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Abstract Microbial communities play an essential role in Earth’s ecosystems.
The goal of this study was to investigate whether the functional potential of
microorganisms forming these diverse communities can be directly identified
using a 16S rRNA marker gene with supervised learning methods. The recently
developed FAPROTAX database has been used along with the SILVA database
to produce a training set where 16S rRNA sequences are linked to a number
of metabolic functions. Since gene sequences cannot be explicitly used as
feature vectors by most classification algorithms, the present research aimed to
investigate possible feature engineering approaches for 16S rRNA. Techniques
based on Multiple Sequence Alignment (MSA) and N-grams are proposed
and tested. The results showed that the feature representation based on the N-
grams outperformed MSA, especially when implemented with large and diverse
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functional groups. This suggests that a clustering-like alignment procedure
results in a biased feature representation of the marker gene. Since classifiers
trained using Random Forest and Support Vector Machines techniques were
able to accurately detect a range of functional groups it is concluded that the
16S rRNA gene provides substantial information for the direct identification
of functional capabilities.

1 Introduction

Microorganisms, such as bacteria and archaea, can be found almost everywhere
on earth. Their importance in global climate regulation, as well as human
health (Widder et al, 2016) is becoming increasingly apparent due to the
recent advancements in sequencing technologies. The term “Next Generation
Sequencing” (NGS) technologies refers to a wide range of sequencing platforms
such as “Illumina” and “SOLiD”, which are at the forefront of the effort to
improve our understanding of the microbial world. These platforms enable a
wide range of sequencing methods to be implemented (for a comprehensive
review, see Goodwin et al (2016); Quail et al (2012)).

DNA Approaches to Microbial Community Characterization
The two sequencing strategies in metagenomics typically applied to obtain
relevant data for microbial community research are Shotgun Sequencing and
Targeted Sequencing. While the former involves attempting to sample all genes
in all organisms found in a given environment, the latter targets a specific
easily identifiable marker gene that most, or all, microorganisms possess. 16S
ribosomal DNA represents such a marker gene and is most frequently used for
nucleic acid-based detection and identification of bacteria and archea (Quast
et al, 2013). A number of conserved regions of 16S allow it to be easily
detected, whilst its nine hyper-variable regions can be used to distinguish
between microorganisms on the basis of genetic differences.

In an ideal scenario having the comprehensive genomic information about ami-
crobial community is preferable to sequencing a single marker gene. In practice,
however, shotgun sequencing often recovers only short fragments of the genome
and thus provides highly ambiguous output. Moreover, in situations where a
highly complex microbial community is surveyed, the attained information often
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represents a small fraction of the total diversity within the targeted commu-
nity (Delmont et al (2012); Tyson et al (2012)), and the amount of additional
sequencing required for comprehensive covering often remains unknown.

The main task for which 16S rRNA sequences is currently used is known as
Taxonomic Annotation. The taxonomic profiles ofmicrobial communities provide
insight about the species composition in the surveyed environment. However, the
phylogenetic information is often less relevant for understanding the underlying
ecological processes than the information about the functional capabilities
of inhabiting microbes within complex communities (Louca et al, 2016).
Therefore, a number of methods have been recently developed to retrieve
this type of information from environmental samples. Most, however, require
comprehensive genomic data, which may be difficult to acquire, because of
technological limitations (Ekblom and Wolf, 2014).

16S rRNA Based Functional Annotation
Functional community profiling tools capable of using 16S rRNA data include
FAPROTAX (Louca et al, 2016) and PICRUSt (Langille et al, 2013). Both these
packages work with taxonomically annotated data presented in Operational
Taxonomic Unit (OTU; Sokal and Sneath, 1963) table format. An OTU table can
be used as an input with the FAPROTAX package, a database-driven solution to
16S rRNA functional annotation, which uses the latest literature to map OTUs to
biochemical functions. Assuming that no error was committed during taxonomic
annotation, using this package guarantees correct assignment of functions for
taxa present in the database. It does not, however, allow predicting biochemical
functions for microorganisms not found within the FAPROTAX database.

The PICRUSt package (Langille et al, 2013) can provide predicted functional
profiles using available databases of genomes by inferring the gene content of
those taxa not present in the databases. This process begins by using taxonomic
information to identify the microbe’s position in a phylogenetic tree and finding
its closest relatives with full genome content in the database. The genome
content of these microorganisms is then used to estimate the gene content of
their shared ancestors, which are later used for the prediction of the queried
microbe (Langille et al, 2013). Once the relevant functional genes have been
inferred, the functional capabilities can be estimated. This approach is highly
reliant on the database of reference genomes and is more likely to provide
false predictions, if no genomes of microbes with similar homology to that
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of the unknown examples are found within the database. Since there is no
simple linear link between homology and functional capabilities (see Figure 3),
distantly related microbes can often perform similar metabolic functions and,
thus, PICRUSt’s predictions are expected to suffer from homology related bias.
In fact, as shown by Sun et al (2019) PICRUSt’s accuracy degrades sharply when
implemented with non-human samples, which have less representation in most
genome databases, and thus it cannot be considered a reliable tool when inferring
functional composition of non-human animal, soil or marine environments.
The present work aimed to examine whether instead of involving the step

of taxonomic annotation with 16S rRNA in the classification process (which
relies on the importance of phylogenetic information), the biochemical functions
can be inferred directly from the marker genes. By implementing supervised
learningmethods, we testedwhether 16S rRNA sequences could hold appropriate
information for predicting a range of functional capabilities of microorganisms.
Furthermore, we asessed possible approaches to represent these marker genes
as features. Finally, we aimed to provide pre-processing pipelines in the R
programming language to facilitate further development in methodology for
16S rRNA based classification of biochemical functions.

2 Dataset

To assess the potential of supervised learning methods for the 16S rRNA
based function classification of microbial communities a dataset with a relevant
number of microorganisms with known functional capabilities and their 16S
rRNA sequences was required. To construct such a dataset, we used the SILVA
database (Quast et al, 2013), which stores over four million 16S rRNA quality
checked sequences with reliably identified and manually curated taxonomies. All
sequences have been downloaded from the SILVA database (release 119) website
in a single FASTA file format and processed in R to create an OTU table. In this
format the taxonomic information was used in FAPROTAX to map biochemical
functions to microbes based on the latest literature (Louca et al, 2016).
Over two million 16S rRNA sequences found in the SILVA database have

been assigned at least one of the 90 biochemical function by FAPROTAX. The
distribution of sequence lengths has three picks at approximately 500, 800 and
1300 bp’s. This means that many sequences used in our classification problem
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had at least some sequence fragments missing. Thus, the symbols found at a
given position in two different sequences were likely to come from two different
real positions in the original 16S rRNA genes.

3 Methods

Classification is a supervised learning task in which a 3-dimensional feature
vector G = (G (1) , ..., G (3) )) ∈ - ⊆ ' 3 is used to predict a class label H ∈ . .
Decision models, known as classifiers � : '3 → . , are usually trained on
a subset of available examples with known labels and their performance is
evaluated based on the accuracy of predictions for previously unseen examples.
Functional annotation of microbial communities based on 16S rRNA can be
tackled as a set of : binary sequence classification problems, each describing
whether a microorganism represented by a 16S rRNA sequence possesses a
given functional capability. Therefore, we aimed to train : binary classifiers
to map a sequence B to class label H, thus � : B → H ∈ {1, 0}. Let : ∈
{1, . . . , <}. If the class label H = 1 is assigned to a function B by the :-th
classifier, then it is predicted that a microorganism can perform the :-th function,
otherwise, if H = 0, it cannot.
The 16S rRNA sequences can be represented in mathematical notation as:

B = (B (1) , ..., B (;) ) ∈ (; with an alphabet of symbols ( ∈ {�,�, �,*}, which
does not match the predefined format of the feature vectors required by the
classification algorithms. Whilst in practice some techniques, including Naïve
Bayes and Tree classifiers can work with non-numeric variables, most would
require all features to be numeric. In our training data we included sequences
of varying lengths that are likely to come from different regions of the 16S
rRNA gene. This means that one cannot assume that a symbol B ( 9)

8
, which

is a 9-th element of the sequence vector for 8-th observation, corresponds to
the same feature as B ( 9)

8+1, an element in the same position in the sequence of
another observation. For this reason, a “Feature Representation” (FR) method
is required, so that FR: B → G, where G = (G (1) , ..., G (3) ) ∈ - with the same
number of dimensions 3 for each observation 8.

The process of converting a raw data into usable feature vectors is referred to
as “Feature Engineering” and it has a crucial influence on the performance of the
classifiers. The expected accuracy of the resulting classifiers is the most impor-
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tant criterion by which a given feature representation should be evaluated. The
dimensionality of the resulting feature space should also be reduced if 3 >> # ,
where # is the number of observations, and should include only those features
which have a significant impact on the decision of the classifier.Moreover, if inter-
pretability is an important factor, one may choose to further decrease the number
of features and avoid a complex transformation of the feature vectors.

Figure 1: Feature Engineering approaches. The left-hand panel shows how categorical feature vectors
are derived via theMSA approach. The numerical feature vectors derived via the N-gram approach are
shown in the right panel. 3 = number of dimensions of MSA feature space; X = number of dimensions
of N-gram feature space.

In this paper, we propose two approaches to feature engineering of 16S rRNA
sequences. The first approach, based on Multiple Sequence Alignment produces
a categorical feature vector allowing for a number of simple classification
methods to be used. The second one, based on N-grams (also known as k-mers),
results in a preferable, numerical feature space, facilitating the use of the
state-of-the-art classification methods. Both feature engineering approaches are
summarised in Figure 1.

Multiple Sequence Alignment (MSA)
For the first approach to represent 16S rRNA as a feature vector, we tested
whether aligning sequences in a way that standardises their structure may
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result in a useful feature space for our classification problem. Alignment
procedures are frequently used when analysing RNA or DNA data to identify
regions of similarity between sequences. Significant similarity may indicate
a functional, structural or evolutionary relationship between the sequences
(Dong and Pei, 2007). During an alignment, gaps are inserted to signal missing
information or sequence deletions and, regions of similar structures are shifted
to the same columns. The objective of this procedure is usually related to
minimisation of the number of columns with different characters and the number
of times a gap is inserted. MSA is defined as an alignment of three or more
sequences (Carrillo and Lipman, 1988). Whilst aligning two sequences is
a trivial task, aligning a large number of sequences can be computationally
expensive and thus involves a search for a possibly suboptimal solution using
a heuristic method (for a comprehensive review of different approaches to
sequence alignment, see Notredame (2002) and Thompson et al (2011)).

s :=



B1 =
(
B
(1)
1 , ... , B

(;1)
1

)
B2 =

(
B
(1)
2 , ... , B

(;2)
2

)
...

B# =
(
B
(1)
#
, ... , B

(;# )
#

)
MSA−−−−→ x :=



G1 =
(
G
(1)
1 , ... , G

(3)
1

)
G2 =

(
G
(1)
2 , ... , G

(3)
2

)
...

G# =
(
G
(1)
#
, ... , G

(3)
#

)
Figure 2: Feature Engineering using the Multiple Sequence Alignment. The orginal set of sequences
with different lengths ;8 is represented by s and the aligned table by x. # denotes the number of
observations available and 3 the dimensionality of the resulting feature space.

The resulting aligned table (see Figure 2) can potentially be used as for classifier
training due to the standardised structure and length of feature vectors. In
R, packages capable of aligning multiple sequences of DNA or RNA include
MUSCLE (Edgar, 2004) andMSA (Bodenhofer et al, 2015). Aligning sequences
from the SILVAdatabase often produces tables with over 2000 columns, resulting
in high-dimensional categorical feature vectors. Such feature spaces can only be
used by classifiers capable of handling categorical variables as the aligned tables
contain only characters and the gap symbols "-". The candidate methods would
include Naïve Bayes, Nearest Neighbours and Tree classifiers. Alternatively,
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other classification algorithms such as Support Vector Machines and Deep
Neural Networks would require either One-Hot-Encoding (i.e., constructing
feature vectors with dummy variables) or Feature Hashing (Moody, 1989) to be
implemented in order to attain a numerical feature representation. The former
approach would result in a significant increase in dimensionality, as well as
sparsity of the resulting feature space, which is likely to have a negative effect
on the performance of the classifiers. Although, Feature Hashing techniques do
not suffer from the same limitations, an effective encoding method needs to be
found for the application to be successful (Weinberger et al (2009) & Attenberg
et al (2009)). Such manipulations of a feature representation could improve the
performance of classifiers trained on the resulting feature space. However, the
current research did not test these approaches.

N-grams
The conventional classification methods require the feature vectors to be
comprised of numerical variables. For our second approach to feature engineering
for 16S rRNA, we will investigate whether converting the sequences into a
desirable, numerical format by using n-grams will result in classifiers with good
expected accuracy rates. In the field of text analytics, the phrase n-grams refers to
the counts or frequencies of words or characters of length n found in a given text
sequence. A n-gram based feature space is typically constructed by combining
these counts into a single vector, which can be used as a feature representation of
the original data. For RNA and DNA sequences n-grams are also reffered to as
k-mers and typically represent the counts of short sequence segments of length
n. They are extensively applied in metagenomics, including some taxonomic
annotation pipelines (Wang et al (2007) & Lu et al (2017)), MSA algorithms
(Edgar, 2004) and are essential for clustering (Kaisers et al, 2018) and alignment
free sequence analysis (Huang (2016) & Rahman et al (2018)).
The N-gram counts can be computed in R using the biogram package

(Burdukiewicz et al, 2017). In our classification problem, 1-gram counts
represent the number of times each symbol {�,�, �,*} appeared in a single
sequence B 9 = (B (1)

9
, ..., B

(;)
9
). Consequently, the 2-gram counts report the

number of times a pattern of two symbols {��, ��, ...,*�,**} is found.
The dimensionality of this type of feature vectors grows exponentially with
the length of sequence segments that are counted. Having four symbols in the
alphabet, the dimensionality X = 4= if only n-grams of length n are used. If
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n-grams with = = {:, ...,  } with :,  ∈ Z+ and : ≤  are used, the number of
dimensions is X =

∑ 
==: 4=. The feature vectors with n-grams of length 1 or 2

are unlikely to provide enough detail about the patterns within the 16S rRNA
sequences to discriminate between microorganisms with different functional
potential effectively. However, as we choose to use counts of longer sequence
segments the number of features is going to cause the classifier training to be
more computationally expensive.

Dimensionality Reduction
A number of dimensionality reduction methods have been developed to improve
the robustness and interpretability of classifiers built on high-dimensional
datasets. These are typically classified as either Feature Selection or Feature
Extraction (see van der Maaten et al (2009), Xu et al (2017), for details) .

The feature selection methods for dimensionality reduction attempt to iden-
tify a subset of the original features which are the most informative for
a given machine learning task. Such methods include: Filtering, wrapper,
and embedded strategies.

Filtering of features is processed using chosen criteria such as a correlation,
information gain or gain ratio. It benefits from being relatively computationally
inexpensive compared to other strategies. It is especially suited for high-
dimensional feature spaces and may also be used as a first step of a longer
dimensionality reduction procedure.
The wrapper methods (Kohavi and John, 1997) include search algorithms

which explore the possible combinations of features to find a set which allows
good classifiers to be built. The search space for such optimisation problems
is usually too large and the evaluation of new solutions computationally too
expensive for an exhaustive search. Thus heuristic methods, such as a Genetic
Algorithm (Goldberg, 1989) or Particle Swarm Optimization (Kennedy and
Eberhart, 1995), are implemented to find a local optimum.

The embedded methods perform feature selection as part of model construc-
tion. The popular LASSO method (Tibshirani, 1996) is an example of such
an approach. It reduces the feature space by constructing a linear model with
a L1 penalty. This shrinks the coefficients of many features to zero and the
algorithm uses the remaining features for final model building. LASSO has
been originaly built for regression, but it can also be used in classification tasks.
A binary classification task can be approached as a regression problem with
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H ∈ (0, 1) and the non-zero coefficients of LASSO may be used as feature space
by a classification algorithm.

The feature extraction methods represent a completely different approach to di-
mensionality reduction. These methods transform the original high-dimensional
data into a feature space with fewer dimensions. Depending on the chosen
method, this can be done in a supervised or unsupervised manner. Principle
Component Analysis (PCA) (Pearson, 1901) is currently considered a standard
method for constructing an unsupervised, linear mapping of high-dimensional
data onto a lower dimensional space. The resulting, low-dimensional representa-
tions, made of linearly uncorrelated variables known as Principle Components,
are used extensively for data mining and visualisation, and can be used as an
alternative (low-dimensional) feature representation for classification tasks.
The majority of the aforementioned dimensionality reduction methods are

not capable of dealing with the type of feature space solely based on the
MSA approach, and thus dimensionality reduction has only been tested with
the N-gram based approach.

4 Experimental Setup

To test the representations of a 16S rRNA gene for detecting metabolic capabili-
ties two sets of experiments were conducted. We trained a number of binary
classifiers to identify whether a given 16S rRNA represents a microorganism
which does or does not perform a given function. Five different functional
groups have been chosen for these experiments: Ureolysis, methanotrophy,
fermentation, phototrophy and chemoheterotrophy, each with different levels of
prevalence and varying phylogenetic diversity (for definitions of these functional
groups see Table 1). The proposed approaches to feature representation of 16S
rRNA, based on N-grams and MSA, were also tested and compared.
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Table 1: Definitions of functional groups.

Function Definition Prevalence

Ureolysis The breakdown of urea into ammonia and
carbon dioxide.

2.0 %

Methanotrophy Describes prokaryotes that metabolize methane
as their only source of carbon and energy. They
can be either bacteria or archaea and require
single-carbon compounds to survive.

0.4 %

Fermentation A process that releases energy from a sugar or
other organic molecule, does not require oxygen
or an electron transport system, and uses an
organic molecule as the final electron acceptor.

36.2 %

Phototrophy Using light energy to synthesize sugars and
other organic molecules from carbondioxide.

3.6 %

Chemoheterotrophy Describes organisms which get their energy
from the oxidation of inorganic minerals or
consume other organisms to produce carbon.

71.3 %

Note: The prevalence rates refer to the frequency of a functional group in the processed
dataset, i.e., with sequences from SILVA database and functional labels annotated
by FAPROTAX (Louca et al, 2016).

The phylogenetic diversity of each function is illustrated in Figure 3. As it can
be observed, the metabolic capabilities are not mutually exclusive, as some
functions overlap and can be considered a more specific form of another. The
chemoheterotrophy function can be performed by microorganisms present in
almost every part of the phylogenetic tree. Furthermore, the microorganisms
possessing this trait often can perform other functions, including fermentation,
methanotrophy and ureolysis. This demonstrates how widely spread the trait is;
in the SILVA dataset (release 119) over 1.5 million OTUs (see Table 2) were
assigned the chemoheterotrophy function. Fermentation is another widely spread
biochemical function. It is, however, more conserved then chemoheterotrophy,
as most of the observations with this trait form clusters at the right-hand side
of the tree, with some small clusters at the top of the tree. Ureolysis and
Methanotrophy functions are mostly found within few well-defined clusters
distributed across the left and top-right parts of the phylogenetic tree respectively,
which demonstrates that these traits are phylogenetically diverse but at the same
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time locally conserved. According to our sample, the phototrophy is by far the
most conserved of the five functions, as most of the corresponding observations
are found in three medium to large clusters at the left and bottom branches of
the tree with some outliers located at the top. Moreover, the species with this
trait do not appear to belong to other popular functional groups.
Mean accuracy rates of classifiers built on 50 independent samples are

reported. For each trial a random sample of 400 observations was taken
from the dataset constructed using the SILVA and FAPROTAX databases.
A class balance was enforced for both training and testing of the classi-
fiers by undersampling the majority class. A 10-fold cross-validation method
was used to estimate expected accuracy rates for each sample and the mean
accuracy rates across all 50 samples.

Figure 3: Phylogenetic Tree. Includes 500microorganisms which belong to at least one of 5 functional
groups: chemoheterotrophy, fermentation, methanotrophy, phototrophy, ureolysis. Each function is
represented by at least 100 members. The distance matrix used to draw the tree is derived from
an aligned table, thus sequence similarity is measured by how often two sequences have matching
symbols in each column of the aligned table. The sequence alignment was implemented with msa
package in R.
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For both proposed approaches, Naïve Bayes and Random Forest classifiers have
been applied using e1071 (Meyer et al, 2017) and randomForest (Liaw and
Wiener, 2015) R packages. For the N-gram approach, SVMs were trained
trained with the e1071 package. The radial kernel has been chosen for all SVM
classifiers and 100 trees have been built for each random forest classifier. In the
series of experiments reported here we have used = = {1, 2, 3, 4, 5} to construct
N-gram based feature vectors.
For dimensionality reduction, we implemented LASSO and Principle Com-

ponent Analysis (PCA) techniques using the glmnet package in R (Simon
et al, 2011). With the implementation of LASSO, all features which where
assigned coefficient values of zero have been removed from the feature vectors.
Those techniques have reduced the number of features from 1364 to between
50 and 90 (depending on the sample and the functional group classified). The
glmnet package automatically searches for a good value of the _ parameter
(the default value of 0.01 for minimum _ is used to start the search). For the
PCA method we have used the 50 most relevant components as features. No
dimensionality reduction has been implemented with the MSA based feature
representation, however, non-unique columns and those with too many gaps
(> 75%) were removed from the aligned tables.

5 Results

Multiple Sequence Alignment
The first set of experiments focused on addressing the question whether accurate
classifiers can be trained with Naïve Bayes and Random Forest methods, using
the categorical feature vectors from the aligned table attained by implementing
MSA. The results are summarised in Table 2.

Overall, Random Forest classifiers had higher accuracy rates (between 83.4%
and 90.1%) than the Naïve Bayes classifier (66.1%– 75.7%). The lowest
accuracy rates for the Random Forest classifier were obtained for the largest
and the most phylogenetically diverse functional group (chemoheterotrophy),
while the less numerous and diverse functional labels, such as methanotrophy
and photrophy were idenfied with higher accuracies.
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Table 2:MSA-based classification results.

Mean Accuracy

Function Name No. of
Observations

Naïve Bayes Random Forest

Ureolysis 47,809 0.707 0.869
Methanotrophy 9,473 0.757 0.892
Fermentation 853,671 0.662 0.876
Phototrophy 84,293 0.661 0.901
Chemoheterotrophy 1,683,041 0.695 0.834

Overall Mean Accuracy 0.696 0.874

Note: Mean accuracy rates of the classifiers built on 50 independent random samples of 400 microor-
ganisms. A 50-50 class balance has been kept for both training and testing. The number of
observations reported in the second column represents the number ofmicroorganisms in SILVA
dataset (release 119) which where assigned a given function by the FAPROTAX package.

N-grams
The second set of experiments examined the use of N-gram based feature
spaces for biochemical function classification with 16S rRNA sequencing data.
Overall, all three classification techniques had mean accuracy rates over 80%
(see Table 3). The SVMoutperformed the other two classificationmethods, for all
functions except ureolysis, where Random Forest provided the best results.

Table 3: Ngram-based classification results.

Mean Accuracy

Function Name Support Vector
Machines

Naïve Bayes Random Forest

Ureolysis 0.860 0.839 0.878
Methanotrophy 0.954 0.901 0.911
Fermentation 0.946 0.792 0.890
Phototrophy 0.916 0.781 0.904
Chemoheterotrophy 0.858 0.815 0.852

Overall Mean Accuracy 0.907 0.827 0.887

Note: Mean accuracy rates of the classifiers built on 50 independent random samples of 400 microor-
ganisms. A 50-50 class balance has been kept for both training and testing.
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The effects of implementing LASSO and PCA techniques for dimensionality
reduction on classification accuracy rates is summarised in Table 4. The
application of LASSO resulted in a similiar performance across all three
classifiers. Although this method provided the best accuracy rates for the Naïve
Bayes classifier, SVM and Random Forest performed better with the PCA based
feature space. The classifiers built on an original N-gram based feature space
where no dimensionality reduction method was implemented (1364 features)
outperformed on average both dimensionality reduction approaches.

Table 4: N-gram based Classification with dimensionality reduction methods.

Mean Accuracy

Dimensionality Reduction Support Vector
Machines

Naïve Bayes Random Forest

LASSO 0.885 0.838 0.872
PCA 0.892 0.736 0.887
None 0.907 0.827 0.887

Note: Aggregate mean accuracy rates of the classifiers built for all five functional groups based
on 50 independent random samples. A 50-50 class balance have been kept for both
training and testing.

N-grams vs. MSA
Comparing the results from Tables 3 and 4 one can observe that the classifiers
trained on the N-gram based feature representation performed on average better
than those following the MSA approach. The performance of the Naïve Bayes
classifier has been affected by the change of feature representation as the mean
accuracy rate increased by 0.131 when using N-grams instead of aligned tables.
No substantial increase (0.013) in the accuracy of the Random Forest classifier
indicates that it is well-suited to deal with high-dimensional, categorical feature
spaces produced by MSA.
Table 5 displays the results of the best performing N-gram based classifiers

(SVM) without dimensionality reduction across the five functions in comparison
to the best performing MSA based classifier (Random Forest). As it can be
observed, for the N-gram approach, each function was detected with accuracy
rates between 86% - 95% by the SVM classifier. Furthermore, this approach
outperformed the Random Forest classifier with MSA, 4 of out 5 times.
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Table 5: Comparison between MSA and Ngram approaches.

Mean Accuracy

Function Name No. of Observations N-gram SVM MSA RF

Ureolysis 47,809 0.860 0.869
Methanotrophy 9,473 0.954 0.892
Fermentation 853,671 0.946 0.876
Phototrophy 84,293 0.916 0.901
Chemoheterotrophy 1,683,041 0.858 0.834

Overall Mean Accuracy 0.907 0.874

Note: The best performing classification techniques have been used for a final comparison. The
mean accuracy rates of the classifiers built on 50 independent random samples of 400 mi-
croorganisms. A 50-50 class balance has been kept for both training and testing. The number
of observations reported in the second column represents the number of microorganisms in
SILVA dataset (release 119) which where assigned given function by the FAPROTAX package.

Figure 4: The results of MSA-based Random Forest fermentation mapped to the phylogenetic tree.
The distance matrix used to draw the tree is derived from an aligned table, thus sequence similarity
is measured by how often two sequences have matching symbols in each column of the aligned table.
All 400 observations used to construct the tree where not included in the training set.
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Figures 4 and 5 illustrate the distribution of misclassification errors in a
phylogenetic tree. One can observe that both feature representation approaches
resulted in classifiers capable of non-linear mapping between phylogeny and
function. The parts of the trees which include examples from both the positive
(H = 1) and negative (H = 0) classes (this includes the bottom and the bottom-
left part of both trees) are a significant source of errors. Furthermore, both
classifiers committed errors even when other examples from the same, well-
defined clusters were correctly classified (see top right part of Figure 4). The
N-gram based approach is notably making less errors of this type. The frequent
errors inside those well-defined clusters suggest that not enough information
has been provided to the classification algorithm to detect functional clusters.
It is, thus, likely, that the N-gram based approach requires less data points to
create informative features as it disregards positional information, and produces
vectors with substantial number of informative features when compared to an
MSA based feature representation.

Figure 5: The results of N-gram-based SVM fermentation classifier mapped to the phylogenetic tree.
The distance matrix used to draw the tree is derived from an aligned table, thus sequence similarity
is measured by how often two sequences have matching symbols in each column of the aligned table.
All 400 observations used to construct the tree where not included in the training set.
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6 Discussion & Conclusion

In this paper we have proposed the application of machine learning methods
for functional annotation based on the 16S rRNA gene. After constructing a
valid training dataset, we have tested two feature engineering approaches, one
based on the Multiple Sequence Alignment and another on N-grams. Our results
demonstrated that 16S rRNA contains relevant information for identifying
functional capabilities as both approaches could be used to train classifiers with
satisfactory accuracy rates.
Although one could only speculate about the predictive functional potential

of the 16S rRNA marker gene, as shown by our results the gene can be used with
relative success for mapping phylogeny to function. In other words, non-linear
methods of classification such as Random Forest and radial Support Vector
Machines, can be trained to assign functions in a manner which does not appear
to be biased towards local (i.e., closely related) phylogenetic clusters. In addition,
our results suggest that theN-gram based feature space ismore suitable thanMSA
for this classification task. The frequencies of the shorter sequence segments have
proven to be an effective form of feature representation for 16S rRNA, despite
not taking into the account the information about the positions in the original
sequence. Considering that MSA is a clustering-like procedure, applying it for
the purpose of feature representation means that the structure of the resulting
feature vectors has been determined by the process which aims to maximise
sequence similarity. Thus, when this method is applied, the feature representation
of a new unseen sequence will be dependent on the stored set of sequences
used for alignment and, therefore, it is biased. This might explain the weaker
performance of the classifiers built with this approach. Another reason that might
explain the weaker results obtained from MSA is the higher dimensionality of
the feature space and the lower numbers of highly informative features.

The implemented dimensionality reduction methods, applied with the N-gram
approach, did not have a notable effect on the performance of the classifiers
and, in most cases, resulted in slightly weaker models. As shown by our results
the LASSO method did improve the accuracy of the simplest classification
algorithm (Naïve Bayes), whereas Random Forest and Support Vector Machines
did not benefit from the reduction in the number of features. The potential
reason for the random forest classifier remaining stable when used with high-
dimensional datasets is that it implements a form of implicit feature selection
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when constructing decision trees. The SVM classifier, on the other hand, is
known to behave similarly to regularized algorithms, as it implements a more
robust loss function (hinge loss) when finding decision boundaries. Moreover,
the eigenvalues of the kernel matrix typically decay quickly as the dimensions
become less informative and, thus, in many high-dimensional situations SVMs
effectively classify according to few most relevant dimensions. Nevertheless,
other dimensionality reduction techniques, such as improved variants of LASSO
(Bach (2008) & Zare et al (2013)) and non-linear PCA (Scholz et al, 2005), or
feature selection methods developed for genomic data (Mahmoud et al, 2014)
may improve the performance of classifiers.
Better accuracy rates may also be achieved by implementing alternative

classification techniques, including Deep Learning or ensemble methods, such
asOptimal Tree Ensembles (Khan et al, 2019),Random Projection (Cannings and
Samworth, 2017) or ensembles of subset of kNN classifiers (Gul et al, 2018).
Moreover, to obtain more robust results, future studies would benefit from
conducting similar experiments with a larger number of observations. This
would not only improve the expected accuracy but will also lead to a better
understanding regarding the predictive power of these methods.

Conclusion
Our results demonstrate that 16S rRNA contains relevant information for direct
identification of functional capabilites. In addition, our findings provide evidence
that the N-gram approaches produce preferable feature spaces when compared
to MSA. Taken altogether, the results of this study can serve as a point of
departure for the development of future machine learning pipelines for 16S
rRNA based functional annotation.
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