A{]}

Karlsruhe Institute of Technology

This is the author’s version of a work that was published in the following source

Rietz, T., Schneider, F. (2020): We See We Disagree: Insights from Designing a
Cooperative Requirements Prioritization System. Proceedings of the 28"
European Conference on Information Systems (ECIS 2020). Marrakesh, Morocco,
June 15%-171,

Please note: Copyright is owned by the author and / or the publisher.
Commercial use is not allowed.

Institute of Information Systems and Marketing (IISM)

<G Kaiserstralte 89-93
76133 Karlsruhe — Germany

INSTITUTE OF INFORMATION SYSTEMS AND MARKETING http //"Sm . klt . ed u
Karlsruhe Service Research Institute (KSRI)
o Q Kaiserstralie 89
g'/. \ 76133 Karlsruhe — Germany

http://ksri.kit.edu

@@@ © 2020. This manuscript version is made available under the CC-
BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-

nc-nd/4.0/

WE SEE WE DISAGREE:
INSIGHTS FROM DESIGNING A COOPERATIVE
REQUIREMENTS PRIORITIZATION SYSTEM

Research in Progress

Rietz, Tim, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany,
tim.rietz@kit.edu

Schneider, Franziska, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany,
franziska.ma.schneider@gmail.com

Abstract

Information systems development is driven by a variety of stakeholders — each with specific require-
ments. Modern agile development methods, like Scrum, allocate the vital step of prioritizing require-
ments to dedicated roles like the product owner. However, this can create a bottleneck and may lead to
misunderstandings and conflicts between stakeholders. Enabling stakeholders to cooperatively priori-
tize requirements frees up product owners while involving stakeholders more closely in a crucial devel-
opment step, strengthening their ties to the final system. Therefore, stakeholders must form a mutual
and shared understanding of requirements. This research in progress utilizes the design science re-
search methodology to propose design principles for a cooperative requirements prioritization system
using the MuSCoW method — which classifies requirements in four categories. By transferring the theory
of shared understanding to the field of requirements prioritization, we derive design principles for co-
operative requirements prioritization systems. We enable a group of heterogeneous stakeholders to
identify and discuss differences and come to a mutually-agreed prioritization decision. We introduce
design features that instantiate these principles and present promising results of an initial pre-test. This
research in progress contribute to information systems development by introducing principles for the
under-researched, but important class of requirements prioritization systems.

Keywords: Requirements Prioritization, Cooperative System, MuSCoW, Design Science Research

1 Introduction

The prioritization of software requirements plays a crucial role in successfully developing information
systems (IS) (Babar et al., 2015; Perini, Susi and Avesani, 2013). Limited budgets, time, and human
resources constrain software projects, making it crucial to identify the core requirements of stakeholders
(Duan et al., 2009; Perini, Susi and Avesani, 2013). In agile development projects, usually, a single
person performs the requirements prioritization process, €.g., a product owner, who then involves further
stakeholders if necessary (Rubin, 2012). Being responsible for the prioritization as part of the release
planning process, these persons quickly become bottlenecks, as involving diverse stakeholders — devel-
opers, customers, and end-users — is time-consuming and yields high coordination and transaction costs
(Robertson and Robertson, 2013; Rubin, 2012; Kukreja, 2013). As such, one of the most common prob-
lems in agile teams is the limited time of product owners (Bergsmann, 2014; Ramesh et al., 2010).
Enabling stakeholder to discuss their perception and prioritize requirements in a cooperative process,
without the need to involve a product owner in the process, has the potential to open up this bottleneck.
At the same time, involving stakeholders more closely into the decision-making process might create a
democratization of the process by forming stronger bonds between decisions (i.e., the prioritization),
and deciders (i.e., the stakeholders) (Kaner et al., 2014; Wilson, 2003). These issues have been observed,
e.g., in a software development company, where the product owner (PO), responsible for several teams,

Twenty-Eigth European Conference on Information Systems (ECIS2020), Marrakesh, Morocco. 1

A Cooperative Requirements Prioritization System

worked part-time. The stakeholders, such as the PO, developers, management, and customers, lacked a
mutual understanding of the requirements, as customers were only involved selectively in the prioriti-
zation. At the same time, the advantage-seeking behavior of the company-internal stakeholders drove
most decisions. Furthermore, stakeholders were physically separated by multiple locations, resulting in
a lack of personal contact and misunderstandings of requirements.

In such cases, a mutual and shared understanding of requirements between stakeholders is vital to suc-
cessful cooperation (Tan, 2015; Hoffmann, Bittner and Leimeister, 2013). While stakeholders usually
do not need to be experts in each other’s fields, they must be able to share and integrate their knowledge
bases (Kleinsmann, Buijs and Valkenburg, 2010). When involving stakeholders with various back-
grounds, building a shared understanding remains challenging (Hoffmann et al., 2013), due to different
roles, responsibilities, vocabulary, and expertise (Busetta et al., 2017; Hoffmann et al., 2013; Duan et
al., 2009). With this study, we follow the call of Hoffmann et al. (2013) for further research on shared
understanding while transferring insights from previous research to the field of requirements prioritiza-
tion. Following the design science research (DSR) approach, we formulate the following research ques-
tion (RQ):

RQ: Which design principles should a cooperative requirements prioritization system follow to increase
shared understanding among stakeholders?

This research in progress contributes requirements (R) and design principles (DPs) for a cooperative
requirements prioritization system (CRPS), enabling stakeholders with various perspectives and roles,
personal knowledge, and expertise to cooperatively discuss and decide on a mutually-agreed prioritiza-
tion. The system’s focus lies in increasing the shared understanding among stakeholders to reduce dis-
agreement and reach a consensus on requirement priorities. We derive these principles from require-
ments that are extracted from issues (I) as reported in relevant literature in the domains of firstly, re-
quirements prioritization and upon identifying it as a central issue, shared understanding. Furthermore,
we present results from a pre-test of our prototype in a laboratory with 24 participants, meant to evaluate
DPs initially as well as to test the experiment procedure.

2 Conceptual Foundations

21 Requirements Prioritization

Requirements prioritization comprises the identification of core requirements to inform the development
of a product release schedule (Bergsmann, 2014; Duan et al., 2009). Alkandari and Al.-Shammeri (2017)
propose the following steps for a successful prioritization process: (1) determine stakeholders, (2) select
a list of requirements that are subject to the prioritization, (3) define prioritization criteria, and (4) select
a prioritization technique. However, decisions about priorities commonly cause conflicts between stake-
holders, fed by various backgrounds, and incomplete information (Robertson and Robertson, 2013).
Stakeholders often lack a shared understanding of the requirements (Ramesh et al., 2010), and pursue
different goals, which complicates reaching an agreement (Robertson and Robertson, 2013). Neverthe-
less, it is crucial to include heterogeneous project stakeholders with different perspectives, skills, and
roles (Busetta et al., 2017). The inclusion of all relevant stakeholders is especially crucial as unaccom-
modating vital stakeholders’ interests could lead to project failure (Kolfschoten, Briggs and de Vreede,
2009). Amongst the numerous requirements prioritization methods, such as Ranking and Cumulative
Voting (Ramzan et al., 2011), this study focuses on the MuSCoW method of prioritizing requirements
through classification. While the “best” prioritization technique depends on the situation (Vestola,
2010), MuSCoW is a wide-spread method, judging by the number of citations and the reported utiliza-
tion (Achimugu et al., 2014). MuSCoW classifies requirements into "MUST have" - requirements which
are crucial for the success of the entire project and not negotiable; "SHOULD have" - preferable require-
ments; "COULD have" - requirements that would be desirable but are less important; and "WON'T
have" - requirements which are not going to be implemented in the current project (Achimugu et al.,
2014). Previous work on tool support for CRP investigated voting mechanisms (Park, Port and Boehm,
1999; Gruenbacher, 2000) and gamification (Busetta et al., 2017). However, the proposed tools regard

Twenty-Eigth European Conference on Information Systems (ECIS2020), Marrakesh, Morocco. 2

A Cooperative Requirements Prioritization System

collaboration as a process where stakeholders only express preferences while a single decision-maker
prioritizes. No real-time discussion or (re)negotiation is possible in these systems. Research that con-
siders stakeholder discussion as part of the prioritization process argues that conflicting opinions con-
cerning the importance of requirements should not be averaged out by a voting scheme that returns only
one value (Cleland-Huang and Mobasher, 2008). With this study, we follow their argumentation by
proposing a design for a CRPS that enables a synchronous discussion to establish a shared framework
of understanding (Kaner et al., 2014; van den Bossche et al., 2011; Wilson, 2003). Therein, we extend
the existing literature by exploring and evaluating designs for a system supporting synchronous require-
ments prioritization with multiple stakeholders. A real-time discussion has the advantage of not requir-
ing averaging mechanisms to come to a mutual decision as a group and enables stakeholders to negotiate
ratings.

2.2 Shared Understanding in Cooperative Decision-Making

People tend to support most what they helped to create — making it essential to involve stakeholders in
the decision-making process to strengthen commitment and responsibility (Kaner et al., 2014; Wilson,
2003). A key challenge in this process is the lack of mutual and shared understanding among stakehold-
ers, which creates disagreement about priorities (Kolfschoten et al., 2009; Ramesh et al., 2010). Differ-
ences in perspectives, knowledge, or vocabulary are barriers to forming a shared understanding
(Yamaoka et al., 1998). For example, sharing knowledge between IT and business professionals, who
are trained in different technical languages and interpret issues from their perspectives, quickly becomes
very complicated (Pee et al., 2010). Hoffmann et al. (2013) specifically distinguish mutual understand-
ing and shared understanding. Mutual understanding refers to an understanding of each other’s disci-
plines and the recognition of differences in meaning or information. A shared understanding of a group,
however, is described as the ability of multiple actors within a group to coordinate their behavior towards
a common goal based on mutual knowledge, beliefs, and assumptions on the task, the group, the process
or tools (Bittner and Leimeister, 2014). Thus, a group needs to build a common ground for goals, the
work and group processes to achieve them, underlying tasks, and the knowledge, skills, and abilities
other team members contribute (Gibson and Cohen, 2003; Windeler et al., 2015). Strongly related to
forming shared understanding within groups is the theory of shared mental models (Bittner and Lei-
meister, 2014). Langan-Fox, Anglim and Wilson (2004) define a mental model as the individual internal
(mental) representation of objects, actions, situations, or people. The theory of shared mental models
extends this concept to the group level. Cannon-Bowers, Salas and Converse (1993) define shared men-
tal models as knowledge structures held by team members that enable the formation of accurate expla-
nations and expectations for a task, as well as the coordination of actions and reactions to changes and
other team members. We distinguish two types of shared mental models. Taskwork mental models focus
on performing tasks as a team and relate to understanding different goals, interdependencies, complex-
ities, and procedures of accomplishing tasks processes (Cannon-Bowers et al., 1993; Mathieu et al.,
2000; Yu and Petter, 2014). Teamwork mental models focus on the shared understanding of how a team
interacts and relates to different communication patterns, roles, responsibilities as well as to background
knowledge of team members like skills or abilities (Cannon-Bowers et al., 1993; Mathieu et al., 2000;
Yu and Petter, 2014). Finally, it is necessary to distinguish perceived and measured shared understand-
ing for evaluating cooperative systems (Bittner and Leimeister, 2014). Perceived shared understanding
bears the risk of ignoring whether members are aware of incomplete information or conflicts. Measured
shared understanding, on the other hand, requires members to articulate or demonstrate their perception,
reducing that risk (Jentsch et al., 2014). Windeler et al. (2015) evaluate the technological intervention
in distributed teams via self-reported (perceived) shared understanding while Berggren and Johansson
(2010) measure shared understanding in command-and-control tasks. Previous work in the field of col-
laboration engineering has proposed tools that operationalize the theoretical findings on how to foster
shared understanding and consensus-building. MindMerger, a collaboration process module that pro-
vides designers of collaborative work practices with a bundle of activities to solve clarification issues
early in a collaborative process (Bittner and Leimeister, 2014). Tofan et al. (2016) propose a process
named GADGET, aiming to increase consensus when making group architectural decisions (Tofan et

Twenty-Eigth European Conference on Information Systems (ECIS2020), Marrakesh, Morocco. 3

A Cooperative Requirements Prioritization System

al., 2016). GADGET showed promising results for increasing consensus. However, it may be improved
by relying on other averaging mechanisms than a voting scheme. While insights from MindMerger and
GADGET, amongst other methods and tools, inform the design principles proposed in this research in
progress, we extend the body of knowledge by transferring insights to requirements prioritization, in-
cluding evaluation in a controlled experimental setting, following the call for research of Bittner and
Leimeister (2014).

3 Research Method

This study applied the Design Science Research (DSR) methodology to identify and implement design
principles to develop a cooperative prioritization system by following Peffers et al. (2007). Figure 1
presents the larger overall DSR project and indicates steps taken in cycle I as the focus of this research-
in-progress.

General Design Cycle I: Elicitation of Cycle II: Requirements | Design guidelines for a CPRS, enabling stakeholders to form a
Science Cycle requirements (completed) Prioritization with CRPS V' shared understanding and democritize the prioritization process.

Operation and Goal Knowledge

Awareness of problem Suggestion Development Evaluation Conclusion
. . . Instantiation of CPRS . Design guidelines for a
Literature Analysis Requirements and DPs prototype Laboratory Experiment CPRS
Figure 1. Overall DSR project including cycle I (completed) and cycle Il (focus of this research-

in-progress), visualization adapted from Kuechler and Vaishnavi (2008)

The prioritization of requirements is the focus of the second cycle of the overall DSR project. This
research-in-progress reports initial results from cycle Il by deriving four design principles, demonstrat-
ing a prototype and presenting the results of an initial evaluation. We build on the results of this study
to implement a fully-functional CPRS prototype, which will be evaluated in a laboratory experiment to
demonstrate the effects of the proposed design principles for a CPRS. Therefore, we will use the pro-
posed CPRS to prioritize requirements that were collected as part of cycle I, where we conducted elici-
tation interviews with a wide audience using a chatbot (Rietz and Maedche, 2019).

4 Designing a Cooperative Requirements Prioritization System

4.1 From Awareness of Problem to Suggestion

Requirements prioritization is usually supported by stakeholders from different domains with different
perspectives and objectives, resulting in a variety of potentially opposing opinions (Busetta et al., 2017;
Duan et al., 2009). These differences between involved stakeholders make it complicated to reach an
agreement in requirements prioritization (I1). According to the theory of shared mental models, it is
crucial to establish a shared understanding of cross-functional groups, especially when continuous com-
munication is difficult, e.g., due to time pressure (Mathieu et al., 2000). Additionally, stakeholders fol-
low different goals, which causes conflict in requirements prioritization (Robertson and Robertson,
2013), for instance, between developers and testers (Yu and Petter, 2014). Different objectives of stake-
holders further aggravated these issues (12). The theory of shared mental models explains stakeholder
conflict with a lack of teamwork mental models (Yu and Petter, 2014). Without establishing a shared
understanding of teamwork amongst stakeholders, it is more difficult for involved stakeholders to un-
derstand their mutual views, perspectives and responsibilities (Kaner et al., 2014; Yu and Petter, 2014),
which impedes communication and interaction (Mathieu et al., 2000).

R1: When multiple stakeholders are involved in prioritization, a CRPS should provide stakeholders with
the ability to share information (voles, goals, skills, responsibilities, ...) to build a shared understanding.
Domain-specific languages or hidden individual knowledge frequently causes an insufficient under-
standing of each other’s requirements (Hoffmann et al., 2013), which is one of the main limitations of
existing prioritization techniques (Achimugu et al., 2014) (I3). The theory of taskwork mental models

Twenty-Eigth European Conference on Information Systems (ECIS2020), Marrakesh, Morocco. 4

A Cooperative Requirements Prioritization System

stresses the relevance of a shared understanding of goals, interdependencies, and procedures related to
the fulfillment of a task as a group (Mathieu et al., 2000). Furthermore, the theory of shared taskwork
mental models suggests that not having a shared understanding of the meaning and implications of a
requirement causes differences in taskwork mental models and thus disagreement (Kolfschoten et al.,
2009). Lehtola, Kauppinen and Kujala (2004) observe that decision-makers and developers need to un-
derstand better why a requirement is vital to a customer or user (I14).

R2: When differences in understanding requirements appear, a CRPS should provide stakeholders with
the ability to identify the conflicting assumptions about the meaning and effect of a requirement.

The terms ‘requirements prioritization’ and ‘priority’ often have subjective meanings and purposes,
causing misunderstanding and confusion (Gupta and Gupta, 2018; Lehtola et al., 2004). Requirements
prioritization can have ambiguous goals, such as long term benefits of a system/company or the identi-
fication of quick wins (Lehtola et al., 2004). Thus, a frequent cause of disagreement is an imprecise
understanding of prioritization objectives and criteria in different phases of the project (I5).

R3: When stakeholders cooperate in requirements prioritization, a CRPS should be able to introduce
stakeholders to the task and establish a precise understanding.

Finally, stakeholders need to interact with each other to share their knowledge and discuss different
meanings across domains (Kaner et al., 2014). While a voting based interface can be useful to quickly
collect and compare opinions (Park, Port and Boehm 1999), it usually lacks ways of explaining choices,
making it hard to come to a consensus. Especially in the context of requirements prioritization, forming
consensus is critical, as involved parties commonly have a long-term collaborative interest (Kolfschoten
et al., 2009).

R4: When comparing different opinions in a prioritization process, a CRPS should provide stakeholders
with the ability to discuss knowledge and opinions, negotiate the priority of requirements, and collabo-
rate in making a decision.

We established that shared understanding is influenced by being able to understand the background of
team members (R1). Knowledge of roles, responsibilities, goals, and skills provides a context for argu-
ments and assessments (Cannon-Bowers et al., 1993). Furthermore, we know that besides being intro-
duced to the (prioritization) task at hand, a team should have a precise understanding of the underlying
information (R3). Consequently, information about stakeholders would need to be collected and made
accessible to all team members. The visualization of collected information can, for example, be based
on profile pages (Windeler et al., 2015). Enabling a team to share and access information to understand
relationships between each other enables members to spot overlaps or differences in motivation, respon-
sibilities, or backgrounds, which may help to come to a mutually agreed-upon decision (Rosenkranz et
al., 2014).

DP1: Provide the CRPS with a team overview page for stakeholders that visualizes relationships in
order for users to gather and mutually share and make sense of information (roles, goals, skills, re-
sponsibilities), given that stakeholders work together in a team and are incentivized to share infor-
mation with team members.

Secondly, we have established that stakeholders need to be able to spot conflicting assumptions about
the meaning and effect of a requirement (R2). The transparency of differences in opinions, or in mental
models, can help stakeholders to identify underlying problems that may inhibit the cooperative decision-
making process (Kolfschoten et al., 2009). Stakeholders may be enabled to make more substantial cases
for their arguments in a negotiation when they are aware of the personal views and prejudices of other
stakeholders (Mathieu et al., 2000). Considering that stakeholders need to be able to discuss their opin-
ions to fuel a negotiation (R4), this process can only come to meaningful results, with a chance of being
accepted by as many stakeholders as possible, when the causes of conflicting perceptions are understood
(Ramesh et al., 2010, Kaner et al., 2014).

DP2: Provide the CRPS with an individualized evaluation of requirements and a visual comparison of
individual perceptions in order for users to identify and manage conflicting perceptions, given that users
do not agree on the meaning and effects of a requirement.

Twenty-Eigth European Conference on Information Systems (ECIS2020), Marrakesh, Morocco. 5

A Cooperative Requirements Prioritization System

Thirdly, we have established that stakeholders easily get lost in the process of requirements prioritization
due to the misunderstanding of objectives (R3). As various criteria (time, pricy, innovativeness, ...)
drive the prioritization, it is crucial to converge on a set of mutual goals, especially when cooperating
(Robertson and Robertson, 2013). The goals need to be introduced and explained to stakeholders to help
them form a shared taskwork mental model (Yu and Petter, 2014). As an example, we can look at co-
operative online gaming. Here, players receive detailed explanations, or tutorials, outlining how to work
together to solve a problem or reach a goal (Kim et al., 2017).

DP3: Provide the CRPS with a tutorial in order for users to understand the prioritization objectives and
relevant criteria of the current project phase and reduce task-related misunderstanding, given that users
do not have yet established a clear vision of the task.

Finally, we have established that cooperative prioritization can only come to a mutual decision when
stakeholders have the chance to discuss their opinions (R4). Compared to (multiple) rounds of voting, a
chatroom as a space for free-form discussion allows participants to elaborate their perspectives and share
knowledge, enabling the team to make the best possible decision given the underlying restrictions
(Rosenkranz et al., 2014).

DP4: Provide the CRPS with a shared space for discussion and decision in order for users to explain
and negotiate perceptions of requirements, given that users face differences in individual perceptions.

4.2 Development and Preliminary Evaluation

We defined two design features (DF) to satisfy DP2 and DP4, which were instantiated in a prototype for
an initial pre-test, as shown in Figure 2. A CRPS needs to incorporate an additional process step for
stakeholders to express an individual evaluation of requirements. Furthermore, a CRPS needs to visual-
ize these individual assessments (DF1). Secondly, to allow stakeholders to discuss their assessments, a
CRPS needs to include shared space, such as a chatroom, for discussion and cooperative decision-mak-
ing (DF2). We include DF2 in both the control and treatment groups, as it is mandatory to enable the
desired interaction. DP1 and DP3 are explicitly not included as part of the pre-test prototype, to reduce
the number of treatments required for this initial evaluation of the experimental procedure.

- - P - - Treatment
DP2. Provide the CPRS with an individualized evaluation
of requirements with subsequent comparision ivi Post-
Introduction —» igs?l‘;xitﬁt —> asgrzlliint »| experiment
DF1. Enable stakeholders to express an - g g survey
individual rating ofrequirement effects, - E Intro to]]]
P»lincluding an explanation, and visualize the + - Individual rating ~ Discussion with Assessment of
. T X —)» & experiment case, . i F .
difference between individual assessments in a, ’E (il e and explanation visualization of perceived effects
dashboard to inform a discussion | | (- K ?t_"_lgs_/ ?’frilfl_l?tf(zrfs _______________
Control
DP4. Provide the CPRS with a shared space for Post-
discussion and decision. Introduction > assci};sllif’ent »| experiment
survey
DF2. Include a chatroom to provide a common - -
»|space for discussing requirement priorities and > Il.1tro to X DlSCuSSl(')Ijl Assessment of
making a decision as a team A experiment case, w1t¥10ut add;tlonal perceived effects
tasks and tool information
Figure 2. Abbreviated DP2 and DP4 and instantiation into design feature 1 and 2. The vight
side shows the experimental procedure for treatment and control groups and included

design features.

We conducted a between-subjects experiment with 24 participants in two treatments. We randomly as-
signed participants to groups of three. The experiment contained three stages: An introduction, the in-
teraction with the CPRS, and a post-experiment questionnaire. In the control treatment, we asked par-
ticipants to prioritize requirements as a group, using a prototype implementing only DF2. We asked the
treatment group to complete an individual rating of the requirements before the group phase, using a
prototype implementing both DF1 and DF2. A printed description of the experiment case introduced the
participants to five requirements for a new app for students. In the individual assignment, we asked
participants to prioritize requirements according to their personal preferences. Each requirement had a
value function, that determined the added benefit in case of its implementation. In the group assignment,

Twenty-Eigth European Conference on Information Systems (ECIS2020), Marrakesh, Morocco. 6

A Cooperative Requirements Prioritization System

we asked participants to sort each requirement into one of three categories: Must (implementation of
requirement is guaranteed), Should (50% chance of implementation) and Could (25% chance of imple-
mentation), each with limited capacity: must (1), should (3) and could (1). After the experiment, the
participant’s payoff was calculated by determining if a requirement would be met (based on each cate-
gory’s likelihood) multiplied by the value function. Value functions had a form such as Requirement A
has a 60% chance of adding 10 points and a 40% chance of adding 50 points. Figure 3 shows the group
assignment screen in the treatment group. Furthermore, we included multiple characteristics of prioriti-
zation in a professional environment to increase the generalizability of the results.

Section 3.2: Group Prioritization Treatment Group
‘ Remaining requirements per category Perceived Reason for DF1 + DF2

st | effects on rating

we all agree that requirement A is a) 1 Student

ke it a must / Satisf
end

A.Send
Remaining capacity of
Must }
et ' each category

B. Provide lecture videos

1 are player 3

action

Please Choose v [Additional information as
bropose individual course Bl X . instantiation of DF1: each
Most satisfactio members perception of
foohie requirements influence and
explanation

Current requirement
prioritization of the
group

Chat window as
instantiation of
DF2

: et - + \ Differences are
O . .
Indicating agreement with v highlighted

«| group decision is required
to finish the task

automatically

Figure 3. Screenshot of the group assignment in the treatment group. The visualization of the
results of the individual assignment and resulting differences on the right side
(4 and 5) are not shown in the control condition.

Different understanding of requirements. Stakeholders often lack a shared understanding of require-
ments leading to disagreement on their importance (Ramesh et al., 2010). In the experiment, differences
in understanding and disagreement depend on (1) the participants’ perception of a requirements content
and its importance for the university app, (2) participants’ risk aversion and their perception of proba-
bilities regarding a requirement’s value function, and (3) incomplete information (Homan et al., 2007).

Incomplete information. Participants received incomplete information about the value of requirements,
as each group member received the value functions of only three of the five requirements. The partici-
pants are not explicitly informed about their incomplete information. However, the two remaining value
functions are marked with a question mark (?).

Decision with incomplete information. In practice, stakeholders from different domains prioritize re-
quirements according to their knowledge (Busetta et al., 2017). Therefore, within the experiment, par-
ticipants are asked to select their favorite requirement based on each requirement’s value function.

Favoring own requirements. Stakeholders tend to give higher weight to their requirements to improve
their benefit (Windeler et al., 2015). Participants receive a bonus to their payoff if they manage to put
their favorite requirement into the must category, which is limited to one.

Dependence on the outcome. In practice, stakeholders are usually affected by the result of the prioriti-
zation. As such, the cooperative prioritization decisions primarily determined each participant’s payoff.

Incentivization. We used monetary incentives for participants to create an additional source of conflict.
Participants final payoff depended on the group decision as well as the implementation of the favorite
requirement (however, only with an influence of 5% on average on the total payoff) that participants
chose before entering the group stage.

As measurements, we used a post-experiment survey with four constructs (enjoyment, satisfaction, per-
ceived shared understanding and task conflict), measured on a five-point Likert scale. Furthermore, we

Twenty-Eigth European Conference on Information Systems (ECIS2020), Marrakesh, Morocco. 7

A Cooperative Requirements Prioritization System

analyzed discussion chatlogs in a double-blinded review process with three reviewers to evaluate shared
understanding in a measured form. Therefore, we asked randomly selected reviewers to rate groups in
the following categories: (C1) group talked about the content of requirements, (C2) group discussed the
value functions of requirements, and (C3) group indicated that they recognized their incomplete infor-
mation. We utilized ratings for each group to compare perceived and measured shared understanding
(cf. Homan et al., 2007).

5 Initial Results and Next Steps

On average, participants answered 7.83 of 9 control questions correctly, indicating a sufficient under-
standing of the experimental case. Given the pre-tests small sample size (n = 24), conclusions based on
a statistical analysis of the data are not reliable, but may serve as a first indicator. For all of these con-
structs, Cronbach’s o and CR were larger than 0.7, demonstrating high internal consistency (Hair et al.,
2017). However, using an independent t-test, we did not observe any significant effect of our treatment
compared with the control groups based on the self-reported measures. To summarize, the results
showed minor differences in enjoyment between control (M. = 3.83, SD. = 0.26) and treatment groups
(M, = 3.42, SD; = 0.33), t(20.53) = 1.33, p = 0.2, r = .28; minor differences in satisfaction between
control (M¢ = 3.9, SD. = 0.88) and treatment groups (M; = 3.67, SD; = 0.81), t(21.98) = 1.19, p = 0.24,
r = .25; marginal differences in shared understanding between control (M. = 3.97, SD. = 0.33) and
treatment groups (M, = 3.65, SD; = 0.32), t(20.83) = 0.99, p = 0.35, r = .21; and minor differences in
task conflict between control (M = 2.72, SD. = 1.11) and treatment groups (M;= 3.11, SD; = 0.57),
t(20.85) =-1.3, p=0.21, r = .27. When analyzing the objective measures however, we observe a lower
number of chat messages in control (M. = 34, SD. = 21.4) compared to treatment groups (M; = 50, SD;
=22.89), 1(21.9) =-1.77, p = 0.09, r = .35. These findings are in line with the shorter time that partici-
pants in control groups (M. = 442.02, SD. = 164.89) took for the task, compared to treatment groups
(M= 827.91, SD, = 372.26).

Subsequently, we continued with the evaluation of the reviewer’s ratings for each group in categories 1
- 3. Interestingly enough, in the control treatment, none of the four groups completed C1 - C3. Only one
group realized their incomplete information (C3), despite not discussing the requirements as such. Of
the four treatment groups, two fulfilled C1 - C3, while all groups at least talked about the content of
requirements (C1), despite not realizing the underlying incomplete information (C2). These results are
an essential takeaway from the pre-test: While participants in the control group report a higher (in ab-
solute terms) perceived shared understanding, it appears as if these groups primarily did not realize that
their understanding was, in fact, different from each other. Every group in the treatment discussed the
content of requirements, with half of the groups understanding the reasons for their different perceptions
in the individual ranking. Of the control groups, only one group identified the differences, as the team
guessed that they might not have the same information from the start. Our results indicate that while
team members may not perceive their shared understanding to be better in the treatment group, they
demonstrate a better measured shared understanding. However, these findings are limited by the size
and profession (students) of our sample. Thus, the results may only serve as an initial indication of the
final evaluation. However, by introducing the characteristics of prioritization in a professional environ-
ment mentioned above, we attempted to counter the limitations of involving only students in the pre-
test. Based on the presented results, our next steps are twofold: firstly, we aim to adjust our experiment
design to focus more strongly on the spread in perceived and measured shared understanding. Therefore,
we may increase the duration of the conversation and introduce a qualitative interview at the end of each
session to improve our understanding of participants’ perceptions of the discussion and the results. Ad-
ditionally, we will include further objective measures to better outline differences in perceived and
measured shared understanding between groups, to reduce our reliance on qualitative (chatlog) data
(Berggren and Johansson, 2010). Secondly, we will conduct a second pre-test, focusing on DP1 and
DP3, to prepare for a large scale laboratory evaluation, in which we compare all four design principles
with a more diverse mix of stakeholders. Until then, this research in progress contributes to the body of
knowledge by presenting and initially evaluating DPs for a synchronous CRPS.

Twenty-Eigth European Conference on Information Systems (ECIS2020), Marrakesh, Morocco. 8

A Cooperative Requirements Prioritization System

References

Achimugu, P., Selamat, A., Ibrahim, R., & Mahrin, M. (2014). A systematic literature review of software
requirements prioritization research. Information and Software Technology, 56(6), 568—585.

Alkandari, M., & Al.-Shammeri, A. (2017). Enhancing the Process of Requirements Prioritization in
Agile Software Development - A Proposed Model. Journal of Software, 12(6), 439—453.

Babar, M. 1., Ghazali, M., Jawawi, D. N.A., Shamsuddin, S. M., & Ibrahim, N. (2015). PHandler: An
expert system for a scalable software requirements prioritization process. Knowledge-Based Systems
(84), 179-202.

Bergsmann, J. (2014). Requirements Engineering fiir die agile Softwareentwicklung: Methoden, Tech-
niken und Strategien zur erfolgreichen Umsetzung (1. Aufl., neue Ausg). Heidelberg, Neckar:
dpunkt.

Berggren, P., & Johansson, B. J. (2010). Developing an instrument for measuring shared understanding.
In Proceedings of the 7th International ISCRAM Conference, Seattle, USA.

Bittner, E. A. C., & Leimeister, J. M. (2014). Creating Shared Understanding in heterogeneous work
groups - Why it matters and how to achieve it. In Journal of Management Information Systems
(JMIS), 31(1), 111-143.

Busetta, P., Kifetew, F. M., Munante, D., Perini, A., Siena, A., & Susi, A. (2017). Tool-Supported Col-
laborative Requirements Prioritisation. In 2017 IEEE 41st Annual Computer Software and Applica-
tions Conference (COMPSAC), 180—189.

Cannon-Bowers, J. A., Salas, E., & Converse, S. (1993). Shared mental models in expert team decision
making. In N. J. Castellan (Ed.), Individual and group decision making: Current issues, 221-246.
Hillsdale, NJ, US: Lawrence Erlbaum Associates, Inc.

Cleland-Huang, J., & Mobasher, B. (2008). Using Data Mining and Recommender Systems to Scale Up
the Requirements Process. In: ULSSIS *08, Proceedings of the 2nd International Workshop on Ultra-
large-scale Software-intensive Systems, 3—6.

Duan, C., Laurent, P., Cleland-Huang, J., & Kwiatkowski, C. (2009). Towards automated requirements
prioritization and triage. Requirements Engineering, 14(2), 73-89.

Gruenbacher, P. (2000). Collaborative requirements negotiation with EasyWinWin. In Proceedings 11th
International Workshop on Database and Expert Systems Applications, 954-958.

Gibson, C. B., & Cohen, S. G. (2003). Virtual Teams That Work: Creating Conditions for Virtual Team
Effectiveness. Hoboken: Wiley.

Gupta, A., & Gupta, C. (2018). CDBR: A semi-automated collaborative execute-before-after depend-
ency-based requirement prioritization approach. Journal of King Saud University - Computer and
Information Sciences.

Hair, J. F., Hult, G. T. M., Ringle, C. M., & Sarstedt, M. (2017). A primer on partial least squares
structural equation modeling (PLS-SEM) (Second edition). Los Angeles, London, New Delhi, Sin-
gapore, Washington DC, Melbourne: SAGE Publications Inc.

Hoffmann, A., Bittner, E. A. C., & Leimeister, J. M. (2013). The Emergence of Mutual and Shared
Understanding in the System Development Process. In J. Doerr & A. L. Opdahl (Eds.), Requirements
Engineering: Foundation for Software Quality, 174—189. Springer Berlin Heidelberg.

Homan, A. C., van Knippenberg, D., van Kleef, G. A., & Dreu, C. K. W. de. (2007). Bridging faultlines
by valuing diversity: Diversity beliefs, information elaboration, and performance in diverse work
groups. Journal of Applied Psychology, 92(5), 1189—-1199.

Jentsch, C., Beimborn, D., Jungnickl, C. P., & Renner, G. S. (2014). How to Measure Shared Under-
standing among Business and IT. In Academy of Management Proceedings, 2014(1), Briarcliff
Manor, NY 10510: Academy of Management.

Kaner, S., Toldi, C., Berger, D., Lind, L., & Fisk, S. (2014). Facilitator's guide to participatory decision-
making (Third edition). San Francisco, CA: Jossey-Bass a Wiley Brand.

Kim, Y. J., D. Engel, A. W. Woolley, J. Y. T. Lin, N. McArthur and T. W. Malone. (2017). “What
makes a strong team? Using collective intelligence to predict team performance in League of Leg-
ends.” In: Proceedings of the ACM Conference on Computer Supported Cooperative Work, CSCW,
2316-2329.

Twenty-Eigth European Conference on Information Systems (ECIS2020), Marrakesh, Morocco. 9

A Cooperative Requirements Prioritization System

Kleinsmann, M., Buijs, J., & Valkenburg, R. (2010). Understanding the complexity of knowledge inte-
gration in collaborative new product development teams: A case study. Journal of Engineering and
Technology Management, 27(1-2), 20-32.

Kolfschoten, G., Briggs, R., & de Vreede, G.-J. (2009). A Diagnostic to Identify and Resolve Different
Sources of Disagreement in Collaborative Requirements Engineering. In Proceedings of the Interna-
tional Conference on Group Decision and Negotiation, 100—113.

Kuechler, B. and V. Vaishnavi. (2008). “On theory development in design science research: anatomy of
a research project.” European Journal of Information Systems, 17(5), 489-504.

Kukreja, N. (2013). Decision theoretic requirements prioritization: A two-step approach for sliding to-
wards value realization. In 2013 35th International Conference on Software Engineering (ICSE),
1465-1467.

Langan-Fox, J., Anglim, J., & Wilson, J. R. (2004). Mental models, team mental models, and perfor-
mance: Process, development, and future directions. Human Factors and Ergonomics in Manufac-
turing, 14(4), 331-352.

Lehtola, L., Kauppinen, M., & Kujala, S. (2004). Requirements Prioritization Challenges in Practice. In
T. Kanade, J. Kittler, J. M. Kleinberg, F. Mattern, J. C. Mitchell, O. Nierstrasz,. . . H. lida (Eds.),
Lecture Notes in Computer Science. Product Focused Software Process Improvement (Vol. 3009,
pp. 497-508).

Mathieu, J. E., Heffner, T. S., Goodwin, G. F., Salas, E., & Cannon-Bowers, J. A. (2000). The influence
of shared mental models on team process and performance. Journal of Applied Psychology, 85(2),
273-283.

Park, J.-W., Port, D., & Boehm, B. (1999). Supporting Distributed Collaborative Prioritization for Win-
Win Requirements Capture and Negotiations. In Proc. Int’l Third World Multiconf. Systemics, Cy-
bernetics and Informatics, 578-584.

Pee, L. G., Kankanhalli, A., & Kim, H.-W. (2010). Knowledge Sharing in Information Systems Devel-
opment: A Social Interdependence Perspective. Journal of the Association for Information Systems,
11(10), 550-575.

Peffers, K., T. Tuunanen, M. A. Rothenberger and S. Chatterjee. (2007). “A Design Science Research
Methodology for Information Systems Research.” Journal of Management Information Systems,
24(3), 45-717.

Perini, A., Susi, A., & Avesani, P. (2013). A Machine Learning Approach to Software Requirements
Prioritization. IEEE Transactions on Software Engineering, 39(4), 445-461.

Ramesh, B., Cao, L., & Baskerville, R. (2010). Agile requirements engineering practices and challenges:
an empirical study. Information Systems Journal, 20, 449—480.

Ramzan, M., Jaffar, A., & Ali Shahid, A. (2011). Value based intelligent requirement prioritization
(Virp): Expert driven fuzzy logic based prioritization technique. International Journal of Innovative
Computing, Information and Control, 7(3), 1017-1038.

Rietz, T., & Maedche, A. (2019). LadderBot: A Requirements Self-Elicitation System. In Proceedings
of the IEEE 27th International Requirements Engineering Conference (RE), pp. 357-362.

Robertson, S., & Robertson, J. (2013). Mastering the requirements process: Getting requirements right
(3rd ed.). Upper Saddle River, N.J: Addison-Wesley.

Rosenkranz, C., Vranesi¢, H., & Holten, R. (2014). Boundary Interactions and Motors of Change in
Requirements Elicitation: A Dynamic Perspective on Knowledge Sharing. Journal of the Association
for Information Systems, 15(6), 306—345.

Rubin, K. S. (2012). Essential Scrum: A practical guide to the most popular agile process. Upper Saddle
River, NJ: Addison-Wesley.

Tan, M. (2015). Establishing Mutual Understanding in Systems Design: An Empirical Study. Journal of
Management Information Systems, 10(4), 159—182.

Tofan, D., Galster, M., Lytra, 1., Avgeriou, P., Zdun, U., Fouche, M. A., de Boer, R., & Solms, F. (2016).
Empirical evaluation of a process to increase consensus in group architectural decision making. In-
formation and Software Technology, 72, 31-47.

Van den Bossche, P., Gijselaers, W., Segers, M., Woltjer, G., & Kirschner, P. (2011). Team learning:
Building shared mental models. Instructional Science, 39(3), 283-301.

Twenty-Eigth European Conference on Information Systems (ECIS2020), Marrakesh, Morocco. 10

A Cooperative Requirements Prioritization System

Vestola, M. (2010). “A Comparison of Nine Basic Techniques for Requirements Prioritization.” Hel-
sinki University of Technology, 1-8.

Wilson, M. A. (2003). Collaborative decision making: building consensus group decisions for project
success. In PMI Global Congress. North America, Baltimore, MD.

Windeler, J., Maruping, L., Robert, L., & Riemenschneider, C. (2015). E-profiles, Conflict, and Shared
Understanding in Distributed Teams. Journal of the Association for Information Systems, 16(7),
608—645.

Yamaoka, T., Tsujino, K., Yoshida, T., & Nishida, S. (1998). Supporting mutual understanding in col-
laborative design project. In Proceedings. 3rd Asia Pacific Computer Human Interaction, 132—137.

Yu, X., & Petter, S. (2014). Understanding agile software development practices using shared mental
models theory. Information and Software Technology. (56), 911-921.

Twenty-Eigth European Conference on Information Systems (ECIS2020), Marrakesh, Morocco. 11

