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Abstract
For fast Fourier transform (FFT)-based computational micromechanics, solvers need to be fast, memory-efficient, and inde-
pendent of tedious parameter calibration. In this work, we investigate the benefits of nonlinear conjugate gradient (CG)
methods in the context of FFT-based computational micromechanics. Traditionally, nonlinear CG methods require dedicated
line-search procedures to be efficient, rendering them not competitive in the FFT-based context. We contribute to nonlinear
CG methods devoid of line searches by exploiting similarities between nonlinear CG methods and accelerated gradient meth-
ods. More precisely, by letting the step-size go to zero, we exhibit the Fletcher–Reeves nonlinear CG as a dynamical system
with state-dependent nonlinear damping. We show how to implement nonlinear CG methods for FFT-based computational
micromechanics, and demonstrate by numerical experiments that the Fletcher–Reeves nonlinear CG represents a competitive,
memory-efficient and parameter-choice free solution method for linear and nonlinear homogenization problems, which, in
addition, decreases the residual monotonically.

Keywords Homogenization · Micromechanics · FFT-based method · Nonlinear conjugate gradient scheme

1 Introduction

FFT-based solvers, as pioneered by Moulinec–Suquet [1,2],
enjoy great popularity for solving homogenization problems
on complex microstructures. Their success rests essentially
on three pillars. First, they profit from modern imaging tech-
niques like micro-computed tomography which naturally
produce volumetric data on a regular grid. Secondly, the cur-
rent implementations of the fast Fourier transform [3] are
extremely powerful, providing programmers of FFT-based
methods a cutting edge. Last but not least, FFT-based meth-
ods naturally support matrix-free solvers also for strongly
nonlinear mechanical problems, which can be decisive if
memory occupancy is an issue. A recent overview of appli-
cations in micromechanics is given in Matouš et al. [4],
including the use in FE-FFT schemes [5] and as precom-
putations for model-order reduction methods [6–8] and deep
learning techniques [9,10].
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Progress in FFT-based methods focussed on three prin-
cipal directions. Firstly, the areas of applicability were
extended, for instance to finite strain problems [11], crys-
tal viscoplasticity [12] and damage [13]. Recently, also
applications to interface decohesion [14], upscaling of
micromechanics-based fatigue [15] and the homogenization
of brittle fracture [16] were established.

Secondly, the disadvantages of the original discretization
method of Moulinec-Suquet were focus of investigations.
Fourier–Galerkin methods [17] and finite element [18–20],
finite difference [21,22] as well as finite volume discretiza-
tions [23] were investigated, some of them playing a crucial
role when treating media with imperfections such as cracks
and pores. Also, recently, a discretization in terms of B-
splines was introduced [24].

Last but not least, the basic (solution) scheme was
superseded by more powerful numerical solution meth-
ods. Eyre–Milton [25] introduced a so-called polarization
scheme, which was subsequently generalized by Michel–
Moulinec-Suquet [26]. Monchiet–Bonnet [27] introduced a
one-parameter family of polarization schemes and exhibited
both the Eyre–Milton scheme and the augmented Lagrangian
method of Michel–Moulinec–Suquet as particular instances,
see also Moulinec–Silva [28]. Furthermore, they introduced
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a hybridmethodwhich is essentially the average of the Eyre–
Milton and the augmented Lagrangian operators. Schneider–
Wicht–Böhlke [29] interpreted polarization schemes from
the viewpoint of global optimization and identified them
as Douglas–Rachford schemes [30], providing convergence
guarantees and optimal parameter selection for strongly con-
vex problems.

Zeman et al. [31] and Brisard–Dormieux [18] intro-
duced Krylov subspace solvers for linear homogenization
problems. Zeman et al. [31] proposed using the (linear) con-
jugate gradient method with great success. As the conjugate
gradient method was applied to a non-symmetric opera-
tor, its successful application came as a surprise at that
time (and triggered further research, see below). Brisard–
Dormieux used a reformulation of the corrector equation in
terms of the Hashin–Shtrikman variational principle, guar-
anteeing a symmetric, but possibly indefinite formulation.
They proposed using the conjugate gradient method or
MINRES and SYMMLQ, respectively, see Paige–Saunders
[32].

As an alternative to the basic scheme and polarization-
type methods, Newton solvers were proposed by Lahellec
et al. [11]. Initially, the basic scheme was used as the lin-
ear solver. Only much later, Gélébart–Mondon–Cancel [33]
andKabel-Böhlke–Schneider [34] proposedNewton–Krylov
solvers, ie, to use Krylov subspace solvers for computing
the Newton increment. For a thorough study on line-search
methods suitable in the FFT context and strategies for choos-
ing the forcing term, we refer to Wicht–Schneider–Böhlke
[35].

Kabel–Böhlke–Schneider [34] observed that the basic
schememay be interpreted as a gradient descent scheme, and
connected the reference material to (the inverse of) a step-
size. By this observation, numerical solution methods from
large-scale optimization could enter into FFT-based compu-
tational homogenization. The benefits of using fast gradient
methods in the FFT-based context were first exploited in
Schneider [36], see also Ernesti–Schneider–Böhlke [37]
for an application of fast gradient methods to phase-field
fracture. Using Quasi-Newton methods was pioneered by
Shantraj et al [38], and further extended in Wicht–Böhlke–
Schneider [35].

All of these solvers have their distinctive advantages.
The basic scheme is most memory-efficient and extremely
robust, but may become slow for highly contrasted prob-
lems. The polarization schemes fail to converge quickly for
problems involving pores (see Schneider [39] for a coun-
terexample) and rely upon a complexity-reduction trick to be
efficient, see Schneider–Wicht–Böhlke [29]. Newton meth-
ods are fast and robust, but suffer from heavy memory
demands. They are particularly useful if evaluating the non-
linear material law is very expensive compared to applying
the tangent. The fast gradient methods combine fast conver-

gence with a low memory footprint. However, they suffer
from a delicate parameter selection. More precisely, they
require the strong convexity constant to be known to be
efficient. However, determining the strong convexity con-
stant for problems involving pores is extremely difficult, in
general. Restarting techniques do not solve these problems.
Indeed, for problems where the strong convexity constant
is known, restarting schemes require about twice the itera-
tion count as if the method was used with optimal parameter
choice.

Thus, research was devoted to finding solution tech-
niques that share the positive characteristics of thementioned
solution schemes without combining their disadvantages.
Schneider [39] proposed the Barzilai–Borwein method as
a general-purpose method for computational micromechan-
ics. It may be interpreted as the basic scheme with adaptive
time-stepping (or, equivalently, adaptive reference material).
Thus, it has low memory-footprint, but is competitive in
terms of convergence speed when compared to the solvers
mentioned above. However, the Barzilai–Borwein method
is an intrinsically non-monotone method, ie, the residual is
not monotonically decreasing from one iteration to the next.
This behavior is unfamiliar, and may limit the applicability
for industrial applications. It may happen that after the lunch
break the residual is two orders of magnitude higher than
before the lunch break.

Thus, it is desirable to seek alternatives to the Barzilai–
Borwein scheme with guaranteed monotonicity properties.

Contributions

Nonlinear conjugate gradient methods were introduced by
Fletcher–Reeves [40] as a generalization of the linear con-
jugate gradient scheme [41]. Nonlinear conjugate gradient
methods were among the first general-purpose solution
schemes for unconstrained optimization problems, and have
been studied thoroughly, see Nocedal–Wright [42] for a
comprehensive textbook treatment. They are based upon an
iteratively updated search direction, involving a coefficient
(the “β”) to be chosen wisely and a step-size which is typ-
ically determined by line search. For the β-coefficient, a
number of different variants were proposed, themost popular
due to Fletcher–Reeves [40], Polak–Ribière–Polyak [43,44],
Hestenes–Stiefel [41] and Dai–Yuan [45].

On a formal level, nonlinear conjugate gradient methods
and the heavy-ball scheme [46], a very powerful fast gradi-
ent scheme, are identical, see Polyak’s book [47]. However,
the parameters are chosen in a different way. Indeed, for
the heavy-ball method, the step-size and the β-coefficient
are typically chosen as constants depending on the proper-
ties of the function (the Lipschitz constant of the gradient of
the objective, and the strong monotonicity constant, if avail-
able [44,48,49]). In contrast, nonlinear conjugate gradient
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methods choose the β-coefficient depending on the current
and the last iterate, in general, and determine the step-size
by a line-search procedure. We refer to Sect. 2 for more
details.

A naive application of nonlinear conjugate gradient meth-
ods in the FFT-based context does not lead to competitive
schemes, essentially due to the intrinsic line-search. (Another
difficulty arising in computationalmicromechanics is the fact
that the condensed incremental energy is typically not com-
puted - only gradient information, ie, the stress, is evaluated.)
In the nonlinear conjugate gradient community, this problem
is well-known. Indeed, Quasi-Newton methods of the Broy-
den class, see chapter 8 in Nocedal–Wright [42], may also
be interpreted as generalizations of linear CG. However, they
typically outperform nonlinear conjugate gradient methods
because they asymptotically accept the proposed step-size—
in contrast, the most efficient conjugate gradient methods are
reported to require about two line-search steps per iteration to
be efficient. Sun–Zhang [50] pioneered using conjugate gra-
dient methods without line search and proved convergence
undermild conditions. However, these step-sizes are too con-
servative for the resulting methods to be efficient. Indeed,
under suitable conditions, they ensure a monotonic decrease
of the objective value, which is known to be inefficient for
fast gradient methods.

In this work, we connect nonlinear conjugate gradient
methods to fast gradient methods by letting the step-size go
to zero, trying to understand the resulting dynamical system.
Indeed, the Fletcher–Reeves CG permits such a limiting pro-
cedure, giving rise to Newtonian dynamics with nonlinear
damping. More precisely, the damping is determined by the
speed of decrease of the residual (the norm of the gradient).
In theory, this damping could become negative, inducing
an instability of the dynamical system. In the numerical
experiments, however, this situation did not arise frequently,
whence we discarded including proper safeguarding strate-
gies into the manuscript.

We propose to combine the Fletcher-Reeves nonlinear CG
with the step-size of the basic scheme, and detail its imple-
mentation in the FFT-based context, see Sect. 3. The method
may be implemented on three strain-like fields, which is
only one more than the Barzilai–Borwein method. However,
the resulting solver leads to a monotonic, and thus reliable,
decrease of the residual.Wedemonstrate the usefulness of the
proposed method as a general-purpose solver for FFT-based
computational micromechanics in Sect. 4, comparing the
method to a multitude of state-of-the-art numerical solvers
for problems of industrial scale.

2 The dynamics of nonlinear conjugate
gradients

2.1 From linear to nonlinear conjugate gradient
methods

Let V be a Hilbert space with inner product 〈·, ·〉, and let
A ∈ L(V ) be a bounded linear operator, which we assume
self-adjoint and uniformly positive, ie, 〈Au, v〉 = 〈Av, u〉
holds for all u, v ∈ V and there is μ > 0, s.t. 〈Au, u〉 ≥
μ‖u‖2 holds for all u ∈ V , where ‖u‖ = √〈u, u〉 denotes
the induced norm. For prescribed b ∈ V , we are concerned
with minimizing the quadratic objective

V � x 	→ f (x) = 1

2
〈x, Ax〉 − 〈b, x〉, (2.1)

whose uniqueminimizer x∗ solves the linear equation Ax∗ =
b, ie, x∗ = A−1b.

An ordered set of vectors (d0, d1, d2, . . .) is called A-
conjugate (or simply conjugate if A is fixed), if di �= 0 for all i
and 〈di , Ad j 〉 = 0 for all i �= j . Put differently, A-conjugacy
is equivalent to orthogonality w.r.t. the A-weighted inner
product (u, v) 	→ 〈u, Av〉 on V .

For a collection (d0, d1, d2, . . .) of A-conjugate vectors
and an initial point x0 ∈ V , the conjugate direction method
(Sect. 5.1 in Nocedal–Wight [42]) iteratively updates

xk+1 = xk + αkdk, k = 0, 1, 2, . . . , (2.2)

where the step size αk is chosen by exact line search

α = argminα∈R f (xk + αdk), (2.3)

which can be computed explicitly for the quadratic objective
(2.1) as

αk = − 〈gk, dk〉
〈dk, Adk〉 , where gk = ∇ f (xk) ≡ Axk − b.

(2.4)

If V has finite dimension n, any n conjugate directions form a
basis of V , and the conjugate direction method converges to
x∗ after at most n iterations. More generally, if the collection
{d0, d1, d2, . . .} forms a complete basis of the Hilbert space
V , the conjugate direction method converges.

The conjugate gradientmethod ofHestenes–Stiefel [41] is
a conjugate direction method where the conjugate directions
are generated by applying the Gram–Schmidt procedure to
the negative gradients

dk = −gk +
k−1∑

i=0

〈gk, Adk〉
〈dk, Adk〉di , gk = ∇ f (xk) ≡ Axk − b.
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The latter formula may be simplified, taking into account the
update (2.2) and the conjugacy to arrive at

dk = −gk + βk−1dk−1, βk−1 = ‖gk‖2
‖gk−1‖2 , k = 1, 2, . . . .

(2.5)

We formulate this version of the linear conjugate gradient
algorithm for later reference

gk = Axk − b

βk−1 =
{

0, k = 0,
‖gk‖2

‖gk−1‖2 k > 0.

dk = −gk + βk−1dk−1

αk = − 〈gk, dk〉
〈dk, Adk〉

xk+1 = xk + αkdk

(2.6)

and formally defining d−1 = 0. Fletcher–Reeves [40]
extended this algorithm to general unconstrained nonlinear
optimization problems

f (x) → min
x∈V (2.7)

in the form

dk = −∇ f (xk) + βk−1dk−1,

xk+1 = xk + αkdk,
(2.8)

where αk is determined by a line search procedure (2.3), and

βFR
k = ‖∇ f (xk+1)‖2

‖∇ f (xk)‖2 , (2.9)

where the superscript FR stands for Fletcher–Reeves. Sub-
sequently, to account for inaccurate line-search procedures,
a variety of other formulae for βk were introduced, the most
popular are the following.

1. The formula introduced, independently, byPolak–Ribière
[43] and Polyak [44],

βPRP
k = 〈gk+1, gk+1 − gk〉

‖gk‖2 , gi = ∇ f (xi ). (2.10)

Due to a counter-example exhibiting divergence even for
exact line search [51], Gilbert–Nocedal [52] introduced
a modification

βPRP+
k = max

{
βPRP
k , 0

}
. (2.11)

2. The formula

βHS
k = 〈gk+1, gk+1 − gk〉

〈dk, gk+1 − gk〉 (2.12)

which is the form of βk in the original work of Hestenes–
Stiefel [41]. This variant ensures that the vectors dk and
dk−1 are Ak-conjugate for the averaged Hessian

Ak =
∫ 1

0
∇2 f (xk + sαkdk) ds

between successive iterates.
3. Dai–Yuan [45] introduced the formula

βDY
k = ‖gk+1‖2

〈dk, gk+1 − gk〉 , (2.13)

which ensures that dk is always a descent direction, ie,
〈dk, gk〉 < 0 holds, provided f is convex and any αk [53]
or for general f if αk satisfies the Wolfe conditions [45].

The different formulae forβk coincide for quadratic objective
(2.1) and exact line search (2.4). For line search, typically
either the strong Wolfe conditions

f (xk) − f (xk + αkdk) ≥ −δαk〈gk, dk〉,
|〈∇ f (xk + αkdk), dk〉| ≤ −σ 〈gk, dk〉, (2.14)

or the Wolfe conditions

f (xk) − f (xk + αkdk) ≥ −δαk〈gk, dk〉,
〈∇ f (xk + αkdk), dk〉 ≥ σ 〈gk, dk〉, (2.15)

involving parameters 0 < δ < σ < 1, are enforced. (See
Sect. 3.1 in Nocedal–Wright [42] for details.) For general
optimization problems and proper line-search conditions,
convergence theorems may be established, see Dai–Yuan
[45] and Hager–Zhang [54] for an overview. However, the
results are typically of the form

lim
k→∞ ‖gk‖ = 0 or lim inf

k→∞ ‖gk‖ = 0,

ie, no explicit convergence rate may be deduced, in general.
The biggest limitation of the nonlinear conjugate gradient

methods is the line search involved in the update (2.8). This
becomes apparent even for the quadratic case (2.6). In the pre-
sented form, two applications of A (ie, gradient evaluations
of f ) are required for the linear case. Of course, introduc-
ing zk = Adk and noticing gk+1 = gk + αk zk , the standard
implementation of linear CG (Sect. 5.1 in Nocedal–Wright
[42]) may be obtained, which only requires one application
of A per iteration. However, if we apply the nonlinear CG
method to a quadratic function using the exact line search
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again requires two applications of A per iteration. Thus, if
we assume that the effort of applying A dominates the com-
putational expense per iteration, the nonlinear CG is about
a factor of two slower than linear CG applied to quadratic
problems (2.1).

For general nonlinear optimization problems, state-of-
the-art implementations of the nonlinear conjugate gradient
methods require two gradient evaluations per line search (see
the introduction ofDai–Kou [55]). In contrast, (limitedmem-
ory) Quasi-Newton methods [56–60] asymptotically accept
the suggested step size. Thus, they often outperform conju-
gate gradient methods in practice.

For these reasons, research effort has been invested in
nonlinear conjugate gradient methods avoiding line search
at all. Sun–Zhang [50] have shown that coming close to the
upper bound in the Armijo condition [the first inequality in
the Wolfe conditions (2.15)] leads to convergence for the
different variants of βk . Also, combinations of nonlinear CG
and the Barzilai–Borwein method have been explored [55,
61].

In general, the Armijo condition ensures a monotonic
decrease of the function value (provided dk is a descent direc-
tion). We will see that this is not optimal.

2.2 The heavy-ball method versus nonlinear
conjugate gradients

For minimizing general (differentiable) objective functions
(2.7), the heavy-ball method [46] uses the iterative scheme

xk+1 = xk − αk∇ f (xk) + γk(xk − xk−1), (2.16)

involving step-sizes αk and momentum coefficients γk . The
heavy-ball scheme (2.16) may be motivated, see Helmke–
Moore [62], as a time-discretized version of the linearly
damped Newtonian dynamics1

ẍ + b ẋ = −∇ f (x) (2.17)

for a curve x : [0,∞) → V and damping parameter b ≥ 0.
A backward Euler discretization of the dynamics (2.17) with
time-step size h > 0 reads

xk+1 − 2xk + xk−1

h2
+ b

xk − xk−1

h
= −∇ f (xk),

which may be rearranged into the scheme

xk+1 = xk − h2∇ f (xk) + (1 − bh)(xk − xk−1), (2.18)

which has the form (2.16) with αk ≡ h2 and βk ≡ 1 − bh.

1 Formally, the “mass” in front of the acceleration is set to unity.

Initially, Polyak investigated the local convergence of the
scheme (2.16) (for strongly convex objective functions) by
Lyapunov’s first method. However, the determined optimal
parameters failed to be stable for general strongly con-
vex objectives with Lipschitz gradient, see Lessard–Recht–
Packard [49] and Ghadimi–Feyzmahdavian–Johansson [48]
for counterexamples.

A global convergence analysis was carried out based on
Lyapunov’s secondmethod, ie, in terms of suitable Lyapunov
functions, see the pioneering work Zavriev–Kostyuk [63].
More precisely, in the continuous setting, the total energy of
the dynamical system (2.17)

V (x, p) = f (x) + 1

2
‖p‖2 with p = ẋ (2.19)

may be used as a Lyapunov function, ie,

d

dt
[V (x, ẋ)] = −b‖ẋ‖2

holds. Put differently, if b ≥ 0, the dynamics is stable. For
b > 0, the functionV decreases strictly along the trajectories.
Time-discretized variants of the Lyapunov function (2.19)
were used [48,63,64] to establish global convergence of the
heavy-ball method for particular choices of αk and γk , and
different classes of objective functions f .

Siegel [65] used Lyapunov-function arguments to show
that, for μ-strongly convex functions f , choosing b = 2

√
μ

leads to the estimate

f (x(t)) − f (x∗) ≤ 2e−√
μt ( f (x0) − f (x∗)), (2.20)

where x∗ denotes the minimizer of f .
It has been long known that nonlinear conjugate gradi-

ent methods (2.8) and heavy-ball schemes (2.16) coincide as
numerical schemes. Indeed, for the conjugate gradient update
(2.8)

dk = −∇ f (xk) + βk−1dk−1, xk+1 = xk + αkdk,

combining these two equations yields

xk+1 = xk − αk∇ f (xk) + αkβk−1

αk−1
(xk − xk−1),

ie, it is of heavy-ball form (2.16) with γk = αkβk−1
αk−1

.
Although they formally coincide, the way the numerical

parameters are chosen is different. Also, both the respec-
tive interpretations and the convergence theories differ. For
the heavy-ball method, the parameters αk and γk are chosen
independently of k, but depending on the strong convexity
constant of the objective function and the Lipschitz constant
of its gradient. More precisely, the Lipschitz constant L and
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the strong monotonicity constant μ of the gradient of f are
required. Then, the convergence of the heavy-ball method
is deduced by Lyapunov’s first or second method, deducing
local [46,49] or global [48,64] convergence, respectively. The
convergence results are typically very strong, involving a q-
linear convergence towards the minimum. Getting hands on
the strongmonotonicity constantμ is difficult, in general, and
for homogenization problems of Sect. 3, in particular. This
constitutes the biggest limitation of the heavy-ball method.

In contrast, for nonlinear conjugate gradient methods, the
parameters αk and βk are chosen adaptively. The different
formulae for βk measure the local geometry of the function,
and the step-size αk is chosen by a line-search procedure.
Notice that the bounds entering the Wolfe conditions (2.15)
and (2.14) also depend on local information about the func-
tion f . Convergence of the conjugate gradient method can be
typically established for a large class of objective functions
(see, for instance, Dai [66]), not necessarily restricted to con-
vex objective functions.However, the convergence results are
typically rather weak, for instance ‖∇ f (xkn )‖ → 0 along a
subsequence. As already mentioned in the previous section,
the biggest limitation of nonlinear conjugate gradient meth-
ods is their reliance upon line-search procedures.

2.3 A dynamical perspective on conjugate gradient
methods

We have seen that heavy-ball methods work well for fixed
step-size, but themomentum parameter needs tweaking. Fix-
ing the step-size αk ≡ α in the nonlinear conjugate gradient
update (2.8) leads to γk = βk in the heavy-ball scheme (2.16)
and, thus, to the method

xk+1 = xk − α∇ f (xk) + βk(xk − xk−1).

Reversing the arguments leading to Eq. (2.18) yields, for
α = h2

xk+1 − 2xk + xk−1

h2
+ 1 − βk

h

xk − xk−1

h
= −∇ f (xk).

Thus, provided the limit 1−βk
h as h → 0 exists, we get the

corresponding dynamical system

ẍ + b(x, ẋ) ẋ = −∇ f (x) (2.21)

which is formally similar to Eq. (2.17), but with a state-
dependent damping. However, not all formulae for βk of
Sect. 2.1 give rise to a dynamical system. (For instance, the
Polak–Ribière–Polyak formula does not satisfy βPRP

k → 1

as h → 0.) For the Fletcher–Reeves CG, βFR
k = ‖∇ f (xk+1)‖2

‖∇ f (xk )‖2 ,
we get

1 − βFR
k

h
= −1

h

‖∇ f (xk+1) − ‖∇ f (xk)‖2
‖∇ f (xk)

−→

−
d
dt [‖∇ f (x)‖2]

‖∇ f (x)‖2 as h → 0,

ie, the “damping” term in Eq. (2.21) becomes

b(x, ẋ) = −2
〈∇ f (x),∇2 f (x)ẋ〉

‖∇ f (x)‖2 . (2.22)

Thus, we arrive at the dynamical system

ẍ − 2
〈∇ f (x),∇2 f (x)ẋ〉

‖∇ f (x)‖2 ẋ = −∇ f (x) (2.23)

with initial conditions x(0) = x0 and ẋ(0) = −∇ f (x0).
Several remarks are in order.

1. The Fletcher–Reeves dynamical system is similar to the
dynamical system associated to Nesterov’s fast gradient
method [67,68], as developed by Su–Boyd–Candes [69],

ẍ + 3

t
ẋ = −∇ f (x), t ≥ 0, (2.24)

where 3
t serves as a time-dependent damping. For con-

vex f , a 1/t2-convergence rate of the objective along a
trajectory of the ODE (2.24) may be established using
Lyapunov-type arguments.
To highlight the similarity with the Fletcher–Reeves–
ODE (2.23), we rewrite the latter in the form

ẍ + d

dt

[
− ln ‖∇ f (x)‖2

]
ẋ = −∇ f (x), (2.25)

whereas we may cast (2.24) in the form

ẍ + d

dt

[
− ln

1

t3

]
ẋ = −∇ f (x), t > 0. (2.26)

Thus, for both Eqs. (2.25) and (2.26), a logarithmic bar-
rier function, see Sect. 4.2 in Nesterov [70], determines
the damping coefficient, leading to a damping when
approaching the critical set and t = +∞, respectively.
Also, for both ODEs (2.25) and (2.26), the trajectories
are invariant w.r.t. a homogeneous rescaling of time.

2. The stability analysis of the dynamical system (2.18)
using the Lyapunov function V from Eq. (2.19) may be
repeated without change, leading to

d

dt
[V (x, ẋ)] = −b(x, ẋ)‖ẋ‖2. (2.27)

We see that the dynamical system is stable provided b is
non-negative. In turn, b from Eq. (2.22) is non-negative
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if and only if

2〈∇ f (x),∇2 f (x)ẋ〉 ≡ d

dt

[
‖∇ f (x)‖2

]
≤ 0

holds. Put differently, as long as the residual ‖∇ f (x)‖2
is non-increasing, the Fletcher–Reeves dynamical sys-
tem (2.23) is stable. Clearly, due to the initial condition
(x(0), ẋ(0)) = (x0,−∇ f (x0)) with ∇ f (x0) �= 0, the
residual is decreasing for convex functions f and small
times t > 0. Indeed,

b(x0,−∇ f (x0)) = 2
〈∇ f (x0),∇2 f (x0)∇ f (x0)〉

‖∇ f (x0)‖2

holds. Thus, b(x0,−∇ f (x0)) is non-negative if∇2 f (x0)
is positive semi-definite (which is true if f is convex).
In our numerical experiments, b remained positive
(except for very few iterates). However, we did not
find a mathematical proof for this fact. Various safe-
guarding strategies (preventing b from becoming neg-
ative) never led to an improvement of the convergence
behavior, whence we discarded discussing them from the
manuscript.

3. In view of Siegel’s convergence result (2.20), fast conver-
gence is to be expected if b ≈ 2

√
μ. bmay be considered

as a feedback controller for the dynamical system (2.21).
Its analysis goes beyond this manuscript.

4. For some other nonlinear conjugate gradient methods,
corresponding dynamical systems may be derived as
well. For instance, the Dai–Yuan method [45] leads to
the dynamical system

ẍ + d

dt
[− ln−〈∇ f (x), ẋ〉] ẋ = −∇ f (x).

However, the latter ODE is degenerate, and we did not
investigate it further.

5. The linear conjugate gradient method was interpreted as
a dynamical system with feedback control in Bhaya-
Kaszkurewicz [71]. Their treatment is different from
ours, as they consider discrete dynamical systems and
discrete controls, and does not directly generalize to non-
linear CG.

3 Application tomicromechanical problems
and implementation in the FFT framework

In a small-strain setting, suppose a heterogeneous, possibly
nonlinear elastic energy w : Y × Sym(d) → R is given,
where Y ⊆ Rd denotes a rectangular cell in d dimensions
and Sym(d) stands for the linear space of symmetric d × d-
matrices. Typically,w is differentiable in the second variable,

and has jumps in the first, the spatial, variable. The latter
framework also encompasses inelastic problems, as w may
stand for the condensed incremental potential corresponding
to a fixed time step, see Ortiz–Stainier [72] and Miehe [73].

For prescribed macroscopic E ∈ Sym(d), we seek a peri-
odic displacement field u : Y → Rd solving the balance of
linear momentum on the microscale

div σ(E + ∇su) = 0, (3.1)

where ∇s denotes the symmetrized gradient, div stands for
the divergence, and σ is the stress operator derived from the
potential w,

σ(ε) = ∂w

∂ε
(·, ε) for ε : Y → Sym(d).

After solving Eq. (3.1) for u, the effective stress is computed
by volume averaging

	 = 〈σ(E + ∇su)〉Y ≡ 1

|Y |
∫

Y
σ(E + ∇su) dx .

To apply nonlinear conjugate gradient methods, we recast
the balance of linear momentum (3.1) as an optimization
problem (2.7). We set V = H1

# (Y ;Rd), the first order L2-
Sobolev space of periodic vector fields with vanishing mean,
and

f (u) = 〈w(E + ∇su)〉Y , u ∈ H1
# (Y ;Rd), (3.2)

which is well-defined under technical conditions, see Schnei-
der [74].We notice that the first order optimality condition of
the functional (3.2) is precisely the balance of linear momen-
tum (3.1).

For the Hilbert space V = H1
# (Y ;Rd), we fix the inner

product

(u, v) 	→ 〈u, v〉 = 1

|Y |
∫

Y
∇su : ∇sv dx ≡ 〈∇su : ∇sv〉Y ,

(3.3)

where : denotes the double contraction of tensor indices.
Recall that, for a continuously differentiable function f on
a Hilbert space, the differential Df (u), for u ∈ V , is an ele-
ment of the (continuous) dual Hilbert space, ie, Df (u) ∈ V ′.
The gradient of f at u is defined implicitly via

〈∇ f (u), v〉 = Df (u)[v] for all v ∈ V .

Thus, ∇ f (u) ∈ V , but is dependent on the chosen inner
product on V . (In contrast, for two equivalent inner products
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on a fixed Hilbert space, the corresponding differentials are
identical.) More explicitly, the gradient may be written as

∇ f (u) = RDf (u),

where R : V ′ → V denotes the Riesz isomorphism, the
inverse of the mapping V → V ′, u 	→ 〈u, ·〉.

In the homogenization context (3.2), we have

〈Df (u), v〉 = 〈σ(E + ∇su) : ∇sv〉Y ,

which we may write more succinctly in the form

Df (u) = −div σ(E + ∇su)

in terms of the “natural” pairing

V ′ × V → R, (g, u) 	→ 1

|Y |
∫

Y
g · u dx .

The Riesz map for the inner product (3.3), in turn, becomes
R = −G in terms of the Green’s function G = (div ∇s)−1,
which is well-defined on H1

# (Y ;Rd) (due to the mean-value
constraint).

With these identifications, for given initial vector u0 and
d−1 = 0, the nonlinear conjugate gradient update (2.8)
becomes

dk = −Gdiv σ(E + ∇suk) + βk−1dk−1,

uk+1 = uk + αkdk .

For FFT-basedmethods, it is convenient to introduce the total
strain εk = E + ∇suk and Dk = ∇sdk , and to rewrite the
latter update in the form

Dk = −
 : σ(εk) + βk−1Dk−1,

εk+1 = εk + αk Dk,
(3.4)

using the operator 
 = ∇sGdiv , an orthogonal projector on
L2(Y ;Sym(d)) (see Milton [75]). Upon choosing βk ≡ 0 in
Eq. (3.4), we recover the basic scheme of Moulinec-Suquet

εk+1 = εk − αk
 : σ(εk)

with variable step-size, confirming the observations in
Schneider [74]. Specializing to the Fletcher–Reeves CG
(2.9), we may write

Gk = 
 : σ(εk)

βk−1 = ‖Gk‖2
‖Gk−1‖2

Dk = −Gk + βk−1Dk−1,

εk+1 = εk + αk Dk .

(3.5)

Discretizing the balance of linear momentum (3.1), see
Moulinec–Suquet [1,2], Willot [22] or Schneider–Ospald–
Kabel [21], leads to discretized systems of equations (with
corresponding discretized 
-operators) that may be solved
using nonlinear CG (3.5). We summarized the implementa-
tion in algorithm 1. Several remarks are in order.

Algorithm 1 Fletcher–Reeves nonlinear CG (maxit, tol)
1: Determine initial guess ε and initial reference material C0

2: residual ← 1
3: k ← 0
4: γ ← 1
5: D ← 0
6: while k < maxit and residual > tol do
7: k ← k + 1
8: G ← σ(ε)

9: 〈σ 〉 ← 〈G〉Y
10: Ĝ ← FFT(G)

11: Ĝ(ξ) ←
{
E, ξ = 0

̂0(ξ)Ĝ(ξ), else

12: G ← FFT−1(Ĝ)

13: γold ← γ

14: γ ← ‖G‖2
15: β ← γ /γold
16: D ← −G + βD
17: ε ← ε + αD
18: residual ← √

γ /‖〈σ 〉‖
19: end while
20: return ε, residual

1. To complete the description of the Algorithm 1, a step-
size strategy needs to be prescribed. We use the step-size
of the basic scheme (see Schneider [74] for the nonlinear
convex case), ie, if c− and c+ denote the smallest and
largest eigenvalue of the material tangents ∂σ

∂ε
, evaluated

over all microscopic points and admissible strains, we set
α = 2

c−+c+ .
2. In the presented form, the algorithm can be imple-

mented on three strain-like fields (ε,G, D). In contrast
to the Barzilai–Borwein scheme [39] and the fast gra-
dient schemes [74], an additional field is necessary for
evaluating βk .

3. The other nonlinear conjugate gradient methods (2.10),
(2.12) and (2.13) may be implemented in a similar way.
However, they require storing (at least) an additional vec-
tor, as Dk − Dk−1 enters the formulae for βk .

4. If the memory footprint is decisive, reduced-memory
implementations may be used, see for instance Grimm–
Strehle–Kabel [76].

5. Incorporating mixed boundary conditions is straightfor-
ward, see Kabel–Fliegener–Schneider [77].
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4 Numerical investigations

4.1 Setup andmaterials

The nonlinear conjugate gradientmethod, cf Alg. 1, was inte-
grated into an in-house FFT-based computational microme-
chanics code (written in Python with Cython extensions).
For all but the MMC example, we use the staggered-grid
discretization [21]. For the MMC example, in consistence
with Schneider–Wicht–Böhlke [29], we rely upon the origi-
nal spectral discretization of Moulinec–Suquet [1,2,78].

As the convergence criterion, we use

‖
 : σ(εk)‖
‖〈σ(εk)〉Y ‖ ≤ tol (4.1)

for prescribed tolerance tol, see Schneider-Wicht-Böhlke
[29], Sect. 5. (Notice 	 ≡ 0 in (5.7) for strain-driven uni-
axial extension.) For the algorithm 1, the quantity (4.1) is
computed in line 18. We set tol = 10−5 for all examples in
this section, unless explicitly mentioned otherwise.

Affine extrapolation [2] is used to generate a good initial
guess for the subsequent load step. The linear elastic com-
putations were carried out on a Laptop with 16 GB RAM
and a dual core Intel i7 CPU. For the inelastic computations,
a desktop computer with a 6-core Intel i7 CPU and 32GB
RAM was utilized.

All used material parameters are collected in Table 1. The
meaning of the inelastic parameters is specified in the proper
subsection.

4.2 A sandcoremicrostructure

As our first example, we consider a microstructure of inor-
ganically bound sand for casting applications, which was
already investigated in Schneider [39]. It consists of 64 sand
grains with 58.58% volume fraction, held together by 1.28%
binder, cf Fig. 1a. The geometry was generated by the algo-
rithm described in the work of Schneider et al. [84] and
resolved by 2563 voxels. The material parameters used for
the grains and the binder are given in Table1.

We apply uniaxial extension in x-direction (for 5% axial
strain), see Fig. 1b, where the norm of the strain field is
shown. For more details about digital sand-core physics,
we refer to the work of Ettemeyer et al [85]. We com-
pare several solution methods for this porous example.
First, we compare the different conjugate gradient methods,
cf Fig. 2a. The linear conjugate gradient method [31,41]
serves as our reference. We investigate the performance
of the nonlinear conjugate gradient methods of Fletcher–
Reeves (2.9), Dai–Yuan (2.13), Hestenes–Stiefel (2.12) and
Polyak–Ribière–Polyak (2.10) for constant step-size (chosen
according to the basic scheme). If exact line search was used,

all these conjugate gradient methods would lead to identical
iterates.

From Fig. 2a we see that the Fletcher–Reeves and Dai–
Yuan methods require about 50% more iterations than linear
CG. The Dai–Yuan method is only slightly slower than
Fletcher–Reeves, but exhibits a distinct zig-zagging fromone
iteration to the next. In contrast, the decrease of the residual
is monotonic for the Fletcher–Reeves method.

The two other investigated nonlinear conjugate gradient
methods, Hestenes-Stiefel and Polyak–Ribière–Polyak are
much slower for this scenario. Actually, their convergence
behavior is very close to the basic scheme in Fig. 2b. This is
no coincidence, as we observe βHS

k → 0 and βPRP
k → 0 as

k → ∞.
In addition to the conjugate gradient method, other popu-

lar FFT-based solvers were applied to the problem at hand,
see Fig. 2b. The Broyden–Fletcher–Goldfarb–Shanno algo-
rithm [56–59]may be considered as another generalization of
the linear CG method, as it reduces to the linear CG method
when applied to quadratic problems with exact line search.
Here, we investigate the limited-memory version of BFGS,
as introduced by Nocedal [60], seeWicht–Schneider-Böhlke
[35] for details in the FFT-based context. For a depth of 4,
L-BFGS exhibits a convergence behavior that almost coin-
cides with Fletcher–Reeves CG, however at a much higher
computational cost per iteration.

The Barzilai–Borwein method [86] is also investigated,
as it serves as a reference solver in FFT-based computa-
tional micromechanics [39]. The Barzilai–Borwein method
exhibits a strongly non-monotonic convergence behavior,
as can also be seen in Fig. 2b. However, the method can
be shown to exhibit local r-linear convergence [87] when
applied to uniformly convex optimization problems. As we
are only interested in the smallest k, s.t. the convergence
criterion (4.1) is fulfilled, the non-monotonicity may be non-
critical. Concerning the number of iterations to terminate, the
Barzilai–Borwein scheme is almost identical to L-BFGS(4)
and Fletcher–Reeves CG. The Anderson-accelerated basic
scheme was pioneered by Shantraj et al. [38] and Chen et
al. [88]. It may be interpreted as a Quasi-Newton method of
multi-secant type [89].Applied to linear problems it is closely
related to GMRES, see Toth-Kelley [90]. For low accuracy
(above 10−3), Anderson with depth 4 outperforms all other
methods. This is to be expected, as the (generalized) mini-
mal residual method represents the Krylov subspace solver
with minimal residual [91]. (Recall that linear CG is the
Krylov subspace solver with minimal “energy”.) However,
for higher accuracy, the method slows down considerably.
This complies with theoretical and numerical results [90],
which show that an Anderson-accelerated gradient method
does not improve the convergence rate, only the constant, see
Li–Li [92].
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Table 1 Material parameters
used in this article,
supplemented by their source

Material E in GPa ν Other parameters

Quartz sand grains [79,80] 66.9 0.25

Quartz glass binder [81] 71.7 0.17

E-glass fibers [82] 72 0.22

Polymer matrix [82] 3.0 0.35 σY = 20 MPa k1 = 1 MPa

k2 = 15 MPa m = 150

Ceramic particles [83] 400 0.2

Aluminium matrix [83] 75 0.3 σY = 75 MPa k = 416 MPa

m = 0.3895

with sand grains (black) and
anorganic binder (gold)
(a) Microstructure (b) Strain magnitude at 5%

Fig. 1 Sandcore microstructure and local solution field
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Fig. 2 Comparison of different solvers for the sandcore microstructure, cf Fig. 1
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For comparison we have also included Nesterov’s method
with speed restart, as described in Schneider [74]. It repre-
sents the fastest accelerated gradient method for this kind
of problem, compare Schneider [39], Sect. 3.2. Nesterov’s
method is optimal in the sense that its convergence rate is
identical to the worst-case convergence rate for optimiz-
ing uniformly convex functions with Lipschitz gradient [70].
However, the constant in front of the convergence estimate
is about 4 times as high as the worst-case bound (which
might also be too pessimistic). Furthermore, speed restart-
ing is always slower than if Nesterov’s method is applied
for explicitly known convexity constant. For the problem at
hand, Nesterov’s method requires about 5 times as many iter-
ations as linear CG. Last but not least, we report on the basic
scheme which fails to converge to the prescribed tolerance
within 1000 iterations.

4.3 A planar short-fiber reinforced composite

We investigate a short-fiber reinforced microstructure and
the associated effective mechanical response. We consider
short glass fibers with a length of 275µm and a diameter
of 10µm, reinforcing a polymer by 18% volume frac-
tion. The second-order fiber-orientation tensor reads A =
diag(0.45, 0.45, 0.1). The periodicmicrostructure, cf Fig. 3a,
has a size of 1024µm × 1024µm × 128µm and was gener-
ated by the sequential addition and migration algorithm [93].
The resulting microstructure contains 1119 cylindrical fibers
and was discretized by 512 × 512 × 64 voxels.

For the elastic parameters of E-glass and the polymer,
cf Table 1, we solve a linear homogenization problem for
prescribed uniaxial extension of 5% strain up to a speci-
fied tolerance of 10−10. Compared to the example of the
previous section, the example at hand is simpler as the con-
stituents are finitely contrasted. (The difficulties emerge for
the nonlinear behavior, though). We compare the perfor-
mance of the various nonlinear CG methods to linear CG
in Fig. 4a. Both the Hestenes–Stiefel and the Polak–Ribière–
Polyak method were not competitive, whence they are not
included in the figure. The linear conjugate gradient method
converges linearly, and quickly so. The Dai–Yuan and the
Fletcher–Reeves CG are almost indistinguishable, converg-
ing also linearly, but with a slower rate than linear CG. Both
require about 50%more iterations than linear CG. In contrast
to the sandcore microstructure, the Dai–Yuan CG does not
exhibit a zig-zagging convergence behavior. This observation
may indicate that the Dai–Yuan method is more sensitive to
the step-size than the Fletcher–Reeves CG. Indeed, due to
the finite contrast, the step-size of the basic scheme (which
we also use for the nonlinear CGs) is smaller than for the
infinite-contrast case.

The numerical performance of a variety of other solvers
is shown in Fig. 4b. We see that the Fletcher–Reeves method

lags behind three other methods in terms of convergence
rate: the L-BFGS(4) method, the heavy-ball scheme and the
Barzilai–Borwein solver all lead to approximately identical
convergence rate. The heavy-ball scheme, however, starts to
become unstable for a residual of 10−9. This is certainly
a problem of the implementation, see Ernesti–Schneider-
Böhlke [37], and can be cured easily, but at the expense of
storing an additional field. The fluctuations inherent to the
Barzilai–Borwein method are smaller than for the infinite-
contrast case of the previous section. Similar to the sandcore
microstructure, the Anderson-accelerated basic scheme is
superior to all other schemes up to a tolerance of 10−3, but
become dramatically slower for higher accuracy. The basic
scheme is not competitive.

After this warm-up, we turn our attention to the inelastic
behavior.More precisely, followingWuet al. [82],we furnish
the matrix with a J2-elastoplastic material model and linear-
exponential hardening

σ0(p) = σY + k1 p + k2(1 − exp(−mp)).

We apply uniaxial extension in x-direction up to 5% strain,
distributed into 50 equal-sized time steps. The stress-strain
curves for matrix, fiber and the composite are shown in
Fig. 5a. The local strain fields corresponding to 1%, 2%,
3%, 4% and 5% are shown in Fig. 3. Up to 1% applied
strain, cf Fig. 3b, the local strain field exhibits peaks only
at fiber tips and at spots where fibers are closely packed. For
higher levels of strain, large portions of the matrix get plasti-
fied, as is reflected in the high strain levels. For the inelastic
problem at hand, we compare the basic scheme, Fletcher–
Reeves CG, the Newton-CG method, L-BFGS(4) and the
Barzilai–Borwein scheme, both in terms of iteration count
and runtime, cf Fig. 6. Please keep in mind that the runtimes
were recorded for the computer with 6 cores, see Sect. 4.1.
For the forcing term in Newton-CG, we choose forcing-term
choice 2 with γ0 = 0.75, see Wicht-Schneider-Böhlke [35].

Taking a look at the iteration count, cf Fig. 6a, we see that
the iterations required for the basic scheme increase mono-
tonically up to about 2% applied strain. For higher levels of
loading, the iteration count decreases again. For the other
solvers, the iterations counts are much smaller than for the
basic scheme. Their respective iteration counts are on a sim-
ilar level, with the Newton-CG lagging behind slightly for
strain levels exceeding 3.5%.

A look at the runtime per step, cf Fig. 6b, enables us to
further examine the performance of the solvers. As for the
iteration counts, the basic scheme leads to much higher run-
times. The other solvers however, operate on different levels.
The limited-memory BFGS method clearly lags behind in
terms of performance. Fletcher–Reeves CG and Newton-CG
exhibitmore or less the same runtimes,withNewton-CGhav-
ing advantages for lower strain-levels and Fletcher–Reeves
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(a) Microstructure (b) 1%

(c) 2% (d) 3%

(e) 4% (f) 5%

Fig. 3 Fiber-reinforced microstructure and norm of the strain field upon different levels of monotonic uniaxial loading
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Fig. 4 Convergence behavior of different solvers for homogenizing the fiber-reinforced microstructure, Fig. 3a
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Fig. 5 Stress–strain diagrams for the inelastic examples in this paper. The elastic behavior is indicated by dots

CG being faster later on. The Barzilai–Borwein scheme
appears to be faster, probably because of the lower compu-
tational cost per step. Indeed, the Barzilai–Borwein scheme
is very close to the basic scheme in terms of computational
cost per step, whereas bothNewton-CG and Fletcher–Reeves
CG are similar in terms of these costs, as long as the non-
linear material law is comparably expensive as applying the
material tangent.

Note that we have also run the heavy-ball method for this
problem. However, the scheme did not converge within 1000
iterations for the fourth load step, whence we consider the
method clearly inferior.

To quantify our observations, both the average iteration
count and the average runtime per step are collected in
Table 2. The basic scheme takes more than ten times the

iteration count that is required for the second worst solver
considered. Thus, for the problem at hand, the basic scheme
is clearly not competitive. Notice, however, that the basic
scheme features the lowest run-time per iteration.

In terms of runtime per iteration, the Barzilai–Borwein
method and Newton-CG are comparable. The Barzilai–
Borwein method requires fewer iterations than Newton-CG.
This is caused by the delicate choice of the forcing term (the
tolerance to which the linear system needs to be solved) in
the Newton method, see Wicht-Schneider-Böhlke [35] for
a discussion. The Fletcher–Reeves CG has a similar itera-
tion count as the Barzilai–Borwein method, but features a
higher runtime per iteration. All in all, it is 20% slower than
the Barzilai–Borwein method. Still, it is slightly faster than
Newton-CG, but is characterized by amuch smallermemory-
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Basic scheme Barzilai-Borwein Fletcher-Reeves Newton-CG L-BFGS (4)
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Fig. 6 Iteration count and runtime per load step for the fiber-reinforced composite with exponential-linear hardening

Table 2 Average iteration count and total runtime for 50 load steps and the inelastic fiber-reinforced problem

Mean iterations Runtime in s Runtime per iteration in s Performance overhead

Basic scheme 1071.70 94975.57 88.62 10.67

Barzilai–Borwein 86.50 8901.37 102.91 1.00

Fletcher–Reeves CG 93.96 10697.62 113.85 1.20

L-BFGS (4) 98.08 18969.10 193.40 2.13

Newton-CG 103.36∗ 10895.86 105.40 1.22

Notice that for the Newton-CG method we sum linear and nonlinear iterations, and mark it by a ∗. The performance overhead is defined as the
runtime divided by the smallest runtime

footprint than Newton-CG. Last but not least, we mention
L-BFGS, which has comparable iteration count, but is not
competitive in terms of runtime. Indeed, the runtime per iter-
ation is more than twice as high as for the basic scheme.

4.4 Ametal-matrix composite

As our last inelastic example, we consider a metal-matrix
composite (MMC). The microstructure containing spherical
fillers is shown in Fig. 7a. The ceramic fillers are modeled
elastically, whereas the aluminiummatrix is governed by J2-
elastoplasticity with power-law hardening

σ0(p) = σY + k pm .

The material parameters are listed in Table 1 following
Segurado et al [83]. The composite was subjected to uni-
axial extension up to 3% strain, decomposed into 225
equidistant time-steps. The stress-strain curves are shown in
Fig. 5b. The accumulated plastic strain fields for increas-
ing levels of applied strain are shown in Fig. 7b–d. Due
to the strong nonlinearity induced by power-law hardening,

this setup represents a challenging benchmark for FFT-
based solution methods, and has been considered before in
Schneider–Wicht–Böhlke [29] and Schneider [39]. To ensure
compatibility to the results in thementioned papers, the spec-
tral discretization of Moulinec–Suquet [1,2] was used.

The iteration count per load step for the basic scheme, the
Barzilai–Borwein method and Fletcher–Reeves CG is shown
on the left of Fig. 8. We see that the basic scheme performs
quite well for this example, and the Fletcher–Reeves CG is
on the same level as Barzilai–Borwein.

We refrained from including too many solvers into the
latter diagram, as many solvers operate on a similar level for
this example (or fail admirably, rendering the diagram less
expressive). Thus, we included a table documenting themean
iteration counts for various solvers and increasing resolution.
The solvers are grouped into

1. Gradient methods (basic scheme, Barzilai–Borwein),
2. Polarization schemes (Eyre–Milton scheme [25], the

augmented Lagrangian method of Michel–Moulinec–
Suquet [26] and the Monchiet–Bonnet solver [27]),
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(a) Microstructure (b) 1%

(c) 2% (d) 3%

Fig. 7 Microstructure and accumulated plastic strain for increasing applied axial strain for the metal-matrix composite (MMC)
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163 323 643 1283

Basic Scheme 24.62 23.41 24.8 25.98
Barzilai-Borwein 9.95 9.42 9.40 9.36
Eyre-Milton 7.69 7.4 7.31 8.74
Monchiet-Bonnet 7.0 7.08 6.51 6.83
Augmented Lagrangian 10.94 10.37 9.47 9.84
Nesterov 24.8 19.62 16.4 17.16
Heavy-ball method 29.15 35.72 33.79 34.73
Fletcher-Reeves CG 9.91 9.24 9.11 9.05

Fig. 8 Iteration per load step (1283 voxels, left) and average iteration count for varying resolution (right)
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Table 3 Summary of FFT-based solvers for nonlinear and inelastic computational homogenization

Solution scheme Memory footprint (strain-like fields) Summary and remarks

Basic scheme [1,2] 1 • Gradient descent method [34]

• Lowest memory requirements

• Robust, but slow

Barzilai–Borwein [39,86] 2 • Gradient descent with adaptive step-size

• Non-monotonic convergence behavior

• Fastest choice for inexpensive material laws

Nesterov’s and heavy-ball method [37,74] 2 • Fast gradient methods

• Parameters depending of convexity constants

• Competitive if the parameters are known

• Restarting strategies not competitive

Our FFT-based Fletcher–Reeves CG (2.9) 3 • Fast gradient method with adaptive momentum

• Monotonic decrease of the residual

• Devoid of tedious parameter selection

Anderson-accelerated basic scheme [38,94] 2m + 2 • Multi-secant Quasi-Newton method [89]

• Accelerates convergent fixed-point iterations

• Optimal depth m between 2 and 5

robust, but not exceedingly fast

Newton-CG [34,95] 8.5 • Inexact Newton method

• Requires computing the material tangent

• Fastest choice for expensive material laws

3. Fast gradient methods (Nesterov’s method with optimal
step-size [49], the heavy-ball method with optimal step-
size [49], Fletcher–Reeves CG (2.9)).

We notice that all schemes are stable w.r.t. mesh refinement
except for Nesterov’s method and the heavy-ball scheme.
This is a result of the lack of uniform convexity of the con-
densed energy functional governing von-Mises elastoplastic-
ity with power-law hardening. Recall that the performances
of Nesterov’s method and the heavy-ball scheme crucially
rely upon knowing the strong convexity constant in question.
We follow the approach of determining the strong convexity
constant in terms of the eigenvalues of the tangent stiffness,
for every iteration. As the mesh gets refined, the strains at
the fiber tips increase, leading to a lowering of the convex-
ity constant. A similar, but less severe trend is observed for
the Eyre-Milton scheme, where the average iteration count
increases for 1283 voxels. For the polarization schemes, the
strong convexity constant is required as well. However, the
two damped polarization solvers, the augmented Lagrangian
and the Monchiet-Bonnet scheme suffer less from mesh

Concerning the overall performance, the basic scheme
is worst, requiring about 150% more iterations than the
Barzilai–Borwein scheme. In turn, the polarization schemes
outperform the Barzilai–Borwein scheme, or operate on
roughly the same level. Recall fromSchneider [39] that polar-

ization schemes fail to perform well for infinitely contrasted
media, but exhibit very good performance for finitely-
contrasted media, as long as the complexity-reduction trick
[29] is available.

From the category of fast gradient schemes, both Nes-
terov’s scheme and the heavy-ball solver fail to be com-
petitive. The heavy-ball method becomes unstable, probably
rooted in the lack of global convergence of the scheme. Nes-
terov’s method is globally convergent (and faster than the
basic scheme). However, it requires about twice as many
iterations as the other competitive solvers. Fletcher–Reeves
CG consistently outperforms the Barzilai–Borwein scheme
in terms of required iterations, but lags behind the two better
polarization schemes.

5 Conclusion

This work was devoted to studying nonlinear conjugate
gradient methods applied in the context of FFT-based
micromechanics. We showed that the Fletcher–Reeves non-
linear conjugate gradient method is capable of filling the
role as general-purpose solver for FFT-based computa-
tional micromechanics. Its monotonicity properties, which
we showed by computational examples, set it apart from the
Barzilai–Borwein method. In other regards, the performance
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is similar. Of course, the price to pay for monotonicity is a
slight increase in both memory footprint and computational
effort. In this regard, we may insert the Fletcher–Reeves CG
into Table 3, which compares the corresponding merits and
downsides of the competitive solvers for FFT-based compu-
tational micromechanics.

Our focus has been on providing a useful and useable
method, and did not dwell upon theoretical investigations.
Exploring the Fletcher–Reeves dynamical system (2.23)
appears alluding, in particular in terms of stability and basins
of attraction. Also, the corresponding time-discrete system
should be investigated.
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