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Abstract. In this paper we will establish nonlinear a priori lower and upper

bounds for the solutions to a large class of equations which arise from the study

of traveling wave solutions of reaction-diffusion equations, and we will apply
our nonlinear bounds to the Lotka-Volterra system of two competing species as

examples. The idea used in a series of papers [2, 3, 4, 5, 6, 7] where the linear

N-barrier maximum principle was established will also be used in the proof.

1. Introduction

The present paper is devoted to nonlinear a priori upper and lower bounds for
the solutions ui = ui(x) : R 7→ [0,∞), i = 1, · · · , n to the following boundary value
problem of n equations

(1)

di (ui)xx + θ (ui)x + ulii fi(u1, u2, · · · , un) = 0, x ∈ R, i = 1, 2, · · · , n,

(u1, u2, · · · , un)(−∞) = e−, (u1, u2, · · · , un)(∞) = e+.

In the above, di, li > 0, θ ∈ R are parameters, fi ∈ C0([0,∞)n) are given functions
and the boundary values e−, e+ take value in the following constant equilibria set

(2)
{

(u1, · · · , un)
∣∣∣ ulii fi(u1, · · · , un) = 0, ui ≥ 0, ∀i = 1, · · · , n

}
.

Equations (1) arise from the study of traveling waves solutions of reaction-
diffusion equations (see [16, 18]). A series of papers [2, 3, 4, 5, 6, 7] by Hung
et al. have been contributed to the linear (N-barrier) maximum principle for the n
equations (1), and in particular the lower and upper bounds for any linear combi-
nation of the solutions

n∑
i=1

αi ui(x), ∀(α1, · · · , αn)

have been established in terms of the parameters di, li, θ in (1).
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Here we aim to derive nonlinear estimates for the polynomials of the solutions:
n∏
i=1

(ui(x) + ki)
αi , ∀(α1, · · · , αn)

for some ki ≥ 0, which is related to the diversity indices of the species in ecology:
Dq = (

∑n
i=1(ui)

q)1/(1−q), q ∈ [1,∞). Observe that when either e+ = (0, · · · , 0)

or e− = (0, · · · , 0), the trivial lower bound of

n∏
i=1

(ui(x))αi is 0. For ki > 0 the

following lower bound for the upper solutions of (1) holds.

Proposition 1 (Lower bound). Suppose that (ui(x))ni=1 ∈ (C2(R))n with ui(x) ≥
0, ∀i = 1, · · · , n is an upper solution of (1):

(3)

di(ui)xx + θ(ui)x + ulii fi(u1, u2, · · · , un) ≤ 0, x ∈ R, i = 1, 2, · · · , n,

(u1, u2, · · · , un)(−∞) = e−, (u1, u2, · · · , un)(∞) = e+.

and that there exist (
¯
ui)

n
i=1 ∈ (R+)n such that

(4)
fi(u1, · · · , un) ≥ 0, for all

(u1, · · · , un) ∈ R̄ :=
{

(ui)
n
i=1 ∈ ([0,∞))n |

∑n
i=1

ui

¯
ui ≤ 1

}
.

Then we have for any (αi)
n
i=1 ∈ (R+)n,

(5)

n∏
i=1

(ui(x) + ki)
diαi ≥ eλ1 , x ∈ R,

where

λ1 = min
1≤j≤n

(
η dj +

n∑
i=1,i6=j

αi(di − dj) ln ki

)
,(6a)

η = min
1≤j≤n

1

dj

(
λ2 −

n∑
i=1,i6=j

αi(di − dj) ln ki

)
,(6b)

λ2 = min
1≤j≤n

(
αjdj ln(

¯
uj + kj) +

n∑
i=1,i6=j

αidi ln ki

)
.(6c)

Remark 1 (Equal diffusion). When di = d for all i = 1, 2, · · · , n, then

λ1 = min
1≤j≤n

(
αj ln(

¯
uj + kj) +

n∑
i=1,i6=j

αi ln ki

)
d = λ2 = dη,

and the lower bound (5) becomes

n∏
i=1

(ui(x) + ki)
αi ≥ min

1≤j≤n

(
(
¯
uj + kj)

αj
∏
i 6=j

kαii

)
, x ∈ R.

If furthermore αi = α, ∀i = 1, · · · , n, then the inequality of arithmetic and geomet-
ric averages yields

n∑
i=1

(ui + ki)
α ≥ n

( n∏
i=1

(ui + ki)
α
) 1
n ≥ n min

1≤j≤n

(
(
¯
uj + kj)

α
∏
i 6=j

kαi

) 1
n

.
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On the other hand, we can find a upper bound of

n∏
i=1

(ui(x))αi for the lower

solutions of (1).

Proposition 2 (Upper bound). Suppose that (ui(x))ni=1 ∈ (C2(R))n with ui(x) ≥
0 ∀i = 1, · · · , n is a lower solution of (1):

(7)

di(ui)xx + θ(ui)x + ulii fi(u1, u2, · · · , un) ≥ 0, x ∈ R, i = 1, 2, · · · , n,

(u1, u2, · · · , un)(−∞) = e−, (u1, u2, · · · , un)(∞) = e+,

and there exist ūi > 0, i = 1, · · · , n, such that

(8)
fi(u1, · · · , un) ≤ 0, for all

(u1, · · · , un) ∈ R̄ :=
{

(ui)
n
i=1 ∈ ([0,∞))n |

∑n
i=1

ui
ūi
≥ 1
}
.

Then we have for any mi ≥ 1 and αi > 0 (i = 1, 2, · · · , n)

(9)

n∑
i=1

αi(ui(x))mi ≤
(

max
1≤i≤n

αi(ūi)
mi

) max
1≤i≤n

di

min
1≤i≤n

di
, x ∈ R,

and hence

(10)

n∏
i=1

(ui(x))mi/n ≤
max
1≤i≤n

αi ū
mi
i

n

(
n∏
i=1

αi

)1/n

max
1≤i≤n

di

min
1≤i≤n

di
, x ∈ R.

In particular, when αi = α for all i = 1, · · · , n, (10) becomes

(11)

n∏
i=1

(ui(x))mi/n ≤
max
1≤i≤n

ūmii

n

max
1≤i≤n

di

min
1≤i≤n

di
, x ∈ R.

The remainder of this paper is organized as follows. Section 2 is devoted to the
proofs of Proposition 1 and Proposition 2. As an example to illustrate our main
result, we use the Lotka-Volterra system of two competing species to conclude with
Section 2.

2. Proofs of Proposition 1 and Proposition 2

Proof of Proposition 1. We first rewrite the inequality di(ui)
′′ + θ(ui)

′ + ulii fi ≤ 0
in (3). If u(x) ≥ 0, then for any k > 0, a straightforward calculation gives

(ln(u(x) + k))′ =
u′(x)

u(x) + k
,

(ln(u(x) + k))′′ =
u′′(x)

u(x) + k
− (u′(x))2

(u(x) + k)2
.

Hence we divide the inequality by ui + ki > 0 with ki > 0 to arrive at

di(ln(ui + ki))
′′ + di

((ui)
′)2

(ui + ki)2
+ θ (ln(ui + ki))

′ +
ulii

ui + ki
fi ≤ 0.

Thus (Ui)
n
i=1 := (ln(ui + ki))

n
i=1 satisfies the following inequalities:

diU
′′
i + θ U ′i +

ulii
ui + ki

fi ≤ 0, i = 1, · · · , n.(12)



4 HUNG AND LIAO

For any (αi)
n
i=1 ∈ (R+)n, let

p(x) =

n∑
i=1

αiUi, q(x) =

n∑
i=1

αi diUi,

then the above inequality (12) reads as

(13) q′′ + θp′ + F ≤ 0, F :=

n∑
i=1

αi u
li
i

ui + ki
fi(u1, · · · , un).

We are going to derive a lower bound for

q =

n∑
i=1

αidiUi =

n∑
i=1

αi di ln(ui(x) + ki),

and hence a lower bound for
∏n
i=1(ui + ki)

diαi . The idea is similar as in the papers
[2, 3, 4, 5, 6, 7], namely we are going to determine three parameters

λ1, η, λ2

to construct an N-barrier consisting of three hypersurfaces

Q1 := {(ui)ni=1 | q = λ1}, P := {(ui)ni=1 | p = η}, Q2 := {(ui)ni=1 | q = λ2},

such that the following inclusion relations hold:

Q1 := {(ui)ni=1 ∈ ([0,∞))n | q ≤ λ1} ⊂ P := {(ui)ni=1 ∈ ([0,∞))n | p ≤ η}

⊂ Q2 := {(ui)ni=1 ∈ ([0,∞))n | q ≤ λ2} ⊂ R̄ =
{

(ui)
n
i=1 ∈ ([0,∞))n |

n∑
i=1

ui

¯
ui
≤ 1
}
.

It will turn out that if λ1, η, and λ2 are given respectively by (6a), (6b), and (6c),
then λ1 determines a lower bound of q(x): q(x) ≥ λ1, which is exactly (5).

More precisely, we follow the steps as in [2, 3, 4, 5, 6, 7] to determine λ2, η, λ1
such that the above inclusion relations Q1 ⊂ P ⊂ Q2 ⊂ R̄ hold:

(i) Determine λ2 The hypersurface Q2 intersects the uj-axis: {(ui)ni=1 |ui =
0, ∀i 6= j} at the point{

(ui)
n
i=1 |ui = 0, ∀i 6= j, u2,j = e

λ2−
∑n
i=1,i 6=j αi di ln ki

αj dj − kj
}
.

If u2,j ≤
¯
uj , ∀j = 1, · · · , n, then by the monotonicity of the function ln(·+k),

Q2 ⊂ R̄. That is, Q2 ⊂ R̄ if λ2 is chosen as in (6c):

λ2 = min
1≤j≤n

(
αjdj ln(

¯
uj + kj) +

n∑
i=1,i6=j

αidi ln ki

)
.

(ii) Determine η As above, the hypersurface P intersects the uj-axis at{
(ui)

n
i=1 |ui = 0, ∀i 6= j, u0,j = e

η−
∑n
i=1,i 6=j αi ln ki

αj − kj
}
.

If u0,j ≤ u2,j , ∀j = 1, · · · , n, then P ⊂ Q2 and the hypersurface Q2 is above
the hypersurface P . That is, P ⊂ Q2 if η is chosen as in (6b):

η = min
1≤j≤n

1

dj

(
λ2 −

n∑
i=1,i6=j

αi(di − dj) ln ki

)
.
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(iii) Determine λ1 Replacing λ2 by λ1 in (i), the uj-intercept of the hypersurface

Q1 is given by u1,j = e
λ1−

∑n
i=1,i 6=j αi di ln ki

αj dj −kj . Hence if we take λ1 as in (6a):

λ1 = min
1≤j≤n

(
η dj +

n∑
i=1,i6=j

αi(di − dj) ln ki

)
,

then u1,j ≤ u0,j , ∀j = 1, · · · , n and hence Q1 ⊂ P.

We now show q(x) ≥ λ1, x ∈ R by a contradiction argument. Suppose by
contradiction that there exists z ∈ R such that q(z) < λ1. Since ui(x) ∈ C2(R)
(i = 1, · · · , n) and (u1, u2, · · · , un)(±∞) = e±, we may assume min

x∈R
q(x) = q(z).

We denote respectively by z2 and z1 the first points at which the solution trajectory
{(ui(x))ni=1 |x ∈ R} intersects the hypersurface Q2 when x moves from z towards
∞ and −∞. For the case where θ ≤ 0, we integrate (13) with respect to x from z1
to z and obtain

(14) q′(z)− q′(z1) + θ (p(z)− p(z1)) +

∫ z

z1

F (u1(x), · · · , un(x)) dx ≤ 0.

We also have the following facts from the construction of the hypersurfacesQ1, Q2, P :

• q′(z) = 0 because of min
x∈R

q(x) = q(z);

• q(z1) = λ2 because of (ui(z1))ni=1 ∈ Q2.
• q′(z1) < 0 because z1 is the first point for q(x) taking the value λ2 when x

moves from z to −∞, such that q(z1 + δ) < λ2 for z − z1 > δ > 0;
• p(z) < η since (ui(z))

n
i=1 is below the hypersurface P ;

• p(z1) > η since (ui(z1))ni=1 is above the hypersurface P ;

• F (u1(x), · · · , un(x)) =

n∑
i=1

αi u
li
i

ui + ki
fi(u1, · · · , un) ≥ 0, ∀x ∈ [z1, z]. Indeed,

since (ui(z1))ni=1 ∈ Q2 ⊂ Q2 ⊂ R̄ and (ui(z))
n
i=1 ∈ Q1 ⊂ R̄, we derive that

F (u1(x), · · · , un(x))|x∈[z1,z] ≥ 0 by the hypothesis (4).

We hence have the following inequality from the above facts when θ ≤ 0

q′(z)− q′(z1) + θ (p(z)− p(z1)) +

∫ z

z1

F (u1(x), · · · , un(x)) dx > 0,

which contradicts (14). Therefore when θ ≤ 0, q(x) ≥ λ1 for x ∈ R. For the case
where θ ≥ 0, we simply integrate (13) with respect to x from z to z2 to arrive at

q′(z2)− q′(z) + θ (p(z2)− p(z)) +

∫ z2

z

F (u1(x), · · · , un(x)) dx ≤ 0.

Then we apply the facts that q′(z2) > 0, q′(z) = 0, p(z2) > η, p(z) < η and
F (u1(x), · · · , un(x))|x∈[z,z2] ≥ 0, as well as a similar contradiction argument as
above, to derive q ≥ λ1.

�

Proof of Proposition 2. We prove Proposition 2 in a similar manner to the proof of
Proposition 1. We first rewrite the inequality di(ui)

′′ + θ(ui)
′ + ulii fi ≥ 0 in (7). A

straightforward calculation shows

(um)′ = mum−1u′,

(um)′′ = m
(
(m− 1)um−2(u′)2 + um−1u′′(x)

)
.
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Hence we multiply the inequality by mi u
mi−1(x) to arrive at

di(ui
mi)′′ − dimi(mi − 1)ui

mi−2(ui
′)2 + θ (ui

mi)′ +mi ui
mi−1ulii fi ≥ 0.

For notational simplicity, we will adopt the same notations as in the proof of Propo-
sition 1. Since ui ≥ 0, ∀i = 1, · · · , n, for any (mi)

n
i=1 ∈ ([1,∞))n, the vector field

(Ui)
n
i=1 := (umii )ni=1 satisfies the following inequalities

diU
′′
i + θ U ′i +mi ui

mi−1ulii fi ≥ 0, ∀i = 1, · · · , n.(15)

For any (αi)
n
i=1 ∈ (R+)n, p(x) =

∑n
i=1 αi Ui and q(x) =

∑n
i=1 αi diUi satisfy

(16) q′′ + θ p′ + F ≥ 0, F :=

n∑
i=1

αimi ui
mi−1ulii fi(u1, u2, · · · , un).

We are going to show the upper bound q ≤ λ1 by employing the N-barrier
method as in the proof of Proposition 1. That is, we are going to construct the
three hyperellipsoids

Q1 := {(ui)ni=1 | q = λ1}, P := {(ui)ni=1 | p = η}, Q2 := {(ui)ni=1 | q = λ2},
such that the following inclusion relations hold:

Q1 := {(ui)ni=1 ∈ ([0,∞))n | q ≥ λ1} ⊃ P := {(ui)ni=1 ∈ ([0,∞))n | p ≥ η}

⊃ Q2 := {(ui)ni=1 ∈ ([0,∞))n | q ≥ λ2} ⊃ R̄ =
{

(ui)
n
i=1 ∈ ([0,∞))n |

n∑
i=1

ui
ūi
≥ 1
}
,

and the upper bound q ≤ λ1 follows by a contradiction argument. More precisely,
we take

(17) λ2 = max
1≤i≤n

αi di(ūi)
mi ,

such that the uj-intercept of the hyperellipsoid Q2

u2,j =

(
λ2
αj dj

)1/mi

≥ ūj , j = 1, 2, · · · , n.

Then we take

(18) η =
λ2

min
1≤i≤n

di
,

such that the uj-intercept of the hyperellipsoid P

u0,j =

(
η

αj

)1/mi

≥ u2,j , j = 1, 2, · · · , n.

Finally we take

(19) λ1 = η max
1≤i≤n

di

such that the uj-intercept of the hyperellipsoid Q1

u1,j =

(
λ1
αj dj

)1/mi

≥ u0,j , j = 1, 2, · · · , n.

Combining (17), (18), and (19), we have

(20) λ1 =

(
max
1≤i≤n

αi di(ūi)
mi

) max
1≤i≤n

di

min
1≤i≤n

di
.
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We follow exactly the same contradiction argument to prove q(x) ≤ λ1 for x ∈ R
as in the proof of Proposition 1, which is omitted here. Since (αi)

n
i=1 ∈ (R+)n is

arbitrary, q(x) =

n∑
i=1

αi di(ui(x))mi ≤ λ1 implies the upper bound (9). Now we use

the inequality of arithmetic and geometric means to obtain

n∑
i=1

αi(ui(x))mi ≥ n
( n∏
i=1

αi(ui(x))mi
) 1
n ≥ n

( n∏
i=1

αi

) 1
n

n∏
i=1

(ui(x))
mi
n ,(21)

which together with (9) yields (10).
�

The construction of the N-barrier for the case n = 2 is illustrated in the following
example, which provides an intuitive idea of the construction of the N-barrier in
multi-species cases.

To illustrate Proposition 2 for the case n = 2, we use the Lotka-Volterra system
of two competing species coupled with Dirichlet boundary conditions:

(22)


d1uxx + θ ux + u (1− u− a1 v) = 0, x ∈ R,

d2vxx + θ vx + λ v (1− a2 u− v) = 0, x ∈ R,

(u, v)(−∞) = ei, (u, v)(+∞) = ej ,

where a1, a2, λ > 0 are constants. In (22), the constant equilibria are e1 = (0, 0),

e2 = (1, 0), e3 = (0, 1) and e4 = (u∗, v∗), where (u∗, v∗) =

(
1− a1

1− a1 a2
,

1− a2
1− a1 a2

)
is the intersection of the two straight lines 1 − u − a1 v = 0 and 1 − a2 u − v = 0
whenever it exists. We call the solution (u(x), v(x)) of (22) an (ei, ej)-wave.

Tang and Fife ([17]), and Ahmad and Lazer ([1]) established the existence of
the (e1, e4)-waves. Kan-on ([10, 11]), Fei and Carr ([8]), Leung, Hou and Li ([15]),
and Leung and Feng ([14]) proved the existence of (e2, e3)-waves using different
approaches. (e2, e4)-waves were studied for instance, by Kanel and Zhou ([13]),
Kanel ([12]), and Hou and Leung ([9]).

For the above-mentioned (e1, e4)-waves, (e2, e3)-waves, and (e2, e4)-waves, we
show by Proposition 2 that an upper bound of u(x)v(x) exists for all of these waves
(see (24) below). To this end, letting

ū = max

(
1,

1

a2

)
,

v̄ = max

(
1,

1

a1

)
,

we see that (8) in Proposition 2 is satisfied. According to (10), letting α1 = α2 =
m1 = m2 = 1 leads to

(23)
√
u(x)v(x) ≤ 1

2
max (ū, v̄)

max (d1, d2)

min (d1, d2)
, x ∈ R

or

(24) u(x)v(x) ≤ 1

4
(max (ū, v̄))

2

(
max (d1, d2)

min (d1, d2)

)2

, x ∈ R.
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For the equal diffusion case d1 = d2 = 1 with the bistable condition a1, a2 > 1 For
the bistable condition a1, a2 > 1 and the equal diffusion case d1 = d2 = 1, (24) is
simplified to

(25) u(x)v(x) ≤ 1

4
, x ∈ R.

If we further consider the boundary conditions in the (e2, e4)-waves (also (e3, e4)-
waves) or the (e4, e4)-waves, the upper bound given by (25) is optimal for the case
a := a1 = a2 > 1 since as a→ 1+, we have

(26) (u∗, v∗) =

(
1− a1

1− a1 a2
,

1− a2
1− a1 a2

)
=

(
1

1 + a
,

1

1 + a

)
→ (1/2, 1/2) .
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