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Abstract Coda Wave Interferometry (CWI) is a highly sensitive monitoring technique built on the
sensitivity of elastic coda waves to small changes in a diffusive medium. However, a clear connection
between the physical processes involved in the evolution of the medium and the time changes observed by
CWI has not been clearly described yet. Here, we quantify the impact of elastic deformation on CWI
measurements at laboratory scales. We compare experimental results from wave scattering measurements
during a uniaxial compression test to those of a numerical approach based on the combination of two codes
(SPECFEM2D and Code_Aster), which allows us to model wave propagation in complex diffusive media
during its elastic deformation. In both approaches, the reversible time delays measured between waveforms
increase with the elastic deformation of the sample. From the numerical modeling, we gain insight to the
relative contributions of different physical effects on the CWI measurement: local density changes from
volumetric strain, the deformation of scatterers, and acoustoelastic effects. Our results suggest that
acoustoelastics effects related to nonlinear elasticity are dominant.

1. Introduction

Imaging and monitoring techniques based on the arrival times of direct or scattered waves (using different
types of waves like electromagnetic, acoustic, or elastic waves) are applied in many domains like medical
imaging, nondestructive testing of materials, or seismic imaging with nominal scales ranging from mm to
km (Kuperman et al., 2002; Mussett & Khan, 2000). The issue of monitoring complex media with noninva-
sive techniques has grown in interest in recent years and led to the development of innovative acoustic mon-
itoring techniques (Anugonda et al., 2001; Wegler & Lühr, 2001). In such complex media, the energy of the
direct arrivals is redistributed to multiply scattered waves with complex trajectories. When recorded, they
typically correspond to the tail of the waveforms and are often referred as “coda” after the Italian word
for tail. Multiply scattered waves sample the medium more extensively than direct or singly scattered waves
because of the complexity of their paths (Sato et al., 2012). However, in highly heterogeneous media, scat-
tered waves might be strongly attenuated which limit classical imaging and monitoring techniques (Aki &
Richards, 2002). The phenomenon is common in natural systems such as volcanoes or geothermal reservoirs
and also in anthropogenic structures made of concrete or rocks.

Coda waves are much more sensitive to changes occurring in the medium than direct arrivals.
Measurements of phase or travel time variations in time, in multiple‐scattered waves, can be exploited
as a diagnostic of the weak perturbation in the medium. For instance, the comparison of the coda of
seismic waves obtained at two different times from a fixed source enabled to monitor weak velocity
changes in the Earth crust (Poupinet et al., 1984). This technique, called seismic doublet technique,
has later been formalized under the denomination of Coda Wave Interferometry or CWI (e.g.,
Snieder, 2006). More recently, the use of the pervasive ambient seismic noise as a versatile seismic
source has led to the development of Ambient Noise Interferometry, a technique that allows to recon-
struct virtual active sources at every passive station, by cross‐correlating continuous seismic noise
records between each pair of stations (see Campillo and Roux (2015) for a review). This method not
only revolutionized the use of seismic arrays to image the upper crustal structures of the Earth (Boué
et al., 2014; Lin et al., 2013; Moschetti et al., 2007; Shapiro et al., 2005; Zigone et al., 2015, 2019) but
also opened perspectives for monitoring the time evolution of structures with CWI. For example, small
velocity changes have been monitored in natural structures like fault zones (Brenguier, Campillo, et al.,
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2008; Poupinet et al., 1984) or volcanoes where seismic velocity changes are highlighted a few days prior
to eruptions (Ratdomopurbo & Poupinet, 1995; Sens‐Schönfelder & Wegler, 2006). The monitoring has
also been applied to geothermal reservoirs (Meunier et al., 2001).

Laboratory experiments on representative samples are necessary to understand the way CWI measurements
are influenced by a local or global perturbation of the medium and to develop relevant monitoring techni-
ques. The influence of various phenomena on wave velocity variations has been investigated. For instance,
seismic velocity changes have been shown to be related to water saturation, air pressure, stress, or tempera-
ture changes (Grêt et al., 2006; Lockner et al., 1977; Planès & Larose, 2013; Snieder et al., 2002). For the case
of concrete, using CWI with ultrasound, Planès & Larose, 2013) studied the impact on scattered wave pro-
pagation from global changes (thermal perturbations or acoustoelastic effects due to uniaxial stress) and
from local changes (damage development which introduces new scatterers corresponding to local
structural changes).

Laboratory experiments combined with numerical simulations are essential for the physical interpretation
of CWI measurements (Azzola, Griffiths, et al., 2018). Indeed, their interpretation in terms of disruptive
events is challenging since the measurements usually enclose at once all the contributions of the various
physical sensitivities of the scattered waves. Deciphering a specific effect remains difficult from an experi-
mental approach because of the structural complexity of scatterers in the material and the strong coupling
between processes (e.g., microfracturing related to nonhomogeneous thermoelastic dilatation). Laboratory
studies have already evidenced the effect of stress variations on velocity changes in strong scattering media
such as concrete. Relative velocity variations are detected under various stress states whether it is for a few
MPa with a relative resolution of 10−3 to 10−4 (Grêt et al., 2006) or under weaker load variations (50 kPa)
(Larose & Hall, 2009). Otherwise, numerical studies report the effect of structural changes on the CWI mea-
surements (Planès et al., 2014). But much less attention has been paid to the strain dependence of scattered
wave velocities in heterogeneous media, and to our knowledge, very few studies address the effect of a rever-
sible mechanical deformation on the scattered wavefield propagated within the medium.

In this work, we focus on the effect of elastic stress/strain deformation on CWImeasurements. We based our
study on the fine comparison of an extended experimental approach and an advanced numerical modeling.
Both include the same parts: seismic wave scattering andmechanical deformation. They aim at developing a
comparative forward modeling of the effect on the scattering elastic waves (i.e., the coda), of stress changes
(from 5 up to 50MPa), in the elastic regime, during a uniaxial compression test of the same sample. From the
reproduction of similar effects, by both approaches, we intend to capture in a heuristic approach, the effect of
nonlinear elasticity on wave scattering. On the one hand, one expects the experiments to include all the con-
tributions of the processes involved and their complex coupling. On the other hand, the flexibility of the
numerical simulation enables to tune parameters or effects and to decipher the different physical phenom-
ena at the origin of the measurement, like the relative contributions of local density changes in the volu-
metric strain, the impact of the scatter deformation, or the acoustoelastic effects related to nonlinear
elasticity. The combination of an experimental approach with an analog numerical model (Azzola,
Griffiths, et al., 2018) opens up perspectives to assess the relative contributions of deformation and velocity
changes during CWI measurements.

Section 2 of the present manuscript introduces the problem we address: the effect of the reversible deforma-
tion, in the elastic domain, on the scattered wavefield. We first detail the experimental method based on a
simple synthetic sample. A decimetric block is made of homogeneous Aluminum 2017A (Au4G) (i.e.,
Duraluminium) but includes heterogeneities as a set of cylindrical holes designed to be responsible for a
quasi‐2‐D multiply scattered elastic wavefield. The block is mechanically loaded using a uniaxial imposed
displacement during the propagation of scattered elastic waves from a set of point sources. We then detail
the complementary numerical method that we developed for a quantitative comparison, where elastic waves
are propagated in a similar numerical sample with the same geometry, mechanical properties and propagat-
ing elastic wave velocities as the experimental block, in order to obtain the evolution of synthetic scattered
waveforms during the same imposed deformation. The numerical method combines two approaches: a finite
element method for the quasi‐static deformation and a spectral element method for the wave propagation.
Both numerical methods are adjusted to conserve the grid mesh during the whole simulation. In section 3,
we compare first the wave scattering properties of the analog and laboratory samples, without any loading,
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and second their mechanical responses during uniaxial load including the
local measurement of the deformation field. We also include reversibility
tests to check the elastic behavior of the sample. Section 4 presents the
principle of CWI and the laboratory and numerical CWI measurements
during deformation. This section also details, using the numerical
approach, the effects of the sample boundaries deformation, of the local
density changes related to the local volumetric strain, and of nonlinear
elastic effects, that is, acoustoelastic effects. Section 5 discusses two main
limitations of our approach: the sensitivity of high‐order elastic coeffi-
cients and the 2‐D approximation proposed in our simulations. Finally,
conclusions are proposed in section 6.

2. Materials and Methods
2.1. Objectives of the Study

Figure 1 presents the principle of our approach, designed to study the sen-
sitivity of elastic wave scattering to the reversible mechanical deformation
of the medium. For this, we performed a large set of laboratory and
numerical experiments on a decimetric elastic sample that includes a pre-
scribed set of cylindrical wave scatterers. The loading consists of a displa-
cement δ applied at the top of the sample that is increased step by step in
the elastic regime. At each step of the loading, an impulsive acoustic wave
is sent through the diffusive sample using a point source. The transmitted
waves are recorded on the opposite face of the sample by a linear array of
piezoelectric receivers. Waveform records include direct wave arrivals and
also reflected and coda wave arrivals. The waveforms recorded for differ-
ent loading states—referred to in the following as “perturbed” waveforms
—are compared to the one recorded when the sample is unloaded—
referred to in the following as “reference” waveform—using an interfero-
metric technique: the CWI (Snieder, 2006).

The specificity here is to provide extended direct observations on wave
scattering during the elastic deformation of the same sample through
two different but complementary approaches: a laboratory experimental
approach that is detailed in section 2.2 and a forward numerical approach
tomodel the laboratory sample and experimental observations, as detailed
in section 2.3. Laboratory measurements encompass on the one hand the
contributions of all the distinctive processes involved in the sample's evo-

lution while numerical simulations allow to test the approximations necessary to reproduce the experimen-
tal observations and to explore separately the different physical processes at play.

2.2. Experimental Approach
2.2.1. Laboratory Sample Description
Figure 2 presents the experimental setup used in the laboratory to measure changes in wave scattering
induced by the mechanical loading of the sample. It shows the sample made of Aluminum 2017A
(Au4G), commonly labeled Duraluminium or Dural, an aluminum, and copper alloy. The material has been
chosen for its homogeneity at the scales considered for the study and its suitability for a precise design of the
geometrical heterogeneities introduced inside. The size of the sample is 112 mm in height, 95 mm in width,
and 32 mm thick.

To induce wave scattering, we introduced scatterers in the Au4G sample by drilling a set of 70 parallel
cylindrical holes with a diameter of 6 mm through the whole thickness of the sample (see Figures 1 and
2). By changing the number and the size of the cylindrical inclusions, one expects to modify the scattering
properties of the propagation medium. The design of the scatterers in the sample has been optimized
numerically (see Azzola, Griffiths, et al., 2018) by adjusting the number of holes and their size in order to
produce a multiply scattered wave field (see section 3). Considering the same geometry of the propagation

Figure 1. Sketch describing the principle of the setup. The mechanical elas-
tic deformation of the sample—a holed Au4G (Aluminium 2017A) block—
is obtained from the step‐by‐step increase of the displacement δ applied
along a 62 mm long “loading line,” that is, the contact surface between the
sample and the piston of a servo‐controlled uniaxial press (represented
by a red line). A Ricker wavelet is sent at the middle of the left face of the
sample at each step of the displacement. Waveforms are recorded at the
opposing face with the receiver. Background colors show the trace of strain
tensor computed by Code_Aster when a displacement of δ = 80 μm is
applied.

10.1029/2019JB018974Journal of Geophysical Research: Solid Earth

AZZOLA ET AL. 3 of 19



medium, the authors have tested different hole configurations and we use
here the selected design of the sample. The length of the holes (32 mm,
i.e., equal to the thickness of the sample) is significantly longer than the
wavelength (5.8 mm) making the medium quasi‐2‐D in terms of wave
scattering (Derode et al., 2001; Tourin et al., 2000). Au4G is a homoge-
neous and isotropic material, and its mechanical properties are well
known. Young's modulus, Poisson ratio, and density provided by theman-
ufacturer are, respectively, E= 74 GPa, ν= 0.33, and ρ= 2790 kgm−3. The
compressive elastic limit of elasticity is Re = 250 MPa.

In the laboratory, we carried out several tests in order to ascertain the phy-
sical parameters supplied by the manufacturer. A typical uniaxial com-
pressive test on a cylindrical sample of Au4G of radius 31 mm (similar
to the loading piston radius) has been performed to check the value of
Young's modulus. The macroscopic vertical strain εYY—calculated from
the relative variation of height of the sample—varies linearly with the ver-
tical stress σY—calculated by division of the force F applied by the bearing
surface of the piston S. The best linear regression fitted to the data points
gives a slope of 74 GPa in accordance with Young's modulus provided by
the manufacturer (see Figure S1 in supporting information). We also
assessed the Pwave velocity in Duraluminium by measuring the first arri-
vals in an unstressed sample without scatterers and made of the same
material (see Text S1). The P wave velocity directly measured in an
unstressed and scatterers‐free Au4G sample, that is, vP = 6,209 ± 47 m
s−1, is in good agreement with the one calculated from quasi‐static values
of elastic moduli and density.
2.2.2. Laboratory Setup Description
Figure 2 also presents the mechanical loading of the sample. It is held
between a vertical piston loaded by a servo‐controlled 10 T press and a
plate of Au4G attached to the force sensor below. The force applied by
the piston is measured from a force sensor (REP‐transducer of type TC4
with a maximum load capacity of 30 T) and is recorded using a NI‐6133
data acquisition card. The maximal stress recorded in the experiments is
95 MPa.

Two linear acoustic arrays of 32 piezoelectric transducers (Imasonic) are
placed on the opposing faces of the sample as shown in Figure 2. All the
piezoelectric sensors have a resonance frequency of 500 kHz. To ensure
an efficient acoustic coupling and to reduce the acoustic impedance con-
trast between the sensors and the sample, we used a high‐viscosity
Shear Wave Couplant gel from Sofranel. Both transducers are held in
direct contact with the boundaries of the sample (Figure 2). Because of
the fluid property of the coupling material, the sample deforms indepen-
dently of the sensors. After each step increase of the displacement, we

send an electrical pulse at one of the transducers located at midheight. It has the temporal shape of a stan-
dard Ricker wavelet, that is, the second derivative of a Gaussian, whose standard definition is given for a
dominant frequency f0 in equation (1).

R tð Þ ¼ 1−2 π f 0t½ �2� �
e− π f 0 tð Þ2 ; (1)

In our approach, the central frequency is f0 = 400 kHz (wavelength of 5.8 mm). The emission simultaneously
triggers the acquisition at the 32 piezoelectric receivers of the opposite linear array which faces the source.
The emission and acquisition are repeated 100 times at each step increase of the displacement to average the
response and increase the signal to noise ratio. The acquisition time for the laboratory experiments is 0.4 ms
with a sampling rate of 20 M samples per second using a 64 channel Lecoeur Electronic acquisition system.

Figure 2. Image of the experimental apparatus. The piston of a
servo‐controlled 10 T press loads a holed block of Au4G (70 holes of radius
3 mm). Two linear acoustic arrays of 32 sensors are held in direct contact
with the boundaries of the sample. At each step of the displacement imposed
by the piston, the element of the transducer on the left which is located at
the middle of the array sends a pulse wave. This wave is recorded by each of
the 32 elements transducer located on the opposite face of the sample. An
image correlation technique is used to estimate the displacement field by
comparing pictures of the sample taken at each step of the loading
procedure.
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2.2.3. Measurement of Displacement
The 2‐D displacement field along one of the lateral sample surfaces (i.e., facing the camera) is measured
using an image correlation technique. High‐resolution pictures of the sample are taken at each step of the
loading process with a Nikon D800 camera (Figure 2). They are compared to a reference one, acquired when
the sample was unstressed. A time‐resolved digital particle image velocimetry (DPIV) tool (PIV‐lab,
Thielicke & Stamhuis, 2014) is employed to compare by cross correlation the sample images recorded for dif-
ferent loading conditions.

The principle of DPIV is to divide a pair of images into multiple zones of interest and to find the translation
vector that allows an optimal overlapping of both image tiles. This optimization is performed by calculating
the correlation coefficient between the color levels of each zone. The displacement field between the two
images is deduced by calculating a translation vector for each pair of image tiles. We base our approach
on the use of 64 pixel square interrogation areas that are spaced by 10 pixels. The correlation matrix is com-
puted in the frequency, which enables to achieve better computational costs than direct approaches based on
the computation of the correlation matrix in the spatial domain. Subpixel precision is reached in the mea-
surement of the displacement field using a Gauss algorithm for the interpolation.

For a homogeneous material such as Dural, the detection of the translation vector is potentially perturbed by
the low texture of the image tiles, so the maximum correlation can be poorly resolved. Inhomogeneous light-
ing also affects the correlation signal (Raffel et al., 2018). The images are thus preprocessed to improve the
accuracy of the vector detection. The aim of the preprocessing is to artificially generate texture in the image
by amplifying the color gradients and to reduce the influence of oversaturated areas. Even if artificial, this
texture is attributed to the material and not to lighting or other elements not related to the deformation of
the sample. This preprocessing enables the maximum correlation to be better defined and thus increases
the accuracy of the DPIV tool (Thielicke, 2014).

The resolution of the displacement field is conditioned by the resolution of the pictures and by the para-
meters of the DPIV routine. Theminimum displacement measurable is less than the pixel length, as subpixel
precision is reached through interpolation. The resolution of the pictures is here approximately 50 pixels per
millimeter. The density of the displacement field is determined by the spacing between each square interro-
gation area, which is here of 10 pixels, that is, about 0.2 mm.

The variation in height of the sample is finally computed from the difference in mean vertical displacements
between top and bottom boundaries of the sample. To account for the local fluctuations of the displacement
field computed from the cross‐correlation procedure, we estimate the mean displacement along the top and
bottom boundaries by calculating the averaged vertical displacement along these lines.

2.3. Numerical Approach

The aim of the simulation is to replicate the laboratory experiments presented in section 2.2 to study the
impact of the mechanical loading of the sample on wave scattering with a complementary technique. We
describe here the numerical sample and the principle of the numerical scheme used to replicate the
laboratory experiment.
2.3.1. Numerical Sample Description
The numerical sample aims to accurately reproduce both the macroscopic mechanical behavior and the
wave scattering properties of the laboratory sample. Our numerical simulations are performed in two dimen-
sions (2‐D) both for the sample deformation and the wave propagation using the same sample dimensions
(height and width) as the laboratory sample. We discuss in section 5.2 the influence of considering the full
3‐D geometry of the sample. All physical parameters of the numerical sample are isotropic and similar to the
laboratory sample. We also reproduce in the numerical sample the set of holes drilled in the Au4G sample
with the same dimensions and same locations. The medium is discretized using GMSH—a GNU General
Public License 3‐D finite element mesh generator. We use a 2‐D finite element mesh grid composed of
235,611 quadrilateral four‐noded elements with a characteristic length lc = 0.5 mm, which is the character-
istic distance between two nodes of the mesh.
2.3.2. Numerical Scheme Description
The numerical scheme is the same as proposed by Azzola, Schmittbuhl, et al. (2018). It relies on the combi-
nation of a finite element deformation code (Code_ASTER) and a spectral element wave propagation code
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(SPECFEM2D). Themesh grid is iteratively deformed using the finite element software Code_ASTER, which
is an open source general FEA software. Each step of the loading consists in the resolution of a static
mechanical problem. The model assumes plane deformation. The bottom of the sample is fixed without
any horizontal or vertical displacement. The right and left boundaries are stress free. We impose a given
displacement, noted δ, along a 62 mm long “loading line” centered at the top of the sample which
transcribes in 2‐D, the contact area between the piston and the laboratory sample. The displacement field
at each step of the deformation process is used to deform subsequently the mesh grid.

The deformed mesh grid is then an input for SPECFEM2D (a 2‐D spectral element code, Komatitsch &
Vilotte, 1998) that is used to simulate the wave propagation within the medium. A Ricker wavelet of domi-
nant frequency f0 = 400 kHz (see equation (1)) is emitted at the source as a force point source acting perpen-
dicularly to the sample boundary. The waveforms are sampled at the opposite side along 32 locations that
mimic the laboratory 32 sensor array. The waveforms are computed with a sampling rate of 10 G samples
per second, 500 times higher than the experimental sampling rate to limit numerical dispersion. Due to
the difference in sampling rates, the original waveforms were resampled to ensure that the parameters of
the two approaches were consistent.

In both the simulations and the experiments, the Ricker‐shaped source function has a central frequency f0 =
400 kHz. However, in the laboratory experiments, the actual Ricker source corresponds to the electric signal
sent to the sensor and not the shape of the mechanical signal sent through the sample. The source emitted in
the medium is actually a signal resulting from the convolution of the source function (i.e., the Ricker) by the
transfer function of the sensor, which is peaked at 500 kHz. In the simulation, the transfer function of the
emitting source is considered as perfect: The source function is applied without any convolution with a
transfer function. To check that the source used in the simulations and the pulse emitted in the laboratory
illuminate the medium in the same frequency range, we compared their respective power spectral density.
Figure 3a shows the power spectral density computed for the “reference” seismogram recorded at the recei-
ver, experimentally (red line) and numerically (blue line), without any filtering of the signals. Both spectra
are very similar after filtering in this frequency range (300–600) kHz with a central frequency around 400
kHz for both sources (see Figure 3b). The similarity has been checked by computing the normalized correla-
tion coefficient between both spectra displayed in Figure 3b. It reaches a value of 0.96.

3. Wave Scattering Properties of the Samples and Elastic Loading
3.1. Wave Field Scattering

The comparison of laboratory and simulated CWI measurements requires that the numerical model accu-
rately reproduces the laboratory sample properties. Before comparing themechanical behavior of the sample
in the simulation and in the laboratory, we characterize their scattering properties, in order to verify that the
behavior of the laboratory sample is retrieved in the simulation and also to check that both samples are in
the strong scattering regime needed for the CWI analysis. The characterization is based on two measure-
ments, each of them bringing arguments for the validation of the hypothesis related to the frame of the

Figure 3. Power spectral density (PSD) of (a) the unfiltered “reference”waveform obtained at the receiver from the simu-
lation (blue line) andmeasured in the laboratory experiments (red line) with an unstressed sample, (b) after filtering in the
(300–600) kHz frequency band.
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study. We measure the temporal variation of the seismic energy for a wave propagation in the unstressed
sample and estimate from thesemeasurements themean‐free paths from a least squares inversion procedure
using a diffusion model (Dainty & Toksoz, 1977; Dainty & Toksöz, 1981; Olivier et al., 2015).
3.1.1. Energy Density and Diffusion Model
The waveforms are recorded at each sensor of the receiver line in the unstressed sample until 0.4 ms, in the
laboratory and in the numerical approach. From the measurement, we compute the temporal variation of
the energy density W(t) as a function of time, for a fixed distance D between the source and the receiver:

W tð Þ ¼ f tð Þ2 þH f t½ �½ �2; (2)

where f (in m s−1) refers to the waveformmeasured at the receiver. H is the Hilbert transform. This measure-
ment characterizes the temporal variation of the seismic energy measured for fixed positions of the source
and of the receiver.

Then, we estimate for comparison themean‐free path ℓ in the numerical and the laboratory samples. It is the
mean distance between two scattering events and a key parameter in the characterization of the scattering
effect. We used a least squares minimization procedure to compare the temporal variation of the energy den-
sity to the one predicted by a diffusion model. The diffusion model expresses the temporal variation of the
seismic energy of multiply scattered body waves, measured at a distance D from the source as (Dainty &
Toksoz, 1977; Dainty & Toksöz, 1981; Margerin, 2005; Trégourès & van Tiggelen, 2002):

Wt ¼ E0
4 π vs t ℓ

3

� �−3
2

e − vs t
ℓa

− 3 D2
4 vs t ℓð Þð Þ; (3)

where E0 is the source energy, vs is the S wave velocity, ℓa is the intrinsic absorption characteristic length,
and ℓ the mean‐free path. We use a normalized logarithmic expression of the temporal variation of the seis-
mic energy, in the same way as Olivier et al. (2015). By choosing an adequate reference in time t1, so thatW1

(t1) = 1 J m−3 and by taking the natural logarithm of a referenced function U(t) defined below, Wegler and
Lühr (2001) show that equation (3) can be expressed as a sum of three dimensionless terms. Each of them
consists in the product of a function of time (t0, t1, and t−1) with a constant (a1, a2, and a3, respectively) that
depends on parameters of the model:

ln U tð Þ ¼ a1 þ a2 t þ a3
1
t
; (4)

with U tð Þ ¼ W tð Þ
W1

� �
t
t1

� �3
2
,and a1 ¼ vs t1

ℓa
þ 3 D2

4 vs t1 ℓ

� �
; a2 ¼ − vs

ℓa
; a3 ¼ − 3 D2

4 vs ℓ
.

From the temporal variationmeasured in the laboratory and in the numerical sample, we compute this loga-
rithmic and normalized expression of the energy density by multiplying equation (2) by the factor t3/2 and by
taking its natural logarithm, such that one reconstructs the left side of equation (4). The dimensionless coef-
ficients a1, a2, and a3 are measured in the same way as Olivier et al. (2015) by applying a least squares mini-
mization to compare the observed measurements to the ones predicted by the diffusion model for body
waves described by equation (3). The mean‐free path is calculated from a3 using vS = 3,158 m s−1 and the
distance D between the source and the receiver, which depends on the position of the sensor of the receiver
line at which the methodology is applied.
3.1.2. Seismic Energy
The average temporal variation of the logarithmic and normalized expression of the functionW(t), <lnU(t)>,
is presented in Figure 4 for the experiment and the numerical simulation as continuous lines (respectively
black and red curves). It is the spatial average of the functions computed from the response of each of the
32 receivers deployed along the side of the sample. The cross‐correlation coefficient between both functions
computed for a time window between 0 and 0.4 ms is 0.94. The high cross‐correlation coefficient proves the
strong agreement between the behavior of the numerical sample and the one of the laboratory sample. Both
curves show a strong increase in the measured seismic energy up to a maximum (around 0.2 ms). It is fol-
lowed by a progressive stabilization for the numerical simulation and a slow decrease for the laboratory
experiments. The difference in behavior is explained by the fact that the intrinsic absorption of the
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material that exists in the experimental sample is not introduced in the
simulation. In the following CWI measurements, we limit our coda win-
dow to 0.1 ms in order to stay in a regime where intrinsic attenuation
is negligible.
3.1.3. Mean‐Free Paths and Strong Scattering Regime
The best fit to the laboratory (dashed black) and numerical (dashed red)
data, determined by the least squares method and using the diffusion
model (equation (4)), is represented in Figure 4. Thirty‐two distinctive esti-
mates of themean‐free path are inverted using the records of each of the 32
experimental receivers, by applying the same computation to each recei-
ver after adjusting the value of the distance to the source D. Variations
among each set of estimates characterize the sensitivity of the measure-
ment to the receiver position. We computed the average and the stan-
dard deviation of the set of estimates: ℓ = 11.5 mm ± 2 mm for the
experiments and ℓ = 11.0 mm ± 0.5 mm for the numerical simulations.
We observe that the mean‐free paths inverted from laboratory and
simulated records are similar within the error bars. From the similarity
of the mean‐free paths and the high cross correlation of the functions
deduced from laboratory and numerical records represented in
Figure 4, we conclude that the scattering properties of the numerical
sample reproduce well those of the laboratory sample.

In a multiple‐scattering regime, the wavefield emitted encounters the het-
erogeneities several times before being recorded by the receiver. It
requires that the wavelength λ of the incident wave is of same length or
shorter than the size of the heterogeneities. Here, the diameter of the
holes is 6 mm and the wavelength calculated from the wave velocities
and frequencies used in the simulations is 5.8 mm. The condition neces-

sary to assess strong scattering is that the mean‐free path ℓ, the wavelength λ, the defect size d, and the dis-
tance from source to receivers D satisfy the inequality: λ < d ≤ ℓ < D (Planès & Larose, 2013). In our
simulations, we neglect attenuation effects and we do not consider in the inequality the intrinsic absorption
characteristic length ℓa included in the inequality proposed by Planès and Larose (2013). Themean‐free path
inverted using simulated record (ℓ = 11.0 mm) or laboratory records (ℓ = 11.5 mm) satisfies the inequality.
This result along with the progressive stabilization of the seismic energy highlighted from Figure 4 proves
that the samples satisfy both numerically and experimentally, the multiple‐scattering condition, a require-
ment necessary to apply CWI.

3.2. Quasi‐Static Linear Elastic Deformation

Using Code_Aster, we compute at each step of the loading the displacement of each node of the ele-
ments constitutive of the mesh grid. In the simulation, the displacement field has a spatial resolution
at the scale of the length of each finite element, which is of the order of the characteristic length of
the mesh grid—lc = 0.5 mm (see Figure 5, right). The displacement field everywhere within a given ele-
ment is discretized from the displacement computed by Code_ASTER at each Gauss point and from the
shape function of the elements. The components of the strain tensor at each Gauss point are calculated
by computing the gradients of the displacements evaluated at these points. The strain components are
finally obtained at each node by extrapolation, using the shape functions of the elements. The trace
of the strain tensor extrapolated at each node of the mesh is displayed as background of Figure 1 for
an applied displacement δ = 60 μm. In Figure 5, the vertical component of the displacement uY (X,
Y) is plotted for an imposed displacement of δ = 60 μm. It shows a weak influence of the holes and
a limited effect of the boundary conditions. We compare this numerical computation to the experiments
(Figure 5). The best resolution in the experiments is achieved by using cross correlation of images of the
deformed sample with the image of the unstressed sample (see section 2.2.3). Left panel in Figure 5
shows the amplitude of the displacement field uY (X, Y) obtained from the cross‐correlation procedure
using the same color panel to compare visually both images. Despite the local fluctuations in the

Figure 4. Averages of the functions ln U(t) calculated from the responses of
the 32 sensors distributed on the side of the sample, computed from
laboratory measurements (plain black curve) and simulated waveforms
(plain red curve), in an unstressedmedium. LnU(t) is the temporal variation
of the logarithmic expressions of the normalized energy density U(t). The
best fits to laboratory and numerical measurements determined by a least
squares method using the proposed diffusion model (see text for details) are
plotted as dashed curves (respectively dashed black and dashed red lines).
To illustrate the spread in laboratory measurements, we have included a
gray shading around the mean trend (black curve) measuring the standard
deviation at each time sample. Experimental and numerical measurements
show a different trend beyond 1–1.5 s.
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experimental displacement field and a blurring effect around the holes (they appear larger than their
real size), Figure 5 shows strong similarities in terms of amplitudes and spatial distribution between
the simulated displacement field and the one calculated from laboratory experiments. The vertical
displacement field computed from the laboratory measurements shows significant speckle pattern
because of the method used for its assessment. Any spatial derivative of it will magnify this noise. As
a result, the strain field computed from experimental images is too noisy to allow a direct
comparison between the measurements obtained in the laboratory and in the simulation. We thus
restrict the comparison between both approaches to the analysis of the displacement field.

Figure 6 better highlights the amplitude similarities by comparing the magnitude of the vertical displace-
ment uY (X = 0, Y) extracted along the central line passing through the samples. Measurements obtained
from Code_Aster (red dots) are compared to the estimates obtained from laboratory measurements (black
dots). The vertical displacements are averaged over a width equal to the characteristic length of the elements,
lc = 0.5 mm. At this scale, the experimental and simulated displacement fields agree on average, which veri-
fies the concordance between both approaches in terms of local strain.

At the sample scale, we also compare the mechanical behavior of the samples. Colored crosses in Figure 7
show the experimental behavior of the sample by indicating the force F (kN) as a function of the variation
of height δ (μm) measured during three distinctive experiments. We emphasize that the same sample is sub-
jected three times to the same multistage load. The repetitive experiments intend to test the reversibility and
the repeatability of the behavior highlighted from experimental measurements. The latter are fitted with a
linear regression with a determination coefficient r2 of 0.96 and with a slope of 1.31 × 109 N m−1. The deter-
mination coefficient result suggests that the observed measurements are well replicated by a linear relation-
ship between force and displacement. The mechanical behavior simulated using Code_Aster is shown as a
black line (Figure 7). The force applied to the sample is calculated every 10 μm (black dots in Figure 7).
Since only an elastic constitutive law is introduced in the simulation, the force varies linearly with the dis-
placement applied to the sample. The slope is 1.29 × 109 Nm−1, very close to the experimental behavior with
only a 1.3% difference in the measured slopes. The very similar linear behavior between laboratory and
numerical measurements shows the good agreement between both approaches and evidences a macroscopic
linear elastic deformation of both samples.

Figure 5. Left: experimental displacement field uY (X, Y) calculated from image correlation between a picture of the
unstressed sample and one captured after imposing a displacement of δ = 60 μm to the top of the sample (correspond-
ing to an applied force of F = 75 kN). Right: numerical displacement field uY (X, Y) computed by Code_Aster when
applying the same loading and using the same color scale. The holes introduced in the sample are represented by black
circles with the same size and spatial locations. The red bar indicates the extent of the contact zone between the sample
and the piston.

10.1029/2019JB018974Journal of Geophysical Research: Solid Earth

AZZOLA ET AL. 9 of 19



The superposition of the measurements for repetitive loading highlights that no residual deformation
exists. It demonstrates the reversibility of the deformation of the laboratory sample and shows that there
is no inelastic deformation, like damage or plasticity. The multiscale comparison of the displacement
measurements, that is, the similar spatial distribution of the local displacement field (Figures 5 and
6) and the common linear macroscopic behavior (Figure 7), is essential to verify that the numerical
approach reproduces well the mechanical behavior of the experimental sample in the limit of the reso-
lution of laboratory measurements. This complements the similar wave scattering properties, as shown
in the previous section.

We finally checked that the medium behaves elastically in our numerical simulations, at the scale of the
finite elements and in the range of displacement explored despite possible stress concentrations in the
vicinity of the holes. The verification is done by computing Von Mises's stresses along the meshes. To

be in the elastic regime, Von Mises's stresses have to be smaller than
the elastic limit in compression, Re. If not, the material is expected to
enter the plasticity domain. Von Mises's criterion has been shown to
be well suited for metal like Au4G (Ford & Alexander, 1963). In our
simulations, the criterion is verified in the bulk of the sample, for the
range of displacement explored in the laboratory. When the displace-
ment is lower than δ = 80 μm, the ratio of Von Mises's stress and the
elastic limit Re is below 0.75. The criterion is nevertheless exceeded on
two points of the top boundary, more precisely for the elements in con-
tact with both ends of the loading line (see Figure S2 in the
supporting information).

4. CWI Monitoring

The similarity in mechanical and acoustic behavior highlighted pre-
viously between our laboratory experiment and numerical simulations
legitimizes the comparison of laboratory and simulated CWI measure-
ments. CWI is applied to the simulated and experimental waveforms, to
assess time delays during the first 0.1 ms. As presented in section 3, the
waveform is weakly influenced by the intrinsic absorption of the material
during that period (see Figure 4 and related text in section 3.1). In the fol-
lowing paragraphs, we first present the laboratory CWI measurements
and then detail the results of the numerical model.

Figure 6. The vertical displacements uY (X = 0, Y) measured by Code_Aster (red dots) along a vertical line centered at the
middle of the sample (X = 0) are compared to the laboratory measurements obtained from the image correlation
procedure. Laboratory and simulated measurements are obtained for an imposed displacement of δ = 60 μm, which
corresponds to a loading force of F = 75 kN.

Figure 7. Force (kN) applied by the piston on the sample, as a function of
the variation of height (μm) measured by image correlation (colored
crosses) during three distinctive loadings in the laboratory. The laboratory
measurements are compared to the simulated measurements from
Code_Aster (black dots) which are fitted by a linear regression (plain black
line).
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4.1. Laboratory Measurements

Figure 8 shows an example laboratory record on which the CWI technique is applied. The waveform is
recorded when applying a 50 μm displacement to the sample and compared to the “reference” wave-
form for no loading. Both waveforms are band‐pass filtered from 300 to 600 kHz. We first see that
no direct wave arrivals are clearly visible. This result supports that the coda is in the
multiple‐scattering regime, in the frequency range chosen. In Figures 8b and 8c, we focus on two dis-
tinctive time periods within the signal by zooming into two 6.5 μs long widows at the beginning and
at the end of the coda. The zoom for early times (Figure 8b) shows that the reference and perturbed
waveforms are similar and superimpose well. The relative wave paths are expected to be quasi‐direct
with little influence from the deformation. At later times (Figure 8c), travel time delays clearly appear
between the “reference” and “perturbed” waveforms. We interpret this difference in behavior between
the early part of the waveform and the last part, that is, the coda part, as the larger sensitivity of multi-
ply scattered waves to slight changes in the medium compared to direct arrivals (Snieder, 2006). With
our uniaxial loading, the “perturbed” waveform appears compressed in time. Applying CWI techniques
intends to quantify this time compression and to estimate the relative variation of delays with time, dt/t,
that quantifies the perturbation in the waveforms.

Sens‐Schönfelder andWegler (2006) propose to estimate the relative time delays, dt/t, by searching the factor
by which the time axis of one of the traces has to be elongated (apparent decrease in velocity) or compressed
(apparent increase in velocity) to obtain the best correlation with the other trace, that is, the stretching
method. The “stretched” version S′(t) of the reference signal S(t) is then obtained as S′(t) = S [ (1 + a)t] where
a is the stretching coefficient. The coefficient a is obtained using the following procedure. All waveforms are
normalized, and the laboratory waveforms are interpolated using a piecewise cubic spline interpolation in
order to adjust the sampling to the finer sampling rate used in the simulation. We use here a stretching of
the whole 0.1 ms long waveform. Before application of the stretching technique, a passband filter is applied
to the simulated and laboratory waveforms from 300 to 600 kHz (see section 2.3.2 for details about the fre-
quency band selection). In the laboratory experiments and in the simulation, waveforms are recorded on 32
distinctive receivers equally distributed along the sample side. The method is applied on “reference” and
“perturbed” waveforms recorded at each receiver in order to analyze the spatial variability of our measure-
ments. We thus discuss the strain sensitivity of the relative time delay dt/t averaged on the 32 estimates
obtained at each position of the receiver.

Figure 9 shows the relative time shift measured from the “stretching” technique in the laboratory experi-
ments (colored crosses) as a function of the displacement applied at the top of the sample. Figure 9 depicts
a clear dependency of both variables. It can be fitted by a linear trend with a slope of−2.6 × 10−5 μm−1 (black
line in Figure 9) for which we calculated a sum of squared residuals of 1.7 × 10−6 μm.

Figure 8. Waveforms recorded during the laboratory experiments filtered in the (300–600) kHz range. The “reference”
waveform (black line) is superimposed to the “perturbed” waveform (red line) (a) recorded when applying a displace-
ment of 50 μm (which corresponds to an applied force F = 60 kN). Zooms in two 6.5 μs long windows at the beginning
(b) and at the end (c) of the coda.
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The CWI measurements represented in Figure 9 are those obtained dur-
ing three successive and independent experiments. During each experi-
ment, the sample is subjected to an identical loading path. The
reproducibility of the laboratory CWI measurements proves that the
mechanisms affecting the CWI delay measurements are reversible, which
is in accordance with the reproducibility of the macroscopic loading curve
(Figure 7), characteristic of an elastic deformation of the sample.

4.2. Numerical Simulations

In the laboratory, the scattered wavefield carries the signature of the dif-
ferent phenomena induced by the elastic deformation of the propagation
medium and responsible for travel time variations. The numerical model-
ing enables to go beyond the limits of the laboratory experiments and to
test the relative contributions of the different effects that are expected to
influence the wave scattering, which opens perspectives to improve our
understanding of the measurements. Snieder et al. (2002) interpret rela-
tive time delay changes as small variations of intrinsic seismic velocities,
due to factors such as water saturation or air pressure variations, change
in temperature changes, or change in the stress state (Grêt et al., 2006;
Lockner et al., 1977; Planès & Larose, 2013; Snieder et al., 2002).
According to this interpretation, time delays are supposed to be related
to an intrinsic velocity change, such that dt/t = −dv/v. Effects of deforma-
tion on the wave scattering are accordingly neglected, being assumed to be
a few orders of magnitude lower than the effects of intrinsic velocity
changes. Conversely, the identification of nonnegligible reversible ther-
momechanical deformation contributions in CWI measurements has

been the object of recent studies (Azzola, Griffiths, et al., 2018; Azzola, Schmittbuhl, et al., 2018). The numer-
ical model proposed in the present work follows these studies and aims at assessing from the comparison of
two approaches (analog and laboratory approaches), the relative contribution of the deformation of the sam-
ple and of the wave velocity variations in the CWI measurements which is typically a difficult task from a
single approach. The three following subsections describe the three physical phenomena included progres-
sively into the simulation and present the related measurements.
4.2.1. Numerical Modeling of the Effect of Sample Boundary Deformation
The uniaxial loading of the sample deforms the medium and its scatterers. We model here its influence on
the scattered wavefield. To do so, we limit the update of the model, at each step of the loading, to the defor-
mation of the mesh grid using Code_Aster without changing any property of the model. We then propagate
the wavefield in the deformed mesh grid using SPECFEM2D. Keeping the density, Young's modulus and
Poisson ratio of the sample constant, we can test the sole influence of the change in shape of the medium
on the CWI results without imposing any wave velocity variations. In doing so, we focus on the impact of
the elastic deformation of the boundaries of the sample and of its scatterers, which is a contribution usually
neglected when following a classical interpretation of the CWI measurements in terms of wave velocity var-
iations. As shown in Figure 10 (red solid line—Model 1), the simulation predicts in this case, as for the
experiments, relative time delays dt/t that linearly evolve with the stress σY= F/Swhere F is the force applied
to the sample and S the contact surface between the sample and the piston. However, their amplitude in
Model 1 is significantly smaller than the laboratory measurements. The linear regression fitted to the simu-
lated CWI measurements shows a slope of −3.5 × 10−6 MPa−1. The contribution of the changes in shape of
medium and its included scatterers reproduces a similar linear behavior but only explains 11% of the CWI
signal amplitude measured in the experiment.
4.2.2. Numerical Modeling of the Influence of Density Variations
We introduce here wave velocity variations of the sample that only result from the local changes of the sam-
ple density ℓ following equations (6) and (7) and keeping the other elastic moduli (E, ν) constant. Using these
equations that are specific to the elastic deformation regime, we show that density effects contribute to CWI
measurements by weakly reducing the time delays (see Figure 10—Model 2). Assuming small deformation,
volumetric strain εvol equals the trace of the strain tensor Tr(ε) and the relative variation of volume dVol/

Figure 9. Comparison between the relative time shifts dt/t of three distinc-
tive laboratory experiments (colored crosses) and the simulated ones as a
function of the displacement applied to the sample. In the numerical
approach, we model the influences on dt/t of the change of shape of the
medium and of wave velocity variations due to density variations and due to
acoustoelastic effects using third‐order elastic coefficient (TOEC) of Dural
(red dotted line). Relative time shifts are measured by the stretching tech-
nique and are the mean values calculated from the 32 distinctive estimates
obtained along the receiver array.
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Vol0. Assuming a constant mass, the density is related to its initial value ρ0
and the volumetric strain as follows:

ρ ¼ ρ0
εvol þ 1

; (5)

vP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν E þ E 1−2 νð Þ
ρ 1þ νð Þ 1−2 νð Þ

s
; (6)

vS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E
2 ρ 1þ νð Þ

s
: (7)

The density is calculated in SPECFEM2D for each spectral element
according to equation (5) using the trace of the strain tensor computed
by Code_Aster at a given step of the loading procedure. Wave velocities
are derived using equations (6) and (7), keeping the elastic moduli E
and ν constant (i.e., assuming that the sample is loaded without damage).
Because wave velocities are related to the square root of the inverse of den-
sity (see equations (6) and (7)), one expects that relative time delays
decrease owing to the effect of density variations and of the medium com-
pression. Indeed, the contribution of wave velocity variations due to den-
sity changes from volumetric strain is of opposite sign to those of the other
modeled phenomena. As a result, adding the effect of wave velocity
changes due to local density changes to the contribution of the change
in shape of the sample leads to a decrease in the relative delays dt/t (red
dashed line in Figure 10). The CWI measurements (dt/t) measured using
Model 2, which includes density effects and geometrical deformation of
the sample, explain only 7% of the CWI signal measured in
the experiments.

4.2.3. Numerical Modeling of the Influence of the Acoustoelastic Effect
Finally, we explore the impact of acoustoelastic effect on elastic wave velocities, related to nonlinear elasti-
city (Murnaghan, 1951). Acoustoelastic effects refer to the changes in the elastic wave velocities related to
stress‐induced effects. It has been theoretically explained for a Green elastic or hyperelastic medium, that
is, an elastic medium where stresses depend only on the current state of deformation (Smith, 1963). In this
case, the stored elastic energy per unit of undeformed volume Welas is a polynomial function of the strain
tensor ε:

Welas εð Þ ¼ 1
2
C 2ð Þ

ijklεijεkl þ 1
6
C 3ð Þ

ijklmnεijεklεmn þ …; (8)

where the coefficients in C(2)
ijkl are the second‐order elastic constants and in C(3)

ijklmn the third‐order elastic
constants (TOEC) (Smith, 1963; Toupin & Bernstein, 1961). Classically, for small deformation, only the
second‐order elastic constants are considered. They describe the first term in the expansion of the elastic
energy and refer to the first‐order linear elasticity in the expansion of the stresses as a function of the strains.
When a higher expansion of the stored elastic energy is considered, TOEC that correspond to a quadratic
expansion of the stresses in terms of strain are relevant. Hughes and Kelly (1953) showed in this case that,
even for an isotropic elastic material, the velocities of the compression and shear waves can differ by a small
amount which is proportional to the load. Subsequently, the acoustoelastic theory predicts an anisotropic
effect of the uniaxial elastic deformation of the propagation medium on the elastic wave velocities. In parti-
cular, the anisotropic behavior highlighted is due to nonlinearities in the strain‐displacement relationship.
We introduced in our model the constitutive relations of acoustoelasticity that have been confirmed for
metallic materials (Hughes & Kelly, 1953). They are derived fromMurnaghan's theory of finite deformations
(Murnaghan, 1951) using TOEC. These coefficients (TOEC) can be determined experimentally bymeasuring
the change in acoustic phase velocity as a function of stress (Si‐chaib et al., 2011; Smith, 1963). Here, we used

Figure 10. Comparison between the linear regression fitted to the time
shifts dt/t of the laboratory experiments (black line) and the ones obtained
from simulations based on three distinctivemodels as a function of the stress
σY. Model 1 corresponds to the relative contribution of the change of sample
shape including the boundaries of the holes (i.e., the scatterers) (red plain
line). Model 2 is an extended version of Model 1 with also the wave velocity
variations due to density variations (red dashed line). The red dotted line
(Model 3) depicts the measurements when modeling all the influences on
dt/t, that is, the impact of the change of sample shape, the change in the
wave velocity variations due to density variations, and those due to acous-
toelastic effects using third‐order elastic coefficient (TOEC) of
Duraluminium. Relative time shifts are measured by the stretching techni-
que and are the mean values calculated from the 32 distinctive estimates
obtained along the receiver array.
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Murnaghan's TOEC L, M, and N. These parameters have been measured for Duraluminium by Chatellier
(1987) and by Si‐chaib et al. (2011), which employ these constants in simulations. The three TOEC are
respectively L = −51 ± 5 GPa, M = −325 ± 2 GPa, and N = −351 ± 6 GPa. Second‐order elastic constants
Λ and μ (or Lamé constants) are calculated using Young's modulus E and the Poisson ratio ν of the Au4G
sample as follows:

Λ ¼ E ν
1þ νð Þ 1–2 νð Þ ; (9)

μ ¼ E
2 1þ νð Þ ; (10)

We obtained respectively Λ = 54 GPa and μ = 28 GPa. In order to model the acoustoelastic effects in
SPECFEM2D, we defined, for each spectral element of the mesh, pseudo second‐order elastic coefficients
C*ijkl. These coefficients are calculated from the second‐order constants and TOEC and using the principal
components ε1, ε2, and ε3 of the strain tensor computed at each step of the loading procedure from
Code_Aster, according to Hughes and Kelly (1953):

σij ¼ σ0ij þ∑klC
*
ijklεkl; (11)

where σij is the current stress tensor, σ
0
ij is the initial stress tensor, and

C*
ijkl ¼ Λþ 2 L−Λ−M½ �εvol þ 2 ΛþM½ � εi þ εk−2μεj

� �
δi;jδk;l

þ μþ ΛþM−μð Þεvol þ 2μ εi þ εj þ εl
	 


δi;kδj;l þ δi;lδj;k
	 
� �þ 1

2
N∑v δj;v;ki;v;l þ δj;v;li;v;k

	 

εvol; (12)

with εvol the trace of the strain tensor and where Λ and μ are ordinary Lamé constants and L, M, and N the
third‐order Murnaghan constants. In equation (12), the δs are the general Kronecker delta functions.
Acoustoelastic effects on scattered waves have been predicted in the case of the interaction of twomonochro-
matic plane waves by Jones and Kobett (1963)), but the influence of the sample stressing on the CWI mea-
surements has, to our knowledge, not been explored yet. The relative time delays dt/tmeasured for different
loading states exhibit a significant impact of the acoustoelastic effects (Figures 9 and 10). The curve when
including these effects (red dotted line—Model 3) shows a clear increase of the relative delays with the load-
ing and an interesting superposition to the experimental results. The CWI measurements obtained with
Model 3 overestimate by 8% the laboratory observations. This superposition, together with the strong discre-
pancy highlighted in Figure 10 between Models 1 and 3, shows that acoustoelastic effects have a major
impact on the CWI measurements. The strength of the related signal suggests that monitoring nonlinear
elastic effects could be carried out based on the analysis of strongly scattered waves.

5. Discussion
5.1. Uncertainties Related to TOEC Measurements

Considering the preponderant contribution to the CWI measurements of the acoustoelastic effects, we dis-
cuss here the sensitivity of the results of Model 3 (Figure 10) toward the parameters involved in the compu-
tation of the pseudo second‐order elastic coefficients C*ijkl, that is, the Lame second‐order elastic parameters
and the Murnaghan third‐order elastic parameters. We first tested the impact of increasing or decreasing all
three Murnaghan parameters concomitantly by 10% in the simulations. This value of 10% is a large proxy of
the uncertainty on the measurements of the third‐order elastic parameters. Indeed, the third‐order elastic
parameters proposed for Au4G by Chatellier (1987) are measured with an uncertainty of 10% on L, of
0.6% GPa on M, and of 1.7% GPa on N. Following the change in parameters, we observed an 8% variation
of the measured relative time delays. Second, we impose a variation of 10% of the second‐order parameters,
which are calculated using the density, Young's modulus, and the Poisson ratio. This induces an 11% varia-
tion of the measured relative time delays dt/t.

However, the concomitant change of all three TOECs does not depict the influence of each parameter on the
elastic wave velocities and thus on the CWI measurements. To gain more insights in the influence of these
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elastic constants on the CWI measurements, we cross tested and applied a 10% decrease—or increase—in
the value of a single, of two, or of all three coefficients concomitantly. In each case, we quantified the varia-
tion from the relative travel time changes observed with Model 3 and using the initial set of parameters. The
results of the sensitivity tests are tabulated in the supporting information (Text S4), and we describe here the
two major observations.

First, the increase—respectively decrease—of each third‐order coefficient causes an increase—respec-
tively decrease—in the relative time delays measured in the simulation. Then, when testing the impact
of a multivariate change in the TOECs, we show that the effects add up linearly. For example, we mea-
sure a 3.2% increase in relative time delays when we apply a variation of 10% only to the value of the
parameter M. This variation is respectively 4.1% when applying the change to the value of the coeffi-
cient N. When we test the impact of a concomitant increase in M and N, we consequently measure a
7.3% variation in the relative time delays, that is, the sum of the variations measured when increasing
a single parameter.

This sensitivity test shows that the laboratory CWI measurements are in the range of the simulated results
when considering an uncertainty of 10% on the three TOECs, that is, L, M, and N.

In order to catch closely the physics expressed in the laboratory experiments, the simulations necessitate a
finer tuning of these mechanical parameters. It would need the direct measurements of the second and third
elastic parameters of our holed Au4G sample, which was beyond the focus of this study.

5.2. Approximation of the 2‐D Modeling

An important simplification of our numerical modeling is the use of a 2‐D representation of the 3‐D experi-
mental sample. The advantages of the 2‐D numerical models are principally linked to computational perfor-
mances. They are also related to the significant simplification of the discretization of numerical samples, in
particular when they involve a complex assembly of scatterers. We justify in the following section the choice
of the 2‐D approximation and treat the arguments in favor of the bidimensional modelization of both the
elastic deformation of the sample and of the wave propagation.

The choice of the plane deformation modeling of the experiments in 2‐D is motivated by the invariance of
the geometry of the sample in the Z direction, with cylindrical holes drilled through the 32 mm thick block.
In a typical plane strain problem, the loading is such that the deformation is essentially exerted in the cutting
plane (X, Y), which is a relevant assumption in our case of a step‐by‐step loading imposed from the top of the
sample. To verify the pertinence of this approximation, we modeled the 3‐D mechanical response of the
holed Au4G sample with a 32 mm thickness. Using Code_Aster for an applied displacement (δ = 75 μm),
we compared the map of the trace of the local strain tensor, computed in the middle plane (Z = 0) of the
3‐D sample to that of the 2‐D sample (see Figure 11). It shows a similar pattern of the local volumetric strain
with a more pronounced volumetric deformation in the 2‐D case. We quantified locally the difference high-
lighted in Figure 11 by averaging the trace of the strain tensor along a vertical line at themiddle (X= 0) of the
sample presented in Figure 11. The mean values are 1.15 × 10−4 in the 2‐D case and 6.34 × 10−5 in the 3‐D
case. The difference in the magnitude of the trace of the tensor components, which is of 45%, shows the con-
tribution of the orthogonal component of the strain tensor εZZ, which is different from zero in the
three‐dimensional case. However, the local measurement obtained along the vertical line of Figure 11 does
not depict the distribution of the magnitude of the strain components throughout the entire sample. We
averaged the amplitude of the tensor components computed by Code_Aster over the entire 3‐D medium.
Our measurements show that the orthogonal component εZZ represents 20% in magnitude of the predomi-
nant component εYY. If the magnitude of the orthogonal component εZZ of the strain tensor is not negligible
given the magnitude of the strain components exerted in the cutting plane (X, Y) of the 3‐D medium, the
ratio between εZZ and εYY shows that the latest is predominant, which legitimizes our simplification of the
three‐dimensional mechanical problem into a 2‐D problem in plane strain.

In the bidimensional modelization of the wave propagation, we neglect the effects on the wave scattering in
the Z direction. This approximation is mainly due to geometric considerations. The cylindrical holes are
drilled through the entire thickness of the laboratory sample, and they are significantly longer than the
wavelength. The geometry of the sample is designed such that the wave scattering is expected to occur prin-
cipally in the cutting plane (X, Y) (Derode et al., 2001; Tourin et al., 2000).
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5.3. Application of the Numerical Model

Under the assumption of the stability of the sources of the noise, the CWI of stacked Ambient Noise
Cross‐Correlation Functions allows typically to follow the fine‐scale evolution of the medium, mostly visible
in the coda part (e.g., Brenguier, Shapiro, et al., 2008; Brenguier, Campillo, et al., 2008; Campillo & Roux,
2015; Sens‐Schönfelder et al., 2014; Sens‐Schönfelder & Wegler, 2011). However, the interpretation of the
temporal changes highlighted in different frequency bands remains uncertain, as the mechanisms at their
origin are not clearly identified (Sens‐Schönfelder & Wegler, 2006; Yates et al., 2019).

CWI and in particular Ambient Noise Interferometry are highly sensitive monitoring techniques with a
very important potential of applications but are presently lacking precise physical interpretations of the
measured signals. Our approach opens perspectives for new interpretations of these CWI measurements.
Indeed, we identify a clear contribution of the volumetric elastic deformation. We decipher the
dominating effect on wave scattering during the reversible elastic deformation of the sample:
acoustoelastic effects.

The results provided by our analysis have implications for the monitoring of natural geological structures,
such as a fractured reservoir or porous media. The upscaling of the proposed numerical model would provide
new outcomes for the monitoring of geological reservoirs or large‐scale crustal faults. Our results might
therefore provide new perspectives to study the application of Ambient Noise Interferometry to monitor
the reservoir evolution in a variety of operating environments, such as injection and extraction of fluid
(Hillers et al., 2015).

6. Conclusion

We monitor the wave scattering changes within an elastic sample that includes a set of scatterers, during a
uniaxial compression, using a CWI method. We compare results from two approaches. One is based on a
laboratory experiment where a reversible elastic deformation is applied to a homogeneous Au4G sample that
includes a set of cylindrical holes designed to favor multiple scattering. The other is a forward numerical
modeling of the same sample with the same geometry, set of scatterers, mechanical behavior, and under
the same loading conditions. The numerical model allows to focus on the relative signatures (a) of the

Figure 11. Comparison between the trace of the strain tensor computed in Code_Aster within the 2‐D sample and within
the middle plane (Z = 0) in the 3‐D simulation of the elastic deformation of the holed Au4G sample. Black line
represents the median line in the 2‐D and 3‐Dmodels along which the trace of the strain tensor is averaged to quantify the
difference in behaviors.
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sample deformation without intrinsic wave velocity variations, (b) of the local density changes due to local
volumetric strain, and (c) of acoustoelastic effects due to nonlinear elasticity.

Our approach shows the dominant influence of nonlinear acoustoelastic effects on the scattered wavefield
and subsequently on the CWI measurements. When modeling CWI measurements without these acoustoe-
lastic effects, that is, with only the impact of the deformation of the sample boundaries and of scatterers
and/or of the density change related to the volumetric strain, only 7% to 11% of the relative time delays mea-
sured in the laboratory is numerically reproduced. We note however that besides the dominance of the
acoustoelastic effects, the effect of shape changes of the medium, which is a strain effect without any velocity
changes, is not negligible since it explains about 11% of the measured relative time delays. This result high-
lights that the strain effects on the CWImeasurements are not negligible even if they remain small compared
to the acoustoelactic effects. The identification of different contributions to the travel time delays quantified
by CWI is the basis for future theoretical developments.

By comparing the signature on wave scattering of different physical phenomena involved in the reversible
elastic deformation of the sample, our approach opens new perspectives for the interpretation of CWI mea-
surements that could have implications for the monitoring infrastructures or natural geological objects (e.g.,
fractured reservoir and porous medium).
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