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Abstract

We find that option-implied information such as forward-looking variance, skewness
and the variance risk premium are sensitive to the way the volatility surface is con-
structed. For some state-of-the-art volatility surfaces, the differences are economically
surprisingly large and lead to systematic biases, especially for out-of-the-money put
options. Estimates for risk-neutral variance differ across volatility surfaces by more
than 10% on average, leading to variance risk premium estimates that differ by 60%
on average. The variations are even larger for risk-neutral skewness. To overcome
this problem, we propose a volatility surface that is built with a one-dimensional ker-
nel regression. We assess its statistical accuracy relative to existing state-of-the-art
parametric, semi- and non-parametric volatility surfaces by means of leave-one-out
cross-validation, including the volatility surface of OptionMetrics. Based on 14 years
of end-of-day and intraday S&P 500 and Euro Stoxx 50 option data we conclude that
the proposed one-dimensional kernel regression represents option market information
more accurately than existing approaches of the literature.
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1 Introduction

Many popular option-implied metrics such as risk-neutral variance, skewness and
the variance risk premium are calculated based on an estimate of the option-implied
volatility surface. We document in this paper that the method for constructing the
volatility surface affects these standard option-implied quantities. Our findings hold
more generally for any quantity that is extracted from the aggregation of option prices
along the strike range.

State-of-the-art methodologies such as the semi-parametric spline interpolation' of
Figlewski (2008) or the three-dimensional kernel regression of OptionMetrics (2016)
produce surprisingly large differences in standard option-implied quantities. In our
sample for S&P 500 options (2004—2017), Bakshi et al. (2003) risk-neutral variance for
medium-term maturities, computed with exactly the same procedure, but based on the
volatility surface from the interpolation scheme of Figlewski (2008) or OptionMetrics
(2016), differs in relative terms by more than 10% on average. The 1-month-ahead
variance risk premium varies across both volatility surfaces by a relative margin of
on average 60%. Differences are even more troublesome for risk-neutral skewness,
where we document relative differences in the order of 200% and more.

The key question to ask is which volatility surface represents market information
most accurately? As information is extracted from option prices by means of deter-
ministic manipulations of the observed portions of the volatility surface, it is natural
that it is the most accurate volatility surface that also reprices options most accu-
rately. We therefore perform a detailed empirical investigation to understand which
volatility surface captures market information most accurately. Our test incorporates
the semi-parametric spline interpolation (Figlewski 2008), a three-dimensional non-
parametric kernel regression (OptionMetrics 2016), and the parametric Gram—Charlier
expansion (Beber and Brandt 2006). In addition, we also propose an one-dimensional
non-parametric kernel regression. We compare the statistical accuracy of these four
volatility surfaces by means of leave-one-out cross-validation root mean squared errors
(RMSESs) and mean absolute errors (MAE). Calculating the average integrated squared
second derivative of the respective implied volatility smiles allows us to identify dif-
ferences in smoothness. Our tests expand across two dimensions: (i) options on the
S&P 500 and on the Euro Stoxx 50 and (ii) with an end-of-day and intraday frequency.
The time span of the analysis is 2004-2017 for US data and 2002-2017 for European
data.

Our main findings are as follows: First, the one-dimensional kernel regression
generates the most accurate volatility surface for S&P 500 options by means of the
lowest leave-one-out cross-validation RMSE and MAE. This holds for intraday and
for end-of-day data.

Second, for the end-of-day analysis of S&P 500 options, the spline-based volatility
surface turns out to be the second best, with a RMSE (MAE) that is on average 128%
(91%) higher than the RMSE of the one-dimensional kernel regression surface. The

! The spline interpolation represents an implied volatility smile parametrically. However, there is no explicit
parametric form of the risk-neutral density (RND), that the volatility smile implies. For this reason, we
consider this methodology, and more broadly the class of parametric implied volatility models that do not
allow to pin down the RND parametrically, as semi-parametric.
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three-dimensional kernel regression produces a RMSE that is more than 5 times larger
than the RMSE of the one-dimensional kernel regression and an 11 times higher
MAE. The Gram—Charlier volatility surface produces the largest RMSEs (MAEs),
on average over 9 (23) times larger than the RMSE (MAE) of the best performing
volatility surface. The results for Euro Stoxx 50 options confirm our general findings,
though the one-dimensional kernel regression and the spline interpolation appear to
perform roughly at par here.

Third, state-of-the-art volatility surfaces turn out to be less accurate than the
one-dimensional kernel regression volatility surface because these surfaces do not
accurately capture market information in the thinly traded tails of the volatility surface.
The volatility surface based on spline interpolation shows weakness in capturing the
left tail of short-term options. The three-dimensional kernel regression shows severe
shortcomings in capturing the left tail of short-, medium- and long-term options. The
method of the Gram—Charlier expansion partially captures the at-the-money region of
the volatility smiles well, but shows otherwise shortcomings in capturing the left and
right tail of options across all maturities.

Fourth, for the intraday analysis we find that the most accurate volatility surface
is again the one that is generated by the one-dimensional kernel regression, if data is
very scarce. However, the indication about the most accurate method depends on the
number of trades that are used to construct the implied volatility surface and diverges
between the error measures. While the one-dimensional kernel regression continues to
lead in most set-ups with respect to the RMSE, the spline interpolation quickly shows
lower MAEs than all other methods as the number of trades grows. This finding can be
rationalized by occasional over-fitting in the spline method, which occurs less often
if more trades are available.

Our analysis concludes that option-implied information can differ substantially
across volatility surfaces. The three-dimensional kernel regression of OptionMetrics
(2016) underpredicts option-implied tail risk at the end-of-day data frequency, which
translates into systematic biases in risk-neutral skewness and variance. The Gram—
Charlier expansion is not flexible enough to closely track observed option prices. The
one-dimensional kernel regression appears to produce the most accurate volatility
surface for the end-of-day use-case and if data is very scarce. Yet, using the spline
interpolation might be beneficial if an intermediate amount of implied volatility obser-
vations is available. In that case, the over-fitting tendency in the spline interpolation
is already dampened enough to produce the lowest MAEs, although the performance
spread to the one-dimensional kernel regression is not large.

Our research study adds to the growing empirical finance literature that exploits
option-implied information. By now, this literature is too vast to be reviewed here in
detail. Hence, we cannot give credit to all studies and have to leave out important
contributions. However, we discuss a selection of recent studies and focus on how
these have constructed the option-implied volatility surface.

A large and diverse amount of research studies work with the volatility surface of
OptionMetrics (2016): For example, Buss and Vilkov (2012) estimate option-implied
correlations and CAPM betas and find that higher option-implied betas go along with
higher average returns. Chang et al. (2012) predict a stock’s beta based on Bakshi et al.
(2003) implied volatility and skewness estimates. Martin and Wagner (2019) extract

@ Springer



M. Ulrich, S. Walther

a measure for predicting the risk premium for each stock from its associated implied
volatility surface. Christoffersen et al. (2017) propose a parametric option pricing
model where illiquidity is a driver of the jump intensity of the underlying and can
thus explain time variation in the implied volatility surface. Du and Kapadia (2012)
compare the information content of the VIX and the Bakshi et al. (2003) implied
variance measure and construct a tail risk index from its difference. Hofmann and
Uhrig-Homburg (2018) use the wedge between implied volatility observations and
respective OptionMetrics (2016) estimates to construct a limits of arbitrage measure.

Driessen et al. (2009) compare portfolios of single stock options with options
on the index and find evidence for a substantial option-implied correlation risk pre-
mium. Bollerslev and Todorov (201 1) introduce various risk measures for realized and
expected continuous risk and jump risk under the empirical and risk-neutral probability
measure and find that a significant portion of the equity risk premium is compensa-
tion for jump risk. The option-implied volatility surface in these innovative studies is
constructed based on end-of-day closing prices and based on a version of the spline
interpolation methodology that we use in this paper.

Martin (2017) shows that options contain information about the lower bound of
the underlying’s expected return. Schneider and Trojani (2015) construct tradable
option-implied strategies for higher moments. These studies do not interpolate the
option-implied volatility surface, but work with observed option-implied volatilities.

Wright (2016) adopts the multi-dimensional kernel regression of Ait-Sahalia and
Lo (1998) to construct a monthly option-implied volatility surface of real interest
rates. The author pools all end-of-day volatilities (roughly 25 per day and maturity)
within 1 month to stabilize the procedure and obtain a sufficiently smooth volatility
surface. Swanson (2016) highlights that pooling prevents that study from working at a
higher frequency. Moreover, Swanson (2016) suggests to use the spline methodology
to construct daily option-implied volatility surfaces. As evidence in Bliss and Pani-
girtzoglou (2002) suggests, that method works well for 10 or more option prices per
day and maturity. In order to stay in a non-parametric framework while still obtain-
ing smoothness, Jackwerth and Rubinstein (1996) and Jackwerth (2000) propose a
method that directly fits the volatility surface to observed data by minimizing the
squared fitting error while at the same time maximizing the smoothness of the surface.
Our research study contributes to this discussion, as we formally compare the sta-
tistical accuracy and smoothness of several state-of-the-art volatility surfaces across
different frequencies and different currency zones. For our tests, we select two ker-
nel regression approaches as representatives for the non-parametric class of volatility
surfaces. These methods do not explicitly optimize for smoothness, thus enabling us
to perform a fair evaluation between methods, since neither the kernel regression of
OptionMetrics (2016) nor the spline method of Figlewski (2008) or the Gram—Charlier
expansion features an explicit smoothness treatment. As we document, especially the
one-dimensional kernel regression is still well capable of producing smooth volatility
surfaces.

A large body of the literature studies parametric representations of the implied
volatility surface. An early example is Schonbucher (1999), who assumes a diffusion
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process for the evolution of implied volatility.” He derives restrictions on the parame-
ters to ensure arbitrage-freeness and to prevent the potential model-implied emergence
of bubbles in implied volatility as the maturity decreases. The latter leads to a con-
straint that can essentially serve as a model for the volatility smile at a given maturity.
Based on a two-dimensional diffusion for the forward price of an asset and its volatil-
ity, Hagan et al. (2002) derive a closed-form solution for a parametric volatility smile
in their SABR model. The model is completely specified by four parameters, which
essentially describe the level, skew and curvedness of the volatility smile. However,
as Gatheral (2006) points out, the lack of a mean reversion component in the volatility
diffusion makes it only applicable to short-maturity options. In his SV/ model, Gatheral
(2004) assumes a parametric function for the volatility smile that is similar to the rep-
resentation of Schonbucher (1999), but features an additional parameter to locate the
volatility smile across the strike range. By construction, the SVI model assumes that
the implied volatility smile becomes approximately linear in the tails. This assumption
is not always fulfilled in the data, which has triggered the development of generalized
versions of the SVI model that allow concavity, for example Zhao and Hodges (2013)
or Damghani and Kos (2013). Damghani (2015) further elaborates on this work in
the context of the FX option market. His /VP model features an explicit treatment
of the bid-ask spreads in option prices and allows to incorporate liquiditiy factors.
By adding a maturity interpolation scheme, he is able to capture the whole volatility
surface with a dramatic reduction in parameters that need to be estimated. Figlewski
(2008) follows a different approach: He argues to use a 4th-order smoothing spline
with one knot point at-the-money to model the volatility smile at each maturity sep-
arately. The higher amount of free parameters is accepted to reach a higher accuracy
while still smoothing out noise. In our study, we use the method of Figlewski (2008)
as representative of the class of parametric models of the implied volatility surface.

Survey and methodology papers that are closest to ours are Jackwerth (1999),
Jondeau and Rockinger (2000), Bliss and Panigirtzoglou (2002) and Bahaludin and
Abdullah (2017). Relative to these studies, our empirical assessment covers a much
longer time span (14 years), US and EU equity option markets and distinguishes
between characteristics of the input option data sets.

2 Data

We use data for two of the most actively traded equity option contracts: options on the
S&P 500 and options on the Euro Stoxx 50. The former is traded at the CBOE while
the latter is traded at the Eurex. The S&P 500 and the Euro Stoxx 50 do both stand
for the Blue Chip stocks of their respective currency zone. Both option contracts are
of European exercise style.

Historical data for S&P 500 options come from the CBOE Livevol data shop. We
collect both end-of-day bid-ask prices as well as intraday transaction prices. For the

2 Assuming a diffusion process for implied volatility is different from a diffusion process for the volatility
of the underlying, as in Heston (1993). In the model of Schénbucher (1999), movements in implied volatility
are correlated with movements in the underlying, though explicitly feature components that are independent
of the underlying asset.
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Table 1 Data summary

EOD Trades
S&P 500  Euro Stoxx 50 S&P 500 Euro Stoxx 50

Total number of price observations 9,246,926 6,877,495 43,749,042 16,921,911
Avg number of maturities per day 17.21 16.58 16.96 12.65
Avg number of strikes per maturity 61.27 45.28 16.97 5.93

Avg number of price observa- 157.58 104.22 740.43 356.84
tions per day and maturity

Total number of short-term ATM prices 771,000 73,000 24,627,422 5,866,507
Total number of short-term left tail prices 1,326,413 274,227 4,449,056 1,956,662
Total number of short-term right tail prices 293,823 198,558 1,330,209 903,600
Total number of medium-term ATM prices 1,186,655 293,028 7,348,889 3,148,740
Total number of medium-term left tail prices 3,536,880 1,218,912 3,996,122 3,016,860
Total number of medium-term right tail prices 1,048,097 982,266 1,628,093 1,586,504
Total number of long-term ATM prices 120,389 340,796 100,016 168,532
Total number of long-term left tail prices 656,001 1,768,878 179,571 170,934
Total number of long-term right tail prices 307,668 1,727,830 89,664 103,572

This table provides some aggregated summary statistics of our option panel. ‘EOD’ stands for ‘end-of-day’
(data-rich environment), whereas the ‘Trades’ columns summarize the aggregated data for our intraday
analysis (data-poor environment). Options with a remaining maturity of less than 30 days are considered
short-term, options with 30-365 days to maturity are considered medium-term and longer maturity options
are considered long-term. At-the-money (ATM) options have a moneyness between 0.95 and 1.05. Options
with a moneyness below 0.95 are considered as ’left tail’ and options with a moneyness above 1.05 are
considered as 'right tail’

end-of-day data set, we use the mid price for our calculations, whereas we use actual
trade prices for the intraday data set. The end-of-day data is from January 2004 to
July 2017. The intraday data spans the period January 2004 to October 2017. The data
comes with the matched bid and ask prices of the underlying at the point of time of
the record.

We obtain end-of-day settlement prices and intraday transaction prices for the Euro
Stoxx 50 options and the underlying Euro Stoxx 50 index from the Karlsruher Kapital-
marktdatenbank (KKMDB), which is hosted at the Finance Institute of the Karlsruhe
Institute of Technology. The KKMDB receives its data directly from the Eurex and
Stoxx. The index data comes in 15 second intervals, while the intraday option data
is time stamped at the point of time of the trade. We match the option trade with the
index price directly at or prior to the trade’s time stamp. The end-of-day data spans
January 2002 to September 2017, whereas the intraday data covers the period January
2003 to September 2017. Table 1 summarizes our option data sets in more detail.

For the risk-free rate, we use the US-Dollar and Euro OIS curves from Bloomberg,
which come in discrete maturities between 1 day and 20 years and which we obtain
at the daily frequency. We match each option record with the risk-free rate for its
respective date. We interpolate the OIS rate linearly along the maturity dimension to
match the maturity of the respective option.

We apply a number of filtering steps to ensure that only valid option prices enter the
standardization. We only consider options with a price that fulfills basic no-arbitrage
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considerations. More precisely, we keep a Call option price C,if C > Se™ 9" —Ke™'7,
and a Put option price P, if P > Ke™'" — Se™ 97, with the current price of the
underlying S, a strike of K, maturity of 7 years, the riskfree rate r and the continuous
dividend yield ¢. In addition, as most methods work in implied volatility space, we
remove options, for which the calculation of the Black-Scholes implied volatility did
not converge. Inline with Bliss and Panigirtzoglou (2002), we only keep out-of-the-
money options and recover prices for in-the-money options (where needed) through
put-call parity. The latter is not done for the three-dimensional kernel regression of
OptionMetrics (2016), as that method explicitly works with both Call and Put prices.

Both, the S&P 500 and the Euro Stoxx 50 index, are price indices and are thus quoted
ex-dividends. Filtering the raw option prices and the calculation of implied volatil-
ities for maturity t requires an estimate of the continuous t-period ahead dividend
yield. For each day, we determine the maturity-specific dividend yield as the median
(across strikes) of the put-call parity implied dividend yields, using only options with
the desired maturity. This estimate is used for all quote filters and implied volatility
calculations of a respective day and maturity . More details on the dividend yield
estimation and on matching Call and Put prices for put-call parity can be found in
“Appendix A”.

3 Constructing a volatility surface

We start this section with providing a quick overview on the most common parametric,
semi-parametric and non-parametric approaches for constructing an option-implied
volatility surface.

One popular representative for a parametric approach is the Gram—Charlier expan-
sion. It approximates an unknown density by starting with a Gaussian density
and, similar to a Taylor expansion, iteratively adding higher-order terms to reduce
deviations between the true unknown density and its previous approximation. This
parametric approach captures volatility, skewness and kurtosis of the unknown risk-
neutral density and allows for closed-form prices of Calls and Puts (Backus et al. 2004),
and hence a semi-closed form expression for the option-implied volatility surface. A
detailed explanation of this method can be found in “Appendix B.1”.

Interpolating observed option-implied volatilities with polynomial splines is cer-
tainly the most popular semi-parametric approach for constructing the option-implied
volatility surface. Several variations of the spline interpolation approach exist, mainly
differing in the degree of the spline or in the dimension over which the interpolation
runs (see, for example, Bliss and Panigirtzoglou 2002; Jiang and Tian 2005; Chang
et al. 2012). We follow Figlewski (2008) and Fengler (2009) as their procedure nests
many other approaches of the literature. A detailed description of that method is in
“Appendix B.2”.

An often applied non-parametric approach is the kernel regression. A prominent
volatility surface, that is often used in financial economic research, is the kernel regres-
sion specification of OptionMetrics (2016). That data provider approximates missing
values of the option-implied volatility surface (across strikes and maturity) with a
three-dimensional kernel regression. The corresponding three bandwidth parameters
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are fixed in OptionMetrics (2016). To keep our paper self-contained, we provide in
“Appendix B.3” a detailed description of that non-parametric approach.

We now continue to present our own kernel regression specification, that combines
advantages of the above mentioned methods. First, it is a non-parametric approach,
which ensures flexibility. Second, it is essentially only one-dimensional, which makes
it more robust and less data intensive than existing multi-dimensional kernel regression
approaches. Third, our approach ensures the volatility surface to be arbitrage-free,
borrowing a technique from Fengler (2009). Fourth, conditional on having sufficient
data, our approach takes special care of capturing market information that is hidden
in the thinly traded tails.

3.1 One-dimensional kernel regression with tail extrapolation

We continue here to present in detail our suggested variation of the kernel regression
method that was popularized by Ait-Sahalia and Lo (1998). Ait-Sahalia and Lo (1998)
propose to approximate unobserved option-implied volatilities by the following kernel
regression set-up:

N

6‘(Fj,Kj,‘L'j)=Z

i=1

k(Fj — Fi)k(Kj — K,')k(‘lfj — ‘L'i)
SN k(Fj — F)k(K; — K k(t; — 1)

xo(F;, K, ), (1)

where N is the number of observed option prices that enter the kernel regression as
inputs, o (.) is the observed Black-Scholes implied volatility and & is the interpolated
Black-Scholes implied volatility for a desired tuple of strike K ;, forward price of the
underlying F; and maturity 7;. The kernel function k(x) has a Gaussian shape with
its own bandwidth parameter %, for each dimension, i.e.,

XZ
k(x) = e_(m). (2)

1
2w
We are now going to present refinements that distinguish our approach from the tested
application in Ait-Sahalia and Lo (1998). First, we reduce the input dimension by
one unit, as we combine the underlying forward price with the strike level. More

precisely, we define the observed moneyness measure as m; = % and apply the

kernel regression to m; — m; instead of F; — F; and K; — K;.3 In most cases, this
step can be regarded as a mere technical rescaling of the strike axis, which does not
affect the interpolation accuracy of the technique. In our end-of-day set-up, we only
use the price observations of a single day to construct the respective day’s implied
volatility surface, which all have the same underlying price as they are observed at
the same point of time. Similarly, in the intraday set-ups, we construct the implied
volatility surfaces based on subsequent option trade observations. In the vast majority
of cases, the change in the underlying price between two option trades is very small,

3 Although this adjustment has already been proposed by Ait-Sahalia and Lo (1998), their subsequent
empirical analysis works with K and F, separately.
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such that the underlying forward price can be considered approximately constant for
the employed set of option trade observations.

The second refinement of the Ait-Sahalia and Lo (1998) approach is that we remove
the time to maturity dimension, 7, from the kernel regression. This means that the
kernel regression is purely used to approximate the option-implied volatility surface
in the moneyness dimension.* Mathematically, this means we use the following kernel
weighting for the moneyness dimension:

N*
G(mj, 1) = Z (m]N* i) o m; TZ), mp = —, 4)
o iz k(mj —m;) Fi

where N* denotes the size of the set of observed option prices with maturity ;. We set
the bandwidth parameter for the moneyness dimension by the following rule-of-thumb.
We first compute the average distance between two neighboring strikes

— 1 ,
AK (7)) = W(Kmax(fi) — K" (w)),

where K% (z;) (K™"(t;)) represents the maximum (minimum) observed strike at
maturity 7;. We set the moneyness bandwidth to 4, (7;) = 0.75AK (t;). While the
coefficient of 0.75 may appear ad-hoc, our tests reveal that the results barely change
if it is set at any value within a range of [0.6, 1].

Third, far out-of-the-money options are usually not observed, but very important
ingredients for capturing the tails of the option-implied volatility surface. For the
analysis at the end-of-day frequency, we use a linear extrapolation scheme to increase
the number of "observed’ option-implied volatilities in both tails, before applying the
kernel smoother. The extrapolation works as follows: We start with a set of Black-
Scholes implied volatilities {o;};¢[1,5] for some point of time. We split this set into
subsets {crf}ie[l, n1 with all elements in a subset having the same time to maturity 7.
We assume that the elements of {0} };[1, 5] are sorted ascendingly by their moneyness
n;.

For the left tail extrapolation, we use the first 5 implied volatilities of each sub-
set. The number of 5 observations is a trade-off between stability on the one hand
and including only the most extreme tail observations on the other hand. Unreported
results show that our findings are robust to variations in that considered number of
observations. On these 5 observations, we estimate the following linear regression
using OLS:

of =a+Bmi+e€, € ~iid.

4 If needed, we recommend a linear interpolation along the log maturity axis between two observed matu-
rities:

logt; —log 7

G(mj,tj)=6mj. 1)+ @@mj,ty) —6(mj, 1)), 3)

logt, —log

where 1), (177) represents the next longer (shorter) observed option maturity, relative to the targeted time to
maturity ;.
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Fig. 1 Effect of tail extrapolation on kernel regression. This figure visualizes for a particular day of the
sample, May 22nd, 2012, the effect of the linear tail extrapolation on the option-implied volatility smile
for Euro Stoxx 50 options with 24 days to maturity. The left panel shows the kernel regression without tail
extrapolation, the right panel includes the tail extrapolation. The dots mark observed (and artificial) implied
volatility observations, the line depicts the interpolation

Table 2 Cross-validation errors for refinement steps of the kernel regression

Step S&P 500 Euro Stoxx 50

RMSE MAE RMSE MAE
Initial 0.0479 0.0139 0.1964 0.0518
No maturity dimension 0.0109 0.0023 0.0156 0.0024
Tail extrapolation 0.0091 0.0019 0.0101 0.0021
No-arbitrage enforcement 0.0092 0.0019 0.100 0.0019

This table shows the leave-one-out cross-validation root mean squared error (RMSE) and mean absolute
error (MAE) for our refinements steps of the kernel regression method of Ait-Sahalia and Lo (1998).
All numbers refer to end-of-day data. Initial represents the original method, applied day by day. We first
remove the maturity dimension (No maturity dimension) and then add the linear tail extrapolation in implied
volatility space (Tail extrapolation). Finally, we additionally enforce no-arbitrage on the volatility surface
in the No-arbitrage enforcement step

Starting from the lowest observed moneyness, we proceed in steps of AK (t;) and
calculate the extrapolated implied volatility as 6 (m) = « + S m until reaching a
moneyness of m = 0.4. We proceed similarly for the right tail, using the last 5
observations in {0} };c[1,n5] and extrapolating from the largest observed moneyness
in steps of AK(t;) until a final moneyness of 1.6. We use the union of observed
implied volatilities and thus artificially created implied volatilities as inputs for the
kernel regression. Figure 1 presents the tail extrapolation visually for a sample day
and maturity.

The last refinement that we apply to the Ait-Sahalia and Lo (1998) methodology is
to guarantee that the resulting option-implied volatility surface is consistent with an
arbitrage-free asset market by applying the algorithm of Fengler (2009).

Table 2 displays the performance gains that we achieve with each adjustment of the
Ait-Sahalia and Lo (1998) method. Clearly, dropping the maturity dimension from the
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Short-term Mid-term Long-term
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Fig.2 Unconditional mean of model-free implied volatility by methodology. This figure presents the sample
mean of the Bakshi et al. (2003) model-free implied volatility for S&P 500 options, as a function of maturity
and interpolation methodology, together with 95% confidence intervals. The short-term category refers to
maturities below 30 days, the mid-term category groups maturities between 30 and 365 days, the long-term
category summarizes maturities that are longer than 365 days

kernel regression leads to the strongest improvement, lowering the RMSE by 77% for
the S&P 500 and 92% for the Euro Stoxx 50. Further adding the tail extrapolation leads
to an additional 16% reduction in the RMSE of the S&P 500 implied volatility surface
(minus 35% for the Euro Stoxx 50). Finally, enforcing no-arbitrage does generally not
lead to a higher accuracy of the constructed implied volatility surface. However, as the
error figures are not rising, we can reach an arbitrage-free implied volatility surface
without having to sacrifice accuracy.

4 On the uniqueness of option-implied information

Option-implied risk and return measures, such as forward-looking risk-neutral vari-
ance, skewness or the variance risk premium do have a unique mathematical
representation. Yet, the numerical implementation of such measures does often require
the integration of option prices across the whole strike spectrum, even though only a
subset of these are actually traded in the market. Conditional on a correct volatility sur-
face, Jiang and Tian (2005) show how to implement such an integration numerically.
But in real-life applications the problem is that different state-of-the-art approaches
for constructing the volatility surface in high resolution across the strike dimension do
result in different volatility surfaces. It is the goal of our paper to assess the severity
of these differences for a subset of methodologies and to perform a thorough statis-
tical analysis to identify the methodology that comes closest to the unobserved true
volatility surface.

Figure 2 summarizes the sample mean of the Bakshi et al. (2003) implied volatilities
for S&P 500 options with a remaining maturity of (i) less than 30 days (short-term),
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Fig. 3 Distribution characteristics of model-free implied volatility by methodology. This figure presents
box plots for the estimates of the Bakshi et al. (2003) model-free implied volatility for S&P 500 options,
as a function of maturity and interpolation methodology. The short-term category refers to maturities
below 30days, the mid-term category groups maturities between 30 and 365 days, the long-term category
summarizes maturities that are longer than 365 days. The rectangular boxes mark the quartiles of the implied
model-free volatility distribution. The solid lines outside of the boxes expand to the 5% and 95% percentiles

(i1) 30-365 days (medium-term) and (iii) more than 365 days (long-term), respec-
tively. Each sample mean is based on one of the four volatility surfaces that we have
discussed above. We highlight two insights: First, different volatility surfaces imply
different values for a standard risk measure like Bakshi et al. (2003) implied volatil-
ity. The average medium-term Bakshi et al. (2003) implied volatility has been 21.0%
when using the three-dimensional kernel regression volatility surface and 23.5% when
working with the spline-induced volatility surface. That 12% relative spread is statis-
tically significant and obviously large from an economic point of view. Second, while
the spline interpolation method and the kernel regression methods tend to produce
Bakshi et al. (2003) volatilities that are close to each other for short-term options,
the differences build up for maturities larger than 30 days. Noteworthy, the kernel
regression methods produce average term structures of Bakshi et al. (2003) implied
volatilities that are less steep in the maturity dimension, compared to the other two
interpolation methodologies. This results in comparatively low average medium- and
long-term estimates for Bakshi et al. (2003) implied volatility.

In contrast to the disperse, yet precisely estimated, sample means of the Bakshi
et al. (2003) volatilities, the box plots in Fig. 3 describe the respective full distribution
of an interpolation method’s Bakshi et al. (2003) implied volatility. The distributions
largely overlap for short- and medium-term maturities. For medium-term maturities
and even more strongly for long-term maturities, the downward bias of the kernel
regression methods’ estimates becomes visible, which is even more pronounced in the
right tail of the distribution.

Differences in model-free implied variance estimates induce different variance risk
premium (VRP) estimates. The details of our VRP calculation are summarized in
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Table 3 Average annualized monthly variance risk premium and Sharpe ratio

S&P 500 Euro Stoxx 50

Average VRP Sharpe ratio Average VRP Sharpe ratio
3D kernel regression 0.015 (0.0006) 0.44 0.019 (0.0006) 0.5
1D kernel regression 0.020 (0.0006) 0.54 0.029 (0.0007) 0.68
Spline interpolation 0.024 (0.0008) 0.57 0.028 (0.0007) 0.65
Gram—Charlier expansion 0.016 (0.0010) 0.26 0.024 (0.0007) 0.56

This table shows average annualized 1-month variance risk premia and VRP Sharpe Ratios. Standard errors
are given in parenthesis. The integration scheme and model for the physical variance expectations are the
same for all estimates, such that the only difference is the method for constructing the implied volatility
surface

“Appendix C”. Table 3 summarizes the average annualized VRP for S&P 500 and Euro
Stoxx 50 options for different volatility surfaces, respectively. The average annualized
VRP for S&P 500 (Euro Stoxx 50) options has been estimated to be between 1.5
and 2.4% (1.9% and 2.9%), depending on the volatility surface. In relative terms,
the spline-based volatility surface results on average in a 60% higher S&P 500 VRP
estimate relative to the same estimate for the three-dimensional kernel regression. The
differences between the average VRP estimates are for nearly all pairs of methods
statistically strongly significant. Monthly Sharpe ratios for the VRP range from 0.26
to 0.57 for the S&P 500 and from 0.5 to 0.68 for the Euro Stoxx 50. We highlight that
these economically large differences are a direct result of the choice of the inter- and
extrapolation method that builds the basis for a volatility surface; the input data and
the integration scheme is the same across all methods.

Table 4 states the sample mean of model-free option-implied skewness for matu-
rities between 15 and 91 days. Option-implied skewness is calculated as in Bakshi
et al. (2003) and reported for different sub-samples.> We split the US data set into
a pre-financial-crisis, a crisis and a post-financial-crisis period. We apply the same
cuts for the European data set, but further split the post-financial-crisis period into a
between-crisis-, an euro-crisis-, and a post-euro-crisis period due to the high impact
of the European sovereign debt crisis for European stock markets. The risk-neutral
skewness estimates are nearly all significantly different across different volatility sur-
faces. The estimates with the three-dimensional kernel regression are roughly only
half the size when compared to our proposed one-dimensional kernel regression or
the spline method. Further, the changes in the average risk-neutral skewness between
one sub-period and the next also differ among the volatility surfaces, sometimes even
disagreeing on the sign of the change. For example, risk-neutral skewness estimates
based on a spline interpolation get less negative on average after the Euro Crisis in
Europe, while the estimates based on all other volatility surfaces get more negative.

In summary, information extracted from option markets is supposed to be unique.
But our analysis has documented that this information is sensitive with regard to the
volatility surface that a researcher uses. We have shown that risk-neutral model-free
estimates for variance and skewness differ by a large margin across different state-of-

5 The results do not change qualitatively for different maturity intervals.
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Option-implied information: What's the vol surface got to...

the-art methods. While we have used the Bakshi et al. (2003) moments for explanatory
purpose, our findings hold more generally for any quantity that is extracted from the
aggregation of option prices along the strike range.

5 Assessing the accuracy of a volatility surface

Here, we assess the relative advantages and disadvantages of different state-of-the-
art volatility surfaces. Our previous findings have documented that standard option-
implied measures differ across volatility surfaces. As these measures are deterministic
functions of the volatility surface, it is natural that the most accurate volatility surface
does imply the most accurate option-implied risk measures.

At the same time, accuracy is only one of multiple practical considerations when
constructing an implied volatility surface. It is, for example, well thinkable to accept a
lower accuracy in favor of a more informative representation of the volatility surface.
Especially parametric models can provide such representations. Depending on the
model, single parameters can be interpreted directly and serve as measures that express
the situation at the option market in lower dimension. For example, the parameters of
the SVI model of Gatheral (2004) inform about the level of the implied volatility smile,
its rotation and how wide it is. Parametrization also allows to easily share an implied
volatility surface, as it can be fully reconstructed from the relatively few parameters.
The model for the volatility smile allows to extrapolate beyond observed option prices
in a manner that is consistent with the central part of the modeled volatility smile. No-
arbitrage constraints can be incorporated into the construction of the implied volatility
surface at the parameter estimation phase already (Damghani and Kos 2013; Damghani
2015). These arguments speak in favor of a parametric representation of the implied
volatility surface. However in this study, we explore how accurate different volatility
surfaces capture option market information. The result of our analysis can then serve
as an important input, next to the previously mentioned concerns, for the choice of a
construction method in practice.

One might also be willing to deliberately sacrifice some accuracy in the represen-
tation of the observed implied volatilities in favor of a smoother volatility surface
(Jackwerth 2000; Jackwerth and Rubinstein 1996). This is especially true, if the noise
in the observations is expected to be large enough to not be fully canceled out by the
interpolation and smoothing method. In that case, the constructed volatility surface
would show spikes or bumps, that would decrease its smoothness. On the other hand,
a very smooth volatility surface might plane out important features of the observations
and thus introduce biases.® Therefore, we are going to implement a thorough investi-
gation on the statistical accuracy of popular volatility surfaces and compare them with
respect to their smoothness.

We follow a rich machine learning literature that assesses the accuracy of a model
based on leave-one-out cross-validation (Geisser 1993; Kohavi 1995). The advantage
of this cross-validation approach for our study is that every method that we use to

6 The introduction of biases by very smooth volatility surfaces can easily be seen by the fact that the
smoothest volatility surface is an uncurved plane.
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construct an option-implied volatility surface is evaluated with data that was not used
to construct the surface. This allows us to detect over- and under-fitting.

We evaluate the statistical quality of each volatility surface with end-of-day and
intraday data for S&P 500 and Euro Stoxx 50 options. End-of-day data is characterized
by a rich panel of option prices for different strikes and maturities, that all refer to the
same point of time. We call this to be the data-rich environment. In contrast, intraday
data is characterized by a limited amount of observed trade prices in a given time
interval. We therefore call the intraday application to be a data-poor environment.
The intraday set-up becomes increasingly data-poor as the considered time interval
for pooling trade observations shrinks and thus the time resolution increases.’

The highest possible time resolution of a method is bound by the minimum amount
of option trades that a method requires for constructing the option-implied volatility
surface. Technically, the Gram—Charlier expansion requires only 3 observed option
prices for distinct strikes at the same maturity. Price observations at 3 different strikes
are also the theoretical minimum for capturing the key characteristics level, slope
and curvature of the implied volatility smile. We undertake four independent intraday
analyses, namely relying on 3, 4, 5 and 10 observations per maturity.

For the end-of-day data set, the cross-validation works as follows: Given price
observations of a day, we in turn leave out a single observation and calculate the
methodology-implied estimate for that observation. We repeat this procedure for each
observed option price. The data-poor set-up with 3, 4, 5 and 10 price observations per
maturity is treated similarly: For each new transaction price, we use the corresponding
3,4, 5 or 10 preceding transaction prices with differing strike prices for the same
maturity in order to create an estimate for the next transaction price. This approach is
basically assessing out-of-sample how well a volatility surface predicts future option
prices.

Given a set of N evaluation samples with Black-Scholes implied volatility obser-
vations al.B Sie {1, ..., N}, our primary evaluation measure is the root mean squared
error (RMSE), that arises when comparing the respective method’s Black-Scholes-
implied volatility estimator 61.3 S with the left out observation ol.B S

N
1 BS ~BS
RMSE = | — Z(oi — 6552, 5)

i=1

A detailed discussion of the relationship between the (root) mean squared error as
evaluation criterion and the desire to obtain a smooth volatility surface can be found
in “Appendix D”. By squaring the errors, the RMSE penalizes large deviations of
the constructed volatility surface from the observed implied volatilities more strongly
than small deviations. However, as discussed above, one might be willing to accept
occasional large errors in favor of a smoother volatility surface. This is especially true,
if one expects such large errors to be due to outliers, that are not representative of the

7 End-of-day data does not necessarily create a data-rich environment. For some options, only a handful
of strikes are traded, thus effectively constituting a data-poor environment in end-of-day data. On the other
hand, if the time interval for pooling intraday trade prices becomes large enough, there will likely be enough
observations for distinct strikes to constitute a data-rich environment.
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true unobserved volatility surface. For this reason, we also calculate the mean absolute
error (MAE),

N
1 BS ~BS
MAE = 3" |0 = 65|, ©)

i
i=1

which is less responsive to such occasional large errors and is still comparably low, if
these errors only occur seldom and the remaining fit is good. For both error measures,
we exclude observations with an implied volatility above 10.3

We also compare the end-of-day volatility surfaces with respect to their smoothness
directly. Following Jackwerth (2000), we measure smoothness as the sum of squared
second derivatives of the implied volatility surface along the moneyness dimension.
More precisely, for each day ¢ and maturity t, we consider a moneyness range of

[1—ks /T, 1+ks /T], where s is an estimate for the unconditional annual volatility

. . . . . . . _ 2ksT
of the underlying and & is a fix multiple. We discretize this range in steps of A = =3

and construct the volatility smile {G }?ZS’ +}jef0,1007 for the grid points of that day and
maturity with each method. Our measure for the smoothness of the smile is then
calculated as

99 ~BS ~BS ~BS
O’jfl,t,t - 2(Tj,t,t + Gj+l,t,t
Se=) v : @)
j=1

Finally, we compute the mean of that smoothness measure across all days and
maturities and take the square root for better readability. In that, we exclude the 1% of
the smiles with the highest and the 1% with the lowest smoothness measure to mitigate
the impact of the tails of the distribution of smoothness figures on the mean estimates.

6 Findings

This section summarizes key findings of our empirical assessment of the statistical
quality of different state-of-the-art volatility surfaces. We start with the end-of-day
analysis for S&P 500 and Euro Stoxx 50 options. This section ends with the findings
for the intraday analysis.

6.1 End-of-day: data-rich environment

The aggregated RMSEs for the end-of-day, data-rich, environment are summarized
in Table 5, the respective MAE error figures can be found in Table 9 in “Appendix
E”. For S&P 500 options we find that the volatility surface from the one-dimensional
kernel regression produces the lowest RMSE (0.0092) and MAE (0.0019). The spline
interpolation induced volatility surface ranks second with an overall RMSE (MAE) that

8 In rare cases, observed option prices translate into unreasonably high implied volatilities. Our threshold
of 10 leads to the exclusion of 0.012% or less of the data points, depending on the data set.
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Table 5 End-of-day cross-validation RMSE

Maturity Moneyness 3D kernel 1D kernel Spline Gram—Charlier
regression regression interpola- expansion
tion

(a) S&P 500
All All 578% 100% (0.0092) 228% 927%
Short Center 397% 100% (0.0082) 373% 362%
Short Left 1036% 100% (0.0088) 513% 1643%
Short Right 201% 101% 100% (0.0109)  221%
Medium  Center 235% 131% 210% 100% (0.0084)
Medium  Left 622% 100% (0.0102) 138% 1039%
Medium  Right 192% 100% (0.0059) 110% 232%
Long Center 249% 100% (0.0022) 150% 164%
Long Left 515% 116% 100% (0.0066)  1073%
Long Right 185% 100% (0.0052) 120% 209%

(b) Euro Stoxx 50
All All 1397% 100% (0.0100) 137% 1220%
Short Center 371% 100% (0.0129) 398% 155%
Short Left 1340% 100% (0.0395) 181% 506%
Short Right 3369% 113% 100% (0.0120)  5204%
Medium  Center 125% 100% (0.0010) 460% 328%
Medium  Left 2521% 219% 100% (0.0059)  1892%
Medium  Right 4021% 152% 100% (0.0022)  4337%
Long Center 164% 109% 100% (0.0020)  226%
Long Left 1302% 216% 100% (0.0015)  2268%
Long Right 755% 107% 100% (0.0013)  1169%

This table summarizes the cross-validation RMSE for the data-rich (end-of-day) set-up. The short maturity
section groups options with remaining maturities of less than 30 days, medium maturity refers to aremaining
maturity of 30-365 days and long maturity represents options with a remaining maturity of more than 365
days. The moneyness m = K axis is divided into a left, center and right section, with the cutting lines
being located at 0.95 and 1.05. Error figures are given in percent of the respective best-performing method’s
RMSE for each section of the implied volatility surface. For each section’s best performing method, we
report its RMSE in parenthesis

is 118% (91%) higher. The three-dimensional kernel regression ranks third place, with
an RMSE (MAE) that is roughly 6 (12) times larger, relative to the one-dimensional
kernel regression. The volatility surface of the Gram—Charlier expansion turns out to
be the least accurate, producing a RMSE (MAE) that is more than 9 (23) times larger
than the winning volatility surface.

Looking at the RMSE results for the Euro Stoxx 50 confirms that the volatility
surface that is generated by the one-dimensional kernel regression is the most accurate
one, followed by the spline-based volatility surface, whose overall RMSE is 37%
higher. However, the ranking is reversed with respect to the MAE, where the spline
method performs best and the kernel regression shows a 29% higher error. This reversal
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Table 6 Smoothness of the

volatility surface by method Method S&P 500 Euro Stoxx 50
3D kernel regression 1657 (115) 3315 (213)
1D kernel regression 600 (55) 303 (24)
Spline interpolation 1402 (407) 196 (46)
Gram—Charlier expansion 623 (46) 1096 (73)

This table shows the average smoothness of the constructed implied
volatility surface for each method. For each day and maturity, we
sum up the squared second derivative along the moneyness dimen-
sion, aggregate across all days and maturities by taking the mean and
report the root of this figure. The second derivative is calculated for a
moneyness interval between — 3 and 3 times the unconditional volatil-
ity of the underlying, de-annualized to the respective maturity. Due
to the existence of rare outliers, we remove the 1% largest and small-
est single smoothness values from the calculation. Standard errors are
given in parenthesis

is the result of a downward bias of the one-dimensional kernel regression in deep out-
of-the-money medium-term options with a moneyness below 0.5. If these options were
to be excluded from the error calculation, the one-dimensional kernel regression and
the spline method would produce basically the same MAE for Euro Stoxx 50 data.
Finally, the three-dimensional kernel regression and the Gram—Charlier expansion
produce RMSEs (MAESs) that are 14 (25) and 12 (24) times higher, respectively.

We now continue to report the RMSE for different regions of the option-implied
volatility surface. We split the option-implied volatility surface along the maturity
and moneyness dimension. Options with a maturity of less than 30 calendar days are
considered short-term, options with a maturity between 30 and 365 calendar days are
considered medium-term, while options with a maturity of more than 1 year are called
long-term. Along the moneyness axis, we label a moneyness of 0.95 to 1.05 as at-the-
money (ATM), whereas the ‘left tail” (‘right tail’) is characterized by a moneyness of
below (above) 0.95 (1.05). In combination, these splits yield nine different regions of
the option-implied volatility surface, for which we calculate the RMSE and MAE of
each method.

Looking at panels (a) and (b) of Tables 5 and 9 highlights that across all volatility
surfaces, short-term options and left tail options produce the highest errors. For the
S&P 500, the one-dimensional kernel regression performs best in most sections of the
implied volatility surface with respect to the RMSE and in all sections with respect
to the MAE. Spline interpolation tends to outperform the one-dimensional kernel
regression for medium- and long-term options for the Euro Stoxx 50, though, which is
more pronounced in the RMSE results than in the MAE results. The three-dimensional
kernel regression and the Gram-Charlier expansion do both show severe difficulties in
capturing the left and the right tail of the surface. The problem of the Gram—Charlier
volatility surface is that the parametric risk-neutral density approximation turns out
to be insufficient for capturing market information in the tails. We identify that the
relative weakness of the three-dimensional kernel regression is that it only considers
options with a delta of 0.2-0.8, which ignores market information about the tails.
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We proceed by comparing the smoothness of the volatility surfaces. Table 6 displays
our smoothness measures, as defined in Eq. 7. A smooth volatility surface has low
second derivatives and thus a low smoothness measure. Conversely, a high smoothness
measure is an indicator for a more curved volatility surface. The volatility surface
of the three-dimensional kernel regression is the least smooth in our tests. On the
other end, the one-dimensional kernel regression appears to be smoother than most of
the alternatives. For the spline interpolation, there is an interesting divergence in the
smoothness measure between its comparably rough S&P 500 volatility surface and its
very smooth Euro Stoxx 50 surface. This goes hand in hand with the low errors of the
spline interpolation in constructing the Euro Stoxx 50 surface. It seems like the spline
interpolation is not able to cancel out all noise in the S&P 500 data, which produces
a more curved volatility surface and higher fitting errors. At the same time, a smooth
volatility surface does not necessarily imply low errors, as can be seen from the S&P
500 results for the Gram—Charlier expansion. That method might produce a smooth
volatility surface, though it does not accurately reflect the information in observed
option prices.

In short summary, the cross-validation of the data-rich environment recommends
to use a volatility surface that was constructed based on the one-dimensional kernel
regression. The spline interpolation is a good alternative for Euro Stoxx 50 data, though
appears to not be able to cancel out all noise in the S&P 500 data. The volatility
surface of the Gram—Charlier expansion should only be applied if one is interested
in option-implied information from the at-the-money region and should be avoided
when inferring conclusions about the tails. The three-dimensional kernel regression
produces RMSE:s that, relative to the one-dimensional kernel regression, are roughly
6 times larger for S&P 500 options and roughly 14 times larger for Euro Stoxx 50
options.

6.2 Intraday: data-poor environment

Here, we summarize key findings for the intraday analysis. We start with the highest
time resolution (3 trades), followed by interpolations based on 4, 5 and 10 trades for
distinct strikes.

The findings from Table 7 (see Table 10 in “Appendix E” for MAE results) high-
light that the one-dimensional kernel regression produces the most accurate overall
volatility surface. The three-dimensional kernel regression is the second most accurate
surface, though the performance differential is not as large as for the end-of-day set-up.
In our sample, we find that the spline-based volatility surface suffers from frequent
outliers, which increases the RMSE enormously. This is not surprising, because the
spline interpolation is prone to over-fitting when it is applied to very few observations.
Figure 4 visualizes the potential problem of over-fitting when constructing the spline-
based volatility surface with 5 or less data points. As the MAE is less responsive to
occasional large errors, which are a result of over-fitting, the spline interpolation per-
forms better with respect to the MAE than with respect to the RMSE. It even shows a
slightly lower MAE than the one-dimensional kernel regression for the Euro Stoxx 50
intraday set-up with 3 trades. The volatility surface of the Gram—Charlier expansion

@ Springer



Option-implied information: What's the vol surface got to...

Table 7 Intraday cross-validation RMSE

Maturity ~ Moneyness 3D kernel regression 1D kernel regression ~ Spline interpo- Gram-—

lation Charlier
expansion)
(a) S&P 500

All All 116% 100% (0.0705) 381% 127%
Short Center 140% 100% (0.0371) 437% 174%
Short Left 105% 100% (0.1445) 346% 106%
Short Right 100% (0.05) 141% 264% 245%
Medium Center 120% 100% (0.0315) 421% 165%
Medium Left 110% 100% (0.0878) 471% 121%
Medium Right 100% (0.0459) 111% 244% 195%
Long Center 128% 100% (0.046) 301% 225

Long Left 130% 100% (0.0747) 459% 139%
Long Right 130% 100% (0.0635) 324% 228%

(b) Euro Stoxx 50

All All 111% 100% (0.0492) 290% 152%
Short Center 145% 100% (0.0246) 166% 192%
Short Left 102% 100% (0.0838) 195% 109%
Short Right 100% (0.0438) 109% 146% 181%
Medium Center 126% 100% (0.0306) 296% 228%
Medium Left 108% 100% (0.0614) 423% 142%
Medium Right 107% 100% (0.0458) 212% 203%
Long Center 158% 100% (0.0425) 441% 308%
Long Left 131% 100% (0.064) 617% 152%
Long Right 126% 100% (0.0682) 275% 236%

This table summarizes the out-of-sample RMSE for the data-poor (intraday) set-up. The short maturity
section groups options with remaining maturities of less than 30 days, medium maturity refers to aremaining
maturity of 30-365 days and long maturity represents options with a remaining maturity of more than 365
days. The moneyness m = K axis is divided into a left, center and right section, with the cutting lines
being located at 0.95 and 1.05. Evaluations are performed based on 3 prior trades on different strikes and
the same maturity. Error figures are given in percent of the respective best-performing method’s RMSE
for each section of the implied volatility surface. For each section’s best performing method, we report its
RMSE in parenthesis

ranks always in the back, though with a much smaller error differential than in the end-
of-day set-up. There does not appear to occur any over-fitting in the Gram—Charlier
expansion, however in all of our tests, the general fit seems to be worse than for the
kernel regression methods.

Comparing different sections of the implied volatility surface reveals that it is
primarily the moneyness axis, and more precisely the left tail of shorter-term options
that causes problems to all volatility surfaces. The volatility surface from the one-
dimensional kernel regression generally copes best with these difficulties. With respect
to both error measures, the volatility surface of the one-dimensional kernel regression
implies the highest statistical accuracy across most regions of the volatility surface.
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Fig.4 Sample for over-fitting in the spline interpolation. This figure visualizes the severity of the over-fitting
in the spline interpolation methodology for a particular data point of the Euro Stoxx 50 sample, namely
30-day options on May 16th, 2012 (01:35 p.m.). The dots with a moneyness between 1.0 and 1.2 represent
the 5 previous trade observations based on which the spline interpolation constructs the spline, which is
depicted by the solid line. The dot with a moneyness around 0.6 marks the next trade observation

Relatively speaking, that volatility surface is especially precise for longer maturity
options and for left tail options of all maturities.

We now report the main findings for the intraday analysis that builds the volatility
surface with 4, 5 and 10 price observations per maturity, respectively. Table 8 sum-
marizes the results. As one would expect, adding more observations as input for the
interpolations, improves the statistical accuracy for all methods. Clearly, the spline-
based volatility surface benefits most, since the higher amount of observations reduces
the tendency of over-fitting. Its RMSE differential towards the best method is falling
rapidly as the volatility surface is based on more price observations. With the decreas-
ing occurrence of over-fitting, spline interpolation quickly becomes the leading method
with respect to the MAE and even outperforms the other approaches with respect to
the RMSE in Euro Stoxx 50 options, when using 10 trades for the volatility surface.
We conclude that the spline interpolation is a good alternative for the one-dimensional
kernel regression in intraday set-ups, if an intermediate amount of price obervations
is used and if the occasional occurrence of an over-fitted volatility smile is acceptable.

7 Conclusion

Our paper makes two contributions to the literature. First, we are the first to document
that option-implied information, such as well-known forward-looking measures for
variance, skewness and the variance risk premium, are sensitive to the choice of the
underlying volatility surface. These findings hold more generally for any quantity that
is extracted from the aggregation of option prices along the strike range.

Second, we implement a thorough statistical assessment of the accuracy of com-
mon parametric, semi-parametric and non-parametric approaches that the literature
has entertained for constructing volatility surfaces at the end-of-day and intraday
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Table 8 Intraday cross-validation errors for varying amount of trades used

Interpolation base 3D kernel 1D kernel Spline Gram—Charlier
regression regression interpolation expansion
(a) S&P 500
RMSE
3 trades 116% 100% (0.0705) 381% 127%
4 trades 120% 100% (0.0624) 257% 132%
5 trades 126% 100% (0.0565) 196% 139%
10 trades 149% 100% (0.0421) 119% 166%
MAE
3 trades 123% 100% (0.0309) 139% 137%
4 trades 134% 101% 100% (0.025) 150%
5 trades 169% 116% 100% (0.0184) 189%
10 trades 216% 115% 100% (0.0113) 266%
(b) Euro Stoxx 50
RMSE
3 trades 111 100% (0.0492) 290% 152%
4 trades 120 100% (0.0435) 158% 167%
S trades 128 100% (0.0399) 115% 182%
10 trades 198 123% 100% (0.026) 275%
MAE
3 trades 108% 101% 100% (0.0199) 139%
4 trades 160% 133% 100% (0.0127) 210%
5 trades 181% 140% 100% (0.0107) 249%
10 trades 197% 117% 100% (0.0093) 293%

This table presents the out-of-sample RMSE and MAE for the implied volatility surfaces by amount of
trades used in the construction. Error figures are given in percent of the lowest respective error for each
amount of trades. The lowest error for each measure and amount of trades is given in parenthesis.

frequency. The methods under consideration are the Gram—Charlier expansion, the
spline interpolation of Figlewski (2008), the three-dimensional kernel regression of
OptionMetrics (2016) and the one-dimensional kernel regression with a linear tail
extrapolation for the end-of-day setting. We have recorded the root mean squared error
(RMSE) and mean absolute error (MAE) based on a leave-one-out cross-validation
for each method and have compared the smoothness of the constructed end-of-day
volatility surfaces directly. The test assets are S&P 500 and Euro Stoxx 50 options at
the daily and intraday frequency over the past 14 years.

The result of our analysis is that the volatility surface that is constructed with the
one-dimensional kernel regression is generally the most accurate one for end-of-day
and intraday options on the S&P 500 and the Euro Stoxx 50. We recommend to use
that volatility surface for extracting option-implied information at the daily and high-
resolution intraday frequency. However, if an intermediate amount of observations
is available, spline interpolation might be a preferable alternative, despite the occa-
sional occurrence of over-fitting. The parametric Gram—Charlier volatility surface is
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in many cases too restrictive to approximate the true risk-neutral distribution and
thus the true volatility surface accurately. The three-dimensional kernel regression
of OptionMetrics (2016) performs comparatively well in the intraday analysis, but
shows shortcomings in capturing the left tail of the option-implied volatility surface,
especially at the end-of-day frequency.
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Appendix A: Calculation of dividend yield estimates

We make use of the put-call parity to obtain daily model-free estimates of the dividend
yield for an option’s underlying. More precisely, let C be the Call price and P be the
Put price of 2 options with maturity T on the same underlying with spot price S and
forward price F. Both options have the same strike K. Let the risk-free rate be r and
the dividend yield be g. Following Hull (2018), we can express the put-call parity in
the following equation:

C—P=e¢""(F-K)=e1"S—¢ 'K

Solving this equation for the dividend yield ¢ yields
1 —rT
q = —[log(S) —log(C — P +e ""K)]
T

In order to estimate the dividend yield with this equation, one needs to find a Put
and a Call price with the same strike and maturity at the same point of time. In our
end-of-day data set, settlement or bid/ask prices for (nearly) all strikes and maturities
of both Puts and Calls are available. As all settlement prices refer to the same point
of time, the price of the underlying coincides for all price quotes. For each pair of
options at a specific date, strike and maturity, we calculate the implied dividend yield
and take the median over the strike range to arrive at a single estimate of the dividend
yield per date and maturity.

The situation is more complex for intraday transaction data, since reported trades
do not occur simultaneously. For this reason, there will always be a time differential
when matching a Put and a Call with the same strike and maturity for calculating the
dividend yield via the put-call parity. However, the time differential might be large
enough for the price of the underlying to change significantly. In that case, the put-
call parity does not hold any more, even if the dividend yield remains constant. When
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matching Put and Call prices in the intraday set-up, we therefore impose the constraints
that the price quotes are from the same day and that the price of the underlying has
changed less than 0.01%. If multiple pairs of a Put and a Call fulfill these constraints,
we choose the ones with the smallest time differentials. This may result in multiple
Put-Call pairs for the same strike and maturity on a single day. Again, we take the
median over the strike range to arrive at a single dividend yield estimate per date and
maturity.

Appendix B: Volatility surfaces

Let {O; s}ie(1,..., N1, be a panel of option prices with N being the number of observed
option prices at time 7. S; denotes the spot price of the option’s underlying and F; the
corresponding forward price of the underlying with the same maturity as the option. As
all methodologies apply per point of time, we will drop the time index to save notation.
Furthermore, each option price O; is associated with a strike K;, a remaining time to
maturity t;, an option delta A; and an indicator /;, which is 1 for Call options and 0
for Put options. In the following subsections, we may identify an option as a function
of its parameters, e.g., O; = O(K;, 1, ;).

B.1 Gram-Charlier expansion

The Gram—Charlier expansion applies a fourth-order approximation of the risk-neutral
density dp? (x, 7). Mathematically, this means

Y 93¢ Yar 0% 5
3 ﬁ(x)+4—!m(x)+H.O.T.(x ), Vx,t,  (8)

dp(x, 1) = ¢(x) —

where ¢ (x) is the Gaussian density function with volatility o, evaluated at the point
x; y1,r and y» ; are maturity-specific free parameters that account for the degree of
skewness and excess kurtosis in d pQ (x,7),and H.O.T. stands for higher order error
terms.

We follow Beber and Brandt (2006) and fit the free parameters (o¢, ¥1,¢, ¥2,z) by
minimizing the squared pricing errors between observed option prices and Backus
et al. (2004) implied option prices, i.e.,

N . 2
min 3 (O(Ki @i, 1) = O(Ki. i, 13 00, 11,0, 7)) ©)

0, Y1,t:Y2,t ©

where the Backus et al. (2004) implied Call price coincides with

C(K,T500, 710, v20) =€ " (Fp(d) — Kp(d — 07))
+ Fe "¢ (d)o, [%(m —d)

2,
~2ra- 42 +3do, — 303)]
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g In(F/K)+a2/2

Ot

Put prices can then be obtained via the put-call parity.

We follow the approach of Jondeau and Rockinger (2000) and fit the three free
parameters separately for each observed maturity . We then feed Backus et al. (2004)
implied option prices to the Black-Scholes formula to recover the full option-implied
volatility surface.

B.2 Spline interpolation and extrapolation

We follow Figlewski (2008) and Fengler (2009) as their procedure nests many other
approaches of the literature. Their variation consists of 4 steps: (i) data pre-processing,
(ii) spline interpolation, (iii) tail extrapolation and (iv) data post-processing. We now
sketch each step in more detail.

The pre-processing of the observed ATM option-implied volatilities addresses a
well-known practical problem of the data: Most approaches construct the option-
implied volatility surface with only out-of-the-money (OTM) options. They do so,
because OTM options are especially liquid and hence, their prices are especially infor-
mative about the current market environment. However, the switch from OTM Puts
to OTM Calls at a moneyness of m = 1 results in many occasions in a small jump in
implied volatility, as ATM Puts often imply a slightly different volatility than ATM
Calls. This volatility jump may deteriorate the quality of the fitted spline and may even
lead to inconsistent smoothed prices, which in the end induces arbitrage.

The pre-processing step mitigates this problem, by considering—separately for
each maturity—a small region around the ATM level, which contains options that
fulfill 0.98 < m; < 1.02. Let Kj;g; be the highest and Kj,,, be the lowest traded
strike within that moneyness region. By linearly combining the observed Put- and Call-
implied volatilities, we smooth the hard volatility jump in the region of ATM options
and replace the observed option-implied volatilities with their smoothed counterparts
(Figlewski 2008):

o*(Ki) = wopu(K;i) + (1 —w)ocai(K;), (10)
— hish 7 7y € [0.98F;, 1.02 F]. (11)
Khigh — Kiow

opu (K;)and oy (K;) are the observed Put- and Call-implied volatilities in the ATM
region 0.98 < m; < 1.02, whereas o *(K;) is the smoothed option-implied volatility
for the strike level K;.

With regard to the second step, we consider each maturity separately and fit a spline
to the observed (and pre-processed) option-implied volatilities. Figlewski (2008) pro-
poses to use a 4th order polynomial with one knot at a moneyness of m = 1. Using
a 4th order polynomial guarantees a continuous 3rd derivative of the spline, which
translates into a smooth RND without any edges. In addition, it is not too restrictive
on the shape of the implied volatility curve, while still smoothing out market noise.
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If enough option observations to determine all parameters of the spline are available,
we use this setting for interpolating the moneyness range. In settings where we do not
have a sufficient amount of option-implied volatility data available, we simply drop
the knot point and reduce the polynomial’s order, thus effectively reducing the number
of parameters.

The third step concerns the approximation of the RND tails. Depending on the
degree of moneyness of the traded options, it might occur that these do not reach far
enough into the tails of the RND, which would make it difficult to recover these tails.
We follow Figlewski (2008) and fit a generalized extreme value density (GEV) to
both tails of the interpolated risk-neutral density and extrapolate option prices based
on that GEV density. Said differently, we first convert interpolated option-implied
volatilities back to Call option prices C(K;, t;) via the Black-Scholes formula and
numerically approximate the second derivative of the interpolated Call prices along
the strike dimension. This provides us with an estimate for the central part of the RND,
ie.,

C(Kjy1, 1) —2C(K;, 14 C(Ki_1, 1
dpQ(Ki,‘L'l’)%e‘rTi (Kit+1, ) (Ki, i) + C(Ki-1 Tl). (12)
(Ki+1 — Ki)(Ki — Ki—1)

We fit the GEV distribution to both ends of the supported RND interval as described
in Figlewski (2008).

The fourth step of the interpolation method follows the algorithm of Fengler (2009)
to post-process the option-implied volatility surface in order to exclude arbitrage across
strikes and maturities.

B.3 Three-dimensional kernel regression

We follow the methodology from OptionMetrics’ IvyDB US File and Data Reference
Manual, Version 3.1, Rev. 8/19/2016. The option-implied volatility estimate for an
option with a given delta A;, a maturity 7; and an Put/Call flag /; € {0, 1} is given
by

6(Aj,‘[j,]j)

B XN: v X k(Aj — A, log(t)) — log(t), Ij — 1)

N o(4i. T, 1), (13)
Yoisg Vi Xk(Aj— A log(tj) —log(t), I — I)

i=1

where the left-hand side stands for the approximation of the unobserved option-implied
volatility, while the right-hand side is a weighted average of all N observed option-
implied volatilities. The weight that each observed o (4;, t;, I;) obtains depends on
that option’s vega v; and on that option’s proximity to the target location on the
volatility surface, where the degree of proximity is measured by a Gaussian kernel
function
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2, 2
(v
k(x, y,2) = ﬁe 2hy T 2Ry T 2h3 ) (14)

The IvyDB US Reference Manual of OptionMetrics LLC specifies the bandwidth
parameters to coincide with

hy =0.05, hy = 0.005, h3 = 0.001.

OptionMetrics LLC limits the kernel regression to the delta interval of [0.2, 0.8].

The volatility surface of OptionMetrics (2016) is not necessarily arbitrage-free.
In order to compare apples with apples, we need all considered volatility surfaces
to be arbitrage-free, so we apply a post-processing step as in Fengler (2009) on the
original OptionMetrics (2016) volatility surface. All of our our results are qualitatively
and quantitatively robust to whether or not one applies this post-processing step. In
unreported results we have found that ensuring no-arbitrage improves the statistical
accuracy of the OptionMetrics (2016) volatility surface.

Appendix C: Calculating the variance risk premium

In line with Drechsler and Yaron (2011), we define the variance risk premium (VRP)
as

VRP, = EtQ [Total Return Variation(z, t + 21)]
— E,[Total Return Variation(¢, t + 21)]

where ¢ 4 21 stands for a 1-month (or 21-trading-day) increment.

We use Bakshi et al. (2003) model-free implied variance as the measure for the vari-
ance expectation under Q. For those days, during which the 1-month maturity option
is not traded, we linearly interpolate the implied variance measures for surrounding
traded maturities along the maturity dimension to obtain a 1-month-ahead expectation.

We use an adjusted form of the model of Corsi (2009) to obtain variance expectations
under the statistical measure:

2 t
1 2
) - RV = Z 7 RV =g 2

S

RV, =r? = log !
! S

i=t—4 i=t—20

t—1
10g(RV")) = & + 1 log(RV,) + B2 1og(RV,™) + B3 log(RV,"™) + €121,

with a random error term €;471.

Appendix D: The use of the MSE for model evaluation and smoothness

The following discussion shows that the MSE is indeed a valid measure for assess-
ing the quality of a standardization methodology, especially considering the desire
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to obtain a smooth volatility surface that still captures all characteristics of the true
unobserved volatility surface. In the end-of-day set-up, all price recordings for a given
day refer to the same point of time, but may be measured with noise. We can split the
error of a standardization methodology, o*iB S 8iB §_ into a noise component elf“”' ¢ and
a methodology-specific bias component ef’ ias The noise component is the difference
between the implied volatility observation and the true unobserved implied volatility
and is thus the same across all methodologies. All methodologies are not purely inter-
polating between observed option prices, but attempt to smooth the implied volatility
surface in order to reduce the noise error. However, smoothing comes at the cost that a
potential over-smoothing introduces a bias into the implied volatility estimator, which
is independent of the noise component. The methodology-specific residual can thus
be rewritten as ei’"‘”h"d =b elf”’"” + ef”"”, where we would expect b to be positive
but smaller than 1. If a method just replicates the exact implied volatility observations
without any smoothing, its volatility surface would not be biased (Vi : ef”"” = 0), but
exposed to the full noise error component (b = 1). Substituting these considerations
into the MSE equation yields for the expected MSE

EIMSE] = E (b + )| = E [(€52] + E [ ] 5)

The expected MSE consists of two components: the noise component and the bias
component. If a method works particularly well in smoothing out price measurement
noise, its b parameter is close to 0 and the expected MSE reduces. At the same time,
the bias error directly increases the MSE if a method starts to over-smooth the implied
volatility surface. Splitting the estimation error into its 2 components would be tricky,
as the noise component is not observed directly. However, a perfect standardization
methodology would have just the right smoothness to cancel out noise without intro-
ducing any biases. Both objectives lead to a lower MSE.

The situation becomes a bit more complex for the intraday set-up. Here, transaction
prices are recorded at different points of time, leading to a situation, in which there
is a small time gap between the option prices that are used to construct the volatility
surface and the option price that is used to evaluate the volatility surface. During this
time, market expectations and fundamentals may have changed, which may result
in a change in the true implied volatility surface. When calculating the mean squared
error, the time difference introduces a third error component, ef ime into the estimation
error. We assume this error component to be independent from the noise and the bias
components in the estimation error. For the intraday set-up, the expected MSE can
hence be written as

EIMSE] = bE [P + E[ ()] + E [ ¢f™)?]. (16)

Since all methods are evaluated on the same data set, E [(ei”me)2] should be the
same for all considered methodologies. While the time component biases the mea-
surement of the full method-specific MSE upwards, a comparison of standardization
methodologies is still possible for the intraday set-up, as methodologies with more
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favorable characteristics (better noise cancellation, no biases) still possess a lower
expected MSE.

Appendix E: MAE results

See Tables 9 and 10.

Table 9 End-of-day cross-validation MAE

Maturity Moneyness 3D kernel 1D kernel Spline Gram—
regression regression interpolation Charlier
expansio

(a) S&P 500
All All 1174% 100% (0.0019) 191% 2370%
Short Center 506% 100% (0.0013) 483% 655%
Short Left 1844% 100% (0.0032) 379% 3535%
Short Right 377% 100% (0.0037) 112% 375%
Medium Center 299% 100% (0.0005) 370% 561%
Medium Left 1487% 100% (0.0021) 121% 3275%
Medium Right 249% 100% (0.0018) 114% 432%
Long Center 252% 100% (0.0007) 195% 303%
Long Left 706% 100% (0.0024) 128% 1402%
Long Right 349% 100% (0.0014) 131% 490%

(b) Euro Stoxx 50
All All 2536% 129% 100% (0.0015) 2435%
Short Center 309% 100% (0.006) 155% 104%
Short Left 2618% 100% (0.0123) 104% 1184%
Short Right 7037% 100% (0.0035) 122% 9905%
Medium Center 127% 100% (0.0005) 217% 422%
Medium Left 4284% 265% 100% (0.0014) 4570%
Medium Right 3262% 112% 100% (0.0012) 3419%
Long Center 165% 100% (0.0010) 106% 284%
Long Left 1401% 119% 100% (0.0008) 2066%
Long Right 640% 100% (0.0006) 116% 1388%

This table summarizes the cross-validation mean absolute error (MAE) for the data-rich (end-of-day) set-up.
The short maturity section groups options with remaining maturities of less than 30 days, medium maturity
refers to a remaining maturity of 30-365 days and long maturity represents options with a remaining
maturity of more than 365 days. The moneyness m = K axis is divided into a left, center and right section,
with the cutting lines being located at 0.95 and 1.05. Error figures are given in percent of the respective
best-performing method’s MAE for each section of the implied volatility surface. For each section’s best
performing method, we report its MAE in parenthesis
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Table 10 Intraday cross-validation MAE

Maturity Moneyness 3D kernel 1D kernel Spline Gram—Charlier
regression regression interpolation expansion

(a) S&P 500
All All 123% 100% (0.0309)  139% 137%
Short Center 121% 100% (0.0191)  117% 156%
Short Left 121% 100% (0.0813)  155% 116%
Short Right 100% (0.0254)  117% 163% 239%
Medium  Center 103% 100% (0.0164) 107% 135%
Medium  Left 117% 100% (0.0437)  171% 131%
Medium  Rght 100% (0.179) 132% 166% 231%
Long Center 115% 100% (0.0229)  147% 208%
Long Left 143% 100% (0.0372)  158% 154%
Long Right 101% 100% (0.0313)  166% 213%

(b) Euro Stoxx 50
All All 108% 101% 100% (0.0199)  139%
Short Center 164% 156% 100% (0.0078)  191%
Short Left 153% 129% 100% (0.0269)  144%
Short Right 100% (0.0114)  122% 136% 206%
Medium  Center 108% 108% 100% (0.0145)  170%
Medium  Left 113% 100% (0.0299)  130% 132%
Medium  Right 100% (0.0149)  129% 155% 241%
Long Center 105% 100% (0.0239)  132% 246%
Long Left 119% 100% (0.0282)  249% 173%
Long Right 108% 100% (0.033) 139% 230%

This table summarizes the out-of-sample MAE for the data-poor (intraday) set-up. The short maturity
section groups options with remaining maturities of less than 30 days, medium maturity refers to a remaining
maturity of 30-365 days and long maturity represents options with a remaining maturity of more than 365
days. The moneyness m = % axis is divided into a left, center and right section, with the cutting lines being
located at 0.95 and 1.05. Evaluations are performed based on 3 prior trades on different strikes and the
same maturity. Error figures are given in percent of the respective best-performing method’s MAE for each
section of the implied volatility surface. For each section’s best performing method, we report its MAE in
parenthesis
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