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Abstract

The semi-arid Northeast Brazil (NEB) is just recovering from a very severe water cri-

sis induced by a multiyear drought. With this crisis, the question of water resources

management has entered the national political agenda, creating an opportunity to

better prepare the country to deal with future droughts. In order to improve climate

predictions, and thus preparedness in NEB, a circulation pattern (CP) classification

algorithm offers various options. Therefore, the main objective of this study was to

develop a computer aided CP classification based on the Simulated ANnealing and

Diversified RAndomization clustering (SANDRA) algorithm. First, suitable predic-

tor variables and cluster domain setting are evaluated using ERA-Interim reanalyses.

It is found that near surface variables such as geopotential at 1,000 hPa (GP1,000) or

mean sea level pressure (MSLP) should be combined with horizontal wind speed at

the upper 700 hPa level (UWND700). A 11-cluster solution is favoured due to the

trade-offs between interpretability of the cluster centroids and the explained vari-

ances of the predictors. Second, occurrence and transition probabilities of this

11-cluster solution of GP1,000 andUWND700 are analysed, and typical CPs, which are

linked to dry and wet conditions in the region are identified. The suitability of the

new classification to be potentially applied for statistical downscaling or CP-

conditional bias correction approach is analysed. The CP-conditional cumulative

density functions (CDFs) exhibit discriminative power to separate between wet and

dry conditions, indicating a good performance of the CP approach.
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1 | INTRODUCTION

The semi-arid northeast of Brazil (NEB) is one of the
most densely populated dryland regions in the world. It

is characterized by recurrent droughts (Marengo
et al., 2017), and just now still recovering from a series of
drought years from 2012 to 2018 (Pilz et al., 2019). This
has recently led to a severe water crisis, not only in NEB,
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but also the large metropolitan areas of S~ao Paulo, Belo
Horizonte, and Rio de Janeiro.

The NEB can be characterized by a high-rainfall vari-
ability, that is, on interannual and intraannual scale, but
also on decadal scale (Zhou and Lau, 2001).

According to Kousky (1979), eastern coastal regions
may receive even more than 2000 mm/year, while some
interior valleys receive less than 400 mm/year. Particu-
larly in these arid regions, the year-to-year variability is
higher. They show that frontal systems, which penetrate
the southern parts of the NEB, play a crucial role for
December–January precipitation in the southern part,
but also for fall and winter precipitation along the coast.
Such frontal systems lower the surface pressure at low
latitudes, and thus favour the southward movement of
the equatorial trough zone. Figure 1 illustrates such
interannual variability by showing precipitation anoma-
lies for three selected years. Heavy precipitation deficits
up to 1,000 mm can be seen during the recent drought
period for the years 2012 and 2014, whereas precipitation
excess is exemplary shown for the year 1985.

The high-rainfall variability on the different temporal
scales poses significant challenges for water resources
management in the region. Even in years with average
rainfall amounts, such as in 2017 and 2018, NEB was not
able to overcome its water scarcity due to the high-spatial
variability of the rainfall in the region. In these years, the
largest reservoirs could not be filled up by more than 10%
of its capacity.

Intraannual or seasonal precipitation variability dur-
ing the wet season of the interior NEB is impacted by sea

surface temperature (SST) anomaly patterns in the Atlan-
tic, the Pacific, and to a lesser extent the Indian Ocean
(Ward and Folland, 1991). Likewise, in Hastenrath (2012),
drought occurrence in NEB has been linked to SST
anomalies in the eastern Pacific. The El Niño Southern
Oscillation (ENSO) as well as the northern tropical
Atlantic region (i.e., the Tropical Atlantic SST Dipole) is
influencing the location of the Intertropical Convergence
Zone (ITCZ), which is known to be the main source of
rain during the rainy season in this region.

According to Costa et al. (2016), most of the drought
and wet anomalies could be linked to anomalous states
of El Niño Southern Oscillation (ENSO), but not neces-
sarily linked to specific El Niño or La Niña events. In a
later study, Costa et al. (2018) identified a multi-annual
relationship between the state of the sea surface tempera-
ture (SST) of the Atlantic and Pacific oceans and anoma-
lous hydrological variability in NEB. Thereby, the
northern Tropical Atlantic conditions were shown to play
an important role in modulating the long-term variability
of the hydrological response of the basins, while only
extreme ENSO anomalies seemed to affect the rainy
season.

Such large-scale synoptic information, represented by
general circulation models (GCMs) can be used for predic-
tion purposes in many water resources management appli-
cations. One possibility to implement the large-scale
synoptic information is to classify the atmospheric state into
circulation patterns or weather types, hereinafter referred
to as circulation patterns (CPs) (e.g., Fernández-González
et al., 2012). In general, one can distinguish between

FIGURE 1 Wet precipitation anomaly of 1985 (left) and dry precipitation anomalies of 2012 (middle) and 2014 (right) over the

northeast region of Brazil (kriging of observation data, 1981–2010)
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manual (subjective) and computer assisted (objective or
mostly semi-objective) methods. Often, it is distinguished
also between “circulation to environment” and “environ-
ment to circulation” approaches (e.g., Dayan et al., 2012). In
the former, the classification is performedwithout consider-
ation of the target variable, whereas the latter accounts for
the target variable(s) during the classification. Both
approaches are suitable tools in synoptic climatology, and
they can be applied both to analyse the link between atmo-
spheric circulation types derived from CP classifications
and surface variables such as, precipitation, temperature, or
discharge (e.g., Bárdossy et al., 2002; Bárdossy, 2010;
Wypych et al., 2018; Bednorz et al., 2019). Such links exist
even when the local scale climate is driven by mesoscale
events such as convective systems, since these are condi-
tional on the synoptic conditions (Goodess and
Jones, 2002). Other authors established links between
atmospheric conditions or Sea Surface Temperature (SST)
patterns and droughts (e.g., Burgdorf et al., 2019), and dem-
onstrated the usability of their classification for drought
prediction. Due to the existence of such links, CP classifica-
tions have been originally developed for weather
forecasting.

Although GCMs are often strongly biased in prognos-
tic variables such as precipitation, it is widely accepted
that GCMs are able to appropriately reflect the large-scale
circulation (e.g., Sunyer et al., 2015). This forms the basis
for statistical downscaling of hydrometeorological target
variables, nowadays, the most widely used application of
CPs (e.g., Wetterhall et al., 2007; Bárdossy, 2010;
Bárdossy and Pegram, 2011). Apart from dynamical
downscaling by using process-based regional climate
models (RCMs), in statistical downscaling the large-scale
synopic information, represented by CPs is used to derive
hydrometeorological variables of interest (e.g., precipita-
tion, temperature, and discharge) on local scales. More-
over, CP classification can be applied for model evaluation
and validation, for example, to evaluate the performance
of GCMs or RCMs due to their representation of the
large-scale information (e.g., Dafka et al., 2018; Prein
et al., 2019).

Another very recent application is the identification and
correction of the spatio-temporal bias structures in RCMs
(Le Roux et al., 2019). The RCMsmay have largely different
performances depending on the season and the prevailing
large-scale atmospheric circulation (Laux et al., 2011;
Wetterhall et al., 2012). The inclusion of conditional infor-
mation about the state of the atmospheric circulation, for
example, as CP time series, obtained by classification algo-
rithms may thus help to improve the bias correction. An
overview of different classification algorithms, distin-
guished between subjective, objective, and mixed
approaches can be found inHuth et al. (2008).

Most approaches are developed for the mid-latitudes,
where distinct high- and low-pressure systems are distin-
guished. A relatively large body of literature exists for Cen-
tral Europe (e.g., James, 2007; Philipp et al., 2007, 2010) or
the Mediterranean region (e.g., Corte-Real et al., 1995;
Goodess and Palutikof, 1998; Trigo and DaCamara, 2000;
Fernández-González et al., 2012). Within the framework of
the European Cooperation in Science and Technology
(COST) action 733 Harmonization and Applications of
Weather Types Classifications for European Regions, a bunch
of different objective and subjective weather type classifica-
tions for Europe have been collected and provided for cli-
mate science community (Philipp et al., 2007), and a
classification catalogue has been derived for the European
domain (Huth et al., 2008; Philipp et al., 2010).

Only few studies exist for tropical and subtropical
regions. Amongst them are the study of Ngarukiyimana
et al. (2018) for Rwanda in East Africa, Moron et al. (2008)
for the Senegal in West Africa, and Robertson et al. (2004)
for the NEB. In the latter, a non-homogeneous hiddenMar-
kov model was used to downscale daily precipitation occur-
rence at 10 stations in NEB, using GCM simulations of
seasonal-mean large-scale precipitation, obtained with his-
torical sea surface temperatures prescribed globally. It was
concluded that their model provides a useful tool for under-
standing the statistics of rainfall occurrence at stations with
respect to the large-scale atmospheric patterns, and for pro-
ducing local-scale daily rainfall series for impact studies.

Due to the above mentioned physical link between
synoptic-scale patterns such as ENSO and the hydrological
situation in the NEB, the main objective of this study is to
develop a computer aided circulation pattern (CP) classifica-
tion approach for applications in water resources manage-
ment. For this reason, it is aimed at a throughout evaluation
based on different predictor variables as well as domain set-
tings for the classification with respect to its ability to dis-
criminate between dry and wet conditions in the NEB.
Thus, it may provide the base formany applications in water
resourcesmanagement in the region.

The paper is structured as follows: in the following
Section 2, we elucidate more detailed climatic features of
the study region within NEB. We selected the S~ao Fran-
cisco (SF) river basin to highlight the complex climatol-
ogy and the specific challenges for water resources
management. In Section 3, the SANDRA CP classifica-
tion method, the Markov Chain approach as well as the
data for the classification and the validation used in this
study are explained. Section 4 is subdivided into the
description of the classification and the selected features
of the classified CPs, that is, Occurrence Probability of
CPs, Persistence of CPs, Transition Probability of CPs,
Wetness Indices of CPs, and the CDF of CPs, followed by
Section 5.
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2 | STUDY REGION

We selected the S~ao Francisco (SF) river basin to high-
light the complex climatology and specific challenges
with respect to water resources management in NEB,
which helps to explain our setup for the classification in
Section 3.

The SF basin (Figure 2) covers an area of approxi-
mately 630,000 km2, and has its sources in the southeast
of Brazil, in the state of Minas Gerais. From there, the SF
river flows approximately 2,700 km until it meets the
Atlantic Ocean in the northeastern region. Starting in
Minas Gerais, it crosses the states of Bahia, Pernambuco,
Alagoas and Sergipe. The SF river basin partly covers also
the states of Goiás and the Federal District Brasilia. The
large size of SF river basin (it corresponds approximately
to the size of France) and the fact that it is an interstate
basin makes water resources management a particularly
challenging task.

The precipitation regime in the SF basin is complex
as it is modulated by different meteorological systems,
such as the South Atlantic Convergence Zone in the
southernmost part of the basin and ITCZ, leading to a

relatively high-spatiotemporal variability of precipitation
(see Figure 3). The figure shows the monthly precipita-
tion climatology for Três Marias, Sobradinho, Aracaju
(from the South to the North). The upper SF basin, repre-
sented by Três Marias, provides the highest rainfall
amounts to the SF river basin, the main season lasts from
October to February. The main generating rainfall system
is the incursion of cold fronts, that is, the South Atlantic
Convergence Zone. For the northernmost area, the lower
SF basin, represented by Aracuju, the main season peaks
from may to July. This region is affected by the the move-
ment of the ITCZ. The middle SF basin, as depicted by
Sobradinho, has an intermediate precipitation climatol-
ogy. Besides the onset of the rainy season, the overall
rainfall amounts decrease from the upper to the lower SF
basin. During the dry season (June–August), significant
amounts of rains (and thus streamflow) can be observed
across the SF basin due to convective systems and pene-
trating cold fronts. For this reason, it should be noted
that water resources management in the SF basin
requires weather and climate forecasts not only for the
rainy season, but for the entire year. This need is also cor-
roborated by the fact that water from the SF River is

FIGURE 2 The S~ao Francisco

(SF) river basin in NEB. The figure is

obtained from https://de.m.

wikipedia.org/wiki/Datei:S~ao_

Francisco_basin_map.png, released

under the licence CC BY-SA 4.0
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diverted to the north of the more semi-arid NEB, in
order to improve water availability there. In particular,
seasonal climate forecasts for the forthcoming months
can help decision makers in water resources manage-
ment in such semi-arid environments (e.g., Siegmund
et al., 2015).

3 | DATA AND METHODS

Figure 4 provides a work flow of the procedure applied in
this study. The work flow (from top to bottom) is indi-
cated by the arrows, the main methods are given in the
grey shaded boxes, that is, (i) the SANDRA CP Classifica-
tion and (ii) the Markov Chain approach. Both methods
are applied based on ERA-Interim data. The CPs are
finally linked to local weather conditions (see Table 1) by
calculating the wetness index and the CP-conditional
CDFs, based on observation data. In the following the
data are described first, followed by the methods.

3.1 | Data

3.1.1 | ERA-Interim reanalyses

The ERA-Interim project, initiated in 2006, aimed to
provide a bridge between ECMWF's previous reanalysis,
that is, ERA-40 (1957–2002), and the next-generation
extended reanalysis envisaged at ECMWF (ERA5).
Improvements compared to ERA-40 mainly comprised
the representation of the hydrological cycle, the quality
of the stratospheric circulation, and the handling of
biases and changes in the observing system. The ERA-
Interim atmospheric model and reanalysis system has

used cycle 31r2 of ECMWF's Integrated Forecast System
(IFS). Data are provided on a reduced Gaussian grid
with approximately uniform horizontal 79 km spacing
(approximately 0.75� of latitude and longitude), at
60 vertical levels (with top level at 0.1 hPa). A detailed
description can be found in Dee et al. (2011). ERA-
Interim is a reanalysis product, frequently used for
validation purposes and known to be skillful in rep-
resenting atmospheric processes (Lin et al., 2014). Note
that we did not use the more recent high-resolution
(approximately 31 km) ERA5 product by intention,
since the higher resolution would have tremendously
increased the computational demands without expected
significantly improved results. This is due to the fact
that the spatial variability in the upper-level atmo-
spheric fields (as usually applied for CP classifications)
is relatively low.

FIGURE 3 The monthly precipitation climatology for Três

Marias, Sobradinho and Aracaju, derived from GPCP, representing

the upper-, middle-, and lower-SF basin, respectively. The location

of the stations can be obtained from Figure 2

FIGURE 4 Flow chart of applied methods and data. The

applied work flow (from top to bottom) is indicated by the arrows,

the main methods are given in the grey shaded boxes, that is, the

SANDRA CP classification and the Markov chain approach. Both

methods are applied based on ERA-Interim data. The CPs are

finally linked to local weather conditions by calculating the wetness

index and the CP-conditional CDFs, based on observation data
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The predictor variables used for the CP classification
(see Table 2) are daily ERA-Interim data at 12:00 UTC.
The number of grid cells used in the classification experi-
ments depends on the domain size, for the final classifi-
cation setup in the domain 10�N–30�S and 60–20�W,
54 × 54 grid cells have been used.

3.1.2 | Observation data

The precipitation data used in this study consists of mete-
orological stations from INMET (National Institute for
Meteorology), ANA (National Water Agency) and various

other meteorological state agencies such as Meteorology
and Water Resource Center of Ceara State (FUNCEME)
in northeastern Brazil). FUNCEME has collected and
provided the data for this study, and has been responsible
to quality check and correct the data.

From the provided observation data, a small subset of
30 stations within the domain 8–21�S and 47–36�W have
been pre-selected for evaluating the CP classification on local
scale. The selection has been made based on the fraction of
allowed missing values not exceeding 20% during the period
1980 to 2016. The location of the selected stations and the
fraction of missing values (%) is shown in Figure 5. The exact
coordinates and station names are given in Table 1.

TABLE 1 Station IDs, coordinates, and missing values (%)

Station ID Name Lat Lon Missing values

101 JACOBINA −11.2 −40.5 7.7

102 REMANSO −9.6 −42.1 3.8

110 JURAMENTO −16.8 −43.7 12.2

114 IBIRITE −20.0 −44.0 13.9

115 SAO MATEUS −18.7 −39.9 9.5

120 JOAO PINHEIRO −17.7 −46.2 11.2

127 ITABAIANINHA −11.1 −37.8 17.0

135 BOM JESUS DO PIAUI −9.1 −44.1 14.9

161 BOM JESUS DA LAPA −13.3 −43.4 15.3

166 PAULISTANA −8.1 −41.1 14.6

171 MONTE AZUL −15.2 −42.9 12.4

179 POSSE −14.1 −46.4 8.8

182 BARRA −11.1 −43.2 10.5

183 CAETITE −14.1 −42.5 17.4

184 LENCOIS −12.6 −41.4 15.1

202 PAO DE ACUCAR −9.8 −37.4 17.3

203 DIAMANTINA −18.2 −43.6 12.8

207 PESQUEIRA −8.4 −36.8 9.3

244 PROPRIA −10.2 −36.8 8.7

248 MONTES CLAROS −16.7 −43.8 20.0

255 VALE DO GURGUEIA CRISTIANO CASTRO −8.4 −43.7 13.0

256 JANAUBA −15.8 −43.3 8.7

265 PIRAPORA −17.4 −44.9 18.2

290 CORRENTINA −13.3 −44.6 7.6

297 JANUARIA −15.4 −44.0 6.4

309 ITAMARANDIBA −17.9 −42.9 7.8

334 UNAI −16.4 −46.9 7.5

364 ITUACU −13.8 −41.3 14.1

467 BURITIS −15.5 −46.4 17.7

744 PATROCINIO −19.0 −47.0 14.5

6 LAUX ET AL.



In semi-arid NEB, improved knowledge of the expected
precipitation amounts a few months ahead may help water
managers for decision support. CP classification can poten-
tially contribute in various ways: it can be used as a tool for
statistical downscaling of GCMs, or as a CP-conditional bias
correction tool for GCMs and RCMs on various time scales
(short-, seasonal-, and long-term scales). The SANDRA CP
classification approach can be used therefore and is
described in the following subsection. Next, the setup for
the classification for the study region is given, followed by a
description of the data used in this study.

Note that the period for the circulation pattern classi-
fication as well as for the analyses of the results is split
into a calibration period (1980–2009) and an indepen-
dent, but shorter validation period (2010–2016).

3.2 | Methods

3.2.1 | SANDRA circulation pattern
classification

Simulated ANnealing and Diversified RAndomization
clustering (SANDRA) cluster analysis, developed by
Philipp et al. (2007), is applied for the NEB for the first
time. It has been selected due to the improved

performance of the simulated annealing algorithm com-
pared to the conventional k-means classification
(e.g., Lutz et al., 2012). The latter has no strategy to avoid
of getting stuck in local optima during the optimization
procedure. Simulated annealing has been designed to bet-
ter approximate the global optimum, that is, it does not
converge to a local optimum which cannot be left any-
more during the optimization procedure (Philipp
et al., 2010; Bárdossy et al., 2015). The method allows
data objects to be assigned to a wrong cluster during the
iteration process, meaning that the object is not necessar-
ily assigned to its closest cluster centroid. Each object can
be classified into a wrong cluster, if the acceptance proba-
bility P is larger than a random number between 0 and
1, where P is given by:

P=exp
EDold−EDnew

T

� �
, ð1Þ

where

ED=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1−x2k k2

q
: ð2Þ

All data objects x are normalized before the Euclidean
distance ED is calculated. EDold is the ED between the

TABLE 2 Explained cluster variance (ECV) [0, …, 1] of the performed SANDRA classification experiments using the domain

10�N–30�S and 60–20�W and geopotential height (GP) in 1,000, 700, 500, and 300 hPa), mean sea level pressure (MSLP), and horizontal

wind component (UWND) in 700 hPa (upper part)

Number CPs 5 6 7 8 9 10 11 12 13 14 15 16

Predictor variables

GP1,000 0.69

GP700 0.61

GP500 0.61

GP300 0.64

GP1,000 + GP700 0.60

GP1,000 + GP500 0.54

GP1,000 + GP300 0.57

(MSLP + UWND700) 0.65 0.67 0.68 0.69 0.70 0.71 0.72

(GP1,000 + UWND700) 0.61 0.63 0.65 0.67 0.68 0.69 0.70 0.71 0.72 0.72 0.73 0.73

(GP1,000 + UWND700) 10�N–30�S and 60–10�W 0.67

(GP1,000 + UWND700) 10�N–30�S and 60–0�W 0.65

(GP1,000 + UWND700) 10�N–30�S and
60�W–10�E

0.65

(GP1,000 + UWND700) 15�N–35�S and 65–15�W 0.59

(GP1,000 + UWND700) 10�N – 40�S and
60–10�W

0.59

(GP1,000 + UWND700) 10�N–40�S and 70–10�W 0.56

Note: Domain experiments by using GP in 1,000 hPa and UWND in 700 hPa with different domain extensions (lower part).
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data object and the old cluster, EDnew is the ED to
the potentially new cluster, T is a control parameter (the
annealing temperature) that is reduced after each itera-
tion step by a constant factor a, the so-called cooling rate:

Ti+1=a×Ti, ð3Þ

where i is the iteration step. The initial value of T is auto-
matically chosen for each run by the used clustering soft-
ware and its typical value is around 108–109. A constant
value of 0.99 is used for the cooling rate a for all iteration
steps. With the above algorithm and setting of values, the
initial iteration steps of a single classification run are
often characterized by wrong assignments due to the
high-annealing temperature value. As annealing temper-
ature decreases in the following iteration steps, the prob-
ability of wrong assignments decreases accordingly.
During the final iteration steps reassignments mostly
take place if the resulting distance between object and
cluster centroid is smaller than the current distance. The
process of reassignments repeats until no further
changes, neither wrong nor right assignments, are taking
place. The limit of iterations is infinite, thus the process
repeats until convergence is reached. Then, the algorithm
calculates the explained cluster variance (ECV) of the
current clustering for comparison of different runs.

The classification is repeated a predefined number of
times with randomized starting partitions of the data
(called diversified randomization, here: 1,000 times) to
overcome issues of the simulated annealing algorithm
with respect to the optimization starting position. The

run with the best ECV is chosen as final result of the
SANDRA clustering.

The final classification setup is obtained by evaluating
the performance of multiple runs with different predictor
variables (i.e., predictor screening), different cluster num-
bers, and different domain locations (Table 2, upper part).
An 11-cluster-solution of both, the horizontal wind at
700 hPa (UWND700) and the geopotential at 1,000 hPa
(GP1,000) has been selected as suitable solution. An
11-cluster-solution meets the predefined threshold of 0.7
(corresponding to 70%) of the ECV while keeping the
number of classes relatively small. A too large number of
classes is expected to reduce the sample size for certain
CPs and would thus hinder to derive robust results in the
CP-conditional analyses. The ECV in relation to an
increasing number of classes is describing a logarithmic
function. An increase of the cluster numbers from 11 to
19 would result in an increase of ECV from 0.7 to 0.75 only
(Figure 6). Note that a classification based on the mean sea
level pressure (MSLP) combined with the UWND700

would result in very similar performances.
The classification has been tested using different

domain settings for the two predictand variables GP1,000
and UWND700 and a 10-cluster solution (see Table 2,
lower part). Based on the performed domain settings, the
domain between 10�N–30�S and 60–20�W is found to
deliver good results.

In SANDRA, the number of clusters used for the clas-
sification has to be predefined. The selection of the num-
bers of clusters depends on different criteria and can be
understood as a trade-off between the interpretability of

FIGURE 5 Map showing the

station ID numbers and the number

of missing values (%) for each station.

The exact coordinates and number of

missing values can be obtained from

Table 1
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the cluster centroids and the overall explained cluster
variance (ECV) of the predictor field(s). The ECV is
defined as:

ECV=1−
WSS
TSS

, ð4Þ

where WSS is the so-called within-cluster sum of square,
and TSS is the total sum of squares. WSS is calculated as
follows:

WSS=
Xk
i=1

X
x∈Ci

x−zik k2, ð5Þ

where x denotes all data objects who belong to the Clus-
ter Ci, zi refers to the ith corresponding cluster centroid,
and k denotes the number of clusters. More technical
information about the SANDRA classification is given in
Philipp et al. (2007, 2010) and Hoffmann and
Schlünzen (2013).

A small number of clusters increase the interpretabil-
ity while reducing the fraction of the ECV. Higher cluster
numbers may also increase the possibility to better link
the prevailing circulation with unusual conditions, such
as dry or wet conditions.

3.2.2 | Markov chains

The occurrence and sequence of CPs can be modelled as
a Markov chain, which is a stochastic model describing
the sequence of possible events in which the probability
of each event depends only on the state attained in the
previous event. A Markov Chain can be used for describ-
ing systems that follow a chain of linked events such as,
a sequence of rainfall events or, as used here, a sequence
of CPs. A Markov chain consists of a finite set of states
(e.g., dry or wet, different CPs), whose transitions, that is,
the change from a certain CP state into another
(e.g., from CP1 to CP2) occurring with certain (transition)
probabilities. Markov chains are frequently applied in
modelling and statistical downscaling precipitation
(e.g., Robertson and Smyth, 2003; Laux et al., 2009;
Greene et al., 2011). In this study, occurrence probabili-
ties of the CPs are calculated. Moreover, their persis-
tences and transition probabilities and their transition
pathways are derived. Graphically, a Markov chain can
be represented by a directed graph, which illustrates tran-
sition probabilities and pathways. The states are repre-
sented by vertices, and transitions are described by
arrows. The Markov chain is strongly connected if there
is a directed path from each vertex to every other vertex
(e.g., Gansner et al., 1993).

FIGURE 6 Explained variance of joint horizontal wind component at 700 hPa and geopotential (GP) at 1,000 hPa as a function of the

cluster number
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3.2.3 | Linking CPs to precipitation

In order to study the impact of the CP on the weather
state (i.e., wet or dry), the wetness index Iwet
(Bárdossy, 2010) is applied. It is defined as follows:

Iweti CPð Þ= zd,i CPð Þ
�zd,i

, ð6Þ

where zd,i(CP) is the normalized daily (d) precipitation
amount of a certain CP at station i and �zd,i is the overall
mean daily precipitation amount at station i,
irrespectively of the prevailing CP. The wetness index
thus offers one possibility to compare the clusters
with respect to their precipitation amount (wetness)
between different locations (stations). A value higher
than unity of any given CP means that the CP is
much wetter than the average precipitation, and a
value significantly smaller than unity that the CP is
much drier than the average precipitation at this sta-
tion. In turn, a value around unity means that the CP

is representing normal, that is, approximately average
conditions.

Another possibility to link the CPs to the weather
state is to analyse the CP-conditional cumulative density
functions (CDFs). This indicates whether or not the dif-
ferent CPs have discriminative power to describe the
weather state, and thus can be applied in applications
such as bias correction or statistical downscaling.

4 | RESULTS

In the following, the derived CPs are grouped according
to their major atmospheric conditions. The CP are then
described according to their major characteristics and
their relation to wet and dry states in NEB, as analysed
based on the wetness index Iwet. Then, the occurrence fre-
quencies, the persistences, and the transition pathways
and -probabilities of the CPs are analysed. Finally, the
value of the classification is discussed with respect to the
development of a CP-conditional bias correction.

FIGURE 7 Cluster centroids of

geopotential (GP) at 1,000 hPa�
(m2�s−2) of the selected 11-cluster-

solution
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4.1 | Circulation patterns (CPs) of the
cluster solution

The classification scheme is based on the dominant cen-
ters of GP1,000 within the domain (Figure 7), which are
virtually existing only in the southern, that is, the sub-
tropical part of the domain. The CPs can be grouped into
three major groups (A, B, C), corresponding to a CP with
a clear contrast between a maritime High- and a conti-
nental Low-pressure system (group A), a CP with a

maritime High and continental ridge (group B), and a CP
with a High pressure bridge (group C). The clusters can
then be further subdivided according to the magnitude/
degree of the derived groups (Table 3) as well as in com-
bination with UWND700, as shown in Figure 8. Thus, in
this study, we combined atmospheric information from
lower (1,000 hPa) and middle troposphere (700 hPa),
which is often seen as more credible for, for example,
determining convective events, caused by high reaching
clouds (e.g., Dayan et al., 2012). Since the grouping is

TABLE 3 Unique character combination consisting of a 6-character string to label and characterize the derived CPs based on the

GP1,000 field

Position in name string Abbreviations

1. & 4. m: Maritime c: Continental b: Bridge

2. & 5. H: High L: Low E: Extension

3. & 6. w: Weak m: Moderate s: Strong

Note: Positions 1 & 4 define the position of the Centre of action, 2 & 5 the group or type of the Centre of action, and 3 & 6 their degree/mag-
nitude. As an example, mHscLm means maritime High strong, continental Low moderate.

FIGURE 8 Cluster centroids of

horizontal wind speed at 700 hPa�
(m�s−1) of the selected 11-cluster-

solution
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based on the atmospheric conditions and does not
include the local weather situation, it cannot be fully
avoided that wet and dry conditions can occur within a
certain group. Subsequent calculations are done based on
the individual 11 CPs.

In the following, the assignment of the 11 CPs to the
three groups is described and each CP is briefly
characterized:

4.1.1 | Group a: CP With a clear contrast
between a maritime high- and a
continental low-pressure system

• CP1 (mHscLm, maritime High strong, continental Low
moderate): CP1 (Figures 7a and 8a) is characterized by
a strong subtropical High over the South Atlantic,
which extends to the coastal regions of Central Brazil

FIGURE 9 Annual consideration of the wetness index (WI) for 30 selected stations based on the selected 11-cluster-solution
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and a continental Low over Southwest Brazil. Only
marginally differentiated GP1,000 fields prevail over the
Amazon and the equatorial Atlantic. The maximum
westerly flow of the UWND700 is in the coastal region
of South Brazil and the maximum easterly flow is in
the coastal region of the Amazon. This CP is linked
with wetness indices WIs ≈ 1 or smaller in NEB, which
leads to rather dry to average rainfall amounts
(Figure 9a).

• CP3 (mHmcLs, maritime High moderate, continental
Low strong): CP3 (Figures 7c and 8c) is characterized
by a relatively weak subtropical High over the South
Atlantic and a strong continental Low over Southwest
Brazil. Like for CP1, only marginally differentiated
GP1,000 fields prevail over the Amazon and the equato-
rial Atlantic. Overall, the horizontal wind component
is moderate and the westerly flows are shifted to the
Southwest of the continental region, the easterly flows
prevail over the Amazon and the equatorial Atlantic.
CP3 indicates rather wet conditions in NEB (WIs > 1),
see Figure 9c.

• CP5 (mHwcLs, maritime High weak, continental Low
strong): CP5 (Figures 7e and 8e) is characterized by a
subtropical High shifted far into the South Atlantic
and a strong continental Low over Southwest Brazil as
well as low pressure in front of the coast of southern
Brazil. In general, the magnitude of the GP1,000 fields
are low in magnitude and only poorly differentiated
over the Amazon and the Equatorial Atlantic. There is
a moderate westerly flow in front of the south Brazil-
ian coast and over southern Brazil as well as a moder-
ate easterly flow over the Amazon and the Equatorial
Atlantic. Similarly to CP3, CP5 indicates wet condi-
tions (WIs >> 1, see Figure 9e).

• CP6 (mHmcLw, maritime High moderate, continental
Low weak): CP6 (Figures 7f and 8f) is characterized by
a moderately pronounced subtropical High shifted to
the South Atlantic and a weak continental Low over
Southwest Brazil. The GP1,000 fields are low in magni-
tude and only poorly differentiated over the Amazon
and the Equatorial Atlantic. The maximum of the
westerly flow is in front of the coast of southern Brazil,

TABLE 4 Occurrence frequencies of CPs during the year of the selected 11-cluster-solution for the calibration period 1980–2009 and
the validation period 2010–2016 (in brackets)

J F M A M J J A S O N D

CP1 4.4 5.7 3.2 4.7 8.5 13.3 9.9 14.6 20.7 23.8 11.4 4.5

(9.7) (7.7) (5.9) (5.3) (6.5) (7.8) (8.3) (9.3) (11.2) (12.8) (12.7) (12.2)

CP2 9.8 13.3 25.4 21.6 11.8 0.6 0.2 0.1 2.1 6.6 9.6 11.8

(7.8) (8.4) (11.7) (14.4) (13.0) (11.3) (9.6) (8.4) (7.7) (7.4) (8.2) (8.1)

CP3 24.6 18.4 12.9 10.4 4.8 0.3 0.6 0.8 2.0 13.8 27.7 30.3

(26.3) (31.6) (25.3) (21.5) (17.8) (15.2) (13.1) (11.5) (10.4) (10.6) (12.0) (13.5)

CP4 0.3 2.0 1.2 5.6 19.2 12.8 8.2 8.4 13.0 5.2 1.8 0.1

(0.5) (0.5) (1.7) (3.3) (7.2) (7.6) (7.7) (7.8) (8.0) (7.9) (7.4) (6.8)

CP5 24.9 15.3 14.5 5.9 2.3 0.4 0.0 0.1 1.0 5.3 17.1 24.5

(14.7) (12.8) (11.6) (9.1) (7.3) (6.1) (5.2) (4.5) (4.1) (4.5) (5.6) (7.6)

CP6 22.4 21.2 13.2 8.9 5.3 3.8 4.0 2.3 5.6 10.6 12.2 16.8

(25.3) (19.8) (19.1) (15.9) (13.4) (12.0) (10.5) (9.3) (8.8) (8.8) (8.6) (9.5)

CP7 0.0 0.0 0.0 0.0 3.0 11.0 21.9 17.3 7.4 0.8 0.0 0.0

(0.0) (0.0) (0.0) (0.0) (0.7) (3.2) (6.1) (7.8) (8.1) (7.2) (6.6) (6.0)

CP8 1.2 2.2 2.8 9.8 20.4 19.0 11.0 10.2 16.8 13.0 3.0 1.5

(1.4) (0.7) (2.8) (4.4) (8.3) (9.7) (9.5) (9.4) (9.9) (10.1) (9.5) (8.8)

CP9 0.1 0.0 0.1 0.3 5.0 19.1 23.4 30.4 18.7 7.1 0.9 0.2

(0.5) (0.2) (0.3) (0.2) (0.8) (2.9) (6.8) (9.5) (10.8) (10.4) (9.6) (8.8)

CP10 0.0 0.0 0.0 0.9 4.1 17.0 20.2 14.9 7.3 1.2 0.1 0.0

(0.0) (0.0) (0.0) (0.0) (0.4) (3.2) (5.1) (6.8) (6.7) (6.1) (5.6) (5.1)

CP11 12.3 21.8 26.7 32.0 15.5 2.7 0.5 0.9 5.4 12.8 16.2 10.2

(13.8) (18.3) (21.5) (25.8) (24.6) (21.1) (18.1) (15.9) (14.3) (14.2) (14.2) (13.6)

Note: Frequencies >20% are bolded.
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and a weak maximum of the easterly flow prevails in
the region of the Amazonian coast. CP6 showsWIs > 1,
and thus rather wet conditions in NEB (Figure 9f).

4.1.2 | Group B: CP With a maritime
high and a continental ridge

• CP2 (mHwcLw), maritime High weak, continental
Low weak: CP2 (Figures 7b and 8b) CP2 shows
WIs >> 1 and leads to wet conditions in NEB
(Figure 9b).

• CP7 (mHscEs, maritime High strong, continental Exten-
sion strong: CP7 (Figures 7g and 8g) is characterized by
a pronounced subtropical High over the South Atlantic
extending to continental continental South Brazil. The
magnitude of the GP1,000 field is high, but poorly
differentiated over the Amazon and the Equatorial
Atlantic. The westerly flow is weak and shifted to the
South. The easterly flow has a pronounced maximum
over the Amazon. This CP, in general, can be linked to
dry conditions (Figure 9g).

• CP8: mHmcEm, maritime High moderate, continental
Extension moderate: CP8 (Figures 7h and 8h) capti-
vates with a moderately pronounced subtropical exten-
ding to continental continental South Brazil. The
magnitude of the GP1,000 is relatively high, but only
poorly differentiated over the Amazon, the Equatorial
Atlantic and Southwest Brazil. CP8 is linked to normal
(average) conditions in NEB (WIs ≈ 1), see Figure 9h.

• CP9: mHscEm, maritime High strong, continental
Extension moderate: CP9 (Figures 7i and 8i) is charac-
terized by a pronounced subtropical High with the
maximum over the South Atlantic and a high-pressure
ridge over Central Brazil. In general, the GP1,000 is rela-
tively high, but poorly differentiated over the Amazon,
the Equatorial Atlantic and Southwest Brazil. The
westerly flows are moderate with their maximums
shifted to Southwest Brazil. The easterly flows are pro-
nounced and have their maximums over the Amazon.
CP9 is linked with anomalous dry conditions
(WIs << 1, see (Figure 9i).

• CP11: mHwcEw, maritime High weak, continental
Extension weak: CP11 (Figures 7k and 8k) shows a sub-
tropical High over the South Atlantic, extended to con-
tinental southern Brazil. In general, the GP1,000 fields
shows low values and is only poorly differentiated over
the Amazon, the Equatorial Atlantic and Southwest
Brazil. The westerly flow is weak only and the maxi-
mum is shifted to the South Atlantic. The easterly flow
is moderate with its maximum shifted to the Equato-
rial Atlantic. CP11 brings wet conditions to NEB
(Figure 9k).

4.1.3 | Group C: CP with a high-pressure
bridge

• CP4 (bHw, bridge High weak): CP4 (Figures 7d and 8d)
is characterized by a moderate subtropical High over
the South Atlantic and a pronounced continental High
over Southwest Brazil. There is a tendency for a high-
pressure bridge formation over the coast of Central
Brazil and a lower GP1,000 in the coastal region of
South Brazil. Overall, only moderate and poorly differ-
entiated GP1,000 fields over the Amazon and Equatorial
Atlantic prevail. The maximum of the westerly flows is
shifted to the South Atlantic and the easterly flow is
moderate and has its maximum over the eastern equa-
torial Atlantic. CP4 can be linked with dry conditions
(Figure 9d).

• CP10 (bHs, bridge High strong): CP10 (Figures 7j and
8j) can be described by a strong high-pressure bridge
with its two maximums over the South Atlantic and

TABLE 5 Average persistence (days) of the CPs for the

selected 11-cluster-solution for the calibration period 1980–2009
and the validation period 2010–2016 (values for the dry and the wet

season are in brackets)

CP
Calibration (1980–2009) Validation (2010–2016)
(wet, dry) (wet, dry)

CP1 1.9 2.1

(1.7, 2.0) (2.1 2.1)

CP2 1.9 2.0

(1.9, 1.7) (2.0, 1.9)

CP3 2.1 2.2

(2.1, 1.7) (2.3, 1.7)

CP4 1.6 1.8

(1.3, 1.6) (1.4, 1.8)

CP5 2.6 2.9

(2.7, 1.8) (3.0, 2.0)

CP6 1.7 1.9

(1.9, 1.4) (2.1, 1.4)

CP7 2.8 2.6

(−, 2.7) (−, 2.6)

CP8 1.8 1.8

(1.6, 1.8) (1.8, 1.7)

CP9 2.4 2.2

(1.5, 2.4) (1.3, 2.2)

CP10 2.0 2.0

(1.3, 2.0) (1.0, 2.0)

CP11 2.0 1.9

(2.1, 1.6) (2.0, 1.6)
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Southwest Brazil. The GP1,000 has relatively high
values, but is poorly differentiated over the Amazon
and the Equatorial Atlantic. The westerly flows are
strong and have their maximum in front of the coast of
South Brazil. The easterly flow is also strong with its
maximum over the Amazon. For most of the stations,
CP10 is linked with weakly dry conditions (Figure 9j).

4.2 | Seasonal consideration of selected
features of the CPs

In semi-arid regions such as the NEB with a distinct dry
and rainy season during the year, one would expect a cer-
tain level of discriminative power of the classification
based on a seasonal consideration. The applied classifica-
tion is thus being separately analysed for the rainy season
from November to April, and the dry season from May to
October by considering the occurrence probability, the
persistence as well as the spatial distribution of the wet-
ness index:

4.2.1 | Occurrence probability of CPs

In the 11-cluster-solution, it is found that the occurrence
of certain CPs heavily depends on the time of the year
(Table 4). While some of the CPs predominantly occur
during the rainy season (CP2, CP3, CP5, CP6, CP11),
others like CP1, CP4, CP7, CP8, CP9, CP10 predomi-
nantly occur during the dry season. CP7, CP9, and CP10
are typical dry season patterns and occur nearly

exclusively during the dry season. CP5 virtually does not
occur during the dry season. This indicates that the iden-
tified cluster solution based on the atmospheric fields is
potentially able to discriminate between dry and wet
states in NEB.

4.2.2 | Persistence of CPs

Overall, the mean persistence of the classified CPs is
about 2.1 days with a standard deviation of 0.4 days for
both, the calibration and the validation period (Table 5).
This indicates that the obtained results are robust for
independent periods.

However, the persistences vary for the dry and the
wet season. Average over all CPs, the differences of the
mean persistences between dry and wet season is about
0.5 days. This is true for both, the calibration and the val-
idation period. However, there are large discrepancies for
different CPs. While the differences can be approximately
0.9 days (for calibration period, and even 1.0 day for the
validation period) for CP5 and CP9, only small differ-
ences can be found for CP2 and CP8 (0.2 days for calibra-
tion, 0.1 days for validation).

4.2.3 | Transition probability of CPs

Based on Markov chains, the directed graph of the CPs of
the 11-cluster-solution is calculated using the transition
matrices (Figure 10). This figure represents the state
changes from one CP to another for the whole year as

FIGURE 10 Directed graph of

the selected 11-cluster-solution w/o

discrimination between wet and dry

season. The arrows represent the

transitions from a certain CP to

another, and the colours of the

arrows represent the corresponding

transition probabilities
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well as the corresponding transition probabilities, coded
as colours of the arrows. It can be seen that the graph is
strongly connected, that is, most of the states (CPs) are
connected to each other. On the other hand, it can be
seen that some of the transition probabilities from some
CPs to others are increased. This includes, for example,
the transitions from CP4 to CP8, from CP7 to CP9, or
from CP10 to CP7. This goes along with physically plausi-
ble transitions, that is, sequences from one CP to another.
The transitions from CP4 to CP8 and CP10 to CP7 are

essentially comparable shifts of patterns. In both cases a
high-pressure bridge pattern transitions into a single but
large high-pressure field pattern. The main difference
between these transitions is the intensity of the starting
high-pressure bridge and the resulting single high-
pressure field. CP4 is essentially a less intense CP10 and
CP8 is a less intense CP7, so the CP4 to CP8 transition
can simply be considered as equal to the CP10 to CP7
transition under less intense pressure fields. The CP7 to
CP9 transition reflects a change from the strongest single

FIGURE 11 Directed graph of

the selected 11-cluster-solution for

the wet (top) and the dry season

(bottom). The arrows represent the

transitions from a certain CP to

another, and the colours of the

arrows represent the corresponding

transition probabilities
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high-pressure field pattern into a less intense version of
itself. Since all of these before mentioned transitions are
from one high-pressure state into another and occur in
an area considered as part of the subtropical high-
pressure area resulting from the tropical circulation, the
increased transition probabilities are considered as plau-
sible. A direct transition into a non-high pressure CP
would imply the occurrence of a sudden change of the
whole tropical circulation, which can be considered as a
low-probability event. The CP10 to CP7 and the CP7 to
CP9 transitions described above are a sequence of high-

probability transitions. Due to their high-occurrence
probabilities and the fact that these CPs are considered as
dry CPs (with a low WI) this sequences in particular
might be a valuable for future research on drought
prediction.

The directed graphs differ significantly for the differ-
ent seasons (Figure 11). For the wet season (Figure 11,
top), the graph is less connected compared to that of the
dry season (Figure 11, bottom). This is due to the fact that
CP7 virtually does not occur during the wet season. In
addition, some of the transitions occur only in one

FIGURE 12 Dry season consideration of the wetness index (WI) for 30 selected stations based on the selected 11-cluster-solution
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direction. This is the case for the transition from CP10 to
CP8 as well as from CP9 to CP3.

4.2.4 | Wetness indices of CPs

The wetness indices (WIs) without discrimination
between wet and dry season is already described in com-
bination with the occurrence of the different CPs.

Figures 12 and 13 depict the WIs for 30 different stations
in NEB, separately for the dry and the wet season in the
calibration period. One can see that CP4 shows extraordi-
nary high values of WI (WI >> 1) during the dry season,
but also enhanced values for CP2 and CP5, and for fewer
stations also for CP11. During the wet season, on the
other hand, CP4 leads to very dry conditions for all sta-
tions. CP7 does not occur and CP10 shows a highly vari-
able pattern, which is related to the very small number of

FIGURE 13 Wet season consideration of the wetness index (WI) for 30 selected stations based on the selected 11-cluster-solution.

Please note that CP7 (shown in subplot g) does not occur during the wet season
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frequencies during the rainy season. In this case, few
rainfall occurrences may cause very high WIs. For the
remaining CPs, WIs slightly larger than unity are found.
For both, the dry and the wet season, no clear spatial pat-
terns of the stations across the NEB as, for example,
related to topography for any given CP is found. The
results are very similar and could thus be confirmed for
the validation period (not shown).

4.2.5 | CDFs of CPs

The required level of discriminative power of the identi-
fied CPs is assessed for one arbitrarily selected precipita-
tion gauge in the region. The empirical cumulative
density function is shown for the different CPs for the
annual consideration (Figure 14). It can be seen that wet
CPs (e.g., CP2, CP3, CP5, CP6, CP11) exhibit a different
shape compared to the remaining CPs that are linked to
dry situations. This, in combination with different bias
correction approaches, such as quantile mapping, poten-
tially allows to derive transfer functions with a higher
performance.

5 | DISCUSSION AND
CONCLUSIONS

A semi-objective circulation pattern classification has been
performed and analysed for the semi-arid NEB region. In

this study, we followed a typical “circulation to environ-
ment” approach, in which the CP classification (here: the
SANDRA algorithm) is performed as a separate step that
typify significant modes of the atmospheric circulation.
After the classification, the CPs are linked to environmental
phenomena at surface, such as heavy precipitation events
causing high-runoff episodes (e.g., Prudhomme and
Genevier, 2011; Wypych et al., 2018; Bednorz et al., 2019) or
droughts (e.g., Dayan et al., 2012; Burgdorf et al., 2019).

Although the classification algorithm per se is objec-
tive, a lot of subjective decisions have to be met and may
heavily impact on the results. The decisions comprise the
selection of suitable predictor variables, the domain size
and -location, the number of cluster centroids, and
others. Therefore, tremendous efforts have been made for
predictor screening and domain settings, making this a
valuable base for further studies in NEB. For NEB, the
only available study on circulation pattern classifications
the authors are aware of is Robertson et al. (2004). In our
study, for instance, it is found that near surface pressure
patterns, such as MSLP and GP, reveal better classifica-
tion performances, expressed as total explained cluster
variances, when combined with upper level variables,
such as the horizontal wind component.

It is stressed that also the grouping of the CPs is based
on subjective decisions, and these decisions are based on
the atmospheric conditions exclusively, which means
that the observed weather states at surface have not been
considered. However, the discriminative power of the
resulting groups confirmed their potential applicability: it

FIGURE 14 Empirical

cumulative distribution function of

the selected 11-cluster-solution for

one arbitrarily selected precipitation

gauge in the region
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is found that group A (CPs 1, 2, 3, 5, 6) is the wettest
(WI = 1.19 on average for all stations), followed by group
B (CPs 7, 8, 9, 11) with an average WI = 0.82, and group
C (CPs 4, 10), with an average WI = 0.70 (not shown).
Other grouping approaches, for example, by considering
the wetness index would possibly lead to different groups.
For the case of this study, CP1 could be (re-)grouped into
group B and CP11 into group A, thus increasing the dif-
ferences in the WIs between both groups and better dis-
criminating between dry and wet conditions in NEB. In
this study, however, it is intentionally decided to group
due to the atmospheric conditions exclusively. Moreover,
it is worth mentioning that the grouping has been per-
formed only to aid interpretability of the results, all con-
siderations for potential applications are done based on
the 11 individual CPs.

The findings of this study open various avenues for
applications in water resources management in NEB, such
as a tool for statistical downscaling of GCMs based on CPs,
or a CP-conditional bias correction algorithm of RCM out-
put. Therefore, one may capitalize on the fact that a typical
“wet” CP has a different precipitation distribution in time
and space compared to a “dry” CP, which has been demon-
strated in this study. This may finally lead to more efficient
and robust model corrections when compared to those
using the full distribution for correction. A correction based
on separate months does usually implicitly accounts for
this, however, this may not be a suitable solution when the
same transfer functions are applied in future climate impact
studies since the timing of seasons might shift (Wetterhall
et al., 2012). As such, a CP-conditional bias correction
approach can be seen as one potential solution to partly
overcome the caveats due to the stationary assumptions,
which exist for other bias correction approaches.

In addition to that, the CP classification can also be
used to study drought dynamics in the region. Global
warming may not only amplify drought duration and
severity, but possibly changing drought dynamics in com-
plex ways (Burgdorf et al., 2019). Although droughts are
recurrent phenomena (Marengo et al., 2017), the recent
multi-annual drought from 2012 to 2018 might be an
indication for a change in the drought dynamics in NEB.

Since droughts in NEB are known to be linked to the SST
anomaly patterns in the Atlantic, the Pacific, and to a lesser
extent in the Indian Ocean (e.g., Ward and Folland, 1991;
Hastenrath, 2012; Costa et al., 2018), future works can focus
on drought prediction using CP classification based on SST
as predictor. Due to the strong link between SST anomalies
and MSLP patterns, the presented SANDRA classification
can also be tested for other domains covering also parts of
the Pacific or the Indian Ocean. As suggested by the
results of this study, near surface pressure patterns, such as
MSLP or GP, reveal better classification performances, when

combined with upper level variables, such as the horizontal
wind component in 700 hPa. The choice of the low-level vari-
able, that is, if the GP1,000 or the MSLP is applied, does not
affect the overall classification performance.

The development of statistical downscaling or CP-
conditional bias correction approaches for NEB is beyond
the scope of this paper, however, will be subject of further
studies. Different characteristics with respect to occurrence,
persistence, and transition probability during the dry and
the wet season are promising indicators for discriminative
power of the identified CPs. Therefore, it will be evaluated to
which extend the occurrence- and transition probabilities as
well as persistences of the CPs may help to improve statisti-
cal downscaling- and bias correction approaches. Finally,
another classification strategy following the “environment
to circulation” approach can be applied, in which the CP
classification is considered along a specific environment-
based criteria set for a particular phenomenon, such as a
drought or a flood (Dayan et al., 2012). An example is the
classification of Bárdossy and Pegram (2012).

If the focus is on drought prediction, the presented
CP classification approach itself can be further improved
by including information about the local weather state
(e.g., precipitation) in the classification approach directly
(Bárdossy, 2010). This is subject of ongoing research and
may lead to better results.

ACKNOWLEDGEMENTS
The study was mainly funded by the BMBF project Sea-
sonal water resources management in semi-arid regions:
Transfer of regionalized global information to practice
(SaWaM, project number: 02WGR1421A). The clustering
software has been produced in the EU funded COST
Action 733 program and is available under: http://
cost733.geo.uni-augsburg.de (last access: 10/2019). We
would also like to thank the ECMWF for providing the
ERA-Interim reanalysis data as well as FUNCEME for
the precipitation observations. The authors also thank
the IT team of the KIT/IMK-IFU for providing access to
and for maintaining the HPC-environment. Finally, we
wish to thank the two anonymous reviewers for their
valuable comments and suggestions.

ORCID
Patrick Laux https://orcid.org/0000-0002-8657-6152
Eduardo Sávio Martins https://orcid.org/0000-0002-
9858-2541
Francisco das Chagas Vasconcelos Junior https://orcid.
org/0000-0002-1558-8383
Harald Kunstmann https://orcid.org/0000-0001-9573-
1743

20 LAUX ET AL.

http://cost733.geo.uni-augsburg.de
http://cost733.geo.uni-augsburg.de
https://orcid.org/0000-0002-8657-6152
https://orcid.org/0000-0002-8657-6152
https://orcid.org/0000-0002-9858-2541
https://orcid.org/0000-0002-9858-2541
https://orcid.org/0000-0002-9858-2541
https://orcid.org/0000-0002-1558-8383
https://orcid.org/0000-0002-1558-8383
https://orcid.org/0000-0002-1558-8383
https://orcid.org/0000-0001-9573-1743
https://orcid.org/0000-0001-9573-1743
https://orcid.org/0000-0001-9573-1743


REFERENCES
Bárdossy, A. (2010) Atmospheric circulation pattern classification

for south-West Germany using hydrological variables. Physics
and Chemistry of the Earth, 35, 498–506. https://doi.org/10.
1016/j.pce.2010.02.007.

Bárdossy, A. and Pegram, G. (2011) Downscaling precipitation
using regional climate models and circulation patterns toward
hydrology. Water Resources Research, 47, W04505. https://doi.
org/10.1029/2010WR009689.

Bárdossy, A. and Pegram, G. (2012) Multiscale spatial recorrelation
of RCM precipitation to produce unbiased climate change sce-
narios over large areas and small. Water Resources Research, 48
(9), 1–13. https://doi.org/10.1029/2011WR011524.

Bárdossy, A., Stehlík, J. and Caspary, H.J. (2002) Automated objec-
tive classification of daily circulation patterns for precipitation
and temperature downscaling based on optimized fuzzy rules.
Climate Research, 23, 11–22. https://doi.org/10.3354/cr023011.

Bárdossy, A., Pegram, G., Sinclair, S., Pringle, J. and Stretch, D.
(2015) Circulation patterns identified by spatial rainfall and
ocean wave fields in southern Africa. Frontiers in Environmen-
tal Science, 3, 31. https://doi.org/10.3389/fenvs.2015.00031.

Bednorz, E., Wrzesi�nski, D., Tomczyk, A.M. and Jasik, D. (2019)
Classification of synoptic conditions of summer floods in polish
Sudeten Mountains. Water (Switzerland), 11(7), 1450. https://
doi.org/10.3390/w11071450.

Burgdorf, A.M., Brönnimann, S. and Franke, J.R. (2019) Two types
of North American droughts related to different atmospheric
circulation patterns. Climate of the Past, 15(6), 2053–2065.
https://doi.org/10.5194/cp-15-2053-2019.

Corte-Real, J., Zhang, X. and Wang, X. (1995) Large-scale circula-
tion regimes and surface climatic anomalies over the Mediter-
ranean. International Journal of Climatology, 15(10),
1135–1150. https://doi.org/10.1002/joc.3370151006.

Costa, D.D., da Silva Pereira, T.A., Fragoso, C.R., Madani, K. and
Uvo, C.B. (2016) Understanding drought dynamics during dry
season in eastern Northeast Brazil. Frontiers in Earth Science, 4
(June), 69. https://doi.org/10.3389/feart.2016.00069.

Costa, D.D., Uvo, C.B., Da Paz, A.R., Carvalho, F.D.O. and
Fragoso, C.R. (2018) Long-term relationships between climate
oscillation and basin-scale hydrological variability during rainy
season in eastern Northeast Brazil. Hydrological Sciences Jour-
nal, 63(11), 1636–1652. https://doi.org/10.1080/02626667.2018.
1523614.

Dafka, S., Toreti, A., Luterbacher, J., Zanis, P., Tyrlis, E. and
Xoplaki, E. (2018) On the ability of RCMs to capture the circu-
lation pattern of Etesians. Climate Dynamics, 51(5-6),
1687–1706. https://doi.org/10.1007/s00382-017-3977-2.

Dayan, U., Tubi, A. and Levy, I. (2012) On the importance of synop-
tic classification methods with respect to environmental phe-
nomena. International Journal of Climatology, 32(5), 681–694.
https://doi.org/10.1002/joc.2297.

Dee, D.P., et al. (2011) The ERA-interim reanalysis: configuration
and performance of the data assimilation system. Quarterly
Journal of the Royal Meteorological Society, 137, 553–597.
https://doi.org/10.1002/qj.828.

Fernández-González, S., Del Río, S., Castro, A., Penas, A.,
Fernández-Raga, M., Calvo, A.I. and Fraile, R. (2012) Connec-
tion between NAO, weather types and precipitation in León,

Spain (1948-2008). International Journal of Climatology, 32,
2181–2196. https://doi.org/10.1002/joc.2431.

Gansner, E.R., Koutsofios, E., North, S.C. and Vo, K.P. (1993) A
technique for drawing directed graphs. IEEE Transactions on
Software Engineering, 19, 214–230. https://doi.org/10.1109/32.
221135.

Goodess, C.M. and Jones, P.D. (2002) Links between circulation
and changes in the characteristics of Iberian rainfall. Interna-
tional Journal of Climatology, 22, 1593–1615. https://doi.org/10.
1002/joc.810.

Goodess, C.M. and Palutikof, J.P. (1998) Development of daily rain-
fall scenarios for Southeast Spain using a circulation-type
approach to downscaling. International Journal of Climatology,
18(10), 1051–1083. https://doi.org/10.1002/(SICI)1097-0088
(199808)18:10<1051::AID-JOC304>3.0.CO;2-1.

Greene, A.M., Robertson, A.W., Smyth, P. and Triglia, S. (2011)
Downscaling projections of Indian monsoon rainfall using a
non-homogeneous hidden Markov model. Quarterly Journal of
the Royal Meteorological Society, 137(655), 347–359. https://doi.
org/10.1002/qj.254.

Hastenrath, S. (2012) Exploring the climate problems of Brazil's
Nordeste: a review. Climatic Change, 112(2), 243–251. https://
doi.org/10.1007/s10584-011-0227-1.

Hoffmann, P. and Schlünzen, H. (2013) Weather pattern classifica-
tion to represent the urban heat Island in present and future
climate. Journal of Applied Meteorology and Climatology, 52
(12), 2699–2714. https://doi.org/10.1175/JAMC-D-12-065.1.

Huth, R., Beck, C., Philipp, A., Demuzere, M., Ustrnul, Z.,
Cahynová, M., Kyselý, J. and Tveito, O.E. (2008) Classifications
of atmospheric circulation patterns: recent advances and appli-
cations. Annals of the New York Academy of Sciences, 1146,
105–152. https://doi.org/10.1196/annals.1446.019.

James, P.M. (2007) An objective classification method for Hess and
Brezowsky Grosswetterlagen over Europe. Theoretical and
Applied Climatology, 88, 17–42. https://doi.org/10.1007/s00704-
006-0239-3.

Kousky, V.E. (1979) Frontal influences on Northeast Brazil.
Monthly Weather Review, 107(9), 1140–1153. https://doi.org/10.
1175/1520-0493(1979)107<1140:FIONB>2.0.CO;2.

Laux, P., Wagner, S., Wagner, A., Jacobeit, J., Bárdossy, A. and
Kunstmann, H. (2009) Modelling daily precipitation features in
the Volta Basin of West Africa. International Journal of Clima-
tology, 29, 937–954. https://doi.org/10.1002/joc.1852.

Laux, P., Vogl, S., Qiu, W., Knoche, H.R. and Kunstmann, H. (2011)
Copula-based statistical refinement of precipitation in RCM
simulations over complex terrain. Hydrology and Earth System
Sciences, 15(7), 2401–2419. https://doi.org/10.5194/hess-15-
2401-2011, http://www.hydrol-earth-syst-sci.net/15/2401/2011/
hess-15-2401-2011.html.

Le Roux, R., Katurji, M., Zawar-Reza, P., Quénol, H. and
Sturman, A. (2019) Analysis of spatio-temporal bias of weather
research and forecasting temperatures based on weather pat-
tern classification. International Journal of Climatology, 39(1),
89–100. https://doi.org/10.1002/joc.5784.

Lin, R., Zhou, T. and Qian, Y. (2014) Evaluation of global monsoon
precipitation changes based on five reanalysis datasets. Journal
of Climate, 27, 1271–1289. https://doi.org/10.1175/JCLI-D-13-
00215.1.

LAUX ET AL. 21

https://doi.org/10.1016/j.pce.2010.02.007
https://doi.org/10.1016/j.pce.2010.02.007
https://doi.org/10.1029/2010WR009689
https://doi.org/10.1029/2010WR009689
https://doi.org/10.1029/2011WR011524
https://doi.org/10.3354/cr023011
https://doi.org/10.3389/fenvs.2015.00031
https://doi.org/10.3390/w11071450
https://doi.org/10.3390/w11071450
https://doi.org/10.5194/cp-15-2053-2019
https://doi.org/10.1002/joc.3370151006
https://doi.org/10.3389/feart.2016.00069
https://doi.org/10.1080/02626667.2018.1523614
https://doi.org/10.1080/02626667.2018.1523614
https://doi.org/10.1007/s00382-017-3977-2
https://doi.org/10.1002/joc.2297
https://doi.org/10.1002/qj.828
https://doi.org/10.1002/joc.2431
https://doi.org/10.1109/32.221135
https://doi.org/10.1109/32.221135
https://doi.org/10.1002/joc.810
https://doi.org/10.1002/joc.810
https://doi.org/10.1002/(SICI)1097-0088(199808)18:10%3C1051::AID-JOC304%3E3.0.CO;2-1
https://doi.org/10.1002/(SICI)1097-0088(199808)18:10%3C1051::AID-JOC304%3E3.0.CO;2-1
https://doi.org/10.1002/(SICI)1097-0088(199808)18:10%3C1051::AID-JOC304%3E3.0.CO;2-1
https://doi.org/10.1002/(SICI)1097-0088(199808)18:10%3C1051::AID-JOC304%3E3.0.CO;2-1
https://doi.org/10.1002/qj.254
https://doi.org/10.1002/qj.254
https://doi.org/10.1007/s10584-011-0227-1
https://doi.org/10.1007/s10584-011-0227-1
https://doi.org/10.1175/JAMC-D-12-065.1
https://doi.org/10.1196/annals.1446.019
https://doi.org/10.1007/s00704-006-0239-3
https://doi.org/10.1007/s00704-006-0239-3
https://doi.org/10.1175/1520-0493(1979)107%3C1140:FIONB%3E2.0.CO;2
https://doi.org/10.1175/1520-0493(1979)107%3C1140:FIONB%3E2.0.CO;2
https://doi.org/10.1175/1520-0493(1979)107%3C1140:FIONB%3E2.0.CO;2
https://doi.org/10.1175/1520-0493(1979)107%3C1140:FIONB%3E2.0.CO;2
https://doi.org/10.1002/joc.1852
https://doi.org/10.5194/hess-15-2401-2011
https://doi.org/10.5194/hess-15-2401-2011
http://www.hydrol-earth-syst-sci.net/15/2401/2011/hess-15-2401-2011.html
http://www.hydrol-earth-syst-sci.net/15/2401/2011/hess-15-2401-2011.html
https://doi.org/10.1002/joc.5784
https://doi.org/10.1175/JCLI-D-13-00215.1
https://doi.org/10.1175/JCLI-D-13-00215.1


Lutz, K., Jacobeit, J., Philipp, A., Seubert, S., Kunstmann, H. and
Laux, P. (2012) Comparison and evaluation of statistical down-
scaling techniques for station-based precipitation in the Middle
East. International Journal of Climatology, 32, 1579–1595.
https://doi.org/10.1002/joc.2381.

Marengo, J.A., Torres, R.R. and Alves, L.M. (2017) Drought in
Northeast Brazil—past, present, and future. Theoretical and
Applied Climatology, 129(3-4), 1189–1200. https://doi.org/10.
1007/s00704-016-1840-8.

Moron, V., Robertson, A.W., Ward, M.N. and Ndiaye, O. (2008) Weather
types and rainfall over Senegal. Part I: observational analysis. Journal
of Climate, 21(2), 266–287. https://doi.org/10.1175/2007JCLI1601.1.

Ngarukiyimana, J.P., Fu, Y., Yang, Y., Ogwang, B.A., Ongoma, V.
and Ntwali, D. (2018) Dominant atmospheric circulation pat-
terns associated with abnormal rainfall events over Rwanda,
East Africa. International Journal of Climatology, 38, 187–202.
https://doi.org/10.1002/joc.5169.

Philipp, A., et al. (2010) Cost733cat—a database of weather and cir-
culation type classifications. Physics and Chemistry of the Earth,
35(9-12), 360–373. https://doi.org/10.1016/j.pce.2009.12.010.

Philipp, A., Della-Marta, P.M., Jacobeit, J., Fereday, D.R., Jones, P.
D., Moberg, A. and Wanner, H. (2007) Long-term variability of
daily North Atlantic-European pressure patterns since 1850
classified by simulated annealing clustering. Journal of Climate,
20(16), 4065–4095. https://doi.org/10.1175/JCLI4175.1.

Pilz, T., Delgado, J.M., Voss, S., Vormoor, K., Francke, T., Cunha
Costa, A., Martins, E. and Bronstert, A. (2019) Seasonal drought
prediction for semiarid Northeast Brazil: what is the added
value of a process-based hydrological model? Hydrology and
Earth System Sciences, 23(4), 1951–1971. https://doi.org/10.
5194/hess-23-1951-2019.

Prein, A.F., Bukovsky, M.S., Mearns, L.O., Bruyère, C.L. and
Done, J.M. (2019) Simulating North American weather types
with regional climate models. Frontiers in Environmental Sci-
ence, 7(April), 1–17. https://doi.org/10.3389/fenvs.2019.00036.

Prudhomme, C. and Genevier, M. (2011) Can atmospheric circula-
tion be linked to flooding in Europe? Hydrological Processes, 25,
1180–1190. https://doi.org/10.1002/hyp.7879.

Robertson, A.W. and Smyth, S.K.P. (2003) Hidden Markov Models
for Modeling Daily Rainfall Occurrence over Brazil. Tech. Rep.
Tech. Rep. UCI-ICS 03-27, Information and Computer Science,
University of California, Irvine, CA, 36p.

Robertson, A.W., Kirshner, S. and Smyth, P. (2004) Downscaling of
daily rainfall occurrence over Northeast Brazil using a hidden
Markov model. Journal of Climate, 17(22), 4407–4424. https://
doi.org/10.1175/JCLI-3216.1.

Siegmund, J., Bliefernicht, J., Laux, P. and Kunstmann, H. (2015)
Toward a seasonal precipitation prediction system for West
Africa: performance of CFSv2 and high-resolution dynamical
downscaling. Journal of Geophysical Research Atmospheres, 120
(15), 7316–7339. https://doi.org/10.1002/2014JD022692.

Sunyer, M.A., et al. (2015) Inter-comparison of statistical downscal-
ing methods for projection of extreme precipitation in Europe.
Hydrology and Earth System Sciences, 19(4), 1827–1847. https://
doi.org/10.5194/hess-19-1827-2015.

Trigo, R.M. and DaCamara, C.C. (2000) Circulation weather types
and their influence on the precipitation regime in Portugal.
International Journal of Climatology, 20(1315), 1559–1581.
https://doi.org/10.1002/1097-0088(20001115)20:13<1559::AID-
JOC555>3.0.CO;2-5.

Ward, M.N. and Folland, C.K. (1991) Prediction of seasonal rainfall
in the north nordeste of Brazil using eigenvectors of sea-surface
temperature. International Journal of Climatology, 11(7),
711–743. https://doi.org/10.1002/joc.3370110703.

Wetterhall, F., Halldin, S. and Xu, C.Y. (2007) Seasonality proper-
ties of four statistical-downscaling methods in Central Sweden.
Theoretical and Applied Climatology, 87, 123–137. https://doi.
org/10.1007/s00704-005-0223-3.

Wetterhall, F., Pappenberger, F., He, Y., Freer, J. and Cloke, H.L.
(2012) Conditioning model output statistics of regional climate
model precipitation on circulation patterns. Nonlinear Processes
in Geophysics, 19(6), 623–633. https://doi.org/10.5194/npg-19-
623-2012.

Wypych, A., Ustrnul, Z., Czekierda, D., Palarz, A. and
Sulikowska, A. (2018) Extreme precipitation events in the pol-
ish Carpathians and their synoptic determinants. Idojaras, 122
(2), 145–158. https://doi.org/10.28974/idojaras.2018.2.3.

Zhou, J. and Lau, K.M. (2001) Principal modes of interannual and
decadal variability of summer rainfall over South America.
International Journal of Climatology, 21(13), 1623–1644.
https://doi.org/10.1002/joc.700.

How to cite this article: Laux P, Böker B,
Martins ES, et al. A semi-objective circulation
pattern classification scheme for the semi-arid
Northeast Brazil. Int J Climatol. 2020;1–22. https://
doi.org/10.1002/joc.6608

22 LAUX ET AL.

https://doi.org/10.1002/joc.2381
https://doi.org/10.1007/s00704-016-1840-8
https://doi.org/10.1007/s00704-016-1840-8
https://doi.org/10.1175/2007JCLI1601.1
https://doi.org/10.1002/joc.5169
https://doi.org/10.1016/j.pce.2009.12.010
https://doi.org/10.1175/JCLI4175.1
https://doi.org/10.5194/hess-23-1951-2019
https://doi.org/10.5194/hess-23-1951-2019
https://doi.org/10.3389/fenvs.2019.00036
https://doi.org/10.1002/hyp.7879
https://doi.org/10.1175/JCLI-3216.1
https://doi.org/10.1175/JCLI-3216.1
https://doi.org/10.1002/2014JD022692
https://doi.org/10.5194/hess-19-1827-2015
https://doi.org/10.5194/hess-19-1827-2015
https://doi.org/10.1002/1097-0088(20001115)20:13%3C1559::AID-JOC555%3E3.0.CO;2-5
https://doi.org/10.1002/1097-0088(20001115)20:13%3C1559::AID-JOC555%3E3.0.CO;2-5
https://doi.org/10.1002/1097-0088(20001115)20:13%3C1559::AID-JOC555%3E3.0.CO;2-5
https://doi.org/10.1002/1097-0088(20001115)20:13%3C1559::AID-JOC555%3E3.0.CO;2-5
https://doi.org/10.1002/joc.3370110703
https://doi.org/10.1007/s00704-005-0223-3
https://doi.org/10.1007/s00704-005-0223-3
https://doi.org/10.5194/npg-19-623-2012
https://doi.org/10.5194/npg-19-623-2012
https://doi.org/10.28974/idojaras.2018.2.3
https://doi.org/10.1002/joc.700
https://doi.org/10.1002/joc.6608
https://doi.org/10.1002/joc.6608

	A semi-objective circulation pattern classification scheme for the semi-arid Northeast Brazil
	1  INTRODUCTION
	2  STUDY REGION
	3  DATA AND METHODS
	3.1  Data
	3.1.1  ERA-Interim reanalyses
	3.1.2  Observation data

	3.2  Methods
	3.2.1  SANDRA circulation pattern classification
	3.2.2  Markov chains
	3.2.3  Linking CPs to precipitation


	4  RESULTS
	4.1  Circulation patterns (CPs) of the cluster solution
	4.1.1  Group a: CP With a clear contrast between a maritime high- and a continental low-pressure system
	4.1.2  Group B: CP With a maritime high and a continental ridge
	4.1.3  Group C: CP with a high-pressure bridge

	4.2  Seasonal consideration of selected features of the CPs
	4.2.1  Occurrence probability of CPs
	4.2.2  Persistence of CPs
	4.2.3  Transition probability of CPs
	4.2.4  Wetness indices of CPs
	4.2.5  CDFs of CPs


	5  DISCUSSION AND CONCLUSIONS
	ACKNOWLEDGEMENTS
	REFERENCES


