NONLINEAR ESTIMATES FOR TRAVELING WAVE SOLUTIONS OF REACTION DIFFUSION EQUATIONS AND THEIR APPLICATIONS TO MATHEMATICAL ECOLOGY

LI-CHANG HUNG*

Department of Mathematics, National Taiwan University Taipei, Taiwan

XIAN LIAO

Institute for Analysis, Karlsruhe Institute for Technology Karlsruhe, Germany

(Communicated by the associate editor name)

ABSTRACT. In this paper we will establish nonlinear a priori lower and upper bounds for the solutions to a large class of equations which arise from the study of traveling wave solutions of reaction-diffusion equations, and we will apply our nonlinear bounds to the Lotka-Volterra system of two competing species as examples. The idea used in a series of papers [2, 3, 4, 5, 6, 7] where the linear N-barrier maximum principle was established will also be used in the proof.

1. Introduction

The present paper is devoted to *nonlinear* a priori upper and lower bounds for the solutions $u_i = u_i(x) : \mathbb{R} \mapsto [0, \infty), i = 1, \dots, n$ to the following boundary value problem of n equations

(1)
$$\begin{cases} d_i(u_i)_{xx} + \theta(u_i)_x + u_i^{l_i} f_i(u_1, u_2, \dots, u_n) = 0, & x \in \mathbb{R}, & i = 1, 2, \dots, n, \\ (u_1, u_2, \dots, u_n)(-\infty) = \mathbf{e}_-, & (u_1, u_2, \dots, u_n)(\infty) = \mathbf{e}_+. \end{cases}$$

In the above, d_i , $l_i > 0$, $\theta \in \mathbb{R}$ are parameters, $f_i \in C^0([0,\infty)^n)$ are given functions and the boundary values $\mathbf{e}_-, \mathbf{e}_+$ take value in the following constant equilibria set

(2)
$$\left\{ (u_1, \dots, u_n) \mid u_i^{l_i} f_i(u_1, \dots, u_n) = 0, \quad u_i \ge 0, \quad \forall i = 1, \dots, n \right\}.$$

Equations (1) arise from the study of traveling waves solutions of reaction-diffusion equations (see [16, 18]). A series of papers [2, 3, 4, 5, 6, 7] by Hung et al. have been contributed to the linear (N-barrier) maximum principle for the n equations (1), and in particular the lower and upper bounds for any linear combination of the solutions

$$\sum_{i=1}^{n} \alpha_i u_i(x), \quad \forall (\alpha_1, \cdots, \alpha_n)$$

have been established in terms of the parameters d_i, l_i, θ in (1).

¹⁹⁹¹ Mathematics Subject Classification. Primary: 35B50; Secondary: 35C07, 35K57. Key words and phrases. Maximum principle, traveling wave solutions, reaction-diffusion equations, Lotka-Volterra.

^{*} Corresponding author.

Here we aim to derive *nonlinear* estimates for the polynomials of the solutions:

$$\prod_{i=1}^{n} (u_i(x) + k_i)^{\alpha_i}, \quad \forall (\alpha_1, \dots, \alpha_n)$$

for some $k_i \geq 0$, which is related to the diversity indices of the species in ecology: $D^q = (\sum_{i=1}^n (u_i)^q)^{1/(1-q)}, \ q \in [1, \infty)$. Observe that when either $\mathbf{e}_+ = (0, \dots, 0)$ or $\mathbf{e}_- = (0, \dots, 0)$, the trivial lower bound of $\prod_{i=1}^n (u_i(x))^{\alpha_i}$ is 0. For $k_i > 0$ the following lower bound for the upper solutions of (1) holds.

Proposition 1 (Lower bound). Suppose that $(u_i(x))_{i=1}^n \in (C^2(\mathbb{R}))^n$ with $u_i(x) \geq 0$, $\forall i = 1, \dots, n$ is an upper solution of (1):

(3)
$$\begin{cases} d_i(u_i)_{xx} + \theta(u_i)_x + u_i^{l_i} f_i(u_1, u_2, \dots, u_n) \le 0, & x \in \mathbb{R}, \quad i = 1, 2, \dots, n, \\ (u_1, u_2, \dots, u_n)(-\infty) = \mathbf{e}_-, & (u_1, u_2, \dots, u_n)(\infty) = \mathbf{e}_+. \end{cases}$$

and that there exist $(\underline{u}_i)_{i=1}^n \in (\mathbb{R}^+)^n$ such that

Then we have for any $(\alpha_i)_{i=1}^n \in (\mathbb{R}^+)^n$,

(5)
$$\prod_{i=1}^{n} (u_i(x) + k_i)^{d_i \alpha_i} \ge e^{\lambda_1}, \quad x \in \mathbb{R},$$

where

(6a)
$$\lambda_1 = \min_{1 \le j \le n} \left(\eta \, d_j + \sum_{i=1, i \ne j}^n \alpha_i (d_i - d_j) \ln k_i \right),$$

(6b)
$$\eta = \min_{1 \le j \le n} \frac{1}{d_j} \left(\lambda_2 - \sum_{i=1, i \ne j}^n \alpha_i (d_i - d_j) \ln k_i \right),$$

(6c)
$$\lambda_2 = \min_{1 \le j \le n} \left(\alpha_j d_j \ln(\underline{u}_j + k_j) + \sum_{i=1, i \ne j}^n \alpha_i d_i \ln k_i \right).$$

Remark 1 (Equal diffusion). When $d_i = d$ for all $i = 1, 2, \dots, n$, then

$$\lambda_1 = \min_{1 \le j \le n} \left(\alpha_j \ln(\underline{u}_j + k_j) + \sum_{i=1, i \ne j}^n \alpha_i \ln k_i \right) d = \lambda_2 = d\eta,$$

and the lower bound (5) becomes

$$\prod_{i=1}^{n} (u_i(x) + k_i)^{\alpha_i} \ge \min_{1 \le j \le n} \left((\underline{u}_j + k_j)^{\alpha_j} \prod_{i \ne j} k_i^{\alpha_i} \right), \quad x \in \mathbb{R}.$$

If furthermore $\alpha_i = \alpha$, $\forall i = 1, \dots, n$, then the inequality of arithmetic and geometric averages yields

$$\sum_{i=1}^{n} (u_i + k_i)^{\alpha} \ge n \left(\prod_{i=1}^{n} (u_i + k_i)^{\alpha} \right)^{\frac{1}{n}} \ge n \min_{1 \le j \le n} \left((\underline{u}_j + k_j)^{\alpha} \prod_{i \ne j} k_i^{\alpha} \right)^{\frac{1}{n}}.$$

On the other hand, we can find a upper bound of $\prod_{i=1}^{n} (u_i(x))^{\alpha_i}$ for the lower solutions of (1).

Proposition 2 (Upper bound). Suppose that $(u_i(x))_{i=1}^n \in (C^2(\mathbb{R}))^n$ with $u_i(x) \geq 0 \ \forall i = 1, \dots, n \ is \ a \ lower solution \ of \ (1)$:

(7)
$$\begin{cases} d_i(u_i)_{xx} + \theta(u_i)_x + u_i^{l_i} f_i(u_1, u_2, \dots, u_n) \ge 0, & x \in \mathbb{R}, \quad i = 1, 2, \dots, n, \\ (u_1, u_2, \dots, u_n)(-\infty) = \mathbf{e}_-, & (u_1, u_2, \dots, u_n)(\infty) = \mathbf{e}_+, \end{cases}$$

and there exist $\bar{u}_i > 0, i = 1, \dots, n$, such that

Then we have for any $m_i \ge 1$ and $\alpha_i > 0$ $(i = 1, 2, \dots, n)$

(9)
$$\sum_{i=1}^{n} \alpha_i(u_i(x))^{m_i} \le \left(\max_{1 \le i \le n} \alpha_i(\bar{u}_i)^{m_i}\right) \frac{\max_{1 \le i \le n} d_i}{\min_{1 \le i \le n} d_i}, \quad x \in \mathbb{R},$$

and hence

(10)
$$\prod_{i=1}^{n} (u_i(x))^{m_i/n} \le \frac{\max_{1 \le i \le n} \alpha_i \, \bar{u}_i^{m_i}}{n \left(\prod_{i=1}^{n} \alpha_i\right)^{1/n} \frac{\max_{1 \le i \le n} d_i}{\min_{1 \le i \le n} d_i}, \quad x \in \mathbb{R}.$$

In particular, when $\alpha_i = \alpha$ for all $i = 1, \dots, n$, (10) becomes

(11)
$$\prod_{i=1}^{n} (u_i(x))^{m_i/n} \le \frac{\max\limits_{1 \le i \le n} \bar{u}_i^{m_i}}{n} \frac{\max\limits_{1 \le i \le n} d_i}{\min\limits_{1 \le i \le n} d_i}, \quad x \in \mathbb{R}.$$

The remainder of this paper is organized as follows. Section 2 is devoted to the proofs of Proposition 1 and Proposition 2. As an example to illustrate our main result, we use the Lotka-Volterra system of two competing species to conclude with Section 2.

2. Proofs of Proposition 1 and Proposition 2

Proof of Proposition 1. We first rewrite the inequality $d_i(u_i)'' + \theta(u_i)' + u_i^{l_i} f_i \leq 0$ in (3). If $u(x) \geq 0$, then for any k > 0, a straightforward calculation gives

$$(\ln(u(x) + k))' = \frac{u'(x)}{u(x) + k},$$
$$(\ln(u(x) + k))'' = \frac{u''(x)}{u(x) + k} - \frac{(u'(x))^2}{(u(x) + k)^2}$$

Hence we divide the inequality by $u_i + k_i > 0$ with $k_i > 0$ to arrive at

$$d_i(\ln(u_i+k_i))'' + d_i \frac{((u_i)')^2}{(u_i+k_i)^2} + \theta \left(\ln(u_i+k_i)\right)' + \frac{u_i^{l_i}}{u_i+k_i} f_i \le 0.$$

Thus $(U_i)_{i=1}^n := (\ln(u_i + k_i))_{i=1}^n$ satisfies the following inequalities:

(12)
$$d_i U_i'' + \theta U_i' + \frac{u_i^{l_i}}{u_i + k_i} f_i \le 0, \quad i = 1, \dots, n.$$

For any $(\alpha_i)_{i=1}^n \in (\mathbb{R}^+)^n$, let

$$p(x) = \sum_{i=1}^{n} \alpha_i U_i, \quad q(x) = \sum_{i=1}^{n} \alpha_i d_i U_i,$$

then the above inequality (12) reads as

(13)
$$q'' + \theta p' + F \le 0, \quad F := \sum_{i=1}^{n} \frac{\alpha_i \, u_i^{l_i}}{u_i + k_i} \, f_i(u_1, \dots, u_n).$$

We are going to derive a lower bound for

$$q = \sum_{i=1}^{n} \alpha_i d_i U_i = \sum_{i=1}^{n} \alpha_i d_i \ln(u_i(x) + k_i),$$

and hence a lower bound for $\prod_{i=1}^{n} (u_i + k_i)^{d_i \alpha_i}$. The idea is similar as in the papers [2, 3, 4, 5, 6, 7], namely we are going to determine three parameters

$$\lambda_1, \quad \eta, \quad \lambda_2$$

to construct an N-barrier consisting of three hypersurfaces

$$Q_1 := \{(u_i)_{i=1}^n \mid q = \lambda_1\}, \quad P := \{(u_i)_{i=1}^n \mid p = \eta\}, \quad Q_2 := \{(u_i)_{i=1}^n \mid q = \lambda_2\},$$
 such that the following inclusion relations hold:

$$Q_1 := \{(u_i)_{i=1}^n \in ([0,\infty))^n \mid q \le \lambda_1\} \subset \mathcal{P} := \{(u_i)_{i=1}^n \in ([0,\infty))^n \mid p \le \eta\}$$

$$\subset Q_2 := \{(u_i)_{i=1}^n \in ([0,\infty))^n \mid q \le \lambda_2\} \subset \mathcal{R} = \{(u_i)_{i=1}^n \in ([0,\infty))^n \mid \sum_{i=1}^n \frac{u_i}{u_i} \le 1\}.$$

It will turn out that if λ_1 , η , and λ_2 are given respectively by (6a), (6b), and (6c), then λ_1 determines a lower bound of q(x): $q(x) \ge \lambda_1$, which is exactly (5).

More precisely, we follow the steps as in [2, 3, 4, 5, 6, 7] to determine λ_2 , η , λ_1 such that the above inclusion relations $\mathcal{Q}_1 \subset \mathcal{P} \subset \mathcal{Q}_2 \subset \mathcal{R}$ hold:

(i) Determine λ_2 The hypersurface Q_2 intersects the u_j -axis: $\{(u_i)_{i=1}^n \mid u_i = 0, \forall i \neq j\}$ at the point

$$\left\{ (u_i)_{i=1}^n \mid u_i = 0, \, \forall i \neq j, \quad u_{2,j} = e^{\frac{\lambda_2 - \sum_{i=1, i \neq j}^n \alpha_i \, d_i \ln k_i}{\alpha_j \, d_j}} - k_j \right\}.$$

If $u_{2,j} \leq \underline{u}_j$, $\forall j = 1, \dots, n$, then by the monotonicity of the function $\ln(\cdot + k)$, $\mathcal{Q}_2 \subset \mathcal{R}$. That is, $\mathcal{Q}_2 \subset \mathcal{R}$ if λ_2 is chosen as in (6c):

$$\lambda_2 = \min_{1 \le j \le n} \left(\alpha_j d_j \ln(u_j + k_j) + \sum_{i=1, i \ne j}^n \alpha_i d_i \ln k_i \right).$$

(ii) **Determine** η As above, the hypersurface P intersects the u_i -axis at

$$\Big\{(u_i)_{i=1}^n \,|\, u_i = 0, \,\forall i \neq j, \quad u_{0,j} = e^{\frac{\eta - \sum_{i=1, i \neq j}^n \alpha_i \, \ln k_i}{\alpha_j}} - k_j\Big\}.$$

If $u_{0,j} \leq u_{2,j}$, $\forall j = 1, \dots, n$, then $\mathcal{P} \subset \mathcal{Q}_2$ and the hypersurface Q_2 is above the hypersurface P. That is, $\mathcal{P} \subset \mathcal{Q}_2$ if η is chosen as in (6b):

$$\eta = \min_{1 \le j \le n} \frac{1}{d_j} \left(\lambda_2 - \sum_{i=1, i \ne j}^n \alpha_i (d_i - d_j) \ln k_i \right).$$

(iii) **Determine** λ_1 Replacing λ_2 by λ_1 in (i), the u_j -intercept of the hypersurface Q_1 is given by $u_{1,j} = e^{\frac{\lambda_1 - \sum_{i=1, i \neq j}^n \alpha_i d_i \ln k_i}{\alpha_j d_j}} - k_j$. Hence if we take λ_1 as in (6a):

$$\lambda_1 = \min_{1 \le j \le n} \left(\eta \, d_j + \sum_{i=1, i \ne j}^n \alpha_i (d_i - d_j) \ln k_i \right),$$

then $u_{1,j} \leq u_{0,j}, \forall j = 1, \dots, n$ and hence $Q_1 \subset \mathcal{P}$.

We now show $q(x) \geq \lambda_1, x \in \mathbb{R}$ by a contradiction argument. Suppose by contradiction that there exists $z \in \mathbb{R}$ such that $q(z) < \lambda_1$. Since $u_i(x) \in C^2(\mathbb{R})$ $(i = 1, \dots, n)$ and $(u_1, u_2, \dots, u_n)(\pm \infty) = \mathbf{e}_{\pm}$, we may assume $\min_{x \in \mathbb{R}} q(x) = q(z)$. We denote respectively by z_2 and z_1 the first points at which the solution trajectory $\{(u_i(x))_{i=1}^n \mid x \in \mathbb{R}\}$ intersects the hypersurface Q_2 when x moves from z towards ∞ and $-\infty$. For the case where $\theta \leq 0$, we integrate (13) with respect to x from z_1 to z and obtain

(14)
$$q'(z) - q'(z_1) + \theta(p(z) - p(z_1)) + \int_{z_1}^{z} F(u_1(x), \dots, u_n(x)) dx \le 0.$$

We also have the following facts from the construction of the hypersurfaces Q_1, Q_2, P :

- q'(z) = 0 because of $\min_{x \in \mathbb{R}} q(x) = q(z)$; $q(z_1) = \lambda_2$ because of $(u_i(z_1))_{i=1}^n \in Q_2$. $q'(z_1) < 0$ because z_1 is the first point for q(x) taking the value λ_2 when xmoves from z to $-\infty$, such that $q(z_1 + \delta) < \lambda_2$ for $z - z_1 > \delta > 0$;
- $p(z) < \eta$ since $(u_i(z))_{i=1}^n$ is below the hypersurface P;
- $p(z_1) > \eta$ since $(u_i(z_1))_{i=1}^n$ is above the hypersurface P; $F(u_1(x), \dots, u_n(x)) = \sum_{i=1}^n \frac{\alpha_i u_i^{l_i}}{u_i + k_i} f_i(u_1, \dots, u_n) \ge 0, \forall x \in [z_1, z]$. Indeed, since $(u_i(z_1))_{i=1}^n \in Q_2 \subset \mathcal{Q}_2 \subset \mathcal{R}$ and $(u_i(z))_{i=1}^n \in \mathcal{Q}_1 \subset \mathcal{R}$, we derive that $F(u_1(x), \dots, u_n(x))|_{x \in [z_1, z]} \ge 0$ by the hypothesis (4).

We hence have the following inequality from the above facts when $\theta < 0$

$$q'(z) - q'(z_1) + \theta(p(z) - p(z_1)) + \int_{z_1}^z F(u_1(x), \dots, u_n(x)) dx > 0,$$

which contradicts (14). Therefore when $\theta \leq 0$, $q(x) \geq \lambda_1$ for $x \in \mathbb{R}$. For the case where $\theta \geq 0$, we simply integrate (13) with respect to x from z to z_2 to arrive at

$$q'(z_2) - q'(z) + \theta(p(z_2) - p(z)) + \int_z^{z_2} F(u_1(x), \dots, u_n(x)) dx \le 0.$$

Then we apply the facts that $q'(z_2) > 0$, q'(z) = 0, $p(z_2) > \eta$, $p(z) < \eta$ and $F(u_1(x), \dots, u_n(x))|_{x \in [z,z_2]} \geq 0$, as well as a similar contradiction argument as above, to derive $q \geq \lambda_1$.

Proof of Proposition 2. We prove Proposition 2 in a similar manner to the proof of Proposition 1. We first rewrite the inequality $d_i(u_i)'' + \theta(u_i)' + u_i^{l_i} f_i \geq 0$ in (7). A straightforward calculation shows

$$(u^m)' = m u^{m-1} u',$$

 $(u^m)'' = m ((m-1) u^{m-2} (u')^2 + u^{m-1} u''(x)).$

Hence we multiply the inequality by $m_i u^{m_i-1}(x)$ to arrive at

$$d_i(u_i^{m_i})'' - d_i m_i(m_i - 1) u_i^{m_i - 2} (u_i')^2 + \theta (u_i^{m_i})' + m_i u_i^{m_i - 1} u_i^{l_i} f_i \ge 0.$$

For notational simplicity, we will adopt the same notations as in the proof of Proposition 1. Since $u_i \geq 0$, $\forall i = 1, \dots, n$, for any $(m_i)_{i=1}^n \in ([1, \infty))^n$, the vector field $(U_i)_{i=1}^n := (u_i^{m_i})_{i=1}^n$ satisfies the following inequalities

(15)
$$d_i U_i'' + \theta U_i' + m_i u_i^{m_i - 1} u_i^{l_i} f_i \ge 0, \quad \forall i = 1, \dots, n.$$

For any $(\alpha_i)_{i=1}^n \in (\mathbb{R}^+)^n$, $p(x) = \sum_{i=1}^n \alpha_i U_i$ and $q(x) = \sum_{i=1}^n \alpha_i d_i U_i$ satisfy

(16)
$$q'' + \theta p' + F \ge 0, \quad F := \sum_{i=1}^{n} \alpha_i m_i u_i^{m_i - 1} u_i^{l_i} f_i(u_1, u_2, \dots, u_n).$$

We are going to show the upper bound $q \leq \lambda_1$ by employing the N-barrier method as in the proof of Proposition 1. That is, we are going to construct the three hyperellipsoids

$$Q_1 := \{(u_i)_{i=1}^n \mid q = \lambda_1\}, \quad P := \{(u_i)_{i=1}^n \mid p = \eta\}, \quad Q_2 := \{(u_i)_{i=1}^n \mid q = \lambda_2\},$$
 such that the following inclusion relations hold:

$$\mathcal{Q}_1 := \{(u_i)_{i=1}^n \in ([0,\infty))^n \mid q \ge \lambda_1\} \supset \mathcal{P} := \{(u_i)_{i=1}^n \in ([0,\infty))^n \mid p \ge \eta\}$$

$$\supset \mathcal{Q}_2 := \{(u_i)_{i=1}^n \in ([0,\infty))^n \mid q \ge \lambda_2\} \supset \bar{\mathcal{R}} = \{(u_i)_{i=1}^n \in ([0,\infty))^n \mid \sum_{i=1}^n \frac{u_i}{\bar{u}_i} \ge 1\},$$

and the upper bound $q \leq \lambda_1$ follows by a contradiction argument. More precisely, we take

(17)
$$\lambda_2 = \max_{1 \le i \le n} \alpha_i \, d_i(\bar{u}_i)^{m_i},$$

such that the u_i -intercept of the hyperellipsoid Q_2

$$u_{2,j} = \left(\frac{\lambda_2}{\alpha_j d_j}\right)^{1/m_i} \ge \bar{u}_j, \quad j = 1, 2, \dots, n.$$

Then we take

(18)
$$\eta = \frac{\lambda_2}{\min\limits_{1 \le i \le n} d_i},$$

such that the u_j -intercept of the hyperellipsoid P

$$u_{0,j} = \left(\frac{\eta}{\alpha_j}\right)^{1/m_i} \ge u_{2,j}, \quad j = 1, 2, \dots, n.$$

Finally we take

(19)
$$\lambda_1 = \eta \max_{1 \le i \le n} d_i$$

such that the u_i -intercept of the hyperellipsoid Q_1

$$u_{1,j} = \left(\frac{\lambda_1}{\alpha_j d_j}\right)^{1/m_i} \ge u_{0,j}, \quad j = 1, 2, \dots, n.$$

Combining (17), (18), and (19), we have

(20)
$$\lambda_1 = \left(\max_{1 \le i \le n} \alpha_i d_i (\bar{u}_i)^{m_i}\right) \frac{\max_{1 \le i \le n} d_i}{\min_{1 \le i \le n} d_i}.$$

We follow exactly the same contradiction argument to prove $q(x) \leq \lambda_1$ for $x \in \mathbb{R}$ as in the proof of Proposition 1, which is omitted here. Since $(\alpha_i)_{i=1}^n \in (\mathbb{R}^+)^n$ is arbitrary, $q(x) = \sum_{i=1}^n \alpha_i d_i(u_i(x))^{m_i} \leq \lambda_1$ implies the upper bound (9). Now we use the inequality of arithmetic and geometric means to obtain

(21)
$$\sum_{i=1}^{n} \alpha_i (u_i(x))^{m_i} \ge n \left(\prod_{i=1}^{n} \alpha_i (u_i(x))^{m_i} \right)^{\frac{1}{n}} \ge n \left(\prod_{i=1}^{n} \alpha_i \right)^{\frac{1}{n}} \prod_{i=1}^{n} (u_i(x))^{\frac{m_i}{n}},$$

which together with (9) yields (10).

The construction of the N-barrier for the case n=2 is illustrated in the following example, which provides an intuitive idea of the construction of the N-barrier in multi-species cases.

To illustrate Proposition 2 for the case n=2, we use the Lotka-Volterra system of two competing species coupled with Dirichlet boundary conditions:

(22)
$$\begin{cases} d_1 u_{xx} + \theta u_x + u (1 - u - a_1 v) = 0, & x \in \mathbb{R}, \\ d_2 v_{xx} + \theta v_x + \lambda v (1 - a_2 u - v) = 0, & x \in \mathbb{R}, \\ (u, v)(-\infty) = \mathbf{e}_i, & (u, v)(+\infty) = \mathbf{e}_j, \end{cases}$$

where a_1 , a_2 , $\lambda > 0$ are constants. In (22), the constant equilibria are $\mathbf{e}_1 = (0,0)$, $\mathbf{e}_2 = (1,0)$, $\mathbf{e}_3 = (0,1)$ and $\mathbf{e}_4 = (u^*,v^*)$, where $(u^*,v^*) = \left(\frac{1-a_1}{1-a_1a_2},\frac{1-a_2}{1-a_1a_2}\right)$ is the intersection of the two straight lines $1-u-a_1v=0$ and $1-a_2u-v=0$ whenever it exists. We call the solution (u(x),v(x)) of (22) an $(\mathbf{e}_i,\mathbf{e}_j)$ -wave.

Tang and Fife ([17]), and Ahmad and Lazer ([1]) established the existence of the $(\mathbf{e}_1, \mathbf{e}_4)$ -waves. Kan-on ([10, 11]), Fei and Carr ([8]), Leung, Hou and Li ([15]), and Leung and Feng ([14]) proved the existence of $(\mathbf{e}_2, \mathbf{e}_3)$ -waves using different approaches. $(\mathbf{e}_2, \mathbf{e}_4)$ -waves were studied for instance, by Kanel and Zhou ([13]), Kanel ([12]), and Hou and Leung ([9]).

For the above-mentioned $(\mathbf{e}_1, \mathbf{e}_4)$ -waves, $(\mathbf{e}_2, \mathbf{e}_3)$ -waves, and $(\mathbf{e}_2, \mathbf{e}_4)$ -waves, we show by Proposition 2 that an upper bound of u(x)v(x) exists for all of these waves (see (24) below). To this end, letting

$$\bar{u} = \max\left(1, \frac{1}{a_2}\right),$$
$$\bar{v} = \max\left(1, \frac{1}{a_1}\right),$$

we see that (8) in Proposition 2 is satisfied. According to (10), letting $\alpha_1 = \alpha_2 = m_1 = m_2 = 1$ leads to

(23)
$$\sqrt{u(x)v(x)} \le \frac{1}{2} \max(\bar{u}, \bar{v}) \frac{\max(d_1, d_2)}{\min(d_1, d_2)}, \quad x \in \mathbb{R}$$

or

(24)
$$u(x)v(x) \le \frac{1}{4} \left(\max(\bar{u}, \bar{v}) \right)^2 \left(\frac{\max(d_1, d_2)}{\min(d_1, d_2)} \right)^2, \quad x \in \mathbb{R}.$$

For the equal diffusion case $d_1 = d_2 = 1$ with the bistable condition $a_1, a_2 > 1$ For the bistable condition $a_1, a_2 > 1$ and the equal diffusion case $d_1 = d_2 = 1$, (24) is simplified to

(25)
$$u(x)v(x) \le \frac{1}{4}, \quad x \in \mathbb{R}.$$

If we further consider the boundary conditions in the $(\mathbf{e}_2, \mathbf{e}_4)$ -waves (also $(\mathbf{e}_3, \mathbf{e}_4)$ -waves) or the $(\mathbf{e}_4, \mathbf{e}_4)$ -waves, the upper bound given by (25) is optimal for the case $a := a_1 = a_2 > 1$ since as $a \to 1^+$, we have

$$(26) (u^*, v^*) = \left(\frac{1 - a_1}{1 - a_1 a_2}, \frac{1 - a_2}{1 - a_1 a_2}\right) = \left(\frac{1}{1 + a}, \frac{1}{1 + a}\right) \to (1/2, 1/2).$$

Acknowledgements. The authors are grateful to the anonymous referees for many helpful comments and valuable suggestions on this paper. L.-C. Hung thanks for the hospitality he received from KIT while visiting KIT.

References

- [1] S. Ahmad and A. C. Lazer, An elementary approach to traveling front solutions to a system of N competition-diffusion equations, Nonlinear Anal., 16 (1991), pp. 893–901.
- [2] C.-C. Chen, T.-Y. Hsiao, and L.-C. Hung, Discrete n-barrier maximum principle for a lattice dynamical system arising in competition models, to appear in Discrete Contin. Dyn. Syst. A.
- [3] C.-C. CHEN AND L.-C. HUNG, A maximum principle for diffusive lotka-volterra systems of two competing species, J. Differential Equations, 261 (2016), pp. 4573–4592.
- [4] ——, Nonexistence of traveling wave solutions, exact and semi-exact traveling wave solutions for diffusive Lotka-Volterra systems of three competing species, Commun. Pure Appl. Anal., 15 (2016), pp. 1451–1469.
- [5] ——, An n-barrier maximum principle for elliptic systems arising from the study of traveling waves in reaction-diffusion systems, Discrete Contin. Dyn. Syst. B, 22 (2017), pp. 1–19.
- [6] C.-C. CHEN, L.-C. HUNG, AND C.-C. LAI, An n-barrier maximum principle for autonomous systems of n species and its application to problems arising from population dynamics, Commun. Pure Appl. Anal., 18 (2019), pp. 33–50.
- [7] C.-C. CHEN, L.-C. HUNG, AND H.-F. LIU, N-barrier maximum principle for degenerate elliptic systems and its application, Discrete Contin. Dyn. Syst. A, 38 (2018), pp. 791–821.
- [8] N. Fei and J. Carr, Existence of travelling waves with their minimal speed for a diffusing Lotka-Volterra system, Nonlinear Anal. Real World Appl., 4 (2003), pp. 503–524.
- [9] X. HOU AND A. W. LEUNG, Traveling wave solutions for a competitive reaction-diffusion system and their asymptotics, Nonlinear Anal. Real World Appl., 9 (2008), pp. 2196–2213.
- [10] Y. Kan-on, Parameter dependence of propagation speed of travelling waves for competitiondiffusion equations, SIAM J. Math. Anal., 26 (1995), pp. 340-363.
- [11] ——, Fisher wave fronts for the Lotka-Volterra competition model with diffusion, Nonlinear Anal., 28 (1997), pp. 145–164.
- [12] J. I. KANEL, On the wave front solution of a competition-diffusion system in population dynamics, Nonlinear Anal., 65 (2006), pp. 301–320.
- [13] J. I. KANEL AND L. ZHOU, Existence of wave front solutions and estimates of wave speed for a competition-diffusion system, Nonlinear Anal., 27 (1996), pp. 579-587.
- [14] A. W. LEUNG, X. HOU, AND W. FENG, Traveling wave solutions for lotka-volterra system re-visited, Discrete & Continuous Dynamical Systems-B, 15 (2011), pp. 171–196.
- [15] A. W. Leung, X. Hou, and Y. Li, Exclusive traveling waves for competitive reaction-diffusion systems and their stabilities, J. Math. Anal. Appl., 338 (2008), pp. 902–924.
- [16] J. D. Murray, Mathematical biology, vol. 19 of Biomathematics, Springer-Verlag, Berlin, second ed., 1993.
- [17] M. TANG AND P. FIFE, Propagating fronts for competing species equations with diffusion, Archive for Rational Mechanics and Analysis, 73 (1980), pp. 69–77.

[18] A. I. VOLPERT, V. A. VOLPERT, AND V. A. VOLPERT, *Traveling wave solutions of parabolic systems*, vol. 140 of Translations of Mathematical Monographs, American Mathematical Society, Providence, RI, 1994. Translated from the Russian manuscript by James F. Heyda.

 $Email~address: \verb|lichang.hung@gmail.com|\\ Email~address: \verb|xian.liao@kit.edu|\\$