDonnell, 2006; Stewart, Morgenstern, &

McDonnell, 2010), where the tracers used to infer them are sampled

at lower frequencies (mostly weekly to monthly). However, only

strong assumptions about the system boundary conditions and its

internal transport mechanisms (Leray et al., 2016; Małoszewski &

Zuber, 1982) can lead to such unimodal distributions. Multimodal and

irregular shapes of TTDs are instead found with physically based

transport models, even in steady-state conditions (Engdahl &

Maxwell, 2014; Goderniaux, Davy, Bresciani, de Dreuzy, & Le

Borgne, 2013).

A number of studies advocated the use of multimodal TTDs in

the context of steady-state (Leray et al., 2016, p. 78, and citations

below). At different scales, contrasts in water velocities or in flow path

lengths may generate multimodal TTDs. Contrasting flow path lengths

can for example come from: stream channel morphological features

(Haggerty, Wondzell, & Johnson, 2002; Ward, Schmadel, &

Wondzell, 2018), competing recharge areas to a groundwater well

(Cirpka et al., 2007; Massoudieh, Sharifi, & Solomon, 2012; Visser,

Broers, Purtschert, Sültenfuß, & de Jonge, 2013), different sources of

surface water or groundwater (Duy et al., 2019; Stolp et al., 2010) or

shallow and local vs. deep and regional subsurface flows (Goderniaux

et al., 2013; Solomon, Genereux, Plummer, & Busenberg, 2010;

Wilusz, Harman, Ball, Maxwell, & Buda, 2020). Contrasting water

velocities can originate from: preferential flow in soil macropores

(Jackisch et al., 2017; Klaus, Zehe, Elsner, Külls, & McDonnell, 2013;

Scaini et al., 2017; Utermann, Kladivko, & Jury, 1990; White, Dyson,

Haigh, Jury, & Sposito, 1986), heterogeneous rock permeability

(Desbarats, 1990; Eberts, Böhlke, Kauffman, & Jurgens, 2012; Ritzi

et al., 2000; Weissmann, Zhang, LaBolle, & Fogg, 2002) or conduit

flow bypassing rock matrix flow in karst geologies (Long &

Putnam, 2009).

In unsteady conditions, multiple peaks can be found in TTDs

because of dynamic hydrological fluxes (Botter et al., 2010; vander

Velde et al., 2012). However, clusters of peaks in the TTD can be

related to different major transport processes to an outlet. van der

Velde, de Rooij, Rozemeijer, van Geer, & Broers (2010, Figure 6) found

time-varying discharge TTDs with two distinct groups of peaks, the

first one being intermittent and associated with tile drainage of the

root zone storage (younger water) and the second being permanent

and associated with slower groundwater flows in the subsurface.

Recent numerical experiments on real or virtual hydrological systems

(Danesh-Yazdi, Klaus, Condon, & Maxwell, 2018; Kaandorp, de Louw,

van der Velde, & Broers, 2018; Remondi et al., 2018; Yang,

Heidbüchel, Musolff, Reinstorf, & Fleckenstein, 2018) showed that,

even if SAS functions simplify the shapes of the age distributions

compared with TTDs, they may not be described well by unimodal

distributions. Rodriguez and Klaus (2019) used high frequency

(i.e., sub-daily) stable isotopes in precipitation and discharge over

2 years and found that the SAS function in a slate catchment with

complex flow paths may contain several peaks consistent with experi-

mentally identified discharge generation processes.

There is an emerging perception that TTDs in hydrological sys-

tems are complex and may be multimodal for reasons other than

time-varying hydrological fluxes. However, studies that supported

TTD multimodality had only little or no tracer data to constrain model

predictions and to validate the simulated TTD shapes. Thus, the exis-

tence of high-quality data is crucial to advance our knowledge of TTD

shapes. The recent improvements in 2H and 18O measurement tech-

niques (Gupta, Noone, Galewsky, Sweeney, & Vaughn, 2009; Lis,

Wassenaar, & Hendry, 2008) and sampling methods (Berman, Gupta,

Gabrielli, Garland, & McDonnell, 2009; Herbstritt, Gralher, &

Weiler, 2019; Koehler & Wassenaar, 2011; Munksgaard, Wurster, &

Bird, 2011; Pangle, Klaus, Berman, Gupta, & McDonnell, 2013)

allowed a considerable increase in the tracer record lengths up to sev-

eral decades (Hrachowitz et al., 2009; IAEA, 2019; IAEA and

WMO, 2019; Pfister et al., 2017) and in the resolution of tracer data

up to minutes (von Freyberg, Studer, & Kirchner, 2017). This has made

the detection of the entire shape of the TTDs more feasible than in

the past. High-frequency tracer observations can now constrain the

left-hand part of TTDs representing the short (e.g., hours to days) and

intermediate (e.g., weeks) transport time scales (Rodriguez &

Klaus, 2019), while long records of tracers can constrain the right-

hand tail of TTDs associated with long transport time scales

(e.g., months to years, Rodriguez, Pfister, Zehe, & Klaus, 2019; Neal

et al., 2011). Tracer time series that span several years at high resolu-

tion (von Freyberg, Studer, Rinderer, & Kirchner, 2018) will pave the

way for the detailed investigation of water flow paths and their influ-

ence on TTDs.

3 | SIMULATIONS OF TRACER
CONCENTRATIONS THROUGH SAS
FUNCTIONS

We focus on the multimodality of the discharge TTD, seen as the TTD

of all the water draining to a single outlet like streamflow, as opposed

to the TTD of the evapotranspiration flux. Thus, the terminology

‘TTD’ or ‘SAS function’ will always refer to discharge unless specified

otherwise.

From a mathematical perspective, the TTD is the transfer function

that verifies the equation:

CQ tð Þ=
ð +∞

T =0
CJ t−Tð ÞpQ T,tð ÞdT ð1Þ

where CQ(t) is the tracer concentration in discharge at time t, CJ(t − T)

is the tracer concentration in precipitation at time t – T and pQ(T, t) is

the time-variant TTD, that is, the distribution of water ages T (time

spent since entry in the catchment) in discharge conditioned on

time t. The same equation applies to outflows other than discharge

and their TTDs (e.g., to the evapotranspiration flux ET and its TTD

pET(T, t)). Equation 1 is valid only for ‘ideal’ tracers (such as deuterium or

oxygen 18 in certain conditions), for which the concentration associated

with a water parcel does not change along its transport. In these circum-

stances, the TTD assumes the character of a lumped model representing

a hypothesis about the transport processes to the outlet.

4 RODRIGUEZ ET AL.



For non-ideal tracers such as solutes undergoing chemical reac-

tions, the changes in concentration since the tracer entrance into the

system need to be accounted for. Assuming that these changes are a

direct function of water age T allows using Equation 1 to simulate

non-ideal tracers in outflows as well (Maher, 2011; Rinaldo &

Marani, 1987). In such a case, CJ(t − T) is replaced by CS(T, t), i.e., the

tracer concentration of water in storage with age T at time t. For

atmospheric tracers that are introduced through precipitation and

decay with age such as tritium (Stewart et al., 2010; Visser

et al., 2019), the following relationship can be implemented:

CS T,tð Þ=CJ t−Tð Þe−T=τdec , where τdec is a kinetic (decay) constant

(e.g., 17.77 years for tritium). For geogenic reactive tracers like silicon

and sodium (Benettin et al., 2015; Clymans et al., 2013; Hornberger,

Scanlon, & Raffensperger, 2001; Johnson, Likens, Bormann, &

Pierce, 1968; Maher, 2010), where the input is typically tracer-free

and tracer concentration can increase with age towards some limiting

concentration Clim, the storage concentration takes the form:

CS T,tð Þ= CJ t−Tð Þ−Climð Þe−T=τeq +Clim , where τeq is a kinetic constant

(e.g., 1 year). Tracer concentrations in storage can also increase

because of specific removal of tracer-free water by ET

(evapoconcentration). The resulting effect on CS(T, t) is explained in

detail by Queloz, Carraro, et al. (2015) and can be formulated through

an evapoconcentration parameter α, where α = 0 represents pure

evapoconcentration and α = 1 represents fully conservative tracer

behaviour (Bertuzzo, Thomet, Botter, & Rinaldo, 2013).

The unsteady TTDs pQ(T, t) can be obtained by solving a water

balance equation for each water parcel [usually referred to as age

master equation (Botter et al., 2011)]. Numerical solutions to the age

master equation (Benettin & Bertuzzo, 2018; Harman, 2015;

Rodriguez & Klaus, 2019; vander Velde et al., 2012; Visser

et al., 2019) usually consider one control volume for the entire hydro-

logical system and use the ‘age-ranked storage’ ST(T, t) as state vari-

able. ST represents the distribution of water volumes in storage,

ranked by age. For instance, ST = 10 mm for T = 1 day means that

10 mm of water in storage is younger than 1 day. ST changes with

time because new water is introduced by precipitation J, and because

ages in storage are removed by outflows Q and ET. These outflows

are associated with SAS functions ΩQ and ΩET representing their pref-

erence for removing certain ages in storage. Time-varying TTDs are

obtained by evaluating the SAS functions over the age-ranked

storage:

pQ T,tð Þ= ∂

∂T
ΩQ ST ,tð Þð Þ ð2Þ

In some circumstances, it may be convenient to consider the

normalised form of the ranked storage PS = ST/S(t) and use SAS func-

tions ΩQ(PS, t) that are defined over the interval [0,1], where 0 corre-

sponds to the youngest parcel in storage and 1 to the oldest. In this

work we also refer to the SAS functions in non-cumulative form, sim-

ply defined as ωQ(ST, t) = ∂ΩQ/∂ST or ωQ(PS, t) = ∂ΩQ/∂PS. Tracer con-

centrations are obtained by coupling Equations 2 to 1 after imposing

a functional form to the SAS functions. Examples of SAS function

shapes are the power function (Benettin, Soulsby, et al., 2017), the

beta distribution (van der Velde et al., 2015), the gamma distribution

(Harman, 2015), or any of the functions described in section S1. Here,

we test composite SAS functions obtained as a weighted sum of prob-

ability distributions:

ΩQ y,tð Þ= PM
m=1

λm tð ÞΩm y,tð Þ
y = ST or y =PS

8><
>: ð3Þ

The M functions λm(t) are time-varying weights summing to 1 to

ensure mass conservation. In this study, we used constant weights,

but they can be parameterised to change with various hydrological

quantities such as precipitation intensities, storage, or storage varia-

tions (Rodriguez & Klaus, 2019). Each weight λm(t) defines the relative

volumetric contribution of the component Ωm(y, t) to the considered

outflow [here discharge Q(t)] at time t. Ωm(y, t) is a probability distribu-

tion function of the variable y = PS or y = ST associated with a contri-

bution (labelled with m) of water ages to the outflow. This

contribution can be a given hydrological process (Wilusz et al., 2020)

or a spatial end-member (e.g., soil water) having a particular age range

(e.g., young water for overland flow). In this study, we assumed that

the Ωm(y, t) do not explicitly depend on t. They can nevertheless be

explicitly dependent on time t to include the effect of a time-varying

age selection for each component and to increase the overall temporal

variability of the SAS function (Wilusz et al., 2020). Note that even a

SAS function with no explicit dependence on t allows simulations of

time-varying TTDs. This differs from previous similar formulations of

composite TTDs that were at steady state (Leray et al., 2016). Com-

posite SAS functions can be defined the same way in non-cumulative

form. To test our results for a larger number of SAS shapes, we used

SAS functions defined both over the age-ranked storage (Section 5)

and over its normalised form (Section 4).

4 | MULTIMODALITY IN A LYSIMETER-
SCALE EXPERIMENT

Small-scale (~2 m) experimental setups like lysimeters (Pütz

et al., 2016) are currently the only hydrological system where TTDs

can be measured by labelling individual precipitation events. While

tracer experiments in lysimeters often resulted in substantial single-

mode tracer breakthrough curves (BTC) (Groh et al., 2018; Stumpp,

Nützmann, Maciejewski, & Maloszewski, 2009), the experiment by

Queloz et al. (2015) is one rare example showing a clear bimodal

behaviour with two distinct peaks in the BTC.

4.1 | Data and methods

Extensive information about the experiment including hydrological

and tracer data can be found in Queloz, Bertuzzo, et al. (2015). In

brief, the experiment was carried out at EPFL campus (CH) between
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2013 and 2014 in a large (2.5 m-depth, 1.2 m2-diameter) vegetated

lysimeter. The experiment was forced by controlled, non-stationary

irrigation. Two small willow trees planted within the lysimeter trig-

gered intense evapotranspiration fluxes that regularly exceeded

30 mm/day during warm summer days. Flow from the bottom drain-

age was discontinuous, with peaks following irrigation and no flow

during dry days (Figure 2). A number of five fluorobenzoate (FBA)

tracers were applied in Spring 2013 and showed different recoveries.

We focus here on the tracer that had the most conservative behav-

iour (2,6-DFBA, 60% recovery). The tracer arrived at the bottom of

the lysimeter over two distinct timescales that resulted in two differ-

ent major peaks with duration of weeks to months (Figure 2). It is

worth to recall here that the TTD is the normalised mass break-

through curve (MBTC) and not the concentration breakthrough curve

(CBTC). The MBTC is influenced by the variability of the hydrological

fluxes and would resemble the drainage time series, with multiple indi-

vidual peaks corresponding to high flow events. Yet, the CBTC better

reveals the two longer-lasting peaks and we consider those as repre-

sentative of contrasting transport processes occurring within the

lysimeter. The major of the two peaks occurred through the summer

(roughly 3 months after application) when flow was very discontinu-

ous, while the other peak occurred at the beginning of the winter

(roughly 6 months after application), when evapotranspiration became

significantly lower. Although the second peak is smaller in magnitude

compared with the first peak, it drained more tracer mass because

flows were higher.

Tracer transport for this experiment was previously modelled by

(Queloz, Carraro, et al., 2015), who used an approach based on SAS

functions and conceptualised the lysimeter as two systems in series:

the unsaturated soil (modelled through a power-function SAS) and the

saturated gravel filter (modelled as a fully mixed compartment). In this

study, we use one single control volume for the entire lysimeter sys-

tem (unsaturated and saturated) and we test a new functional shape

for the SAS function ΩQ(PS). We introduce the truncated normal SAS

function N T PS,m,sð Þ (formula in S1.1), which has two parameters: m,

corresponding to the mode of the distribution and s, which is propor-

tional to the standard deviation of the distribution. Depending on the

value of the parameters, the normal SAS function can be bell-shaped

or not. Note that even a symmetric SAS function does not imply that

the resulting TTDs are symmetric. As the parameters of the normal

SAS function are strongly related to the function mode, it is an appeal-

ing candidate to explore multimodality. Thus, we generated a compos-

ite SAS function as the linear combination of two normal SAS

functions (see section S1.1). The composite function allows for two

distinct peaks and has a total of five calibration parameters (two for

each normal distribution and one for the partitioning). For comparison,

we also used a single normally distributed SAS function (two parame-

ters) and a power-function (one parameter) for ΩQ. The SAS function

for the ET flux (ΩET) is assumed in all cases to be a uniform distribution

over the younger storage fraction defined by the parameter u, as pro-

posed by Harman (2015). The model further assumes that the tracer

is conservative but only partially taken up by vegetation, through a

parameter α≤1 (see Section 3). This partial uptake of the FBA tracer

by the willow trees in the lysimeter was revealed by Queloz, Bertuzzo,

et al. (2015) who found small amounts of tracer in plant tissues, and

whose breakthrough curves were not described well either by an

absence of vegetation uptake, or by a complete vegetation uptake of

the tracer. The simulation was run using tran-SAS (Benettin &

Bertuzzo, 2018) and calibrated to measured tracer data through the

DREAMZS algorithm (ter Braak & Vrugt, 2008; Vrugt et al., 2009). Cali-

bration was based on the assumption that residuals were independent

and normally distributed. Further details on the model and calibration

setup can be found in Section S2. For each of the three tested SAS

models, the best parameter combination (Table S1) was retained to

obtain the instantaneous TTDs and compute the marginal TTD.

4.2 | Results

The results of the tracer breakthrough simulations are shown in

Figure 3 together with their corresponding SAS function ΩQ. Break-

through curves are discontinuous because of the frequent absence of

flow during the dry summer months. The three curves all match the

beginning of the early breakthrough in mid-May 2013. This 1-month

delay since tracer application is obtained through SAS functions that,

in all cases (see Figure 3 inset), are almost null up to PS = 0.2, meaning

F IGURE 2 Experimental data from
the lysimeter experiment by Queloz,
Bertuzzo, et al. (2015). The vertical arrow
marks the tracer application in mid May
2013. Tracer measurements highlight the
occurrence of two major peaks in the
tracer breakthrough: the first one
occurred through the summer when flow
was very discontinuous; the second
occurred at the beginning of the winter
when evapotranspiration became
considerably lower
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that drainage does not comprise the 20% younger soil waters. The

three simulations are also fairly similar at reproducing the first wide

peak from June to October, with the power-function simulation less-

variable and slightly higher than the tracer peak, but overall broadly

comparable with measurements. The main difference occurs upon the

second peak, which is entirely missed by the simpler models while it is

captured by the double normal SAS function. The higher accuracy

obviously comes at a cost (five SAS parameters instead of 1 or 2) but,

besides a much better performance (see additional analyses in

Section S2), the double normal model is more appropriate because it

allows expressing the multimodality of the data. As a result, model

errors are symmetric and much less correlated than in the other cases

(Figure S2 and Table S2). The marginal TTDs resulting from the three

models are illustrated in Figure 4. As expected, the marginal TTD

resulting from the multimodal SAS function has two distinct peaks:

the first at 90–100 days and the second at 200–250 days. By con-

trast, the marginal TTDs resulting from other SAS functions have a

single and higher peak at 90–100 days and underestimate the older

water contribution in the right tail of the distribution. These simula-

tions ultimately tell us that in all cases, water found at the bottom

drainage is representative of the older water stored in the lysimeter

(Figure 3, inset). However, two major transport mechanisms emerge

from the data and the simulations: some water is relatively fast and it

is able to percolate during the dry summer season (c.f. first peak of

the CBTC), likely due to the occasional activation of preferential path-

ways; the rest of the tracer mass moves with the matrix flow

and takes more than twice as much to reach the lysimeter bottom

(c.f. second peak of the CBTC).

5 | MULTIMODALITY IN A VIRTUAL,
CATCHMENT-SCALE EXPERIMENT

The tracer breakthrough experiment shown in Section 4 cannot be

easily applied at larger scales (e.g., hillslopes, catchments). Thus, the

applicability of these results and the validity of these conclusions at

larger scales require a numerical experiment.

5.1 | Methods

We consider a virtual catchment with an arbitrary scale, with known

fluxes J, ET, Q, and with known deuterium content in precipitation CJ.

These fluxes and tracer concentration have a yearly seasonality and

have random daily variations (supplementary information SI,

section S3). The true transport processes to the stream are

summarised by a constant, bimodal composite SAS function Ωref(ST)

(ωref(ST) in non-cumulative form), made of a sum of two gamma distri-

butions Ω1 and Ω2 (or ω1 and ω2) corresponding to a young water

component and an old water component (Equation S6). Here,

age-ranked storage ST is employed to allow the use of gamma distri-

butions. To reduce the number of variables, we used a uniform distri-

bution (random sampling of all ages) for the SAS function of ET (ΩET).

The ‘observed’ deuterium composition of discharge is generated

according to Equations 1 and 2 using the multimodal Ωref as SAS

F IGURE 3 Tracer concentration in
the lysimeter drainage as simulated by the
calibrated models. Curves are
discontinuous during periods with no
flow. The inset reports the calibrated
StorAge Selection function for each
model
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function. We tested the ability of a simpler, unimodal SAS function

ΩQ (one constant gamma distribution, Equation S5) to simulate the

observed stream δ2H. The two parameters of ΩQ were calibrated

against observed stream δ2H using a Monte Carlo procedure and

the Nash-Sutcliffe Efficiency to evaluate model performance

(SI, section S3). We additionally simulated three other solutes with

Ωref(ST) and compared these ‘observations’ to the simulations obtained

from the unimodal SAS function ΩQ calibrated to δ2H. This was done

to assess the performance of the unimodal approximation of the SAS

function for water quality simulations. We considered:

• A virtual pesticide (e.g., Atrazine) with a short kinetic (decay) con-

stant τdec = 50 days (<0.5 MTT, Table 1), applied as a single pulse

C0 = 50 mg/L during a 100 mm precipitation event over 1 day.

• Nitrate (NO−
3 ), with a long-term input of 60mg/L, then linearly

decreasing from 60mg/L to 0 in 150days (’0.5 MTT, Table 1).

• A weathering product (e.g., silicon) with a long kinetic constant

τeq = 550 days (’2 MTT, Table 1) and limit concentration

Clim = 200 mg/L.

The additional tracer concentrations were obtained from the fol-

lowing equation (similar to Equation 1):

CQ tð Þ=
ð +∞

T =0
CS T,tð ÞpQ T,tð ÞdT ð4Þ

where CS(T, t) has a different expression depending on the consid-

ered solute (Section 3, and SI, section S3). These additional tracers

have Damköhler numbers between roughly 0.5 and 6 for the consid-

ered catchment (ratio of MTT to kinetic constant, see Oldham,

Farrow, & Peiffer, 2013; Maher & Chamberlain, 2014; Ameli

et al., 2017), representing from reaction-limited to transport-limited

tracer dynamics, respectively. The pesticide, with a low Damköhler

number, will thus be highly sensitive to the accuracy of the model in

rapidly transporting water to the outlet. Conversely, the weathering

product, with a high Damköhler number, will be highly sensitive to the

accuracy of the model in retaining water for a long time in storage

until it nearly reaches chemical equilibrium.

5.2 | Results

The unimodal gamma-distributed ΩQ simulated the observed stream

δ2H well, with a Nash-Sutcliffe Efficiency of NSE = 0.89 (Figure 5a).

The model only failed to reproduce some of the rapid δ2H responses,

especially at the beginning of wetter periods. The corresponding cali-

brated ΩQ is similar to the old water component Ω2 of the SAS func-

tion Ωref (Figure 5). As such, it clearly neglects the young water

component Ω1 (ST ≲ 200 mm), and it overestimates the old water

fractions (ST ≳ 600 mm) compared with Ω2. This is also visible in the

corresponding marginal TTDs (average TTD over 100 years)

(Figure 6), which have the largest differences over both younger

(T ≲ 0.2 year) and older (T ≳ 1 year) water components. The

observed differences between Ωref and ΩQ did not have a large influ-

ence on the simulations of the stream δ2H. To assess the conse-

quences of those differences for other tracers, we compared the

simulations from those two models for the three additional solutes

in the stream. The observed differences between the unimodal ΩQ

calibrated to δ2H and the bimodal Ωref are well reflected in the simu-

lations of these three tracers. Because of the mismatch in old water

fractions (T ≳ 1 year, Figure 6), ΩQ constantly overestimates the con-

centration in weathering product (Figure 5b). The mismatch in inter-

mediate ages (0.25 ≲ T ≲ 1 year) results in a slower middle-term

response of ΩQ to a change in the nitrate input (Figure 5c), with a

6 months delay to return to concentrations below the WHO guide-

line of 50 mg/L and about 2 years more to return to nitrate-free

water. Finally, without a young water component (T ≲ 0.2 years), the

unimodal ΩQ does not simulate the quick pesticide breakthrough

(Figure 5d) nor does it simulate a long-term response because of the

quick decay of the pesticide (τdec = 50 days). The differences in

water age between the two models are quantified through some sta-

tistics of the marginal age distributions (Table 1). The unimodal ΩQ

results in a much larger mean travel time (MTT) (explaining the delay

in middle-term response in nitrate), in a fraction of water younger

than τdec 58 times lower, and in a higher fraction (13% more) of

water older than τeq.

TABLE 1 Statistics of the marginal travel time distributions
arising from the unimodal (ΩQ calibrated to δ2H) and multimodal (‘true’
Ωref) StorAge Selection functions

Ωref ΩQ

(true multimodal
gamma)

(calibrated unimodal
gamma)

MTT [years] 0.81 1.22

MdTT [years] 0.72 0.94

F(T < 2 days) [%] 0.049 0.00

F(T < 7 days) [%] 0.47 0.00

F(T < 31 days) [%] 6.5 0.023

F(T< τdec = 50 days)

[%]

8.7 0.15

Fyw(T < 73 days) [%] 10 0.82

F(T < 2

τdec = 100 days)

[%]

13 2.5

F(T < 3

τdec = 150 days)

[%]

20 8.7

F(T < 365 days) [%] 73 55

F(T< τeq = 550 days)

[%]

90 77

F(T < 2

τeq = 1,100 days)

[%]

99 95

F(T < 3,000 days)

[%]

’ 100 99.7

Abbreviations: MdTT, median travel time; MTT, mean travel time.
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These results show that, despite the ability to simulate the

observed δ2H, the calibrated unimodal ΩQ fails to simulate other

tracers. Overall, we can expect that a deviation of a model (here ΩQ)

from the ‘truth’ (usually unknown, but here Ωref) around a given age

T will create a mismatch for all tracers whose stored concentrations

vary with a time scale close to T. For instance, the unimodal approxi-

mation is reliable only for travel times close to 1 year (Figure 6, the

curves cross around T = 1 year). δ2H in storage depends on the δ2H of

precipitation, which essentially varies over a whole year. Thus, the

unimodal approximation matches the time scale of δ2H dynamics, and

the simulations of δ2H in the stream are accurate. For all the other sol-

utes, the large differences between the unimodal approximation and

the true age description exactly correspond to the time scales of the

tracer dynamics in storage, and the simulations are wrong.

6 | DISCUSSION

6.1 | Relevance of water age multimodality for
tracers

Our results confirm the ability of age-based lumped models to simu-

late tracer dynamics in discharge. Unimodal SAS functions only had

one or two parameters but they provided satisfactory simulations

with good performance measures. This is because they managed to

capture the average tracer dynamics (e.g., as seen through a moving

average) resulting from the range of travel times that characterises

the majority of the discharge. For the lysimeter, 50% of the water left

via the bottom drainage in less than 100 days, which is captured by

the power function and the single normal function well enough
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(Figure 4). For the virtual catchment, 50% of the water left via dis-

charge in less than 1 year, which is captured by the single gamma dis-

tribution well enough (Figure 6). Detailed characteristics of the tracer

observations such as flashy responses associated with small discharge

volumes (e.g., short-term dynamics within each peak in Figure 3,

months 24–30, 12–16, and 52–56 in Figure 5), or secondary peaks

(Oct–Jan in Figure 3) do not need to be reproduced to obtain satisfac-

tory values of the standard objective functions used for calibration.

Yet, these detailed characteristics represent transport processes act-

ing at different time scales and they can be highly informative on the

deficiencies of a too simple model. They could also be used as ‘soft

data’ (Seibert & McDonnell, 2002) along with experimental knowledge

to justify the selection of more complex age models accounting for

more hydrological processes (as in Rodriguez & Klaus, 2019).

Composite SAS functions increased model complexity but in

return gave more accurate process representation. For instance, the

double normal model applied to the lysimeter experiment (Section 4)

was able to capture the two main timescales at which the tracer was

transported through the lysimeter, while the simpler models under-

estimated the impact of longer transit times (Figures 3 and 4). In some

cases, the increase in performance could be insufficient to justify the

use of additional parameters. For example, for the catchment-scale

virtual experiment, the performance in δ2H of the single gamma model

does not motivate the use of a more complex model. This highlights

that a single tracer measured in inflows and outflows may not allow

the identification of all peaks of the TTDs. Furthermore, the virtual

catchment experiment showed that the simpler model, although effi-

cient enough in reproducing δ2H, essentially failed to simulate the

three other tracers. The unimodal approximation neglected the short

term response of the catchment, it delayed the middle term response,

and it overestimated the long-term response. This shows that simula-

tions of solute chemistry require an accurate estimation of the TTDs

that goes beyond conservative tracer input–output relationships, and

that accounts for the potential multiple modes of transport associated

with different age fractions (Benettin et al., 2017). On the other hand,

this also means that stream chemistry data (Neal et al., 2013) and new

available tracers (Abbott et al., 2016; Hissler, Stille, Guignard, Iffly, &

Pfister, 2014; Pfister et al., 2017; Visser et al., 2019) can be used to

validate TTDs deduced from a conservative tracer input–output rela-

tionship (Guillet et al., 2019). Overall, these results highlight the need

for new methods that do not calibrate TTDs using tracer input–output

relationships but instead measure the TTDs directly, such as (Kim

et al., 2016; Kirchner, 2019).

Several characteristics shared by the two hydrological systems

described in Sections 4 and 5 made the comparison between

unimodal and multimodal models possible. Contrary to previous stud-

ies on the shape of TTDs and SAS functions, our work was not

impacted by large unknowns such as total storage (Birkel, Soulsby, &

Tetzlaff, 2011; Rodriguez, McGuire, & Klaus, 2018) and unknown past

inputs and initial conditions (Hrachowitz, Soulsby, Tetzlaff, &

Malcolm, 2011). In addition, there was no uncertainty related to

hydrological and tracer data regarding the spatial homogeneity of

inputs, the calculations of ET, the limited tracer sampling frequency

(Hrachowitz et al., 2011; Kirchner, Feng, Neal, & Robson, 2004;

Stockinger et al., 2016) and record length (McGuire &

McDonnell, 2006). In addition, we avoided using several common

modelling assumptions that may have a noticeable impact on the

inferred age distributions. These assumptions include the no-flow

boundaries defining the control volume to ensure the closure of the

mass balance (related to the calculation of actual ET and/or deep

water losses), and the ages of water used by ET. van der Velde

et al. (2015) and Ali, Fiori, and Russo (2014) showed that the ET flux

and its TTD influence the TTD of discharge. Further research is

needed to improve our understanding of the role of the water ages

abstracted by ET on the shapes of the discharge TTD (via the effect of

ΩET on ST or PS hence pQ).

6.2 | Interpretations of the water age uni- or multi-
modality

To understand the possible reasons for the multimodal character of

TTDs not simply caused by time-varying inflows and outflows, it may

useful to see the travel time T of an individual water parcel from a

Lagrangian point of view (i.e., following the water parcel on its jour-

ney). The travel time can be expressed as T = L/v, where L is the total

length of the flow path taken by that particle (from entry into the sys-

tem to exit), and v is the harmonic mean of Lagrangian velocities of

that parcel along the considered flow path of length L (see SI,

section S4). The harmonic mean of velocities is used to obtain an

average that appropriately summarises the entire history of Lagrang-

ian velocities along the flow path in a single measure. We use this par-

ticular point of view as a simplification that helps us focusing on the

role of flow path lengths and velocities in shaping the TTD, whereas

potentially more complex Lagrangian representations of water trans-

port are possible (Berkowitz, Cortis, Dentz, & Scher, 2006; Botter,

Bertuzzo, Bellin, & Rinaldo, 2005; Cvetkovic, Carstens, Selroos, &

Destouni, 2012; Davies, Beven, Rodhe, Nyberg, & Bishop, 2013;

Sternagel, Loritz, Wilcke, & Zehe, 2019; Zehe & Jackisch, 2016). Using

a similar approach, Kirchner, Feng, and Neal (2001) calculated the

shape of TTDs for theoretical catchment geometries corresponding to

various distributions of L [called width function w(x), with x the dis-

tance to the stream]. Seeing both L and v as random variables makes

the TTD a ratio distribution (Rinaldo, Vodel, Rigon, & Rodriguez-

Iturbe, 1995). Ratio distributions generally do not have simple analyti-

cal expressions (Curtiss, 1941), meaning that the shape of the TTDs

can be complex, with potentially many peaks and often a heavy tail. In

particular, if the distributions of L and v are multimodal for various

physical reasons (see Section 2), it can be expected that the TTD is

multimodal as well (see Figure 7, note, however, the implicit assump-

tion of independence between L and v). This has been recently

observed in a catchment in Switzerland where the extension and the

contraction of the flow network for different wetness conditions cre-

ates complex patterns of flow paths leading to multimodal TTDs

(assuming a constant, homogeneous velocity field) (van Meerveld,

Kirchner, Vis, Assendelft, & Seibert, 2019). In reality, the shape of
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TTDs will depend on the relationship between L and v. In catchments,

it can be expected that the location of a given input will determine L,

but also v. For instance, in heterogeneous media, dispersion causes

the distribution of v to broaden and flatten with increasing

L (Le Borgne, de Dreuzy, Davy, & Bour, 2007). This can be interpreted

as an increased probability with time that the advective velocity of a

water particle has changed along its transport (e.g., as in Davies

et al., 2013; Scaini, Amvrosiadi, Hissler, Pfister, & Beven, 2019; Zehe &

Jackisch, 2016). Therefore, L and v are probably not independent,

making the TTD, as the pdf of their ratio, difficult to estimate a priori

(Curtiss, 1941). Consequently, even a complete knowledge of the dis-

tributions of L and v may not allow to determine the TTD as it was

done in Figure 7 by assuming that L and v are independent.

At large scales (e.g., hillslope, catchment), L can be much larger

than the scale of the heterogeneous properties of the porous media

(i.e., different pore sizes, macropore network, rocks, roots, etc.). As a

result, dispersion is strong and the differences in travel time

T between the water particles coming from different parts of the

catchment (with different L) can be attenuated. This may explain the

general validity of unimodal TTDs in catchments (McGuire &

McDonnell, 2006). For instance, Kirchner et al. (2001) found that low

Péclet numbers (i.e., advection � dispersion) are needed to explain

the gamma shape of TTDs suggested by the spectral slopes of stream

chemistry. At smaller scales, L can be small compared with the scale of

heterogeneities (i.e., advection � dispersion) such that the TTDs are

more likely to be multimodal. For example, preferential flow in soils

can cause a strongly bimodal distribution for v. In the lysimeter at

EPFL (Section 4), flow paths are mostly vertical and the transport dis-

tance is probably narrowly distributed around L = 2.5 m (the depth of

the soil column). The multimodal TTDs obtained in the lysimeter are

thus due to contrasting velocities coming from preferential flow

vs. matrix flow in the lysimeter (Figure 7a), which was clearly identi-

fied from comparisons of tracers measured in soil water vs. discharge

(Benettin, Queloz, Bensimon, McDonnell, & Rinaldo, 2019). The

importance of preferential flow in soils for catchment-scale TTDs may

be difficult to evaluate. Glaser, Jackisch, Hopp, and Klaus (2019)

showed in the Weierbach catchment (Luxembourg) that rainfall-runoff

simulations were not improved by modelling vertical preferential flow

at the catchment scale, using the soil preferential flow parameters

deduced from plot-scale tracer breakthrough experiments. However,

non-uniform lateral flow (similar to lateral preferential flow) appeared

to be an important mechanism for discharge generation in this
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catchment, and it could be implemented in the model by using a highly

conductive horizontal soil layer (Glaser et al., 2019). Different conclu-

sions regarding preferential flow were found by van Schaik

et al. (2014), who highlighted its non-negligible role for runoff simula-

tions during extreme rainfall events in a semi-arid catchment in Spain.

This suggests that preferential flow has an influence on a catchment

TTD only if it provides sufficient volumes of water to the outlet.

Our results suggest that different hydrological processes generate

multimodal TTDs only if these processes result in contrasting water

ages and provide comparable volumes of water. For instance, if sur-

face runoff reaches the stream in 1 hour, there may be no detectable

peak in the TTD around T = 1 hour if 99% of discharge is generated

by subsurface stormflow having water of at least 1 week of age. Simi-

larly, if two recharge areas to a groundwater well provide similar

water ages, the TTD of the well will be unimodal regardless of the

sizes of each recharging area. Composite SAS functions provide an

intuitive mathematical representation: multiple peaks are observed in

the marginal TTDs if the different probability distribution functions

summed together in the SAS function are far from each other in the

age domain (T, PS, or ST), and if they are associated with weights λ

(Equations S3 and S6) that are comparable (e.g., 25% and 75%).

6.3 | Process knowledge and the shape of
composite SAS functions

The characteristics (number of peaks, peak amplitudes, and age

ranges) of multimodal age distributions can be deduced from experi-

mental knowledge of hydrological processes and are useful to test

hypotheses about these processes (Rodriguez & Klaus, 2019). In this

case, a step-wise increase in the complexity of the age distributions

may allow a better understanding of the complexity of the hydrologi-

cal system enciphered in the tracer data. For instance, one may start

with an age component for young water after detecting surface runoff

in the catchment and mapping its extent from manual survey and/or

aerial images. The characteristics of this age component may then be

deduced from GIS analysis, using initially simple assumptions of flow

paths and water velocities (c.f., van Meerveld et al., 2019). Spectral

slopes of stream chemistry suggest that a gamma distribution with a

shape parameter k < 1 may be an appropriate candidate for this young

water component (Kirchner et al., 2000). However, a uniform distribu-

tion on a small age range may perform well for tracer simulations, and

may avoid numerical issues due to the asymptote at age 0 of the

gamma distribution with k < 1 (Rodriguez & Klaus, 2019). Older water

components may then be deduced from estimates of soil water stor-

age and age (based for instance on soil moisture measurements,

hydraulic turnover time) and hydrogeological knowledge of the aqui-

fer (no-flow boundaries, hydraulic conductivity, groundwater depth)

for the groundwater component. The functional form of older compo-

nents may be chosen among popular functions, such as the power

function (Benettin, Soulsby, et al., 2017; Queloz, Carraro, et al., 2015)

or the beta distribution (Danesh-Yazdi, Botter, & Foufoula-Georgiou,-

2017; Kaandorp et al., 2018; van der Velde et al., 2015; Yang

et al., 2018) to use PS as a variable. The uniform distribution or the

gamma distribution (Harman, 2015; Rodriguez & Klaus, 2019; Smith,

Tetzlaff, & Soulsby, 2018) may be chosen to use ST instead, which

may reduce the uncertainties related to the usually unknown total

storage.

On the other hand, composite SAS functions may more easily lead

to over-parameterization and the related parameter uncertainties

(hence age uncertainties) compared with simpler models. In some

cases, it may not be possible to conclude that age multimodality exists

in the investigated hydrological system (even if it is true) because the

available data does not justify the use of more complex models (c.f.,

for the virtual catchment when considering only δ2H). This may hap-

pen in particular when the employed tracer data is at insufficient reso-

lution or when its record length is too short to reveal the influence of

contrasting water age contributions to the outlet. Furthermore,

lumped models based on water ages often do not allow identifying

hydrological processes on their own due to the ‘compression’ of infor-

mation about the hydrological system. This compression is the conse-

quence of the current inability of mathematical models to perfectly

reflect all the perceptual information contained in process knowledge.

A given composite TTD or SAS function can correspond to many con-

figurations of processes (c.f., Figure 7a,c). This means that the details

on the various hydrological processes aggregating to catchment

response cannot be derived from water ages alone. Only precise

knowledge of potential water flow paths or velocities (such as for the

EPFL lysimeter or Biosphere 2 hillslope) may allow such inductive rea-

soning. Alternatively, such inferences may be possible by linking parts

of the TTDs or SAS functions (e.g., components and age ranges)

inferred from one tracer to different end-members and spatial contri-

butions identified from other independent tracers. This could be done

by sampling more than just catchment inputs (precipitation) and out-

puts (e.g., streamflow), and by using numerous tracers in End Member

Mixing Analysis (Christophersen, Neal, Hooper, Vogt, &

Andersen, 1990; Correa et al., 2017; Martinez-Carreras et al., 2015),

or by using Bayesian Mixing (Evaristo et al., 2019; Parnell et al., 2013;

Zhang, Evaristo, Li, Si, & McDonnell, 2017) when the number of

tracers is limited.

6.4 | Modelling complex hydrological systems with
complex age distributions

The composite TTDs (Leray et al., 2016) and the composite SAS func-

tions proposed in this study (see also Rodriguez & Klaus, 2019) have

the ability to embed a larger variety of processes compared with tradi-

tional lumped models, but they are still analytical approximations of

potentially more complex distributions. Shape-free distributions are

more flexible and could better represent the range of transport pro-

cesses in hydrological systems. Shape-free distributions can be deter-

mined from time series analyses (Turner & Macpherson, 1990), by

deconvoluting the tracer output signal (Cirpka et al., 2007; Gooseff

et al., 2011; Luo & Cirpka, 2008; McCallum, Engdahl, Ginn, &

Cook, 2014), from Bayesian inference using several tracers
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(Massoudieh et al., 2012; Massoudieh, Visser, Sharifi, & Broers, 2014),

or from multilinear regression analysis (Kirchner, 2019). However,

these methods require a large number of tracers (Massoudieh

et al., 2014), or tracer time series that are well conditioned for numeri-

cal reasons (Kirchner, 2019), and the resulting solutions can be highly

non-unique (McCallum et al., 2014). Eventually, analytical solutions

can perform better than shape-free solutions in some cases

(Massoudieh et al., 2014). Composite TTDs and SAS functions could

thus offer a good balance between model parsimony and sufficient

representation of the relevant processes at the scale of interest, which

is precisely the aim of lumped models.

Spatially explicit models allow a detailed representation of flow

paths and transport media properties. These suggest that complex

SAS functions and TTD shapes emerge from specific flow paths

(Kaandorp et al., 2018; Pangle et al., 2017; Wilusz et al., 2020; Yang

et al., 2018) or from various conductivity (or velocity) distributions in

the system (Danesh-Yazdi et al., 2018; Davies et al., 2013). Distrib-

uted models also allow linking water sources to travel times, providing

complementary spatial information that cannot be visualised in

lumped models (Sayama & McDonnell, 2009; van Huijgevoort,

Tetzlaff, Sutanudjaja, & Soulsby, 2016). However, these models usu-

ally require more detailed initial and boundary conditions (Delavau,

Stadnyk, & Holmes, 2017; Jing et al., 2019), which get more uncertain

at larger scales. In addition, these models are more computationally

expensive than their lumped counterparts, and thus require efficient

parallelised numerical solutions (Maxwell, Condon, Danesh-Yazdi, &

Bearup, 2018). While we often do not have the means to validate the

age results from these models, they are useful to explore the possible

complexities of the age distributions and relate them to the dominant

hydrological processes (Wilusz et al., 2020). This is especially true as

these models can much better represent the small-scale mechanisms

leading to the observed hydrological processes compared with lumped

models, provided that sufficient experimental data is available to char-

acterise well the associated small-scale heterogeneities. In particular,

this means that contrary to lumped models, spatially explicit models

allow identifying which hydrological processes may lead to complex

TTDs and SAS functions.

7 | CONCLUSIONS

Simple TTDs with mainly one peak (or mode) have been prevalent in the

last decades because more elaborate models were not needed to obtain

a satisfactory tracer simulation. Nevertheless, multimodal TTDs can bet-

ter describe how different groups of water ages emerge at the outlet of

a catchment because of complex flow paths and water velocity distribu-

tions. Recent tracer and numerical experiments (including the two exam-

ples presented here) show that TTDs with multiple peaks can better

simulate the detailed tracer dynamics observed in high-resolution tracer

measurements. Moreover, using the TTDs for water chemistry simula-

tions can expose the flaws of a too simple TTD model that underesti-

mates/overestimates large portions of the age distribution with

implications for tracer concentrations. Our work highlights that, in

various hydrological systems, TTDs are likely to be multimodal because

of contrasts in flowpath length or velocity (or both). We provided exam-

ples of situations where multimodal TTDs are not simply caused by the

dynamics of hydrological fluxes. Multimodality can occur due to: prefer-

ential flows in soils, heterogeneity of the catchment geological substra-

tum, deep subsurface flows beyond catchment topographical

boundaries, and distributed precipitation over large catchments. Differ-

ent hydrological processes providing comparable volumes of waters

with contrasting ages to an outlet will likely result in multimodal TTDs.
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