KIT | KIT-Bibliothek | Impressum | Datenschutz

Suppression of superconductivity and enhanced critical field anisotropy in thin flakes of FeSe

Farrar, Liam S.; Bristow, Matthew; Haghighirad, Amir A.; McCollam, Alix; Bending, Simon J.; Coldea, Amalia I.

FeSe is a unique superconductor that can be manipulated to enhance its superconductivity using different routes, while ist monolayer form grown on different substrates reaches a record high temperature for a two-dimensional system. In order to understand the role played by the substrate and the reduced dimensionality on superconductivity, we examine the superconducting properties of exfoliated FeSe thin flakes by reducing the thickness from bulk down towards 9 nm. Magnetotransport measurements performed in magnetic fields up to 16 T and temperatures down to 2 K help to build up complete superconducting phase diagrams of different thickness flakes. While the thick flakes resemble the bulk behaviour, by reducing the thickness the superconductivity of FeSe flakes is suppressed. The observation of the vortex-antivortex unbinding transition in different flakes provide a direct signature of a dominant two-dimensional pairing channel. However, the upper critical field reflects the evolution of the multi-band nature of superconductivity in FeSe becoming highly two-dimensional and strongly anisotropic only in the thin limit. Our study provides detailed insights into the evolution of the superconducting properties of a multi-band superconductor FeSe in the thin limit in the absence of a dopant substrate.

Open Access Logo

Verlagsausgabe §
DOI: 10.5445/IR/1000119656
Veröffentlicht am 20.05.2020
DOI: 10.1038/s41535-020-0227-3
Zitationen: 2
Web of Science
Zitationen: 2
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Quantenmaterialien und -technologien (IQMT)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 12.2020
Sprache Englisch
Identifikator ISSN: 2397-4648
KITopen-ID: 1000119656
HGF-Programm 43.21.01 (POF III, LK 01) Quantum Correlations in Condensed Matter
Erschienen in npj quantum materials
Verlag Nature Research
Band 5
Seiten Article no: 29
Vorab online veröffentlicht am 15.05.2020
Nachgewiesen in Scopus
Web of Science
Relationen in KITopen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page