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Computation of Electromagnetic Properties of Molecular
Ensembles**
Ivan Fernandez-Corbaton,*[a] Dominik Beutel,[b] Carsten Rockstuhl,[c] Ansgar Pausch,[d] and
Wim Klopper[e]

We outline a methodology for efficiently computing the electro-
magnetic response of molecular ensembles. The methodology
is based on the link that we establish between quantum-
chemical simulations and the transfer matrix (T-matrix) ap-
proach, a common tool in physics and engineering. We
exemplify and analyze the accuracy of the methodology by
using the time-dependent Hartree-Fock theory simulation data
of a single chiral molecule to compute the T-matrix of a cross-
like arrangement of four copies of the molecule, and then
computing the circular dichroism of the cross. The results are in
very good agreement with full quantum-mechanical calcula-
tions on the cross. Importantly, the choice of computing circular
dichroism is arbitrary: Any kind of electromagnetic response of
an object can be computed from its T-matrix. We also show, by
means of another example, how the methodology can be used
to predict experimental measurements on a molecular material

of macroscopic dimensions. This is possible because, once the
T-matrices of the individual components of an ensemble are
known, the electromagnetic response of the ensemble can be
efficiently computed. This holds for arbitrary arrangements of a
large number of molecules, as well as for periodic or aperiodic
molecular arrays. We identify areas of research for further
improving the accuracy of the method, as well as new
fundamental and technological research avenues based on the
use of the T-matrices of molecules and molecular ensembles for
quantifying their degrees of symmetry breaking. We provide
T-matrix-based formulas for computing traditional chiro-optical
properties like (oriented) circular dichroism, and also for
quantifying electromagnetic duality and electromagnetic chir-
ality. The formulas are valid for light-matter interactions of
arbitrarily-high multipolar orders.

1. Introduction

Nanoscience is an interdisciplinary endeavor. The study of
matter, radiation, and their interaction at tiny spatial scales
involves many different fields in physics and chemistry. More-
over, engineering is eventually needed to convert the scientific
advances into technological ones. Each discipline has its own
methods, which complicates cross-talk and hinders progress.
The molecular-based design of discrete objects and bulk
materials for specific electromagnetic functions is a prominent
example of interdisciplinary work where chemistry, physics, and
engineering need to come together. It is also an example of
one of the main challenges in nanotechnology: Scale
heterogeneity.[1] It is hence desirable to develop approaches
that connect methodologies across the different disciplines and
length scales in nano and mesoscopic science and technology.
One of the objectives of such approaches, which can open up
opportunities in computational material science, is to predict
the observable electromagnetic properties of macroscopic func-
tional devices from descriptions at the molecular level.

At the smallest length scales, quantum-mechanical simula-
tion methods based on, for example, time-dependent density
functional theory (TD-DFT), time-dependent Hartree-Fock
theory (TD-HF), or linear-response coupled-cluster theory (LR-
CC) are used in computational chemistry to obtain the electro-
magnetic response of single molecules.[2–5] One limitation of this
kind of simulations is that their computational complexity
renders them impractical when the system size goes beyond
104 atoms.[6,7] In physics and engineering, the transfer matrix (T-

[a] Dr. I. Fernandez-Corbaton
Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), P.O.
Box 3640, 76021 Karlsruhe, Germany
E-mail: ivan.fernandez-corbaton@kit.edu

[b] D. Beutel
Institut für Theoretische Festkörperphysik, Karlsruhe Institute of Technology
(KIT), P.O. Box 6980, 76049 Karlsruhe, Germany

[c] Prof. Dr. C. Rockstuhl
Institut für Theoretische Festkörperphysik, Karlsruhe Institute of Technology
(KIT), P.O. Box 6980, 76049 Karlsruhe, Germany
and
Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), P.O.
Box 3640, 76021 Karlsruhe, Germany

[d] A. Pausch
Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), P.O.
Box 6980, 76049 Karlsruhe, Germany

[e] Prof. Dr. W. Klopper
Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), P.O.
Box 6980, 76049 Karlsruhe, Germany
and
Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), P.O.
Box 3640, 76021 Karlsruhe, Germany

[**] A previous version of this manuscript has been deposited on a preprint
server (arXiv DOI: https://arxiv.org/abs/1804.08085)
Supporting information for this article is available on the WWW under
https://doi.org/10.1002/cphc.202000072

© 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
This is an open access article under the terms of the Creative Commons
Attribution Non-Commercial NoDerivs License, which permits use and dis-
tribution in any medium, provided the original work is properly cited, the
use is non-commercial and no modifications or adaptations are made.

ChemPhysChem
Articles
doi.org/10.1002/cphc.202000072

878ChemPhysChem 2020, 21, 878–887 © 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA

Wiley VCH Donnerstag, 30.04.2020

2009 / 162115 [S. 878/887] 1

http://orcid.org/0000-0003-2834-5572
http://orcid.org/0000-0002-5219-9328
https://doi.org/10.1002/cphc.202000072
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fcphc.202000072&domain=pdf&date_stamp=2020-04-09


1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

matrix) approach[8] is a very common tool for computing the
electromagnetic responses of single and composite objects. The
T-matrix of an object is equivalent to its scattering matrix and
contains all the information about its electromagnetic response.
Any electromagnetic property can be computed from it. Given
the T-matrices of the individual constituents, the joint response
of a composite system like random media, and periodic or
aperiodic arrays, can be computed efficiently (see the refer-
ences in [9, Secs. 2.6 and 2.7]). For example, state-of-the-art
T-matrix codes can handle ensembles of tens of thousands of
individual objects.[10] The computation of the T-matrices of
individual objects requires a basic model for light-matter
interactions. The model is typically the macroscopic Maxwell
equations featuring the constitutive relations: Electric permittiv-
ity, magnetic permeability, etc. The main limitation of this
approach is that at small enough scales, namely below 10 nm
[11,Chap. 6.6], the effective field description implicit in the
constitutive relations ceases to be a good approximation.

In this article, we propose a methodology for efficiently
computing the electromagnetic response of molecular ensem-
bles. The methodology is based on linking quantum-mechanical
molecular simulations to the T-matrix approach. The former
provide the basic model for the latter. Their combination solves
both the scalability issue of molecular simulations and the
failure of macroscopic electromagnetism at the nano and meso
scales. In Sec. 2 we show how to build the T-matrix of a
molecule using the dynamic polarizabilities obtained through
quantum-mechanical molecular simulations. We also derive
formulas to compute the oriented circular dichroism (OCD) and
rotationally averaged circular dichroism (CD) from the T-matrix.
The expressions are not limited to the dipolar approximation:
They are valid for arbitrarily high multipolar orders. These
expressions are hence useful for molecular ensembles whose
sizes prevent the use of the dipolar approximation. In Sec. 3 we
start from single-molecule quantum-mechanical simulations
performed with the Turbomole program package,[12,13] and
apply the proposed methodology by first computing the
T-matrix and then the CD of a cross-like arrangement of four
identical molecules. We compare the results with the full
quantum calculation and find a very good agreement. It must
be noted that the full quantum calculation of the cross pushes
current computational means to their limits, and that somewhat
larger molecular assemblies cannot be fully quantum mechan-
ically analyzed in a fair amount of time. In sharp contrast, the
electromagnetic response of assemblies much larger than the
cross can be efficiently computed with the proposed method-
ology. We put forward a modification of the basic methodology
which improves its accuracy: The quantum-mechanical compu-
tation of the polarizability tensors of a given individual
molecule is done taking into account the electrostatic potential
created by the other molecules in the ensemble. We identify
aggregation effects at the frequencies where the disagreement
between the T-matrix-based calculations and the full quantum-
mechanical reference is larger, which constitutes a topic of
future research. Section 4 contains an example of the use of the
methodology for the prediction of experimental measurements
on a molecular material of macroscopic size: A chiral surface-

anchored metal-organic framework (SURMOF) on a substrate.
Before the conclusion, we discuss in Sec. 5 how some theoret-
ical and technological research avenues related to the quantifi-
cation of symmetry breaking open up once the T-matrices of
molecules and molecular ensembles become available. We also
provide formulas to quantify two properties that have been
recently shown to be fundamentally relevant to chiral inter-
actions: Electromagnetic chirality and electromagnetic duality.

2. Using the T-Matrix Techniques for Molecules

We start by connecting two different settings for describing
light-matter interactions at the molecular level: The electro-
magnetic polarizability tensor and the T-matrix. We assume that
the molecule is immersed in an isotropic and homogeneous
medium, and approximately centered at position r0. The
molecule is illuminated by an incident electromagnetic field,
with which it interacts. A re-radiated (scattered) field results
from the interaction. We restrict the following treatment to
linear light-matter interactions that do not change the
frequency of the incident field. That is, given the decomposition
of the incident field into harmonic components with exp � iwtð Þ

time dependency, each component will only cause the
molecule to generate a scattered field of the same frequency ω.
We allow the electric permittivity ɛ and magnetic permeability
μ of the surrounding medium to be frequency dependent
few; mwg. We also assume that the dimensions of the molecule
are much smaller than any of the wavelengths contained in the
incident field. Under these conditions, there is a very common
setting for modeling the light-matter interaction (see e.g. [14,
Eq. (6)] and [15, Sec. 2]): The scattered fields produced by the
molecule at each frequency ω are due to the radiation of an
electric dipole moment pw and a magnetic dipole moment mw

which are induced in the molecule by the incident electric and
magnetic fields at the point r0 : Ewðr0Þ;Hwðr0Þf g. The effect of
the molecule is then completely characterized by a complex-
valued 6×6 matrix, which we here decompose in its four 3×3
blocks using an obvious naming convention:

pw

mw

" #

¼

aw

pE aw

pH

aw

mE aw

mH

2

4

3

5
Ewðr0Þ

Hwðr0Þ

" #

: (1)

From now on, we choose the origin of the coordinate axes
at r0 so that r0 ¼ ð0; 0; 0Þ. SI units are assumed throughout, and
the exp � iwtð Þ factors are suppressed.

A more general formalism for the study of light-matter
interactions is the T-matrix setting. The T-matrix of an object
relates the incident and scattered fields in the following way.
First, a complete basis for free electromagnetic fields in the
surrounding medium is chosen. The most common choice is
the multipolar fields of well defined parity.[9] This is the most
convenient option for our initial purposes. Each multipolar field
is characterized by its frequency ω, its total angular momentum
squared jðj þ 1Þ with j ¼ 1 (dipole), 2 (quadrupole), …, its
angular momentum along one chosen axis
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m ¼ ½� j; � j þ 1; . . . ; j � 1; j�, its parity or electric/magnetic char-
acter, and, for the T-matrix formalism, its incident or scattered
character. Scattered multipoles are purely outgoing, meet the
radiation condition at infinity, and are singular at the origin,
while incident multipoles do not have singularities, and are of a
mixed incoming and outgoing character. Using this multipolar
basis, each frequency component of the incident electric and
magnetic fields can be written as

EwðrÞ ¼
X1

j¼1

Xj

m¼� j

aw
jmN

w
jmðrÞ þ b

w
jmM

w
jmðrÞ

h i
;

iZwHwðrÞ ¼
X1

j¼1

Xj

m¼� j

bw
jmN

w
jmðrÞ þ a

w
jmM

w
jmðrÞ

h i
;

(2)

where aw

jm; b
w

jm

n o
are complex coefficients, Nw

jmðrÞ are regular

electric multipolar fields, Mw
jmðrÞ are regular magnetic multipolar

fields, Zw ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
mw=ew

p
, and the second line follows from the first

by first using one of Maxwell’s equations to show that
iZwHwðrÞ ¼ r� EwðrÞ=kw, where kw ¼ w

ffiffiffiffiffiffiffiffiffiffi
ewmw
p

, and then using
the properties ([16, Eq. (3.8)]) r�Mw

jmðrÞ ¼ k
wNw

jmðrÞ and
r� Nw

jmðrÞ ¼ k
wMw

jmðrÞ. More explicit expressions for Mw

jmðrÞ and
Nw

jmðrÞ are given in Eq. (S3) of Supp. Inf. I. An expansion similar
to Eq. (2), but featuring outgoing multipoles, holds for the
scattered outgoing fields. We will denote by cw

jm the coefficients
multiplying the scattered electric multipoles and by dw

jm the
coefficients multiplying the magnetic ones. The T-matrix is then
a matrix that relates the coefficients of the incident field with
those of the scattered field:

..

.

cw

jm

..

.

dw
jm

..

.

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

¼ Tw

..

.

aw

jm

..

.

bw
jm

..

.

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

: (3)

Since the integer index j in Eq. (2) ranges from j ¼ 1 to
infinity, the dimensionality of the vectors and matrix in Eq. (3) is
infinite. Nevertheless, for any given object of finite size one can
select a maximum multipolar order jmax beyond which the
interaction of the object with the electromagnetic field can be
neglected. The choice of a jmax makes the dimensions of the
arrays in Eq. (3) finite. For molecules illuminated with propagat-
ing beams of visible or UV light, taking jmax ¼ 1 (dipolar), or at
most jmax ¼ 2 (quadrupolar) should suffice.

In order to connect Eqs. (1) and (3), we now apply to Eq. (3)
the restrictions contained in Eq. (1). We first consider the
restriction that the scattered field is produced by dipole
moments induced in the molecule. For each frequency and
each parity there are three dipolar fields corresponding to j ¼ 1
and m 2 ½� 1; 0; 1�, for a total of 6 fields per frequency.

Consequently, in the T-matrix setting, the fields scattered by
the molecule need to be restricted to belong to the subspace
expanded by these six dipolar fields. Equation (1) also contains
the restriction that the influence of the incident field is
completely determined by its values at the origin. It turn sout
that this also restricts the incident fields to be only dipolar. It is
easy to see from the expressions of Mw

jmðrÞ and Nw

jmðrÞ at
r ¼ ð0; 0; 0Þ (see Supp. Inf. I) that:

Ewð0Þ ¼
X1

m¼� 1

aw
1mN

w
1mð0Þ

" #

;

iZwHwð0Þ ¼
X1

m¼� 1

bw
1mN

w
1mð0Þ

" #

:

(4)

Therefore, we can again write a 6×6 linear relationship, this
time in the T-matrix setting, which we also decompose into 3×
3 blocks:

cw
1� 1

cw

10

cw

11

dw

1� 1

dw
10

dw

11

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

¼

Tw

NN Tw

NM

Tw

MN Tw

MM

2

4

3

5

aw
1� 1

aw

10

aw

11

bw

1� 1

bw
10

bw

11

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

; (5)

where the subscripts in the block labels refer to the multipolar
fields of Eq. (2).

The models in Eqs. (1) and (5) are physically equivalent. We
show in Supp. Inf. I that the one-to-one relationship between
the two 6×6 matrices is:

Tw

NN Tw

NM

Tw

MN Tw

MM

2

4

3

5 ¼
icwZwðkwÞ3

6p

C aw

pE

� �
C� 1 C � iaw

pH=Z
w

� �
C� 1

C iaw

mE=c
w

� �
C� 1 C aw

mH=ðc
wZwÞ

� �
C� 1

2

6
6
4

3

7
7
5;

(6)

where cw ¼ 1=
ffiffiffiffiffiffiffiffiffiffi
ewmw
p

is the frequency-dependent speed of light
in the surrounding medium, and C is the 3×3 unitary change of
basis matrix that goes from the Cartesian to the spherical basis
[see Eq. (S8)]. This change of basis is needed in the most
common case where Eq. (1) is expressed in the Cartesian basis.
That is: pw ¼ ½pw

x ; p
w

y ; p
w

z �, E
w ¼ ½Ew

x ; E
w

y ; E
w

z �, etc. …. On the other
hand, Eq. (5) is an expression related to the spherical basis.

Equation (6) connects the two settings and allows to build
the T-matrix of the molecule to dipolar order using quantum-
chemical molecular simulations to compute the tensors aw

pE , aw

pH,
aw

mE , and aw

mH.
A comment on the sources of inaccuracy of the dipolar

approximation is now pertinent. Theoretically, the only approx-
imation is having neglected quadrupolar and higher order
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terms. In practice, there is at least another source of inaccuracy
in the dipolar terms themselves. As in many other cases, the
dipole moments in molecular simulations are usually computed
using long wavelength approximations of the exact
expressions.[17–19]

The T-matrix setting is very useful for going beyond the
response of single molecules to that of ensembles of molecules
and even to the response of bulk materials. One of the crucial
features of the T-matrix setting is that, given the individual T-
matrices of several objects, the calculation of the T-matrix of an
arbitrary arrangement of them can be performed efficiently.
The technique (see e.g. [20, Sec. 4]) allows to rigorously account
for the inter-particle electromagnetic coupling in the calculation
of the response of the composite object. The key to compute
the inter-particle couplings is the translation theorems of vector
spherical harmonics. They allow to “translate” the multipolar
radiation of one object onto the location of a second object.
The field re-radiated by the second object due to the radiation
from the first one is then computed using the T-matrix of the
second object. After considering all the objects and mutual
interactions, a self-consistent set of equations is obtained
whose solution gives the T-matrix of the ensemble. The main
limitation is that there cannot be currents flowing from one
object to the other. In our context, it means that there cannot
be charges flowing between any two molecules of the
ensemble. This restriction would not be met if there exist
covalent bonds between molecules. Provided that the restric-
tion is met, the T-matrix route to the calculation of the response
of an ensemble of molecules is much more efficient than the
quantum-mechanical simulation of the ensemble. While state-
of-the-art T-matrix codes can handle ensembles of tens of
thousands of individual objects,[10] quantum-mechanical simu-
lations of the same size are unfeasible. It is also noteworthy to
mention that the dipolar approximation taken on each
individual molecule does not preclude the computation of the
T-matrix of the ensemble to any desired multipolar order, only
limited by the available numerical resources. Importantly,
methods based on the T-matrix approach allow to obtain the
response of finite or infinite, periodic or aperiodic 2D and 3D
arrays of molecules from the T-matrices of the individual
molecules (see [21,22] and the references in [20, Sec. 2.6]).
Similarly, the computation of the joint responses of large
numbers of randomly arranged molecules is also possible [20,
Sec. 2.7]. Equation (6) enables the use of all these existing
algorithms for computing the electromagnetic response of large
ensembles of molecules.

When the maximum multipolar order in the T-matrix is large
enough so that the influence of the omitted higher orders can
be neglected, the T-matrix is a complete description of the
electromagnetic response of the object. This means that any
electromagnetic property of the object can be computed from
it: Scattering cross-sections, absorption cross-sections, and so
on. In the examples that we analyze later, we focus on the
calculation of chiro-optical properties of molecular ensembles
using the T-matrix. We now provide T-matrix based formulas for
computing the OCD and the CD of an object. We start with a
change of basis that is very useful for this purpose

Aw
jmþðrÞ¼

Nw

jmðrÞ þMw

jmðrÞ
ffiffiffi
2
p ;

Aw
jm� ðrÞ¼

Nw

jmðrÞ � Mw

jmðrÞ
ffiffiffi
2
p :

(7)

The Aw
jmþðrÞ Aw

jm� ðrÞ
� �

are multipolar fields of well-defined

positive (negative) helicity. That is, spherical waves whose plane
wave decompositions contain a single polarization handedness.
In such multipolar helicity basis, Eq. (3) reads:

..

.

1w

jmþ

..

.

1w

jm�

..

.

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

¼

Tw

þþ
Tw

þ�

Tw

� þ
Tw

� �

2

4

3

5

..

.

mw

jmþ

..

.

mw

jm�

..

.

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

: (8)

Supplementary Inf. III contains the expressions of the
elements in Eq. (8) as a function of elements in Eq. (3).

Given its T-matrix, the absorption aw
�ðv̂Þ of any individual or

composite object upon illumination with a circularly polarized
plane wave with momentum direction v̂ and of either +1 or � 1
helicity, i. e. either left or right handed polarized, can be written
in this formulation (see Supp. Inf. II A) as

aw
þ
ðv̂Þ ¼

�
1
2mw

þ
ðv̂Þy Tw

þþ

y þ Tw

þþ
þ 2Tw

þþ

yTw

þþ
þ 2Tw

� þ

yTw

� þ

� �
mw

þ
ðv̂Þ ¼

mw

þ
ðv̂ÞyAw

þ
mw

þ
ðv̂Þ;

aw
� ðv̂Þ ¼

�
1
2mw

�
ðv̂Þy Tw

� �

y þ Tw

� �
þ 2Tw

� �

yTw

� �
þ 2Tw

þ�

yTw

þ�

� �
mw

�
ðv̂Þ ¼

mw

�
ðv̂ÞyAw

�
mw

�
ðv̂Þ:

(9)

where y denotes conjugate transposition, and the matrices A
�

are implicitly defined. The vectors mw

þ
v̂
� �

and mw

�
v̂
� �

contain

the complex expansion coefficients in the multipolar helicity
basis of a plane wave with momentum aligned along v̂ and
either +1 or � 1 helicity (see Supp. Inf. II A). It is obvious that
the oriented circular dichroism ½OCDwðv̂Þ� of the object is just
aw

þðv̂Þ � a
w

� ðv̂Þ.
With respect to the rotationally averaged CD (CDω), Supp.

Inf. II B contains the proof that:
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CDw ¼ 4pTr Aw

þ
� Aw

�

n o
; (10)

which, in the common units of [liter/mol/cm] reads:

CDw
¼

10NA
lnð10Þ

4p

ðkwÞ2
Tr Aw

þ
� Aw

�

n o
; (11)

where Tr F
n o

denotes the trace of the matrix F, and NA is

Avogadro’s number.

3. Exemplary Application

We now apply the T-matrix techniques to an example based on
a sodium salt of D-camphoric acid, which is a chiral molecule.
We consider a structure that is formed by four individual
molecules arranged as a cross. Figure 1 shows the molecular
structure.

The first objective is to obtain the T-matrix of the cross. It
should be noted that cross-like structures of this particular
molecule can serve as a model for the unit cell of the layers
that compose some chiral SURMOFs.[23] The T-matrix of the cross
is hence the main ingredient for computations of the response
of the SURMOFs. Additionally, the molecular structure in
Figure 1 demonstrates the applicability of our approach while
the size of the system is close to the edge of what can be
computed quantum mechanically as a reference.

The T-matrix of the cross can be obtained in three steps. In
a first step, we compute the single-molecule tensors aw

pE , aw

pH

and aw

mE using damped response theory, also known as complex
polarization propagator theory, at the TD-HF or TD-DFT
level.[24,25] The tensor aw

pE is the damped electric-dipole� electric
dipole linear response function and aw

pH and aw

mE are obtained
from the damped mixed electric-dipole� magnetic dipole linear
response function. We neglect the magnetic-dipole� magnetic
dipole response aw

mH since it is typically much smaller than the

other pieces. We perform these computations in an origin-
independent way[26] at the Hartree� Fock level in the def2-TZVP
basis set[27] of Gaussian atomic orbitals using the Turbomole

program package.[12,13] The origin-independent computation of
the required tensors, described in Ref. [26] was implemented in
the TURBOMOLE program package in the course of the present
work. The linear response functions were obtained using sum-
over-states expressions including the electric and magnetic
transition dipoles (in the length representation) of all 29323
singlet excited TD-HF states of the molecule. The used damping
parameter corresponds to a Lorentzian line shape with full
width at half maximum (FWHM) of 0.5 eV. In a second step, we
use the molecular polarizabilities to build the T-matrix of a
single molecule using Eq. (6). In the third and final step, the T-
matrix of the cross-like arrangement shown in Figure 1 is
obtained using existing algorithms (see e.g. [20]). Following the
customary practice of allowing higher multipolar orders in the
ensemble, we set jmax ¼ 2. In this case, setting jmax ¼ 1 produces
essentially the same results.

As previously discussed, once the T-matrix of the cross is
available we can readily compute any kind of electromagnetic
response. We focus on the average CD of the cross and
investigate the accuracy and limits of the T-matrix-based
computations.

The three lines in Figures 2(a,b) show the result of the
following computations. The dashed black line, labeled “Refer-
ence”, is the CD of the cross computed from 600 excitations
described at the TD-HF/def2-TZVP level, broadened by Lorent-
zians with FWHM of 0.5 eV. This CD is taken as the reference
result. We note the reduced number of excitations with respect
to the number used for the calculation of the polarizabilities of
the individual molecules. This reduction is necessary for
obtaining the reference in a reasonable amount of time. The
red dashed line labeled “Isolated”, and the blue continuous line
labeled “Embedded” are both computed by means of the
already explained three-step procedure. Then, the CD is
computed with Eq. (13). The difference between “Isolated” and
“Embedded” is the initial single-molecule TD-HF simulation. For
the “Isolated” case, the TD-HF simulation is performed for a
single molecule in vacuum. For the “Embedded” case, the TD-
HF simulation is performed for a single molecule embedded in
the electrostatic potential created by the other three molecules
in the cross. The potential was computed from point charges at
the positions of the atomic nuclei of the three other molecules,
whereby the point charges were obtained from a natural
population analysis[28] of the HF calculation on the cross. The
potential affects the molecular orbitals and changes the intrinsic
electromagnetic response of the embedded molecule. Such
kind of deformation of the internal structure of a scatterer is
not addressed within nor accessible by the standard T-matrix
techniques. It should be noted that such deformation is
negligible in compositions of larger objects, like micro-particles,
where T-matrix techniques are typically applied. Figures 2(a,b)
show that, in the case of molecular ensembles, taking into
account the embedding potential produces results that are
visibly closer to the reference simulations. We stress that the
difference between the overall computational complexities of

Figure 1. Cross-like arrangement of four identical D-camphoric acid chiral
molecules about the origin of the coordinate system. The arrangement
displays C4 symmetry and the center of mass of each molecule is 6.778 Å
away from the origin.
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the “Isolated” and the “Embedded” options is negligible: The
TD-HF calculations are far more costly than the calculation of
atomic partial charges[28] needed for the embedding.

Let us discuss the results in more detail. Figure 2(a) shows
that, while the three lines follow the same trends, there are
some differences. The largest discrepancy occurs at the region
around 142 nm, but let us first discuss the rest of the spectrum,
which is shown in Figure2(b). By comparison with the reference,
we see that the “Embedded” option is superior to the “Isolated”
option in terms of matching the positions, shape, and heights
of the reference peaks. The electrostatically “Embedded” single

molecule calculation is seemingly beneficial for the application
of T-matrix techniques in molecular ensembles. We have
verified that the effect of the electrostatic deformations quickly
diminishes as the separation between the four molecules
forming the cross increases.

Let us now go back to the relatively large discrepancy
around 142 nm that is observed for both the “Isolated” and
“Embedded” options. In order to investigate it, we focus on the
relevant part of the spectrum, decrease the Lorentzian FWHM
from 0.5 eV to 0.025 eV, and consider larger separations for the
four molecules in the cross. We consider only the “Embedded”
calculations. Figure 3 shows the CD of the references (dashed
lines) and the T-matrix calculations (solid lines) for the CD of
three crosses featuring different inter-molecular distances.
Namely, the labels “A”, “B”, and “C” correspond to crosses where
the center-of-mass of the molecules is 6.778 Å (as in Figure 1),
8.400 Å and 11.646 Å away from the origin, respectively. We
observe that, as the inter-molecular distance increases: 1) The
difference between the references and the T-matrix calculations
decreases, and 2) The CD spectrum quickly disappears. The
latter is a clear indication that the CD bands at the region
around 142 nm visible in Figure2(a) and Figure3 are due to
aggregation. At short intermolecular distances, the four individ-
ual p! p* excitations on the four carboxyl groups form linear
combinations that transform according to the a, b, and e
irreducible representations of the C4 point group of the cross. In
the cross, the four carboxyl groups are arranged in a manner
that displays axial chirality, and the a and e bands contribute to
the CD spectrum at 143.1 nm and 141.9 nm, respectively (the b
band is dipole forbidden). The bands are due to a purely
aggregation (collective) phenomenon which explains their
quick disappearance at larger intermolecular distances.

Figure 2. Average CD of the cross in Figure 1 as a function of the
wavelength. The “Reference” black dotted lines are obtained from TD-HF
computations on the cross. The dashed red lines and solid blue lines are T-
matrix-based calculations. For the “Isolated” case, the quantum-mechanical
single molecule simulations are performed for a molecule in vacuum. For the
“Embedded” case, the molecule in vacuum is embedded in the electrostatic
potential created by the three other molecules forming the cross. In both
cases, the linear response damping parameter corresponds to a Lorentzian
line shape with full width at half maximum of 0.5 eV. Panels (a) and (b) show
two different spectral ranges. The relatively large discrepancy around
142 nm seen in panel (a) does not appear in panel (b) for a better
comparison of the accuracy of the “Embedded” and “Isolated” options.

Figure 3. Full quantum-mechanical “Reference” and “Embedded” T-matrix
calculations of the average CD of three different crosses. The labels “A”, “B”,
and “C” correspond to crosses where the center-of-mass of the molecules is
6.778 Å (as in Figure 1), 8.400 Å and 11.646 Å away from the origin,
respectively. The linear response damping parameter corresponds to a
Lorentzian line shape with full width at half maximum of 0.025 eV.
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In order to confirm this kind of aggregation phenomenon
and further study the accuracy of our methodology under its
presence, we study a cross built from four acetic acid molecules.
Acetic acid is chosen because it features the same carboxyl
group as D-camphoric acid, but is practically achiral. Achirality
of the individual molecule means that any CD observed in the
cross can be unequivocally attributed to chirality that arises due
to the joint arrangement, and not to the individual molecule.
Moreover, as far as aggregation is concerned, the new cross
should behave in a way similar to the previous one. Figure 4
shows the CD spectrum of a cross built from four acetic acid
molecules. We observe strong CD bands around 142 nm. As we
anticipated, this is very similar to the behavior of the cross of D-
camphoric acid molecules. The spectrum in Figure 4 is basically
due to the joint axial chirality of the cross, which can be
appreciated in Figure 5, where we show natural transition
orbitals of the relevant electronic excitations. We again observe
in Figure 4 that the T-matrix-based CD calculation does not
predict the CD of these aggregation bands as accurately as for
the case of non-aggregation bands shown in Figure 2(b).

Further research is needed to identify the origin of the
discrepancy. Nevertheless, we highlight the ability of the T-
matrix technique to predict the existence of CD bands
emerging due to a purely collective effect, that is, CD bands
that are not present in the individual molecules.

4. Prediction of Experimental Measurements

One of the prominent uses of the methodology that we
introduce is the prediction of experimental electromagnetic
measurements on devices of macroscopic size. As an example,
we choose the computation of the total absorbance and CD of
an idealized chiral SURMOF. The SURMOF model is composed
of 32 planar layers. Each of the planar layers is an infinitely
extended regular array whose unit cell is the molecular cross in
Figure 1. The center-to-center distance between unit cells is
2
ffiffiffi
2
p
� 6:77 Å. The separation between layers is 2 nm. The

64 nm thick slab lies on a substrate with a refractive index equal
to 1.6.

The process of computing the response of the SURMOF
goes as follows. The T-matrix of its unit cell (the cross) is
obtained, as previously discussed, from the T-matrix of a single
(“Embedded”) molecule using Lorentzians with FWHM of 0.5 eV.
Then, the electromagnetic response of a single layer of crosses
can be rigorously and efficiently computed with existing T-
matrix-based algorithms, for example, with the algorithms
described in Ref. [29]. The same framework allows to easily
couple several identical layers stacked on top of each other,
and to also include other kinds of planar layers, like slabs of
homogeneous materials, which are useful for modeling sub-
strates and microscope slides. We refer the reader to Sec. V of
the Supplemental Material in Ref. [30] for details about the in-
house-developed code that we have used.

This approach allows us to predict any kind of electro-
magnetic response of the SURMOF model for any illumination.
As an example, we chose the total absorbance and CD under
plane-wave illumination. That is, the SURMOF is sequentially
illuminated from the air side with two plane-waves of opposite
helicity (polarization handedness). Then, the total transmitted
and reflected powers are measured under each illuminating
handedness (�). In each case, the absorbance is computed as:

A� ¼ Pin � T� � R�; (12)

where Pin is the power of the illumination, assumed to be equal
for the two different helicities, T� is the transmitted power, and
R� the reflected power. We then define the total absorbance
Abs and CD as:

Abs ¼
Aþ þ A�
2Pin ; CD ¼

Aþ � A�
2Pin : (13)

Figure 6 shows the total absorbance and CD for two
different illumination angles: q ¼ 0, i. e. perpendicular to the
plane defined by the SURMOF, and q ¼ 30 degrees. The
spectral shapes of the CD lines in Figure 6 are different from

Figure 4. Average CD of a cross of four acetic acid molecules, with the four
carboxyl groups arranged in exactly the same manner as in Figure 1.
Computed at the TD-HF/def2-TZVP level and broadened with Lorentzians
with FWHM of 0.5 eV.

Figure 5. Natural transition orbitals of the cooperative p! p* excitation
responsible for the CD spectrum in the region around 142 nm. The plotted
isovalue is �0:05 a� 3=20 , where a0 is the Bohr radius. Shown are hole (red/
white) and particle (blue/yellow) natural transition orbitals.
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those in Figure 2(b) because Figure 2(b) shows the rotationally
average CD of the molecular cross, while the crosses composing
the SURMOF have fixed orientations with respect to the
illumination directions. We have verified this statement by
simulating a very sparse single layer of crosses. The unit cell is
the same, but the crosses are now spaced by 60 nm. The shapes
of the CD curves of such single layer case are very similar to the
ones in Figure 6.

It should be noted that the response to any other incident
beam, like a (focused) Gaussian beam, is readily obtained by
decomposing the beam into plane-waves and adding the
respective simulation results. The computation of any other
kind of measurement, like optical rotatory dispersion (ORD), can
also be performed.

5. Quantification of Symmetry Breaking

The availability of T-matrices for molecules and molecular
ensembles allows to quantitatively study their symmetry-break-
ing properties. Given a system and a symmetry, the question of
whether the system is symmetric leads to a binary outcome, a
quantification of How much does the system break the symmetry?
is not possible, and the possible links between symmetry
breaking and observable effects cannot be quantitatively
investigated. Very recently, quantitative symmetry-breaking
measures computed from the T-matrix have been defined.[27,28]

In this section, we explain how such kind of measures open
new quantitative research avenues in fundamental and techno-
logical aspects of molecular ensembles.

Molecular chirality is perhaps the most well-know example
of the symmetry-breaking quantification problem. While the
definition of when an object is chiral is simple enough, it hides
significant problems that arise when attempting to measure
chirality.[33] It has been shown that a scalar measure of chirality

allowing to rank general objects and/or to establish what a
maximally chiral object is in an unambiguous way does not
exist.[34–36] Recently, these problems have been solved by the
definition of the electromagnetic chirality (em-chirality) of an
object,[31] which is based on interaction instead of geometry. It
can be stated in the following way: An electromagnetically chiral
object is one for which all the information obtained from
experiments using a fixed incident helicity cannot be obtained
using the opposite one. The electromagnetic chirality of a given
object has an upper bound. In a monochromatic setting, the
upper bound of the em-chirality of an object is equal to
ffiffiffiffiffiffi
Cw
p

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Tr Twy Tw

n or

, which can be seen as a measure of how

much does the object interact with the electromagnetic field.
The normalized measure of em-chirality is a number between 0
and 1 which can be computed using the singular value
decomposition of the T-matrix blocks in the helicity basis [see
Eq. (8)]:

cw ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sðTw

þþ
Þ

sðTw

� þ
Þ

2

4

3

5 �

sðTw

� �
Þ

sðTw

þ�
Þ

2

4

3

5

�
�
�
�
�
�

�
�
�
�
�
�

2
v
u
u
u
t

ffiffiffiffiffiffi
Cw
p ;

(14)

where sðAÞ denotes the column vector of non-increasingly-
ordered singular values of matrix A. We note that Cw can also
be written as

Cϖ ¼ sðTw

þþ
ÞTsðTw

þþ
Þ þ sðTw

� þ
ÞTsðTw

� þ
Þþ

sðTw

þ�
ÞTsðTw

þ�
Þ þ sðTw

� �
ÞTsðTw

� �
Þ;

(15)

where T denotes transposition, which makes cw in Eq. (14) a
unitless quantity.

It turns out that objects which attain the bound c ¼ 1 are
transparent to all the fields of one helicity. This makes them
ideal for applications like helicity dependent photon routing
(see [31, Figure 4]), among others. Accordingly, achieving
materials with high em-chirality by molecular design and
assembly is of great technological interest.

Furthermore, the measure of electromagnetic chirality
opens up a path to tackle the quantitative understanding of
how the chirality of a composite object builds up from the
chirality of its components and their arrangement. Chirality is
present across different spatial scales that span several orders
of magnitude from high energy physics to biology, but the
mechanisms by which chirality spans across spatial scales are
not clear. As written in a recent review,[37] “how chirality at one
length scale can be translated to asymmetry at a different scale
is largely not well understood”. The impossibility of comparing
the chiralities of two different systems in an unambiguous way
is now solved by the measure of em-chirality, and a quantitative
study of how em-chirality is transmitted across different spatial
scales becomes possible.

Another symmetry that has recently been shown to be
relevant in light-matter interactions, and in particular in chiral
light-matter interactions, is the electromagnetic duality symme-

Figure 6. Absorbance and CD of a 32 layer SURMOF on top of a substrate
under perpendicular (q ¼ 0 deg.), and oblique (q ¼ 30 deg.) illumination.
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try. A system that responds in the same way to electric and
magnetic fields is said to have electromagnetic duality
symmetry, or, for short, to be dual. In much the same way that
a translationally invariant system prevents the coupling of plane
waves with different momenta during the light-matter inter-
action, a dual system prevents the coupling of the two helicity
components of the field, i. e. it preserves (does not mix) the two
polarization handednesses. Among other phenomena,[38] hel-
icity preservation is important in optical activity. Recent work[39]

shows that, given a system and a pair of incident and scattered
plane wave directions, the non-mixing of the two helicities by
the system is a necessary condition for optical rotation. This
condition is in addition to the lack of mirror symmetry across
the plane defined by the incident and scattered direction
vectors. For the particular case of forward transmission through
a random chiral medium like a solution of chiral molecules, the
non-mixing is achieved due to the angular momentum
conservation afforded by the effective cylindrical symmetry of
the random mixture. In sharp contrast, when the measurements
are performed at an angle, the two relevant angular momenta
do not share the same axis, there is mixing of the two helicities,
and the polarization rotation angle depends on the input
polarization.[40] The off-axis behavior is hence qualitatively
different from the forward direction where the rotation angle is
an additive constant independent of the input polarization
angle. For optical activity in general incident and scattered
directions, a dual system is required.[41] The degree with which
the optical rotation angles vary with the input polarization
depends on the amount of mixing between the two helicities.
Equation (2) in Ref. [41] defines a convenient measure of helicity
mixing, i. e. duality breaking. The measure produces a number
between 0 and 1, with 0 corresponding to perfect duality
symmetry. It can be computed as:

6Dw ¼
Tr Tw

þ�

y Tw

þ�

n o
þ Tr Tw

� þ

y Tw

� þ

n o

Tr Twy Tw

n o : (16)

Dual systems are also needed for other technologically
important concepts like zero-backscattering,[42] metamaterials
for transformation optics, Huygens wave-front control, CD
enhancing systems,[30] and maximal em-chirality since, in most
cases, maximal em-chirality implies duality symmetry. Unfortu-
nately, naturally-dual bulk materials do not exist, and their
artificial fashioning has only been achieved at MHz
frequencies.[43,44] The possibility of achieving materials with high
duality ð6D! 0Þ by molecular design and assembly is therefore
of great technological interest as well.

Going back to the cross-like arrangement of four D-
camphoric acid molecules, Figure 7(a) shows the normalized
em-chiralities of an isolated (not electrostatically embedded)
single molecule and of the cross, which are rather low in both
cases. Figure 7(b) shows their duality breaking 6D. The high
values of duality breaking � 0:5 are consistent with objects
whose electric-electric response aw

pE is much larger than the
magnetic-magnetic response aw

mH. Perfect duality symmetry at

the dipolar level is met if and only if [45, Eq. (29)]: aw

pE ¼ ewaw

mH

and aw

pH ¼ � mwaw

mE .
While the results in Figure7 are far from the technologically

desired ones, the examples show the usefulness of the frame-
work put forward in this article for computing symmetry-
breaking measures of molecular ensembles.

6. Conclusions and Outlook

In conclusion, the link between quantum-mechanical simula-
tions and T-matrix techniques makes it now possible to
efficiently compute the electromagnetic response of molecular
ensembles with very large numbers of molecules. The method-
ology can be used to predict the result of experimental
measurements on molecular materials of macroscopic sizes.
This can be applied in the analysis and molecular-based design
of discrete objects and materials for specific electromagnetic
functions. We have shown that the methodology produces

Figure 7. (a) Frequency dependent normalized electromagnetic chirality ðcwÞ

and, (b) duality breaking ð6DwÞ of an isolated (not electrostatically-embedded)
single molecule and the cross-like structure shown in Figure 1. Both
quantities are unitless [see Eqs. (18) and (16)].
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results which are in very good agreement with full quantum-
mechanical results, and identified further research to improve
the accuracy of the predictions. We also envision new
fundamental and technological research avenues related to the
possibility of quantifying symmetry breaking using the
T-matrices of molecules and molecular ensembles.
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