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AN ALL-AT-ONCE APPROACH TO FULL WAVEFORM
SEISMIC INVERSION IN THE VISCOELASTIC REGIME

ANDREAS RIEDER

Abstract. Full waveform seismic inversion (FWI) in the viscoelastic regime entails the
task of identifying parameters in the viscoelastic wave equation from partial waveform
measurements. Traditionally, one frames this nonlinear problem as an operator equation
for the parameter-to-state map. Alternatively, in an all-at-once approach one augments
the nonlinear operator by the viscoelastic wave equation as an additional component and
considers the states as additional variables. Hence, parameters and states are sought-for
simultaneously. In this article, we give a mathematically rigorous all-at-once version of
FWI in a functional analytical formulation. Further, the corresponding nonlinear map
is shown to be Fréchet differentiable and the adjoint operator of the Fréchet derivative
is given in an explicit way suitable for implementation in a Newton-type/gradient-based
regularization scheme.

1. Introduction

Parameter identification problems for partial differential equations (pde) are usually
formulated as nonlinear operator equations. The involved nonlinear operator is the
parameter-to-state map Φ which maps the parameter to the solution (state) of the pde.
Applying an iterative regularization scheme for its solution typically requires the evalu-
ation of Φ, Φ′ (Fréchet derivative), and Φ′∗ (adjoint) at the actual iterate. Each of these
evaluations means solving the pde or a related one which is computationally expensive,
especially for time-dependent problems like the wave equation.

The same situation appears in control theory and optimization under pde constraints.
In these fields emerged quite naturally the idea not to solve the pde but append the
constraint to the Lagrangian function and search for its critical points, see, e.g., [8, 9, 16].
This modus operandi is known as the ’all-at-once’ approach since one deals simultaneously
with the actual optimization task and the underlying pde.

Meanwhile all-at-once methods have diffused into the field of inverse and ill-posed
problems. In [11] regularization results have been shown for abstract all-at-once formula-
tions of variational and Newton-type methods. Also implementation issues are discussed.
These results have been extended to a family of dynamic inverse problems [12].

To highlight more clearly the two different concepts, let L = L(p) be a differential
operator depending on parameters p and let u be the solution of the pde L(p)u = f .
Assume that we want to recover p from measurements y = Ψu (Ψ is the measurement
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2 ANDREAS RIEDER

operator). The traditional or reduced approach would be to solve

Φred(p) = y

where Φred : p 7→ ΨL(p)−1f is the parameter-to-state map. Evaluation of Φred means
solving the pde. For the all-at-once formulation we define the map Φall : (v, p) 7→ (L(p)v−
f,Ψv). Here we need to solve

Φall(u, p) = (0, y).

It is the goal of this work to give a mathematically clean all-at-once formulation for full
waveform inversion (FWI) in the viscoelastic regime and to provide necessary ingredients
to set up Newton/gradient -type regularization schemes. FWI is the up-to-date inversion
procedure in geophysical exploration taking full advantage of the amplitude and phase
information of seismic recordings, see, e.g., [7, 19]. To unleash the full potential of FWI,
it needs to be based on a realistic model for wave propagation in dispersive media. Here
we rely on the widely accepted viscoelastic wave equation, see (1) and (4) below.

To the best of our knowledge the first results about an all-at-once version of FWI,
termed wavefield reconstruction inversion (WRI), have been reported in [17], however,
for the acoustic wave equation in the frequency domain (Helmholtz equation). In the
subsequent publication [18] WRI has been generalized to other non-dynamic (frequency
domain) inverse problems. We refer to [1] for a recent study of several extensions of WRI
(still in the frequency range). All these contributions are done on a discrete, matrix-based
level in an optimization, data fitting framework.

The reported advantages of the all-at-once approach to FWI are:

• No solution of the wave and adjoint wave equation is required. Only the differ-
ential operator has to be applied to the actual iterate (on the discrete side only
matrix-vector products have to be performed).
• The nonlinearity is moderate, meaning that Newton-like solvers for the inverse

problem converge fast, that is, within a few iterations, even for a poor starting
guess (in the geophysical language: cycle skipping is mitigated). To a certain
extent, this observation is supported by the statement of Lemma 3.5.

The remainder of this paper is organized as follows. In the next section we recall the
viscoelastic model of wave propagation and write it neatly as an evolution equation in
a Hilbert space. It thus fits into the abstract setting of Section 3 where our all-at-once
formulation is introduced in a rather general situation. We show its well-definedness,
prove Fréchet differentiability (Proposition 4.3), and provide a representation of the ad-
joint operator of the Fréchet derivative (Proposition 4.4). These are the components of
iterative regularization schemes to solve the seismic inverse problem. Finally, in Sec-
tion 4 we express these results explicitly for the viscoelastic wave equation. Moreover,
we show that all-at-once FWI is a locally ill-posed inverse problem just like traditional
FWI (Proposition 4.2).

2. Viscoelasticity

The material of this section can already be found in previous publications, see, e.g.,
[14]. We need to recall it nevertheless for sake of completeness, for introducing some
notation, and for indicating a minor flaw, see Remark 2.1 below.

Waves propagating in the earth exhibit damping (loss of energy) which is not re-
flected by the standard elastic wave equation. Thus, the elastic wave equation has to be
augmented by a mechanism which models dispersion and attenuation. Several of these
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mechanisms are known in the literature which are all closely related, see [7, Chap. 5] and
[20, Chap. 2] for an overview and references.

The viscoelastic wave equation in the velocity stress formulation based on the general-
ized standard linear solid rheology reads: Using L ∈ N memory tensors ηl : [0, T ]×D →
R3×3

sym, l = 1, . . . , L, the new formulation reads

ρ ∂tv = divσ + f in ]0, T [×D,(1a)

∂tσ = C
(
(1 + LτS)µ, (1 + LτP)π

)
ε(v) +

L∑
l=1

ηl in ]0, T [×D,(1b)

−τσ,l∂tηl = C
(
τSµ, τPπ

)
ε(v) + ηl, l = 1, . . . , L, in ]0, T [×D(1c)

where D ⊂ R3 is a Lipschitz domain. The functions τP, τS : D → R are scaling factors for
the relaxed moduli π and µ, respectively. They have been introduced by [2].

In (1a), f denotes the external volume force density and ρ is the mass density. The
linear maps C(m, p) in (1b) and (1c) are defined as

(2) C(m, p) : R3×3 → R3×3, C(m, p)M = 2mM + (p− 2m) tr(M)I,

for m, p ∈ R (C is known as Hooke’s tensor). Further, I ∈ R3×3 is the identity matrix
and tr(M) denotes the trace of M ∈ R3×3. Finally,

ε(v) =
1

2

[
(∇xv)> +∇xv

]
is the linearized strain rate.

Wave propagation is frequency-dependent and the numbers τσ,l > 0, l = 1, . . . , L, are
used to model this dependency over a frequency band with center frequency ω0. Within
this band the rate of the full energy over the dissipated energy remains nearly constant.
This observation lets us determine the stress relaxation times τσ,l by a least-squares
approach [3, 4].

Now the frequency-dependent phase velocities of P- and S-waves are given by

(3) v2P =
π

ρ
(1 + τPα) and v2S =

µ

ρ
(1 + τSα) with α =

L∑
l=1

ω2
0τ

2
σ,l

1 + ω2
0τ

2
σ,l

.

Full waveform inversion (FWI) means to reconstruct the five spatially dependent param-
eters (ρ, vS, τS, vP, τP) from wavefield measurements.

By the transformation, see [20],


v
σ0

σ1
...
σL

 :=


v

σ +
∑L

l=1 τσ,lηl
−τσ,1η1

...
−τσ,Lη1


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we reformulate (1) equivalently into

∂tv =
1

ρ
div
( L∑
l=0

σl

)
+

1

ρ
f in ]0, T [×D,(4a)

∂tσ0 = C
(
µ, π

)
ε(v) in ]0, T [×D,(4b)

∂tσl = C
(
τSµ, τPπ

)
ε(v)− 1

τσ,l
σl, l = 1, . . . , L, in ]0, T [×D.(4c)

We close the above system by initial conditions

v(0) = v0 and σl(0) = σl,0, l = 0, . . . , L.(4d)

For a suitable function space1 X and suitable w = (w,ψ0, . . . ,ψL) ∈ X we define oper-
ators A, B, and Q mapping into X by

(5) Aw = −


div
(∑L

l=0ψl

)
ε(w)

...

ε(w)

 , B−1w =



1
ρ

w

C
(
µ, π

)
ψ0

C
(
τSµ, τPπ

)
ψ1

...

C
(
τSµ, τPπ

)
ψL

 , Qw =



0

0
1

τσ,1
ψ1

...
1

τσ,L
ψL

 .

Now (4) can be formulated as

Bu′(t) + Au(t) +BQu(t) = f(t)

where u = (v,σ0, . . . ,σL) and f = (f ,0, . . . ,0).
The operator B depends solely on the five parameters (ρ, vS, τS, vP, τP) since, according

to (3),

(6) π =
ρ v2P

1 + τPα
and µ =

ρ v2S
1 + τSα

.

Remark 2.1. Please note that in the previous publication [14] we had wrongly an addi-
tional factor L in both arguments of the Hooke tensor C in (1c) and (4c). The affected
results can be straightforwardly corrected though.

3. Abstract framework

3.1. The setting. We consider an abstract evolution equation in a Hilbert space X of
the form

(7) Bu′(t) + Au(t) +BQu(t) = f(t), t ∈ ]0, T [, u(0) = u0,

under the following general hypotheses: T > 0, u0 ∈ X,

B belongs to the Banach space L∗(X) = {P ∈ L(X) : P ∗ = P} and satisfies
〈Bx, x〉X = 〈x,Bx〉X ≥ β‖x‖2X for some β > 0 and for all x ∈ X,

A : D(A) ⊂ X → X is a maximal monotone operator: 〈Ax, x〉X ≥ 0 for all x ∈ X
and I + A : D(A)→ X is onto (I is the identity, D(A) is the domain of A),

Q ∈ L(X), and f ∈ L1([0, T ], X).

1Details follow below.
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In [14] it has been shown that the three operators from (5) are well defined and satisfy
our general hypotheses in a precise mathematical setting. Also the viscoacoustic wave
equation can be formulated in this abstract setting, see, e.g., [5]. The viscoacoustic
equation models wave propagation in media which do not support shear stress.2

Under the above general assumptions B−1A+Q generates a C0-semigroup on (X, 〈·, ·〉B)
with the weighted inner product 〈·, ·〉B = 〈B·, ·〉X , see [13, 14]. Hence, standard ex-
istence and uniqueness results apply, for instance (7) has a unique integrated solution

u ∈ C([0, T ], X) satisfying
∫ t
0
u(s) ds ∈ D(A), t ∈ ]0, T [, and

(8) Bu(t) + (A+BQ)

∫ t

0

u(s) ds = Bu0 +

∫ t

0

f(s) ds, t ∈ ]0, T [,

which coincides with the mild solution, see, e.g., [15, Prop. 2.15].
Next we extend A by A− : D(A−) ⊂ X− → X− to X− which is the completion3 of X

with respect to the weaker norm ‖·‖− = ‖R(µ,A) ·‖X where R(·, A) denotes the resolvent
of A and µ is in ρ(A), the resolvent set of A. Note that a different choice of µ yields an
equivalent norm. For instance, under our assumptions on A we could set µ = −1, that
is, R(−1, A) = (I + A)−1. Further, D(A−) = X (‖ · ‖X is the graph norm of A−) and
A− ∈ L(X,X−). See, e.g., [6, Chap. 2.5] and [15, Chap. 2.2] for the details.

Using A− we generalize (8) slightly to

(9) Bu(t) + (A− +BQ)

∫ t

0

u(s) ds = Bu0 +

∫ t

0

f(s) ds, t ∈ ]0, T [.

Obviously, the integrated solution of (7) that is, the solution of (8), solves (9). Conversely,
we have the following result.

Lemma 3.1. If u ∈ C([0, T ], X) solves (9) then Bu ∈ C1([0, T ], X−). Further, we have
that u(0) = u0 and

(10) (Bu)′(t) + (A− +BQ)u(t) = f(t), t ∈ ]0, T [,

in the weaker space X−. If, additionally, B can be extended to X− continuously invertible
then u ∈ C1([0, T ], X−) and (Bu)′(t) = Bu′(t).

Proof. From (9) we get for t ∈ ]0, T [ and 0 < |h| sufficiently small that

1

h

(
Bu(t+ h)−Bu(t)

)
= −(A− +BQ)

1

h

∫ t+h

t

u(s) ds+
1

h

∫ t+h

t

f(s) ds.

The terms on the right hands side converge in X− when h → 0. Indeed, 1
h

∫ t+h
t

f(s) ds

and BQ 1
h

∫ t+h
t

u(s) ds converge even in X to f(t) and BQu(t), respectively. Finally, since

A− ∈ L(X,X−) the limit of A−
1
h

∫ t+h
t

u(s) ds exists in X− and is equal to A−u(t). �

Remark 3.2. In this remark we explain why we switch from (7) to (9). In general,
the mild solution of (7) is not differentiable in time and lies not in the domain of A.
Hence, it does not satisfy the differential equation (7). This is why we consider the
integrated version (8). Moreover, we introduced (9) with the extension A− because –
as a bounded operator from X to X− – it is Fréchet differentiable unlike the unbounded
A : D(A) ⊂ X → X.

2The viscoacoustic equation can be derived formally from (4) by setting the shear modulus µ = 0,
defining the new state variables pl = tr(σl), l = 0, . . . , L, and taking the traces of (4b) and (4c).

3The standard notation for X− is X−1 (as an element of a Sobolev tower/scale [6, Chap. 2.5]).
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3.2. Abstract all-at-once formulation. We want to formulate FWI as a nonlinear op-
erator equation. To this end we first introduce some abbreviations: Let H = L2([0, T ], X),
H− = L2([0, T ], X−), and let the linear operator Ψ: H → RN , N ∈ N, model the mea-
surement/sampling process (the image of Ψ is the space of seismograms in the geophysical

application). Moreover, let J ∈ L(H) denote the integration operator: Jv(t) =
∫ t
0
v(s)ds.

Note that JK = KJ for any K ∈ L(X).
Now we define the following map related to (9):

F : H ×B ⊂ H × L∗(X)→ H− × RN ,(11)

(v, P )> 7→
(
P (v − u0) + (A− + PQ)Jv − Jf, Ψv

)>
where

(12) B =
{
B ∈ L∗(X) : β−‖x‖2X ≤ 〈Bx, x〉X ≤ β+‖x‖2X

}
for given 0 < β− < β+ <∞.

The following lemma explains our definition of F .

Lemma 3.3. If (u,B)> ∈ H × B satisfies F (u,B) = (0,Σ)> for a given Σ ∈ RN then
u ∈ C([0, T ], X) solves (10) in X− (and generates the seismogram Σ).

Proof. Obviously, u ∈ L2([0, T ], X) satisfies the equation of (9) a.e. in [0, T ]. From

u(t) = u0 +
∫ t
0
B−1f(s) ds − (B−1A− + Q)

∫ t
0
u(s) ds we deduce that u is continuous.

Hence, Lemma 3.1 applies. �

Now, FWI can be phrased in the following way: Given Σ ∈ RN (a seismogram) find a
pair (u,B)> ∈ H ×B such that

F (u,B) =

(
0
Σ

)
.

Remark 3.4. Traditional (or reduced) FWI can be formulated as the operator equation
Fred(B) = Σ with the parameter-to-state map Fred : B 7→ Ψu where u ∈ H solves (7) with
respect to B ∈ B.

It will prove convenient to split F into F = F1 + F2 + F3 with

F1(v, P ) =

(
P (I +QJ)v

0

)
, F2(v, P ) =

(
A−Jv − Pu0

Ψv

)
, F3(v, P ) = −

(
Jf
0

)
.

Please observe that F1 : H × L∗(X) → H × RN is bilinear and bounded, F2 ∈ L(H ×
L∗(X),H− × RN), and F3 is constant. Hence, F has simple Fréchet derivatives.

Lemma 3.5. The mapping F from (11) is Fréchet differentiable at any interior point
(v, P ) ∈ H ×B with

F ′(v, P )

[
v̂

P̂

]
= F1(v̂, P ) + F1(v, P̂ ) + F2(v̂, P̂ )

=

(
P (I +QJ)v̂ + P̂ (I +QJ)v + A−Jv̂ − P̂ u0

Ψv̂

)
.

The second derivative is given by
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F ′′(v, P )

[(
v̂1
P̂1

)
,

(
v̂2
P̂2

)]
= F1(v̂1, P̂2) + F1(v̂2, P̂1).

All higher derivatives vanish identically.

Finding an explicit representation of the adjoint F ′(v, P )∗ : H′− × RN → H′ × L∗(X)′

poses no challenge.

Lemma 3.6. For any interior point (v, P ) ∈ H ×B we have that

F ′(v, P )∗
(
g
Σ

)
=
(
(I + J∗Q∗)Pg + J∗A∗−g + Ψ∗Σ, `v,g

)
where `v,g ∈ L∗(X)′ is the functional `v,g(P̂ ) = 〈P̂ g, (I + QJ)v − u0〉H and J∗w(t) =∫ T
t
w(s)ds. Note that P̂ g is well defined for P̂ ∈ L(X) since g ∈ H′− ⊂ H′ ' H.

Proof. We have

(13)

[
F ′(v, P )∗

(
g
Σ

)](
v̂

P̂

)
=

〈(
g
Σ

)
, F ′(v, P )

(
v̂

P̂

)〉
(H′−×RN )×(H−×RN )

=
〈
g, P (I +QJ)v̂ + A−Jv̂

〉
H

+
〈
g, P̂ (I +QJ)v − P̂ u0

〉
H

+
〈
Σ,Ψv̂

〉
RN

from which the assertion follows immediately. �

4. Application to full waveform inversion

4.1. The setting and basic definitions. We recall the basic concepts from [14].
The Hilbert space underlying the viscoelastic wave equation (4) is

X = L2(D,R3)× L2(D,R3×3
sym)1+L

with inner product

〈
(v,σ0, . . . ,σL), (w,ψ0, . . . ,ψl)

〉
X

=

∫
D

(
v ·w +

L∑
l=0

σl : ψl

)
dx.

The colon represents the Frobenius inner product of matrices.
Let the boundary ∂D of the bounded Lipschitz domain D be split into disjoint parts

∂D = ∂DD ∪̇ ∂DN and let n be the outer normal vector on ∂DN . Then, we set

D(A) =
{

(w,ψ0, . . .ψL) ∈ H1
D ×H( div )1+L :

L∑
l=0

ψln = 0 on ∂DN

}
for the domain of A from (5). Here, H1

D = {v ∈ H1(D,R3) : v = 0 on ∂DD} and

H( div ) =
{
σ ∈ L2

(
D,R3×3

sym

)
: div

(∑L
l=0 σl

)
∈ L2(D)

}
. The following result is vali-

dated in [14, Lem. 4.1].

Lemma 4.1. The operator A as defined in (5) with D(A) ⊂ X is maximal monotone
and skew-symmetric, i.e., A∗ = −A.

Next we present the representation of B for the viscoelastic setting. A crucial ingredient
is the operator C of (2) which maps D(C) =

{
(m, p) ∈ R2 : m ≤ m ≤ m, p ≤ p ≤ p

}
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into Aut(R3×3
sym)4 with constants 0 < m < m and 0 < p < p such that 3p > 4m. For

(m, p) ∈ D(C),

(14) C̃(m, p) := C(m, p)−1 = C

(
1

4m
,

p−m
m(3p− 4m)

)
.

We have

(15) C(m, p)M : N = M : C(m, p)N

and

min{2m, 3p− 4m}M : M ≤ C(m, p)M : M ≤ max{2m, 3p− 4m}M : M,

see, e.g., [20, Lemma 50]. If ρ(x) > 0,
(
µ0(x), π0(x)

)
,
(
τS(x)µ0(x), τP(x)π0(x)

)
∈ D(C)

for almost all x ∈ D then

(16) B


w

ψ0

ψ1

...

ψL

=



ρw

C̃(µ, π)ψ0

C̃(τSµ, τPπ)ψ1

...

C̃(τSµ, τPπ)ψL


yields a uniformly positive B ∈ L∗(X) as required by the general hypotheses at the
beginning of the former section. We conclude that the abstract all-at-once formulation of
Section 3 is well defined for the viscoelastic wave equation (4) provided the initial values
(4d) are in X.

4.2. All-at-once full waveform operator. In FWI one wants to reconstruct the five
parameters p = (ρ, vS, τS, vP, τP) from observed wavefields. Therefore we define here an
all-at-once operator Φ(w,p) := F (w, V (p)) where V : p 7→ B and F is the mapping
from (11).

A physically meaningful domain of definition for V is

D(V ) =
{

(ρ, vS, τS, vP, τP) ∈ L∞(D)5 : ρmin ≤ ρ(·) ≤ ρmax, vP,min ≤ vP(·) ≤ vP,max,

vS,min ≤ vS(·) ≤ vS,max, τP,min ≤ τP(·) ≤ τP,max, τS,min ≤ τS(·) ≤ τS,max a.e. in D
}

with suitable positive bounds 0 < ρmin < ρmax < ∞, etc. Note that p, p, m, and m can
be defined in terms of ρmin, ρmax, vP,min, etc. such that (µ, π), (τSµ, τPπ) as functions of
(ρ, vP, vS, τP, τS) ∈ D(V ) are in D(C), see [14].

Hence, we have a well-defined mapping

V : D(V ) ⊂ L∞(D)5 → B ⊂ L∗(X), (ρ, vS, τS, vP, τP) 7→ B,

where B is given in (16) via (6). We indeed have that V (D(V )) ⊂ B when β− and β+
are chosen appropriately in (12).

Finally, we get the all-at-once full waveform forward operator by

Φ: D(Φ) ⊂ H × L∞(D)5 → H− × RN ,(
w, (ρ, vS, τS, vP, τP)

)
7→ F

(
w, V (ρ, vS, τS, vP, τP)

)
,

4This is the space of linear maps from R3×3
sym into itself (space of automorphisms).
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with D(Φ) = H × D(V ). In this setting FWI means: Given a seismogram Σ ∈ RN find
a wavefield u ∈ L2

(
[0, T ], X) and a set of parameters p = (ρ, vS, τS, vP, τP) ∈ D(V ) such

that

(17) Φ(u,p) =

(
0
Σ

)
.

If (u,p)> solves the above equation then u = (v,σ0, . . . ,σL)> is the mild solution
of (4) with respect to the parameter set given by p and generates the seismogram Σ
(Lemma 3.3).

Just like the reduced FWI formulation, see [14, Theorem 4.3], the all-at-once version
(17) is locally ill-posed. Local ill-posedness of an inverse problem was introduced in [10]:
let Θ: D(Θ) ⊂ V → W operate between infinite-dimensional normed spaces. We say that
Θ(·) = w is locally ill-posed at v+ ∈ D(Θ) satisfying Θ(v+) = w if in any neighborhood O
of v+ we can find a sequence {ηk} ⊂ O ∩ D(Θ) which does not converge to v+, yet, we
have Θ(ηk)→ w.

Proposition 4.2. The inverse problem Φ(·, ·) = (0,Σ)> is locally ill-posed at any interior
point (u,p) of D(Φ).

Proof. We adapt the proof of Theorem 4.3 of [14] to the present situation. Choose a
xo ∈ D and define the balls Kk = {x ∈ R3 : |x − xo| ≤ ε/k}, k ∈ N, where ε > 0 is
small enough to guarantee Kk ⊂ D. Set pk := p + r(χk, χk, χk, χk, χk) where r > 0
and χk is the indicator function of Kk. For r sufficiently small we have pk ∈ D(V ) and
‖pk − p‖L∞(D)5 = r. So, {pk} is as close to p as we wish without converging to it.

By uk and u let us denote the unique mild solutions of (4) with respect to the para-
meters in pk and p, respectively. Then, {(uk,pk)} ⊂ D(Φ), {(u,p)} ⊂ D(Φ), Φ1(uk,pk) =
0 = Φ1(u,p), and uk → u in H. The convergence can be verified by showing first that
u − uk is the mild solution of of a related evolution equation and then by applying the
stability estimate for mild solutions, see, e.g., [14] for details.

Thus, for all k sufficiently large, {(uk,pk)} is as close to (u,p) in H × L∞(D)5 as we
wish without converging to it. However,

‖Φ(uk,pk)− Φ(u,p)‖H−×RN =

∥∥∥∥( 0
Ψ(uk − u)

)∥∥∥∥
H−×RN

= ‖Ψ(uk − u)‖RN → 0

by continuity of the measurement operator Ψ. �

According to the above result, solving (17) requires regularization. Using Newton-like
regularization schemes one needs to implement the Fréchet derivative and its adjoint. In
the remainder of this section we provide rather explicit analytic expressions for both.

We obtain the Fréchet derivative of Φ by the chain rule, Lemma 3.5, and the derivative

of V which was presented in [14]. The formulation of V ′ relies on the derivative of C̃
which is

(18) C̃ ′(m, p)

[
m̂
p̂

]
= −C̃(m, p) ◦ C(m̂, p̂) ◦ C̃(m, p)

for (m, p) ∈ int(D(C)) and (m̂, p̂) ∈ R2.
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Let p = (ρ, vS, τS, vP, τP) ∈ int(D(Φ)) and p̂ = (ρ̂, v̂S, τ̂S, v̂P, τ̂P) ∈ L∞(D)5. Then,
V ′(p)p̂ ∈ L∗(X) is given by

(19) V ′(p)p̂


w

ψ0

...

ψL

 =



ρ̂w

− ρ̂
ρ
C̃(µ, π)ψ0 + ρC̃ ′(µ, π)

[
µ̃

π̃

]
ψ0

− ρ̂
ρ
C̃(τSµ, τPπ)ψ1 + ρ C̃ ′(τSµ, τPπ)

[
µ̂

π̂

]
ψ1

...

− ρ̂
ρ
C̃(τSµ, τPπ)ψL + ρ C̃ ′(τSµ, τPπ)

[
µ̂

π̂

]
ψL


where µ and π are from (6) and

µ̃ = aS v̂S − α bS τ̂S, π̃ = aP v̂P − α bP τ̂P,(20)

µ̂ = τS aS v̂S + bS τ̂S, π̂ = τP aP v̂P + bP τ̂P,(21)

with

aS =
2vS

1 + τSα
, bS =

v2S
(1 + τSα)2

, aP =
2vP

1 + τPα
, bP =

v2P
(1 + τPα)2

.

We introduce new symbolic notation:

w↑(t) := Jw(t) =

∫ t

0

w(s)ds and w↓(t) := J∗w(t) =

∫ T

t

w(s)ds.

Proposition 4.3. Under the assumptions of this section the all-at-once full waveform
forward operator Φ is Fréchet differentiable at any interior point (w,p) of D(Φ), w =
(w,ψ0, . . . ,ψL), p = (ρ, vS, τS, vP, τP):

For ŵ = (ŵ, ψ̂0, . . . , ψ̂L) ∈ H and p̂ = (ρ̂, v̂S, τ̂S, v̂P, τ̂P) ∈ L∞(D)5 we have

Φ′(w,p)

[
ŵ
p̂

]
=

ρ ŵ + ρ̂ (w − v0)− div −

(∑L
l=0 ψ̂

↑
l

)
C̃(µ, π)

(
ψ̂0 − ρ̂

ρ
(ψ0 − σ0,0)

)
+ ρC̃ ′(µ, π)

[
µ̃

π̃

]
(ψ0 − σ0,0)− ε−(ŵ↑)

C̃(τSµ, τPπ)
(
(1 + 1

τσ,1
)ψ̂
↑
1 −

ρ̂
ρ
(ψ1 − σ1,0 + 1

τσ,1
ψ↑1)
)

+ρ C̃ ′(τSµ, τPπ)

[
µ̂

π̂

](
ψ1 − σ1,0 + 1

τσ,1
ψ↑1
)
− ε−(ŵ↑)

...

C̃(τSµ, τPπ)
(
(1 + 1

τσ,L
)ψ̂
↑
L −

ρ̂
ρ
(ψL − σL,0 + 1

τσ,L
ψ↑L)

)
+ρ C̃ ′(τSµ, τPπ)

[
µ̂

π̂

](
ψL − σL,0 + 1

τσ,L
ψ↑L
)
− ε−(ŵ↑)

Ψ(ŵ, ψ̂0, . . . , ψ̂L)


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where div − and ε− are the components of A−.5 Further, v0 and σl,0, l = 0, . . . , L are
the initial values, see (4d).

Proof. The stated expression for Φ′ follows readily from the chain rule and Lemma 3.5:

Φ′(w,p)

[
ŵ
p̂

]
= F ′

(
w, V (p)

) [ ŵ
V ′(p)p̂

]
=

(
V (p)(I +QJ)ŵ + V ′(p)p̂(I +QJ)w + A−Jŵ − V ′(p)p̂u0

Ψŵ

)
.

Finally, we plug in the expressions from (5), (16), and (19). �

Proposition 4.4. The notation and the assumptions are as in the previous proposition.
Then, the adjoint Φ′(w,p)∗ ∈ L

(
H′− × RN ,H′ × (L∞(D)5)′

)
is given by

Φ′(w,p)∗
(
g
Σ

)
=

(
Φ′(w,p)∗1

(
g
Σ

)
,Φ′(w,p)∗2

(
g
Σ

))
where g = (g−1,g0, . . . ,gL) ∈ L2

(
[0, T ], L2(D,R3)× L2(D,R3×3

sym)1+L
)
, Σ ∈ RN ,

Φ′(w,p)∗1

(
g
Σ

)
=



ρg−1 + div −

(∑L
l=0 g↓l

)
C̃(µ, π)g0 + ε(g↓−1)

C̃(τSµ, τPπ)
(
g1 + 1

τσ,1
g↓1
)

+ ε(g↓−1)
...

C̃(τSµ, τPπ)
(
gL + 1

τσ,L
g↓L
)

+ ε(g↓−1)



>

+ Ψ∗Σ

and

Φ′(w,p)∗2

(
g
Σ

)
=



∫ T
0

(
(w − v0) · g−1 − 1

ρ
Ψ0 : g0 − 1

ρ

∑L
l=1 Ψl : gl

)
dt

−2aS ρ
∫ T
0

(
Ψ0MG0 + τS

∑L
l=1 ΨlMGl

)
dt

2bS ρ
∫ T
0

(
αΨ0MG0 −

∑L
l=1 ΨlMGl

)
dt

−aP ρ
∫ T
0

(
Ψ0 ?G0 + τP

∑L
l=1 Ψl ?Gl

)
dt

bP ρ
∫ T
0

(
αΨ0 ?G0 −

∑L
l=1 Ψl ?Gl

)
dt



>

with the following abbreviations

Ψ0 = C̃(µ, π)(ψ0 − σ0,0), Ψl = C̃(τSµ, τPπ)(ψl − σl,0 +ψ↑l /τσ,l), l = 1, . . . , L,(22a)

G0 = C̃(µ, π)g0, Gl = C̃(τSµ, τPπ)gl, l = 1, . . . , L,(22b)

and

Ψl ?Gl = tr(Ψl) tr(Gl), ΨlMGl = Ψl : Gl −Ψl ?Gl, l = 0, . . . , L.

5Since A is the operator block matrix


0 −div · · · −div
−ε 0 · · · 0
...

...
...

−ε 0 · · · 0

 we see that the unique extension A−

must have zeros at the same blocks, that is, A and A− share the same block structure.
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Proof. By (13) and the definition of Φ,[
Φ′(w,p)∗

(
g
Σ

)](
ŵ
p̂

)
=
〈
ŵ, (I + J∗Q∗)V (p)∗g + A∗−J

∗g + Ψ∗Σ
〉
H

+
〈
g, [V ′(p)p̂]

(
(I +QJ)w − u0

)〉
H

where u0 = (v0,σ0,0, . . . ,σL,0)
> is the initial value of (4).

In view of (5), (15), and (16) we have Q∗ = Q as well as V (p)∗ = V (p). Further,
J∗QV (p) = QV (p)J∗ and A∗− = −A− (recall from Lemma 4.1 that A is skew-symmetric).
Hence, the stated representation of

Φ′(w,p)∗1

(
g
Σ

)
= (I +Q)V (p)g↓ − A−Jg↓ + Ψ∗Σ

follows. To obtain the second component of Φ′(w,p)∗ we evaluate

(23)
〈
g, [V ′(p)p̂]

(
(I +QJ)w − u0

)〉
H

=

∫ T

0

〈
g(t), [V ′(p)p̂]

(
w(t)− u0 +Qw↑(t)

)〉
X

dt

using (19), (18), and the shortcuts introduced in (22):

(24)
〈
g(t), [V ′(p)p̂]

(
w(t)− u0 +Qw↑(t)

)〉
X

=

∫
D

S(t, x)dx

with p̂ = (ρ̂, v̂S, τ̂S, v̂P, τ̂P) ∈ L∞(D)5 and

S(t, x) = ρ̂ (w − v0) · g−1 −
ρ̂

ρ
Ψ0 : g0 − ρC(µ̃, π̃)Ψ0 : G0

−
L∑
l=1

( ρ̂
ρ

Ψl : gl − ρC(µ̂, π̂)Ψl : Gl

)
where we suppressed the time and space dependence of the terms in boldface. Next we
calculate

C(µ̃, π̃)Ψ0 : G0 = C(aS v̂S − α bS τ̂S, aP v̂P − α bP τ̂P)Ψ0 : G0

= 2(aS v̂S − α bS τ̂S)Ψ0 : G0

+
(
aP v̂P − α bP τ̂P − 2(aS v̂S − α bS τ̂S)

)
tr(Ψ0) tr(G0)

= v̂S 2aS Ψ0MG0 − τ̂S 2α bS Ψ0MG0

+ v̂P aP Ψ0 ?G0 − τ̂P α bP Ψ0 ?G0

and, similarly,

C(µ̂, π̂)Ψl : Gl = v̂S 2τS aS ΨlMGl + τ̂S 2bS ΨlMGl

+ v̂P τP aP Ψl ?Gl + τ̂P bP Ψl ?Gl.
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We plug both these expressions into S and sort the result by the components of p̂:

S = ρ̂
(

(w − v0) · g−1 −
1

ρ
Ψ0 : g0 −

1

ρ

L∑
l=1

Ψl : gl

)
− v̂S 2aS ρ

(
Ψ0MG0 + τS

L∑
l=1

ΨlMGl

)
+ τ̂S 2bS ρ

(
αΨ0MG0 −

L∑
l=1

ΨlMGl

)
− v̂P aP ρ

(
Ψ0 ?G0 + τP

L∑
l=1

Ψl ?Gl

)
+ τ̂P bP ρ

(
αΨ0 ?G0 −

L∑
l=1

Ψl ?Gl

)
.

Having this representation of S in mind, recalling (24) and changing the order of inte-
gration in (23), we finally obtain the stated form of Φ′(w,p)∗2. �

Remark 4.5. The previous two propositions are valid also for the viscoelastic equation in

two spatial dimensions. However, there is a difference in the representation of C̃ = C−1.
Since tr(I) = 2 in 2D we have that

C̃(m, p)M = C
( 1

4m
,

p

4m(p−m)

)
M =

1

2m
M +

2m− p
4m(p−m)

tr(M)I,

compare (14).
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