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Abstract 

When water penetrates into silica surfaces near a crack tip, it reacts with the 
SiO2 network and generates hydroxyl SiOH. Due to the hydroxyl generation, 
the originally intact SiO2 rings are damaged and the structure becomes more 
compliant. One consequence is a reduced Young’s module in the damaged 
zone.  
In this report the general influence of different moduli ahead of a crack tip 
and in the bulk on the stress intensity factors will be studied by Finite Element 
modeling.  
From the FE results it can be concluded that within the numerical errors  

a)  the J-integral gives the same results as the evaluation of stresses and crack 
openings, and 

b) the crack-tip stress intensity is proportional to the externally applied one 
and to the square root of the Young’s modulus at the crack tip. 

The slender notch is considered as an example of application.  
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1. Introduction 

The reaction of water and silica in the surface diffusion zone affects the fracture 
mechanics stress intensity factor K at the tips of cracks. At temperatures T < 450°C, 
the equilibrium constant of the water/silica-reaction  

 Si-O-Si +H2O  SiOH+HOSi (1) 

is given by 

 
C

S
k 1 .  (2) 

where, S = [SiOH], is the concentration of the hydroxyl groups in the silica network 
and C = [H2O] the concentration of unreacted water. 
According to Le Chatelier [1], the equation governing the equilibrium constant is 
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where p is pressure, V  is the reaction volume, R the universal gas constant, and T the 
temperature in °K.  
In gases and liquids, the loading is always hydrostatic. In a solid the situation is more 
complicated, since the individual stress components x, y, z are in general indepen-
dent of each other and are not necessarily hydrostatic. Especially in uniaxial tension or 
compression, the hydrostatic stress deviates clearly from the tensile stress. In contrast 
to this, the stress state ahead of crack tips is more hydrostatic since the stress in the 
prospective plane and the stress normal on this plane are identical, x=y, and the 
stress z is very close to the tip: z=(x+y). 
By replacing the hydrostatic pressure p by the hydrostatic stress h in a solid  

 )(3
1

zyxh    (4) 

we obtain with the hydroxyl concentration S0 for h=0 
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For a crack of depth a, the singular hydrostatic near-tip stresses are given as 
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where r and  are the polar coordinates with the origin at the crack tip, see Fig. 1a. 
Equations (5) and (6) imply that in the high crack-tip stress field nearly all water is 
present in form of hydroxyl S.  
The shape r() of the zone contour for constant h in plane strain results from eq.(6) as 
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with the height  of the zone for a prescribed hydrostatic stress 
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The contour of constant hydrostatic stress according to eqs.(7, 8) is shown in Fig. 1a as 
the heart-shaped curve. This contour also describes the damage zone in front of the tip 
of a crack that has not yet grown by subcritical or stable crack growth. 
 

 
Fig. 1 a) Contour for a constant hydrostatic stress ahead of a loaded crack, b) variation of Young's 

modulus in a frontal zone E(x) (red curve), replaced by an average constant modulus E. 

The hydroxyl generation by the reaction (1) causes damage since the originally intact 
silica ring structure is cracked by the water attack. One of the consequences of such 
damage is the reduction of Young’s modulus E. 
When ED is the modulus in the damaged state and E0 the value for undamaged silica, 
we could derive the relation [2] 
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with =5.3 [4.35, 6.25] (90%-CI in brackets) and the hydroxyl concentration at which 
the Young's modulus disappears Smax =1/= 0.188 [0.16, 0.23].  
As Fig. 1a shows, the tip of the crack is not embedded in the heart-shaped zone but ter-
minates at r=0. This point in principle belongs to both the frontal zone and the un-
damaged surrounding material. A description by eq.(9) leads to a variable module dis-
tribution E(x), which is replaced here by an average constant value for reasons of 
simplicity, Fig. 1b. The module E0 prevails outside the crack-tip zone.  
Another reason for the decrease in the elasticity module in the “frontal process zone” 
is microcracking in polycrystalline ceramics as was studied by Evans and Faber [3].  
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2 Crack terminating at = of the heart-shaped zone 

2.1 Constant modulus over the zone size 

First we studied the case that a constant modulus is prescribed over the whole zone. In 
the heart-shaped zone the Young’s modulus is E E0 and outside the zone E0. FE 
calculations were performed with ABAQUS 6.9 and 6.12. For simplicity, =1, appl=1, 
and E0=1 were chosen. Table 1 shows the J-integrals according to Rice [4] and the 
stress intensity factors obtained from the first contours for the lowest Young’s mo-
dulus of E=0.01 E0. Apart from the first contour, the results are almost constant. Due to 
symmetry, no mode-II stress intensity factor could appear. The average mode-I stress 
intensity factor over contour 2-8 is 1.974 and the Standard Deviation 0.00125 (0.06%). 
 

Contour J KI KII 

1 370.3 1.953 0 
2 378.0 1.973 0 
3 378.0 1.973 0 
4 378.1 1.973 0 
5 378.6 1.975 0 
6 379.2 1.976 0 
7 379.6 1.977 0 
8 378.8 1.975 0 

Table 1 J-integral and stress intensity factors for the first contours (E/E0 =0.01, E0 =1, =0.17, =1). 

The interrelation between crack opening displacement v and stress intensity factor KI 
is for the near-tip field along the symmetry line (here: x=r<<) in plain strain with 
E’=E0/(1-2) 
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Normalized displacements v’ represented in Fig. 2 are defined as 
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The stress intensity factors obtained from the least-squares fit of displacements in Fig. 
2 are compiled in Table 2, Column 3.  
An independent procedure for the stress intensity factor determination is the evaluation 
of the near-tip stresses ahead of the crack tip, i.e. the stresses along the prospective 
crack propagation plane. For the normal component on this plane it holds for the first 
terms 

 xA
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K
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Fig. 2 FE-results of near-tip CODs fitted according to eq.(10). 

A regression analysis of the data in Fig. 3 provides the stress intensity factors. The 
results obtained from the data fit of Fig. 3 are compiled in Table 2, Column 4 in the 
dimensionless form of 

 
 appl

K
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Fig. 3 Stress yy along the prospective crack propagation line (=0), lines: fitting curves according to 

eq.(11), yielding the stress intensity factor for the data points in the range of 0.0005<x/<0.004.  
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2.2 Step-shaped modulus distribution 

So far only cases with a constant modulus were studied, Fig. 4a. An additional FE-
evaluation was made for the case of a variable modulus in the zone ahead the tip. As 
Fig. 4 shows, the modulus was varied in 4 steps. In the inner zone of Fig. 4b, the 
modulus E was E=0.25 E0, then E=0.57 E0, E=0.72 E0, and outside E=E0. The result 
from the J-Integral was (for E0 =1, =0.17, appl=1 and =1): K’=14.83, hardly differ-
ent from the case of constant modulus E=0.25 E0. Also this value is introduced in the 
second Column of Table 2. 

 

 K’,  eq.(11a) 

E/E0 via J via COD via yy 

1 29.21 29.11 28.78 
0.5 21.82 21.81 21.58 
0.25 15.43 15.40 15.21 

0.25/0.57/0.72/1. 14.83 - - 
0.1 9.039 8.871 8.892 
0.03 4.141 4.153 4.065 
0.01 1.974 1.997 1.943 

Table 2 Normalized stress intensity factors K’ from J-Integral, COD, and near-tip stress yy in the 
form of eq.(11a). 

 

 

 

Fig. 4 a) Crack-tip zone with a Young’s modulus E deviating from the bulk modulus E0, E<E0, 
b) stepwise decreasing modulus in zones of height 1/3, 2/3, and 3/3. 
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The K-values for the single zones of Fig. 4a, compiled in Table 2, are plotted in Fig. 5a 
by the symbols (for the geometric data see the insert). In this plot the stress intensity 
factors were normalized on the J-based K value at E/E0=1. The triangle corresponds to 
the varying Young’s modulus shown in Fig. 4b.  

Figure 5b represents the ratio of the data for COD- and yy-based stress intensity 
factors normalized on the stress intensity factors from the J-Integral. The hatched area 
indicates the region of data scatter with an average and “scatter” of about  
 

K(E)/KJ(E)0.9930.015 

 

  
Fig. 5 a) Stress intensity factors from J-Integral, COD, and near-tip stress yy, (K-values normalized 

on the result from J-Integral for E/E0=1), red triangle for step-shaped E-distribution, b) comparison of 
K from COD and yy with the individual results from J-Integral  

2.3 Conclusions from the FE-analysis 

From the results of Fig. 5 it becomes evident that  

 the stress intensity factors are roughly independent of the computation method,  

 the stress intensity factor is only affected by the modulus closest to the crack tip, 

 the straight-line behaviour of Fig. 5a suggests the representation by  
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The FE results confirm eq.(12) as had to be expected e.g. from the theoretical analysis 
by Merkle [5] on slender notches embedded in the reduced modulus at the notch-root. 
From the agreement between the theoretical solution by Merkle [5] and the FE-results 
for 0.1E/E01, it can be concluded that our crack-zone modelling and the accuracy of 
our FE-mesh is sufficient at least for this range. For the lowest value of E/E00.01, the 
FE-program indicated convergence problems. 

 
3. Example of application: Slender notch approach of cracks 

3.1 Notch-model and stresses 

In a micro-structurally motivated approach, the crack tip region (Fig. 6a) is considered 
as a slender notch with root radius  in the order of the average radius of the SiO2 
rings, Fig. 6b. This description may be applied in the following considerations. For 
such a notch, Wiederhorn et al. [6] suggest a crack-tip radius of ρ = 0.5 nm.  

 

 

Fig. 6 a) Crack in silica terminating in a nano-pore, b) equivalent slender notch with a finite notch root 
radius , grey molecules are mechanically inactive. 

Stresses at slender notches were given by Creager and Paris [7]. The stress component 
normal to the crack plane (the tangential stress t=y) is at the notch root  
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The other stress components are  

 0x  (14) 
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Consequently, the hydrostatic stress term results as 
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Equation (16) makes clear that the stresses in realistic silica structures remain finite 
whatever the applied stress intensity factor is. On the other hand, Merkle [5] had 
shown that relation (12) also holds for notches.  
These two findings make clear that always: E/E0>0 and, consequently, K>0. 

3.2 Applicability of J-Integral to hydroxyl damage 

It has been shown in many papers that the J-Integral is applicable to sharp-crack 
problems when the crack-tip damage shows a saturation value. This was for instance 
shown for micro crack damage in polycrystalline ceramics by Evans and Faber [3]. In 
the following considerations the damage by hydroxyl generation will be addressed.  
Using eqs.(5),(9), and (12) a simple approximation for the stress intensity factor in the 
damaged region is obtained as: 

 )1( 2
1 SKK applD    (17) 

Next, we will compute the local hydroxyl concentration and the damage as a function 
of the externally applied stress intensity factor Kappl.  
Crack extension under inert conditions occurs when the maximum stress at the notch 
equals fracture toughness KIc. Then the tangential component y at the notch root 
reaches a critical stress value 0:  

 0

2 

IcK

 (18) 

The related hydrostatic stress at fracture is 

 00, 3

)1(





Ic

appl
h K

K
  (19) 

The critical stress can be interpreted as the ideal or theoretical strength 0. Its value is 
about [8]  

  GPa 230 


 E
 (20) 

as is in agreement with strengths up to 25 GPa measured by Brambilla and Payne [9] 
on extremely thin silica fibers of about 60 nm radius. The highest tensile strengths for 
thicker silica glass fibers in ultra-high vacuum are about c  12.6 GPa [10] at room 
temperature. 
From eqs.(5) and (19) it follows for the damaged material 
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and with eq.(17), 
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The unknown quantity S appears on both sides of (22). This implicit equation in S is 
solved by 

 

















Ic
0

Icmax

Ic
max expPLog

K

K
S

KS

K

K

K
SS applappl

appl




  (23) 

where the “PLog” stands for the Lambert W function or product log function, i.e. the 
solution W=PLog(z) of the equation z=W exp(W) [11]. 
Due to eq.(17) a similar relation holds for the notch-root stress intensity factor  
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Fig. 7 Hydrostatic stress in the hydroxyl-damaged state, h,D, normalized on the critical stress (ideal 

strength) 0 as a function of the applied stress intensity factor Kappl (normalized representation), right 
ordinate: tangential stress t,D=y,D at the notch root normalized on critical strength 0. 
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The hydrostatic stress under damage conditions  

 0, 3

)1( 
Ic

D
Dh K

K


TR

V
 0

3
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is plotted in Fig. 7 as a function of the remote stress intensity factor Kappl and the 
hydroxyl concentration S0 at the notch root before load application.  

The maximum possible hydrostatic stress reads  

 









max

0
max,, Log

1

S

S
Dh 

  (26) 

The limit values from (26) are represented by the arrows in Fig. 7.  
Figure 8 illustrates the typical stress vs. strain curve for a material damaged by micro 
cracking reaching saturation damage (black curve) and hydroxyl damaged silica (red 
curve) with its nearly flat stress-strain curve. It should be noted that this type of curve 
holds also for the tangential stress component since y=3h/(1+). 
Since the maximum stress at the notch root is finite (circle in Fig. 8) for certain 
prescribed Kappl, it does not matter what the further part of the material curve looks like. 
Two possible curve extensions are given by (A) and (B), both of them must lead to the 
same result. 

 
Fig. 8 Stress vs strain curves for a polycrystalline ceramic showing microcracking (black, solid curve) 
and silica (red, solid curve) showing hydroxyl damage. Maximum stress at a notch root indicated by 

the circle, hypothetical extension of the material curve under hydroxyl damage denoted as (A) and (B). 

microcracking 
saturation 

strain

stress 

hydroxyl 
damage 

E0 

ED ED 

(A)

(B)



 11

References 
                                                 
1 H. Le Chatelier, C.R. Acad. Sci. Paris 99(1884), 786. 
2 T. Fett, G. Schell, C. Bucharsky, Hydroxyl Damage in Silica: Full-range description 
including large damages 126, 2019, ISSN: 2194-1629, Karlsruhe, KIT. 
3 Evans, A.G., Faber, K.T., Crack-growth resistance of microcracking brittle materials, J. Am. 
Ceram. Soc. 67(1984), 255-260. 
4 Rice, J.R., A path independent integral and the approximate analysis of strain concentration 
by notches and cracks, Trans. ASME, J. Appl. Mech. (1986), 379-386. 
5 J. G. Merkle, An application of the J-integral to an incremental analysis of blunt crack 
behavior, Mechanical Engineering. Publications, London, 1991, 319-332. 
6 S.M. Wiederhorn, E.R. Fuller, Jr. and R. Thomson, “Micromechanisms of crack growth in 
ceramics and glasses in corrosive environments,” Metal Science, 14(1980), 450-8. 
7 Creager, M., Paris, P.C., Elastic field equations for blunt cracks with reference to stress 
corrosion cracking, Int. J. Fract. 3(1967), 247-252. 
8 Silva, E. C. C. M.; Tong, L.; Yip, S.; Van Vliet, K. J. Small 2005, 2, 239–243. 
9 G. Brambilla, D.N. Payne, The ultimate strength of glass silica nanowires, Nano Letters, 
9(2009), 831-835. 
10 C.R. Kurkjian, P.K. Gupta, R.K. Brow, and N. Lower, “The intrinsic strength and fatigue 
of oxide glasses,” J. Noncrystal. Solids, 316 114-124 (2003) 
11 R. Corless, G. Gonnet, D. Hare, D. Jeffrey and D. Knuth, “On the Lambert W Function,” 
Advances in Computational Mathematics, 5(1996), 329-359. 



 
KIT Scientific Working Papers 
ISSN 2194-1629

www.kit.edu
KIT – The Research University in the Helmholtz Association


