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Preface

The VerifyThis verification competition is a regular event run as an on-site
meeting with workshop character in which three challenges are proposed that
participants have to verify in 90 minutes each using their favourite program
verification tool.

We have experienced that the state of the art of program verification allows
the participants to specify and verify impressively complex algorithms in this
short a time span. If such sophisticated, realistic but not real, problems can be
solved in real-time, what would be achievable if (a) we as the program verification
community collaborated and (b) the time constraints were removed?

The VerifyThis Long-term Challenge aims at proving that deductive program
verification can produce relevant results for real systems with acceptable effort.
This challenge is not designed as a competitive event. It would be nice if one
group could prove the protocol of the system to be correct whereas another group
would show that an implementation follows that protocol, and is hence correct.
Participants could choose aspects and parts of the challenge that they wanted to
specify and verify with the tool of their choice.

We chose the PGP-keyserver infrastructure called hagrid as the system to
considered in the challenge as it (a) is security- and safety-relevant, (b) has a
modular system design that allows for reimplementation of chosen components
in different languages and (c) raises a variety of interesting formally analysable
questions.

The challenge started in August 2019, and verification reports could be
submitted for presentation until the end of February 2020. After their (online)
presentation and following the discussion, the community decided that the
verification goals still deserve more attention, and that work should continue.

The challenge manual that was a available as a description of the challenge is
included in these proceedings on page 17.

At the end of the submission period, we had received five contributions from
different teams using different verification approaches and tools. Three of them
focused on functional specification, two considered security-related aspects.

Submissions for functional properties were written in different programming
(and specification) languages and verified with different deductive verification
tools (SPARK, Why3, and KeY). All specifications followed similar ideas: They
specified the functional key server interface using contracts that formally capture
the effects of requests on the database (represented by some form of ADT). The
Why3 solution targetted a file-based database backend, whereas the other two
solutions modelled it as an in-memory database.

Two submissions provided a security testing framework for the keyserver
based on history traces (in Scala), and a formulation of information flow security
properties with declassification in a variant of separation logic for security prop-



II Preface

erties. In particular, revocation of key entries was identified here as an interesting
challenge for non-interference approaches.

A final workshop session for the challenge had been planned at ETAPS (along
with the VerifyThis program verification competition). Since ETAPS has been
postponed, we met and exchanged online. During the online meeting, the different
solutions were briefly explained, and we discussed the approaches, how they can
benefit from one another and how further verification success can be stipulated.

We would like to thank all participants of the challenge and the online-event.

June 2020 Marieke Huisman
Raúl E. Monti

Mattias Ulbrich
Alexander Weigl
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A Solution to the Long-Term Challenge in
SPARK

Claire Dross, Johannes Kanig, and Yannick Moy

AdaCore, 75009 Paris

1 Introduction

SPARK [2] is a programming language designed to be amenable to formal veri-
fication. In addition to the standard features of a procedural programming lan-
guage, it contains standard annotations such as pre- and postconditions and
annotations of effects on global variables. SPARK is a subset of the Ada lan-
guage [1], so it can be compiled to machine code, e.g. using the GNAT compiler.
It can also be freely mixed with (unverified) Ada code.

We have applied SPARK to the key server described in the long-term chal-
lenge. Our goal was to get a working prototype, so we did some simplifications
in order to move quicker. For example, our prototype uses in-memory storage
(simple lists) to store the key server data, as opposed to using external storage.
This means that if our key-server is switched off, it will lose all data.

The code is available at https://github.com/AdaCore/Lumos Maxima.

2 Overview of the Code

The central piece of verified code is the implementation of the server API
in server.adb. In this code we verified absence of runtime errors, but also
quite strong postconditions. Here are the declarations for Request Add and
Verify Add, including their contracts:

procedure Request_Add
(Email : Email_Id;
Key : Key_Id;
Token : out Token_Type)

with
Pre ⇒ Invariant,
Post⇒ Invariant

and Contains (Seen_Tokens, Token)
and Email = Get_Email (Seen_Tokens, Token)
and Key = Get_Key (Seen_Tokens, Token)
and Is_Add (Seen_Tokens, Token)
and Seen_Tokens’Old ≤ Seen_Tokens;

procedure Verify_Add
(Token : Token_Type;
Status : out Boolean)

with
Pre ⇒ Invariant,
Post⇒ Invariant

and (if Status
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then Contains (Seen_Tokens, Token)
and Is_Add (Seen_Tokens, Token)
and Model’Old ≤ Model
and Included_Except
(Model, Model’Old,

(Get_Key (Seen_Tokens, Token), Get_Email (Seen_Tokens, Token)))
and Contains
(Model,

(Get_Key (Seen_Tokens, Token), Get_Email (Seen_Tokens, Token)))
else Model = Model’Old)

and Seen_Tokens’Old ≤ Seen_Tokens;

As one can see, we prove that Request Add returns a token with the proper
information attached, and this token represents a request to add a key (ex-
pressed with Is Add). Once Verify Add is called, the key/email pair is added
to the database (this is expressed using the Model variable). The code for
Request Remove and Verify Remove is similar.

In total, five units (files) with 500 lines of code have been verified with SPARK
Pro 20.1, out of 10 units with 1300 lines. The total running time of the proof tool
on an 8-core/16-threads AMD Ryzen 1700x is roughly 1 minute from scratch,
and roughly 30 seconds to replay all proofs using an existing session.

3 Difficulties and Workarounds

We found that SPARK proofs worked best when storing basic data such as
integers in the central database, and not more complex data such as strings.
The reason seems to be that the containers that we use rely heavily on equality
for their specifications, and the equality for complex types is much heavier and
degrades proof performance. This issue prevented us from writing natural code
where e.g. email addresses would be represented directly by strings. We worked
around this situation by interning strings in a separate table, and referring to
the table indices instead of the actual strings. The string interning code is also
proved.

4 The Missions of the Challenge

We addressed mission 0 (identify relevant properties) by defining the design of
our software and writing postconditions, mission 1 (safety) by proving absence of
runtime errors, mission 2 (functionality) by proving the specified postconditions,
and finally mission 6 (termination) by adding termination annotations. Proof of
termination only required a single loop variant.

We did not address mission 3 (protocol), mission 4 (privacy), mission 5
(thread safety) and mission 7 (randomness), which are out of scope for SPARK.
Proof of thread-safety is possible in SPARK, though the analysis is quite restric-
tive - threads cannot access memory that is potentially written by other threads
unless these accesses are protected against race conditions. Also, this analysis
requires the use of Ada tasking and no other mechanisms, and visibility over all
tasks (not the case in our prototype, where tasks might be created by the web
server).
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5 Additional Unverified Code

To get a working example, we wrote some unverified Ada code. This code starts
a web server using the AWS (Ada Web Server 1) framework and dispatches
incoming requests to the various API functions. It also extracts emails from
the submitted public key, so that the API functions can be called directly with
interned email addresses. With reasonable additional effort, the percentage of
verified code could be increased, to leave only the code directly related to AWS
requests unproved.

When a user connects to the interface, a welcome page is presented with
links to the subpages to query existing keys by email or adding a new key. On
the page to add a new key, the user can insert a public key (the begin and end
markers of a typical public key need to be removed here). From this key, the
code extracts the email address, creates the request token from the interned
email/key pair and returns the token to the user. To simplify the setup, we show
the confirmation link directly in the browser instead of emailing it. This would
of course have to change for a production implementation. The code invoked by
this link then inserts the (interned) email/key pair into the database.

References

1. Barnes, J.: Programming in Ada 2012. Cambridge University Press (2014)
2. McCormick, J. W., Chapin, P. C.: Building high integrity applications with SPARK.

Cambridge University Press (2015)

1 https://www.adacore.com/gnatpro/toolsuite/ada-web-server



�You-Know-Why�: an Early-Stage Prototype of a

Key Server Developed using Why3

Diego Diverio1, Cláudio Lourenço2, and Claude Marché2

1 Université Paris-Saclay, Inria, 91120 Palaiseau, France
2 Université Paris-Saclay, Univ. Paris-Sud, CNRS, Inria, LRI, 91405 Orsay, France

Abstract. This is a preliminary report on a solution we designed for
the VerifyThis Collaborative Long Term Challenge 2019 [6].

1 Used veri�cation approach and tools

We used the Why3 veri�cation framework [1] to design, from scratch, a simple
but running prototype implementation of a PGP key server. The current version
does not have a Web interface but a basic command-line interface. We exploit
the ability of Why3 to extract OCaml code from veri�ed WhyML code (getting
rid of formal speci�cations and ghost code [3]) so as to produce code that can
be compiled into an executable.

Our prototype is made of a combination of unveri�ed handwritten OCaml
code and of WhyML code whose functional behaviour is formally speci�ed and
proven correct. As Why3 is a framework for sequential programs only, our ap-
proach does not address any issue related to concurrency of execution of server
requests.

2 How the challenge was adapted to make veri�cation

possible

The main approach we took was to follow the document presenting the chal-
lenge [5]. We also had a look at the implementation of the Hagrid key server [4]
written in Rust, to get more precise ideas on its implementation. In particu-
lar, we discovered that it was using the �le system of the host computer as a
database, instead of any more sophisticated database management system.

From the challenge document [5] we addressed mission 1 (Safety), mission 2
(Functionality) and mission 6 (Termination). The mission 0 (Identify Relevant
Properties) was not deeply investigated: we turned the informal properties of the
�ve operations given in the challenge documentation [5, Section 5] into formal
speci�cations in WhyML. For that we reused the theories for sets and maps from
the Why3 standard library. Yet it appeared that such theories were in fact under
reorganisation and we are using the new versions, so that replaying our proofs
today requires to install the Why3 version in the master branch of development3.

3 Or presumably the upcoming next release 1.3.0.



We also used character strings, which is a newly available theory in the Why3
standard library.

We did not really address mission 3 (Protocol), though our functional spec-
i�cations implicitly express properties about the server protocol, such as the
fact that to con�rm a key addition, only a token previously issued by the Add
operation can be accepted. Missions 4 (Privacy), 5 (Thread Safety) and 7 (Ran-
domness) are not addressed at all.

We also did not implement a Web front-end though we could have done it
with unveri�ed OCaml code.

3 What has been achieved

Our implementation is divided into three parts as it is described in the challenge
presentation [5]: a front-end (here a basic CLI program), a back-end (which actu-
ally implements the requirements) and a database (here a �le-based implemen-
tation of dictionaries). The development is publicly available from the gitlab
repository https://gitlab.inria.fr/why3/verifythis2020. The README �le
there explains how to replay the proofs, how to compile an executable and how
to run the latter.

The back-end interface is speci�ed by a WhyML module Spec containing
an abstract view of the server global state - under the form of a record type
with ghost �elds and invariants - and the expected �ve operations Query, Add,
ConfirmAdd,Del and ConfirmDel. The back-end is implemented in another
module Impl which re�nes Spec, the type state being extended with concrete
�elds. Gluing invariants relate those concrete �elds with the ghost �elds. The
re�nement is proved correct. The proofs are not di�cult: they proceed smoothly
using automated provers only.

The module Impl makes use of an extra module Table providing an interface
to a general data structure of dictionaries mapping strings to strings. The Table
module is only a WhyML interface, its implementation is written in OCaml and
is not veri�ed. Yet, this OCaml code makes use of an implementation of Base64
encoding-decoding that is used to turn arbitrary strings into valid �lenames. This
Base64 module is a completely independent library that was recently veri�ed
with Why3. This constitutes the database part of our prototype.

While the back-end operations rely on preconditions to ensure properties on
inputs, the front-end adds a layer which checks inputs and raises exceptions when
they do not conform to preconditions. The front-end is written in WhyML but
is actually completed with OCaml code that provides the simple CLI interface.
The front-end also implements an initialisation function that performs sanity
checks on database when starting the server (see details below).

4 Successes and challenges

The main success is that we could actually write the speci�cations down in
WhyML, develop WhyML code that is fully proven conforming to the speci�ca-

2
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tions, and also extract an executable program from it that we can interface with
OCaml external code, to e�ectively run a basic prototype server.

The proofs were not particularly challenging. Each veri�cation condition was
most of the time discharged by one of the automated theorem provers available
in Why3 (one of Alt-Ergo, CVC4, or Z3 for this proof). Adding a few extra
assertions in the code was enough in the remaining cases but one. This extra case
has to be handled using a few manual Why3 transformations to be discharged [2],
but was quite easy to prove anyway. The most challenging part was in fact the
initialisation function: the code of this function must indeed do a lot of checks on
the data read from disc, so as to ensure that the resulting server state satis�es
the invariant. It is also the only part of the code using loops, thus requiring loop
invariants to be added.

Of course, the remaining challenges are numerous, starting from the fact
that we did not address at all the issues related to concurrency, privacy, or
randomness. Another challenge would be to get closer to the current Hagrid
server which uses clever techniques to store less information on disc. For example,
it encodes all the needed information in the con�rmation tokens: Hagrid does
not have to store any information about the token, as it can recover it from the
token itself, whereas we have to store locally for each token which email and key
it was associated with.

Another challenge in a more general point of view is the amount of time,
or human e�ort, to achieve such a veri�ed server: we had quite little human
resources to dedicate to this case study, and we had to aim at a very simple
implementation if we wanted to have a working basic prototype. Designing a
veri�ed alternative to Hagrid, with all required guarantees regarding privacy and
concurrency, should start by planning signi�cant allocation of human resources.
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The KeY Approach on Hagrid
VerifyThis Long-Term Challenge 2020

Stijn de Gouw, Mattias Ulbrich, and Alexander Weigl

1 Open University
2 Karlsruhe Institute of Technology

1 Introduction

We present the results of the application of the KeY verification approach to the
VerifyThis Long Term Challenge 2020.

KeY [1] is a deductive program verification engine to show the conformance
of Java Programs to their specification in the Java Modeling Language (JML). It
supports sequential Java 1.4 and the full JavaCard 3.0 standard. The deductive
engine of KeY is based on a sequent calculus for a dynamic logic for Java and
supports both interactive and automatised verification.

2 Verification of the Subject

The verification target of the challenge is the HAGRID key server, a new im-
plementation of the PGP key server written in Rust that makes the key server
conform to data protection regulations and increases resilience against denial of
service attacks.

Since KeY operates on programs written in Java, it cannot directly be used to
verify HAGRID’s Rust source code. Hence, a simplified re-implementation of the
of the core functionality of the HAGRID key server in Java had to be written. We
came up with two different Java implementations of different complexity. Both
adhere to the natural language specifications in [2] The first version implements
a single class that only makes use of primitive data types and arrays. The second
version modularizes the first version and uses an implementation of a map data
structure. Both versions are abstractions of HAGRID’s implementation and
actual behaviour. We focus on the database logic and leave network connection,
and en- and de-coding of HTTP messages aside for this project. Moreover, in
the implementation, we assume that e-mail addresses and keys are “atomic” in
the sense that they are used as keys and values in the database, but are never
analysed for their contents. In particular, we avoid the use of objects for the
data and represent them by primitive integer values. This is of course a severe
simplification, but since strings are objects in the Java programming language,
they produce significantly more difficult verification conditions due to additional
heap framing conditions which need to be shown.

We were able to specify and verify both implementations successfully.



Table 1. Verification in numbers of lines of code, lines of specification, applied rules,
interactions, and proof obligations.

Version lin
es

of code

lin
es

of sp
ec

rule
applic

atio
ns

inter
acti

ve rule
appl.

proof oblig
atio

ns

Plain 69 82 30.119 0 10
Map-based 146 262 77.663 89 40

A simple email-key map. The first version bases upon five integer arrays. These
arrays store:

– the email (identification) of the user
– one array for confirmed and one array for unconfirmed keys
– an array that stores confirmation codes, and
– an array that stores which operation was most recently requested.

The maximum number of users is fixed to 1024, as the arrays are never resized.
The implementation only allows to confirm last requested action, e.g. if a deletion
is requested, a pending addition is abandoned. We avoid the use of any objects to
avoid dealing with a changes of the heap, resulting in a version that is verifiable
without interactions in KeY. Table 1 shows the aggregated metrics of the proofs.

We also attempted to add a ‘time-out’ mechanism, to cover the following
aspect of the challenge:

If the provided code is one recently issued, then the corresponding opera-
tion (addition/removal) is finalised.

This is easy to add in the implementation: first store the time that the user
requests the operation (in an additional array), and when confirming, only
approve the operation if that time was sufficiently recent. But it is problematic
for specification and verification: the time limit may not yet have elapsed when
the precondition (i.e. the specification) is evaluated, but it may have when the
JVM determines the current time in the confirm method body. So we dropped
the time-out aspect.

The map-based approach. The second version follows the same design principles
as the first one, but aims to achieve a more object-oriented, modular architecture.
To this end, the key server now contains four map data structures for the stored
keys, pending additions and pending deletions.

Fig. 1 gives an overview of the class layout. The interface KIMap (Key Integer
Map) represents a map of from int to int. Its functionality is specified (by
JML contracts) using the abstract map theory built into KeY. KIMapImpl is a
simple implementation based upon two int-arrays (one for the keys and one for
the values). KeyServer is the verifying key server providing the functionality to

The KeY Approach on Hagrid 9



KeyServer

+contains(int email) : boolean;
+get(int email) : int;
+add(int email ,int key) : int;
+addConfirm(int token);
+del(int email) : int;
+delConfirm(int token);

KeyServerImpl

-KIMap mapKeys;
-KIMap mapPendAddEmail;
-KIMap mapPendAddKey;
-KIMap mapPendDelEmail;

-newToken() : int;

KIMap

+contains(int key) : boolean;
+get(int key): int;
+put(int key, int value);
+del(int key);

KIMapImpl

-int[] keys;
-int[] values;

Fig. 1. UML class diagram of the Map version

answer queries for keys, to process requests for key addition and deletion and
to perform these mutation operations upon confirmation. It is specified using a
number of model fields containing (finite) logical maps.

3 Verification Results

We were able to verify strong functional method contracts for all methods of the
implementations. This includes verifying that requested operations are confirmed
by the right confirmation code, absence of runtime exceptions and a guaranteed
termination of each request handler.

We noticed during the verification of the modular map approach that dis-
charging the framing conditions brought the KeY on the edge of its capabilities.
In the following, we devised a new technique to deal with framing conditions
that combines dynamic frames with aspects from ownership. This allowed us to
close all proofs successfully.

Both implementations used integers instead of Strings as an simplifying
abstraction. The obvious next goal is the verification of an implementation which
uses String values for e-mails and keys.
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Information Flow Testing of a PGP Keyserver
(Abstract for the VerifyThis challenge 2020)

Gidon Ernst and Lukas Rieger

LMU Munich, gidon.ernst@lmu.de

1 Abstract

We report on the progress in the VerifyThis long-term challenge 20201 that
targets a formal analysis of the secure PGP keyserver HAGRID.2

A major concern in the design of the PGP keyserver HAGRID is that con-
firmed identities in published keys are authenticated and confidential otherwise.
The underlying security property requires reasoning about non-interference [7],
value-dependent information flow [10,8], as well as declassification [2]. We present
a high-level reference model, written in Scala, that is detailed enough to cap-
ture these key concerns, but abstracts away from the internals of the server.
Functional correctness and information flow security of the model is currently
being analyzed using automated random testing via ScalaCheck, a variant of
QuickCheck [6]. A comparison of behavior against the implementation in HA-
GRID is planned for future work.

2 Models

We have modeled the server, the client, the communication, and the attacker.3
Scala is a programming language that supports both functional and object-
oriented concepts, so that adequate choices regarding the abstraction level of
data types and the encoding of state transitions can be made. The added benefit
is that models can be executed and debugged interactively within an IDE.

Data Model: In contrast to other preliminary work in the challenge,4 we
model keys explicitly as an immutable data type that stores a set of abstract
identities (i.e., email addresses) [3, Sec 5.11]. This aspect is relevant, because
regardless of which identities were originally uploaded with a given key, only the
subset of confirmed identities should be visible in the results returned by queries
to the server.

Components: The client and the server are modeled as stateful classes
which expose their functionality a set of operations. The server interface closely
resembles that of the HAGRID API5 and consists of operations for lookup,
1 https://verifythis.github.io
2 https://gitlab.com/hagrid-keyserver/hagrid
3 https://github.com/gernst/verifythis2020
4 https://verifythis.github.io/2019-09-10-eventb/
5 https://keys.openpgp.org/about/api



requests for email validation and management access, and finally confirmation
and deletion of associations between keys and identities. Internally, the server
stores all keys every uploaded, the association between confirmed identities and
keys, as well as the necessary bookkeeping for authenticated access in terms of
tokens. A client object, on the other hand, stores a set of keys alongside those
tokens received by the server, in order to be able to execute requests (e.g. in unit
tests or randomly).

Communication: HAGRID uses two channels to communicate with users:
a web-based interface for the lookup, upload, request for validation of keys,
and management of these; and regular email for authentication tokens that are
needed for certain operations. Messages are distributed by glue code in an actor-
based approach, where the association between a client and its mailbox is ex-
plicit.

Adversary: We assume that all communication is secure. The adversary has
ordinary access to all operations of the server but we assume that he/she cannot
guess authentication tokens. As a consequence, the adversary has access to all
information that is supposedly public, unless of course the server leaks secret or
unconfirmed information.

3 Test Approach

We consider two kinds of properties of interest: functional correctness and se-
curity. In our setting, correctness means primarily that uploaded keys can be
looked up successfully. Security, on the other hand, expresses that no secret or
unconfirmed information is visible to the adversary.

We use property-based testing via ScalaCheck, a tool that enumerates inputs
according to a generator schema, runs the system under test, and checks prop-
erties of the resulting states. For functional correctness, we might specify, for
example, that a key can be successfully downloaded from the keyserver after an
upload; and that certain previously confirmed identities in the key are present.

Dynamic monitoring of information flow is a little trickier. There are some ex-
isting approaches, such as tagging runtime values [1], and security type systems,
such as Jif [9] for Java, and hybrid monitors that employ logical reasoning [4].

Our test approach is based on Histories that record events of the interaction
explicitly, but not the internal states of the stateful actors. These histories are
created by custom ScalaCheck generators with respect to a small collection of
known email addresses. Three types of events can occur: upload of a key, and
confirmation resp. revocation of the association between an email address and a
key (via its fingerprint that is supposed to be unique).

The top-level specification is expressed over histories, which precisely de-
termines those associations that are intended to be visible to another user of
HAGRID (i.e. the adversary). To test whether an actual execution is correct
and secure we thus compare the intended status of each potential association
from the predetermined set of identities and keys to the actual observations that
can be made by calling server operations.

12 Gidon Ernst and Lukas Rieger



Ongoing effort integrates this model with the actual implementation of HA-
GRID for cross-validation: We have written a back-end that dispatches the test
calls directly over the REST API and reads back confirmation emails issued by
HAGRID from a mailbox in the file system. Preliminary results have not show
any odd behavior.
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1 Introduction

We discuss our approach and progress concerning the formal verification of the
HAGRID PGP keyserver, as part of the VerifyThis 2020 Collaborative Long-
term Verification Challenge.

2 Approach

We have followed an iterative approach to the formalisation of the case study
and its verification, building on the work of related teams [3]. Specifically, we
took Ernst and Rieger’s Scala model of the key server as a starting point. This
model represents the state of the key server as a collection of maps, and has a
small number of top-level functions that manipulate these maps and simulate
actions like sending emails.

2.1 Abstract Specification

We began by constructing an abstract specification for the Scala model, in the
spirit of typical Alloy specifications [4]. Here, the state is modelled as a collection
of partial functions, each of which represents a map in the Scala model. For
instance, the keys map stores the uploaded keys, indexed by their fingerprints;
the uploaded map remembers which keys have been uploaded and is indexed by
the token that was issued for each; the prev-tokens set remembers previously
issued tokens (in order to specify that newly generated tokens should be fresh).

record state =
keys :: fingerprint ⇀ key
uploaded :: token ⇀ fingerprint
prev-tokens :: token set
. . .

Top-level operations of the Scala model are then specified as relations on
these states, describing how the state after the operation is related to the state
before the operation. These specifications are carefully written to delineate pre-
conditions and postconditions.



For instance, the precondition for the upload operation to upload a key k is
a predicate on the pre-state s, and states that if a key with the same fingerprint
of k has already been uploaded, then that key must be identical to k :

upload-pre(k,s) ≡ k.fingerprint ∈ dom(s.keys) =⇒ s.keys(k.fingerprint) = k

The postcondition for the upload operation requires that a fresh token is
generated for the key and that the key is added to the keys and uploaded maps.

upload-post(k,s,s’ ) ≡ ∃ t. t /∈ s.prev-tokens ∧
s’.keys = s.keys ∪ (k.fingerprint 7→ k) ∧
s’.uploaded = s.uploaded ∪ (t 7→ k.fingerprint) ∧
s’.prev-tokens = s.prev-tokens ∪ {t}

Having delineated their pre- and post-conditions, operations are specified
straightforwardly. For instance, the specification of the upload operation for up-
loading a key k, given pre- and post-states s and s’ respectively, is:

upload(k,s,s’ ) ≡ if upload-pre(k,s) then upload-post(k,s,s’ ) else s’ = s

We have experimented with encoding this abstract specification in both Coq
and Isabelle/HOL, and with formalising and proving invariant preservation over
its operations.

2.2 Verified Model

While aiding clarity, the purpose of delineating pre- and post-conditions in the
abstract specification was to serve as a guide for subsequent Hoare logic reasoning
about the system. Specifically, while currently still in progress, the next step
of our approach involves constructing a model of the system that refines the
abstract specification and about which we can reason using a Hoare logic style
program verifier.

In our approach, we chose to use the prototype SecC verifier, which auto-
mates program reasoning in the Hoare style logic Security Concurrent Separation
Logic (SecCSL) [2]. SecCSL is a variant of Concurrent Separation Logic that
allows reasoning about expressive information flow security policies, in addition
to ordinary Hoare logic reasoning.

Information Flow Security Policies Such policies abound in the key server. For
instance, when returning results pertaining to the lookup of a key k, data about
all other keys should be considered private and not revealed. Additionally, how-
ever, whether a particular identity id ∈ k.ids, attached to the key k should
be revealed depends on whether that identity has been confirmed. Thus only
confirmed identities for the key k should be considered public. The resulting
information flow policy for this seemingly simple operation is therefore highly
state-dependent. SecCSL and SecC provide natural support for verifying such
stateful policies.
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Dynamic Declassification Note, however, that the security policy is not fixed: the
action of confirming an identity associated with key k effectively declassifies [5]
the resulting identity, making it public with respect to a lookup for key k.

SecC supports this style of reasoning via assume statements. Whereas tra-
ditional Hoare logic verifiers are able to assume only functional properties, in
SecCSL such assumptions can naturally encompass security assertions. For in-
stance the statement “assume (e::low)” literally means “let us assume that the
data contained in the expression e is known to the attacker” [1].

Ensuring Correct Declassification Assume statements are therefore powerful for
reasoning about dynamic declassification policies. However, we also need to make
sure that they are not mis-used. For example, it is appropriate to place an
assume statement at the point that an identity id is confirmed for key k, which
declassifies id with respect to lookups of key k. However, the assume statement
would not be appropriate if it declassified id with respect to some other key k’
or if it did so before id was confirmed. Therefore, how can we make sure that
assume statements are used correctly to encode the desired declassification
policy?

To address this issue, our methodology encodes the declassification policy
via an extensional predicate that talks just about the program’s inputs and
outputs (i.e. not about its internal state), inspired by [6]. Then at the site of
each assume statement, we immediately precede the assume statement with an
assert statement to check that the extensional declassification predicate holds
(i.e. allows the declassification encoded in the assume statement to occur).

Doing so allows us to verify expressive declassification policies naturally via
assume statements, free of the risk that we inadvertently verify the model
against the wrong policy.
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1 Introduction

The VerifyThis verification competition is a regular event run as an onsite meet-
ing with workshop character in which three challenges are proposed that partici-
pants have to verify in 90 minutes each using their favourite program verification
tool.

We have experienced that the state of the art of program verification allows
the participants to specify and verify impressively complex algorithms in this
short a time span. If such sophisticated, realistic but not real, problems can be
solved in real-time, what would be achievable if (a) we as the program verification
community collaborated and (b) the time constraints were removed?

The VerifyThis Collaborative Long Term Challenge aims at proving that
deductive program verification can produce relevant results for real systems with
acceptable effort. This challenge is not competitive. It would be nice if one group
could prove the protocol of the system to be correct whereas another group
would show that an implementation follows that protocol, and is hence correct.
Participants have time from mid August 2019 until end of February 2020 to
choose aspects and parts of the challenge system that they try to specify and
verify with the tool of their choice.

Section 2 introduces the target system that we want to verify. Section 3 lists
a number of potential verification challenges and Section 5 contains the natural
language requirements for the operations. Section 4 finally gives you hints on
how to contribute to the challenge.

2 The OpenPGP Key Server

When using public key encryption and signatures in e-mails, one challenge is to
obtain the public key of recipients. To this end, public key servers have been
installed that can be queried for public keys. The most popular3 public key
server OpenPGP was recently shown to have severe security flaws. There was no
protection on who could publish a key for an e-mail address and no protection
3 It is the default server used by the Thunderbird public-key engine Enigmail for
instance



on the amount of data published. This opened the gate for attacks: An attacker
could publish a large number of large keys for the identity of the attacked. This
led to two results: People, who want to send an e-mail to the target, might choose
an untrusted key that does not belong to the target, but someone completely
different.4 They would also not be able to pick the right key entry from the key
server amongst the many fake ones. And more critically, clients (like the gpg)
of the service , have struggle to handle these large spam keys—resulting into
CVE-2019-13050. More background information on denial-of-service attacks is
available in the blog post of the developers. Moreover, the old key server software
sks did not conform to the General Data Protection Regulation (GDPR) and
had performance issues.

As a consequence, the OpenPGP community decided to implement a new
server framework that manages the access to public keys. The new official server
is called hagrid, it is open source 5, and it is already in production. hagrid
is written in the programming language Rust and comprises some 6,000 lines of
code in total6. This implementation is the reference implementation of a verifying
key server.

The server is essentially a database that allows users to store their public key
for their e-mail address, to query for keys for e-mail addresses and to tracelessly
remove e-mail-key pairs from the database. To avoid illegal database entry and
removal actions, confirmations are sent out to the e-mail addresses of issuing
users upon an addition or removal request.

The server possesses a web frontend which accepts requests from users or via
restful API. It additionally possesses a connection to a database from which it
reads key-value pairs and writes to it, and a channel for sending e-mails. At the
core of the server there are four operations that can be triggered from outside
the server via HTTP-API-requests to the web frontend. The operations are:

Request adding a key A user can issue a request for storing a key for a par-
ticular e-mail address. To avoid that anybody can store a key for someone
else’s e-mail address, the key is not directly stored into the database, but
stored intermediately. The user retrieves confirmation code via the given
e-mail to verify the specified address. Only once the confirmation code is
activated, will the address be actually added to the database.

Querying an e-mail address Any user can issue a request for learning the
key(s) stored with a concrete and verified e-mail address. Unlike on the
old public server, queries for patterns are not allowed on the hagrid server.
Public keys that have been (verified) removed or have not yet been confirmed
must not be returned in queries.

Request removing a key The user can request the removal of the associa-
tion between a key and an e-mail address. The process begins with the
confirmation via the e-mail address: The user enters one of their previously

4 There is a security mechanism called the web of trust that should prevent one from
using such untrusted keys.

5 Available at f https://gitlab.com/hagrid-keyserver/hagrid
6 Not including the underlying web framework or gpg library code
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confirmed addresses. The server sends an e-mail to this address containing a
link. Behind this link, there is a website that allows the removal of the key’s
association.

Confirming a request Additions and removals are indirect actions. Instead
of modifying the database directly, they issue (secret and random) confir-
mation code. Confirmation of a code is performed using this operation. If
the provided code is one recently issued then the corresponding operation
(addition/removal) is finalised.

Section 5 contains natural language requirement specifications of these opera-
tions of the server.

3 Challenges

The challenge is to prove that a key server application is correct. This may be
done by analysing the existing Rust reference implementation, by abstracting
from the code, or by re-implementing the requirements of the key server in an
own implementation.

Instead of verifying the reference implementation, any system that imple-
ments requirements from Sect. 5 can be considered for verification. The part of
the key server to be considered the core system is also defined there. An imple-
mentation may make use of underlying (provenly or assumedly correct) libraries
and middleware for the database or e-mail handling or webserver management.

On the other hand, if you are up to a larger challenge, go ahead and extend
the scope of your verification and include (parts of) the webserver frontend
and/or the database backend!

The Collaborative Long Term Challenge proposes a number of concrete ver-
ification missions (sub-challenges so to speak) that allow participants to shape
their verification effort. They are meant as a guideline for addressing the chal-
lenge and as a starting point for dicussions on what should actually be verified
about a system and using which technology. However, there are certainly in-
teresting and critical missions not among the ones mentioned in this document
which could (and should) be formally analysed. Any participant is explicitly
encouraged to add to the long term challenge by contributing with additional
missions – and possible answers for them.

Mission 0 (Identify relevant properties) Identify properties of the key server
that are worth being formally analysed. Formalise the properties in a formalism
of your choice and verify them using the tool of your choice.

Discuss the relevance of the properties (e.g., security, safety, performance,
. . . ).

The first suggested mission of the Collaborative Long Term Challenge is the
least specific task and allows almost many formal code analysis tool to par-
ticipate. Verification tools that run fully automatically (like the participating
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tools in the VSCOMP7 competition series) are particularly invited to contribute
solutions to this challenge and to show that results can be obtained without
further user input. For this foundational verification question, no formal (full)
specification is required.

Mission 1 (Safety) Verify that the implementation of the key server does not
exhibit undesired runtime effects (e.g., no runtime exceptions in Java, no unde-
fined behaviour in C, . . . ).

Traditionally, the challenges in VerifyThis are more heavy weight, with con-
crete application-specific requirements that go beyond safety conditions and as-
sertion checking. They strive to establish properties that require a logical formal-
isation against which the code needs to be verified. Depending on the complexity
of the code and specification (and technique), the verification may then run au-
tomatically, or (in many cases) requires some form of user guidance (on top of
the specification).

Unlike Mission 1, this functional verification requires knowledge about what
the system has to compute. To this end, this document features a natural lan-
guage description of the requirements of the core operations in Sect. 5. They are
to be taken into consideration for the next mission and must be made accessible
in the formalism of the particular formal verification approach you are using.

Mission 2 (Functionality) Formalise the natural language specifications from
Sect. 5 for the core operations.

Prove that the implementation of the operations satisfy your formalisation.

One example functionality property is that if an e-mail address is queried, a key
stored for this e-mail address is returned if there is one in the database.

Typically, functional verification is performed by formulating and proving
contracts according to the design-by-contract paradigm. In other approaches,
systems are specified using protocols or symbolic/abstract machines. This is
particularly the case for model checking approaches where properties of the
protocol can then be analysed on the abstract level.

Mission 3 (Protocol) Encode the required key server behaviour as a formal
state machine (automaton, protocol, state chart, . . . ).

Prove that the implementation adheres to this formal protocol.

Mission 3 is particularly well suited for a collaborative verification effort: One
team of participants may prove properties of the protocol using an approach
designed for that purpose (e.g., model checking), whereas another team verifies
that the implementations of the operations adhere to their abstractions.

The last missions are classically called functional verification – and thus
ressemble to the onsite challenges of the VerifyThis competition. Feel free to
make adaptations to the specifications, make them as strong as possible. You are

7 See https://sv-comp.sosy-lab.org
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invited to add to your contribution a discussion of why this formal specification
captures the informal properties correctly; or why it deviates from it.

There are properties that cannot be formalised as functional properties. One
example of these are privacy properties. The Collaborative Long Term Challenge
shall not be bound to stop at functional properties, but you are invited to go
beyond if your tools support it:

Mission 4 (Privacy) Specify and prove that the key server adheres to privacy
principles. In particular: (a) Only exact query match results are ever returned to
the user issuing a query. (b) Deleted information cannot be retrieved anymore
from the server.

One example of such a property is that if an e-mail address has been deleted
from the system, no information about the e-mail address is kept in the server.

Another field of interesting properties (that also have been addressed in Veri-
fyThis recently) are questions around concurrency. They are centered around the
actual implementation. One interesting property among the ones dealing with
concurrency is

Mission 5 (Thread safety) Specify and verify that the implementation under
consideration is free of data races.

Let us close this section by listing a few more missions that might inspire
you when thinking about the challenges that you will tackle with the system.

Mission 6 (Termination) Prove that any operation of the server terminates.

Mission 7 (Randomness) Prove that any created confirmation code is

(a) randomly chosen (i.e. that every string from the range is equally likely),
(b) cannot easily be predicted,
(c) is never leaked, but as the return value of the issuing operation.

4 Contributing

This section gives you a number of hints on how you can contribute to the
collaborative long-term verification challenge.

The time line This long term challenge is be open from mid August 2019 until
end of February 2020. Results will be presented at the VerifyThis workshop at
ETAPS 2020 in Dublin, Ireland. A call for papers for a special issue of a relevant
journal is planned for that time.

Of course, your contribution to the challenge after this initial period is equally
welcome and will also be published on the online resources.
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Fig. 1. Schematic of the key server architecture

The webpage The main entry point to the challenge and the main source of
up-to-date information is the homepage of the long-term verification challenge:

https://verifythis.github.io

It is a collection of github-hosted pages that we will update frequently during
the course of the challenge. All relevant resources will be linked on the page.

Moreover, this webpage will feature a collection of contribution sheets in
which participants have indicated the properties that they consider for verifi-
cation, the implementation they work on, the state of success, and more. This
collection will be the point where participants can look for potential collabora-
tion partners.

The mailing list We have set up a mailing list for the long-term challenge.
Consider subscribing to the (moderated) mailing list at

https://www.lists.kit.edu/sympa/info/verifythis-ltc
verifythis-ltc@lists.kit.edu

if you want to be kept updated about the challenge and want to share questions
and information with your colleagues.

5 Requirements

This section is likely to change over time as more experience with the implemen-
tation will have been gathered.
This is version 1 as of June 12, 2020.

The key server can be separated into three components: the webserver (frontend),
the key manager (backend), and the key database; see Fig. 1 for a schematic of
the architecture. The frontend is a HTTP-based webservice (REST interface)
that receives incoming requests and sends the responses. Technical details on
the actual OpenPGP API and protocol can be found on the server’s webpage8.
8 https://keys.openpgp.org/about/api, accessed 2019-08-19
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This challenge focuses on the key manager component of the server. This
is a program that must provide implementations for the operations outlined in
Sect. 2. For the sake of better accessibility of the program w.r.t. today’s verifica-
tion technology, the design of the operations of the key manager deviate a little
from the actual implementation in the reference implementation, and delegate
more work than typical to the web frontend. We mention some of the differences
below, find more information on the server webpage (mentioned above). If the
server in its simplified representation does not pose a (sufficiently difficult) chal-
lenge for you, you are invited to extend the example towards the real system,
for instance by

(a) making it more performant by using sophisticated search-friendly data struc-
tures, or by

(b) implementing the actual API more closely, or by
(c) adding PGP key validation and address-extraction from keys, or by
(d) including (parts of) the web frontend or database backend into your endeav-

ours.

The ultimate vision is to have a performant key server which is verified from
web frontend all the way to the database.

The requirements are presented in form of tables that indicate the relevant
facts. The basic types email, key, conf-code are used to represent entities of
the respective class of data (e-mail addresses, OpenPGP keys and confirmation
codes, respectively).

5.1 General requirements

Like in reality, many requirements are implicit and go without mentioning here
in this section. Examples are that the backend must not crash or that any request
must terminate within in reasonable time.

When you choose to verify your own implementation, assumptions can be
made about the way in which the key manager is invoked. If your language is
object-oriented, for instance, it seems reasonable to assume that the key manager
is a single object created at server startup that holds a reference to the key
database and that handles all incoming requests. The operations would then be
methods of the key manager class.

While this challenge primarly focuses on the key manager application, the
webserver and the databse may as well be addressed in your verification.

More explicit general requirements may be added in later versions after dis-
cussions in the community.
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5.2 Requirements for retrieving a key

Name get

Parameters e : email

Result k : key ∪ {⊥}
Precondition none

Postcondition If k 6= ⊥, then the returned key k is associated with the given
email address e in the database.
k = ⊥ iff there exists no entry for the given address e.

Effects No changes on the database or pending (add or delete) confirma-
tions.

Please note that this operation is deliberately kept indeterministic. If an e-
mail address is associated to more than one key, then the operation may return
any key k associated to e.

5.3 Requirements for adding a key

Name add

Parameters e : email, k : key

Result c : conf-code

Precondition e and k are well-formed entities. e is an e-mail address to which
the public key k applies. The tuple (e, k) may or may not already
be present in the database or a confirmation for (e, k) may be
pending.

Postcondition The confirmation code c is unique9 in the system. If (e, k) is
present in the database, ... If a request is pending for (e, k), ...

Effects The database remains unchanged. All pending confirmations are
preserved. The only effect of the operation is that a confirmation
request (c, k, e) may be added.

The actual protocol of the server is more complex. The addition function
works as follows. Feel free to specify and verify the following code

void verifyingAdd(k: KEY) {
emails = extractEmailAddressesFromKey(k);
for( e : emails ) {

token = add(e, k);
if (token is valid)

9 A confirmation code is unique iff it was previously not used in a pending add- or
del-request.
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sendConfirmationEmail(e, token);
}

}

The randomness of the confirmation code has not been mentioned here, but
is an additional optional requirements.

5.4 Requirements for confirming a key

Name add!

Parameters c : conf-code

Result b : bool

Precondition none

Postcondition If the confirmation code c is valid and associated with a email-
key pair (e, k), then (e, k) are confirmed and will be retrieved in
future calls of get(k) until deletion.
The confirmation code c becomes invalid after the first use.
Return value b signals the success of this operation.

Effects The existing entries in the database remain unchanged. All pend-
ing confirmations except associated one with c are preserved.
Only (e, k) are added to the database if the confirmation code
was valid.

5.5 Requirements for deleting a key

Name del

Parameters e : email, k : key

Result d : conf-code ∪ {⊥}
Precondition none

Postcondition If e, k is a correct email and key and this pair is known in the
database, then d is a valid unique confirmation code—otherwise,
d = ⊥.

Effects The existing entries in the database remain unchanged. All pend-
ing add- and del-confirmations are preserved.
Additionally, a new del-confirmation (c, e, k) is registered.
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5.6 Requirements for confirming a key deletion

Name del!

Parameters c : conf-code

Result b : bool

Precondition none

Postcondition If the confirmation code c is valid and is associated with an email-
key pair (e, k), then (e, k) are removed from the key database.
The confirmation code c becomes invalid after the first use.
Return value b signals the success of this operation.

Effects The existing entries in the database remain unchanged, except
the associated (e, k) is removed. All pending add- and del-
confirmations, except the associated one with c, are preserved.
The del-confirmation of c is revoked.
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