
PHYSICAL REVIEW B 101, 195411 (2020)

Towards more general constitutive relations for metamaterials:
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When the period of unit cells constituting metamaterials is no longer much smaller than the wavelength
but only smaller, local material laws fail to describe the propagation of light in such composite media when
considered at the effective level. Instead, nonlocal material laws are required. They have to be derived by
approximating a general response function of the electric field in the metamaterial at the effective level that is
accurate but cannot be handled practically. But how to perform this approximation is not obvious at all. Indeed,
many approximations can be perceived and one should be able to decide as quickly as possible which of these
possible material laws are mathematically and physically meaningful at all. Here, at the example of a second
order Padé approximation of the general response function of the electric field, we present a checklist of each
possible constitutive relation that has to pass in order to be physically and mathematically liable. As will be
shown, only two out of these nine Padé approximations pass the checklist. The work is meant to be a guideline
applicable to decide which constitutive relation actually makes any sense at all. It is an essential ingredient for
future research on composite media as any possible constitutive relation to be discussed should pass it.
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I. INTRODUCTION

Electromagnetic metamaterials (MMs) are artificial struc-
tures made of subwavelength inclusions. These inclusions are
called meta-atoms and they are mostly arranged in a periodic
manner. The purpose of constructing MMs is to control the
light propagation in a way inaccessible with natural materials.
A referential purpose, but of course not the only one, would
be to achieve a material where the real parts of both the per-
mittivity and the permeability can be simultaneously negative
at some frequencies [1]. Because of their properties, MMs
enable many applications. For instance, super lenses [2,3],
cloaking devices [4], medical devices [5], and many others
(see, e.g., [6–10]) could be mentioned.

Due to the mesoscopic features of MMs, their homoge-
nization was always a prime theoretical challenge. The ho-
mogenization consists of linking the mesoscopic structure
of the actual MM to a macroscopic homogeneous material,
i.e., replacing a MM by a hypothetical homogeneous ma-
terial described by some effective material parameters [11].
Many homogenization techniques can be found in literature
(see, e.g., [12–15]). However, local constitutive relations have
been, mostly, considered in the homogenization and it was
frequently assumed that the MM possesses a weak spatial
dispersion (WSD). An effective description with at most
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bi-anisotropic constitutive relations would be the most ad-
vanced model to describe the MM at the level of such local
constitutive relations [16]. Local constitutive relations are
only justified as long as the period of the meta-atoms’ arrange-
ment is much smaller than the wavelength of light [17].

Unfortunately, most MMs do have a period only smaller
than the wavelength, and period and operational wavelength
are actually often in the same order of magnitude. This implies
that WSD is insufficient to capture the properties of most
actual MMs. A natural extension to capture the physics of
MMs at the effective level, therefore, are nonlocal constitu-
tive relations [18,19]. There, the induced response does not
just depend on the electric and magnetic field at the same
spatial locations but also on the fields at points further apart.
Alternatively, the response depends, besides on the fields, also
on the gradients of the field at the same location, a notion
that is usually called strong spatial dispersion (SSD) [20,21].
This kind of spatial dispersion was introduced into solid state
physics by Pekar [22], who expressed the relationship be-
tween a specific dipole moment of polarization of the crystal
and the electric field intensity in the form of a differential
equation. This consideration led to higher order Maxwell’s
equations. In the present research, we show that a similar
assumption provides also higher order equations. Note that
we take both terms, nonlocality and SSD, as synonymous
here. Moreover, constitutive relations accommodating SSD or
nonlocality, respectively, were already discussed by several
authors, see, e.g., [23–28]. It was unambiguously shown that
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they frequently capture the properties of actual MMs much
more accurately than ordinary local constitutive relations. But
how to come to meaningful nonlocal constitutive relations for
the effective description? It is clear that any description has to
depart from a general nonlocal response function R(ω, r −
r′) [also written in spatial Fourier space as R̂(ω, k)] that
expresses the response at the effective level as a convolution.
Here, the response function links the electric field to the
electric displacement. It constitutes an exact description but
the use of this nonlocal response function at the effective
level, however, is cumbersome and not handy. It has to be
approximated if it shall be of any practical use. But how to
approximate it in a suitable manner?

The general nonlocal response function can be expanded,
as one possible path towards meaningful nonlocal constitutive
relations, by a Taylor polynomial [26,29]. Truncating the
Taylor polynomial to the fourth order, forcing the coefficients
of the Taylor polynomials to obey certain relations, and while
omitting odd order terms that vanish for MMs with an in-
version symmetry, as we do assume also here, the following
constitutive relation can be derived:

D̂(ω, k) = ε(ω)Ê(ω, k) − k × [α(ω)k × Ê](ω, k)

+ k × k × [γ (ω)k × k×]Ê(ω, k). (1)

In the real space, the corresponding expression to Eq. (1) is
given by

D(ω, r) = ε(ω)E(ω, r) + ∇ × α(ω)∇ × E(ω, r)

+∇ × ∇ × [γ (ω)∇ × ∇×]E(ω, r). (2)

The material parameters ε(ω), α(ω), and γ (ω) are anisotropic
diagonal matrices, which implies that in general they do not
commute with the curl operators. There is a physical meaning
behind each of these terms. The first term corresponds to
a local electric response, and indeed the permittivity ε(ω)
appears here. It is a local response because the induced electric
displacement field D(ω, r) depends locally on the electric
field E(ω, r). The second term is associated with a weak
spatial dispersion [30]. However, while it obviously depends
on spatial derivatives of the electric field, a suitable gauge
transformation to Maxwell’s equations can be applied that
forces the appearance of this second term as an artificial local
magnetic response [31]. This implies that the magnetic field
depends locally on the magnetic induction, where the response
is mediated by the permeability that is explicitly expressed in
terms of this parameter α(ω). That finding is important as it
shows that an artificial magnetism in MMs is a consequence of
the weak spatial dispersion in the electric response. The third
term in Eqs. (1) and (2) is special and indeed constitutes the
suggested extension to capture effects due to strong spatial
dispersion [26]. It is a consequence of the fourth order term
in the Taylor polynomial. This term cannot be transformed
to emerge in some local constitutive relation and is truly
nonlocal. The choice of the specific functional dependency of
that term can be motivated by the apparent similarity to the
term that was used to capture the artificial magnetism, i.e., the
material parameter is sandwiched between an equal number
of curl operators.

To make practical use of such constitutive relation, inter-
face conditions need to be derived that connect the fields
inside the MM to the fields in a medium adjacent to an
interface. Essential to nonlocal material laws is the appearance
of multiple modes [32]. While in a local material and for a
given polarization of the electromagnetic field, the dispersion
relation says that for a given frequency and transverse wave
vector component there is only a single forward and a single
backward propagating mode, nonlocal constitutive relations
lead to multiple solutions. Therefore, not just ordinary in-
terface conditions are needed but some additional (see, e.g.,
[33,34]). Evidently, several methods for deriving these inter-
face conditions exist. For instance, in the multipole expansion
theory, they were obtained for a medium characterized by
an electric quadrupolar and octupolar response (see, e.g.,
[35,36]). For our purposes, it is convenient to obtain these
interface conditions using a weak formulation to Maxwell’s
equations (see, e.g., [37]).

The main physical motivation behind the use of the weak
formulation is to consider it as a “physical model” to generate
interface conditions. Moreover, our advanced constitutive re-
lations are required to reduce to the usual interface condition
in the absence of any nonlocality. This helps us to justify
from a physical perspective the correctness of these interface
conditions. Notice that this approach is not much different
from the usual approach to derive interface conditions in elec-
trodynamics. There, a “pillbox approach” is mostly suggested
in which Maxwell’s equations are solved in a spatial domain
corresponding to a pillbox that is placed in its center directly
at the interface. For local media we obtain from solving
Maxwell’s equations in such pillbox volume the continuity of
tangential electric and magnetic field and normal component
of electric displacement and magnetic induction as the inter-
face condition. Now, with the nonlocal constitutive relations
we do exactly the same. It is just that the resulting differential
equation is too complex to find a closed form solution as
it is possible for a local material. Instead, we consider its
weak form. Passing to the weak formulation is frequently
done and well known in mathematics and physics, and the
interface or boundary conditions, which arise when partially
integrating in order to switch between the weak and the strong
formulation, are regarded as “natural” boundary conditions
coming in addition to the boundary conditions contained in the
weak formulation. Note also that finite-element methods are
based on the weak formulation of the underlying differential
equation.

However, the choice of the specific model for the con-
stitutive relation based on a Taylor polynomial that led to
Eq. (1) leaves the impression as being somewhat arbitrary.
Many other approximations to the general nonlocal response
function could have been considered and could have been
applied to the homogenization [38]. A decision concerning
a most appropriate model for the homogenization is always
the question of how well the homogeneous model can capture
the response from an actual MM. But of course, prior to any
consideration it is of utmost importance to know which model
for a constitutive relation is eligible at all. It is the purpose
of this contribution to establish, at the example of a specific
but systematic approach to generate nonlocal constitutive
relations more complicated than those of the bi-anisotropic
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material, a checklist that can be used to validate whether a
specific constitutive relation is admissible to homogenize a
MM or not.

This suggested checklist has three entries. First, the dis-
persion relation of a nonlocal media, as mentioned, gives
rise to multiple modes to be excited when an interface
between an ordinary material and a nonlocal MM is illu-
minated with a plane wave. Therefore, we require us to
derive from the combination of constitutive relations and
possible weak formulations the same number of interface
conditions as modes supported in the MM. Neither more
(overdetermined) nor less (underdetermined) interface con-
ditions are admissible. Second, we require that the nonlocal
models resort to the local models in the limiting case of a
vanishing nonlocality. Third, reciprocity relations, expressed
here in terms of the Casimir-Onsager relations, need to be
fulfilled by the constitutive relations. As we show, many of
the possible models one could imagine actually do not cope
with these requirements and, indeed, expression (1) is already
an excellent choice to express the fourth order term in the
nonlocality.

We demonstrate the checklist, exemplary, while consider-
ing a more general expansion of the non-local response kernel,
namely a Padé approximation. The Padé approximation has
the advantage of expanding the nominator and the denomi-
nator or a rational function independently. Moreover, we can
admit models where the material parameters are not written
specifically between symmetric order of curl operators, as
written in Eq. (1). This offers a path to derive quite diverse
nonlocal constitutive relations that may or may not capture
the response from an actual MM quite well. However, before
being considered for this task, these constitutive relations have
to pass the suggested checklist.

This paper is organized as follows. In Sec. II we recall
the Maxwell equations in the specific setting of interest.
In Sec. III we talk about the concept of homogenization,
by showing the difference between the local and nonlocal
homogenization notions. In Sec. IV we present constitutive
relations for what we call Padé MMs obtained from a Padé-
type approximation of the nonlocal response function. The
nine possible cases to perform the Padé-type approximation
constitute the constitutive relations expressing the properties
of the MMs at the effective level. In Sec. V we give the
solutions to the dispersion relations for the nine cases, by
treating separately both transverse electric (TE) and transverse
magnetic (TM) polarizations. For the sake of readability, a
detailed derivation of the dispersion relations is presented in
an Appendix. In Sec. VI we set the function space we need in
the present research, and we explain the essence of the weak
formulation. Our main contribution is given in Sec. VII, in
which we present the criteria we set for the checklist in order
to analyze the validity of each case. These criteria are based
on mathematical and physical first principles. This necessarily
requires also a derivation of the interface conditions that is
done in Sec. VII A as well. In Sec. VIII we discuss and
summarize our findings. At the end of the paper we present
in an Appendix the detailed coefficients given in the solutions
to the dispersion relations.

With this work we unlock the opportunities to consider
in the future other constitutive relations. Basically many

FIG. 1. Illustration of the domain in which the light propagates,
the upper-half space is occupied by vacuum and the lower-half space
is occupied by a homogenized MM. The surface separating the two
half-spaces is denoted �. The normal n is outward directed from the
homogenized MM.

formulations can be postulated but only those that pass the
presented checklist should be considered.

II. GENERAL SETTING

For the sake of simplicity, we assume that the propagation
of light takes place in the entire space R3, where the upper-
half space R3

+ is occupied by vacuum and the lower-half space
R3

− is occupied by a MM. The interface between them is
denoted by �. The unit normal n is outwardly directed from
the homogeneous MM (see Fig. 1).

We recall Maxwell’s equations with no external charges
and currents, which govern the propagation of light in a
material

∇ × Ẽ + 1

c

∂B̃
∂t

= 0, ∇ · B̃ = 0, (3a)

∇ × H̃ − 1

c

∂D̃
∂t

= 0, ∇ · D̃ = 0. (3b)

This system of equations includes four-vector fields: the
electromagnetic field given by the pair (Ẽ, H̃) and the elec-
tromagnetic induction given by the pair (D̃, B̃). They depend
on the position r and the time t in R3 × R → C3, but this
dependency is omitted here for brevity. The speed of light is
given by c and the time frequency is given by ω > 0. For a
harmonic time dependency, Maxwell’s system is written as

∇ × E − ik0B = 0, ∇ · B = 0, (4a)

∇ × H + ik0D = 0, ∇ · D = 0. (4b)

Here k0 refers to the wave number of the external
monochromatic light, it is given by the relation k0 = ω

c . The
electromagnetic MMs we are considering are supposed to
be, only for simplicity, centrosymmetric, such that no optical
activity emerges in the principal axes. A typical example of
such structure is the Fishnet MM (see, e.g., [39,40]). Provid-
ing the relation between the electromagnetic fields and the
electromagnetic induction is required to solve the system of
equation. These relations are the desired constitutive relation
if considered at the effective level. For the mesoscopic, i.e.,
for the actual, MM, the usual local constitutive relations are
considered and we assume that the MM itself is made from a
nonmagnetic media.
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III. HOMOGENIZATION OF METAMATERIALS

The modeling of phenomena occurring in composite ma-
terials leads generally to partial differential equations whose
coefficients are strongly oscillating. In our case, these co-
efficients refer to the spatially dependent permittivity that
describes the properties of the actual MM in real space.
These oscillations can generate problems in the analytical and
numerical resolution of these equations. Moreover, we do not
wish to solve Maxwell’s equations exactly anytime a device
made from MMs is considered; but we wish to consider MMs
actually on an equal footing as ordinary materials. The theory
of homogenization serves to overcome these difficulties by
replacing problems with strongly oscillating coefficients by
approximate problems whose coefficients are constant, and
therefore much simpler to process numerically. For an intro-
duction to this theory we refer the reader to see for instance
[41–43]. In the case of MMs, the homogenization process
has to be done in order to associate the MM to its effective
properties. The principle consists of defining a hypothetical
homogeneous material, which is characterized by effective
properties. We require that in the homogeneous material: (a)
the propagation of light has to be analogous as in the actual
MM and (b) the reflection and transmission coefficients on
an interface, separating a MM to an adjacent known material,
have to be also analogous for both the homogeneous material
and the actual MM. For the description of MMs at the effective
level, either local or nonlocal constitutive relations can be
used.

A. Local homogenization of metamaterials

Most frequently, local constitutive relations are considered
to homogenize MMs, where the electromagnetic field and the
electromagnetic induction are linked to each other through
local constitutive relations. This is a mere extension of how
we treat natural materials in Maxwell’s equations. The func-
tional dependency of D and H is a linear combination of the
macroscopic fields E and B, that read

D(ω, r) = E(ω, r) + P(E)(ω, r), (5a)

H(ω, r) = B(ω, r) − M(B)(ω, r), (5b)

where P is the polarization and M is the magnetization.
They shall explicitly depend only on E and B at the same
spatial location and also not on derivatives. Please note, for
the centrosymmetric materials as considered here, there is no
electromagnetic cross coupling, i.e., P does not depend on B
and M does not depend on E. For intrinsically nonmagnetic
materials, we have M ≡ 0. To apply such constitutive rela-
tions, the size of the meta-atoms constituting the MM has to
be much smaller than the wavelength, something that does
not apply to most MMs frequently considered especially at
optical frequencies. Most MMs do have a period only smaller
than the wavelength and both of them are in the same order
of magnitude. This implies that the WSD is insufficient to
capture the properties of most actual MMs, and going beyond
local homogenization with WSD is then needed for a proper
homogenization.

A typical example of the local homogenization is the
asymptotic homogenization (see, e.g., [14,15,44–48]). The

concept considers a small parameter δ referring to the period
of the meta-atoms’ arrangement. Homogenizing the Maxwell
system consists in studying the asymptotic behavior of its
solution when δ tends to 0.

B. Nonlocal homogenization of metamaterials

To further advance the effective description, nonlocal con-
stitutive relations with SSD are required. We consider the
general nonlocal material law of a homogeneous medium
written in the real space in the following form:

D(ω, r) =
∫
R3

R(ω, r − r′)E(ω, r′) dr′, (6)

where the kernel R(ω, r − ·) represents the response function
of the electric Field E. If the response tensor R(ω, r − ·)
contains distributional terms, the nonlocal material law (6) can
be written as a dual pairing, i.e., as a distributional action, as
follows:

D(ω, r) = 〈R(ω, r − ·), E(ω, ·)〉. (7)

In general, the formula of the response tensor is unknown,
hence it is not clear how to evaluate the electromagnetic
field on the interface separating two disparate media. Finally,
while the expression is certainly correct, it is unhandy for any
practical purpose. Therefore, this expression of the response
kernel needs to be simplified in order to reach a constitutive
relation of practical utility. How this can be done will be
discussed in the next section.

IV. PADÉ METAMATERIALS

A. Constitutive relations

In the spatial frequency space the nonlocal material law (6)
is written in the following form:

D̂(ω, k) = R̂(ω, k)Ê(ω, k). (8)

In general, several methods exist to approximate an unknown
function [like R̂(ω, k) here], see for instance [49]. Notably,
we can approximate it using polynomials. Taylor approxima-
tion is a widely used method for this purpose. However, this
approach can be generalized using rational functions, i.e., the
quotient of two polynomials. It is well known that for some
functions an approximation with a rational function offers a
higher accuracy than polynomial approximation (see [50]).
This benefit clearly motivates the consideration of a Padé
approximation in this paper.

Notice that the concept of an approximation with rational
functions has been used as early as the beginning of the
nineteenth century [51], even before Henri Padé published in
1892 an article concerning the approximate representation of
a function by rational fractions [52]. After that publication,
this kind of approximation of functions became well known
under the name of Padé, and it was widely used for computing
approximations for both physical and mathematical problems
(see for instance [53]).

In [26] a specific approximation of the nonlocal response
function based on a Taylor approximation up to the fourth
order was considered. In the present research we consider a
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rational approximation of the response function, written as

R̂(ω, k) = [I − q̂(ω, k)]−1[ε(ω)I + p̂(ω, k)], (9)

where I refers to the identity matrix, p̂(ω, ·) and q̂(ω, ·) are
C3×3 matrices, polynomially depending on k and vanish at
k = 0. They are assumed to take the following expressions:

p̂(ω, k) ∈ {[−α(ω)k × k×], [−k × α(ω)k×],

[−k × k × α(ω)] }, (10a)

q̂(ω, k) ∈ { [−γ (ω)k × k×], [−k × γ (ω)k×],

[−k × k × γ (ω)] }, (10b)

with α(ω) and γ (ω) representing the material parameters cor-
responding to the polynomials p̂ and q̂, respectively. Together
with the electric permittivity ε(ω), they are assumed to be
C3×3 anisotropic diagonal matrices with smooth and bounded
entries depending on the frequency ω, defined by

ε =
⎛⎝εxx 0 0

0 εyy 0
0 0 εzz

⎞⎠, α =
⎛⎝αxx 0 0

0 αyy 0
0 0 αzz

⎞⎠,

γ =
⎛⎝γxx 0 0

0 γyy 0
0 0 γzz

⎞⎠. (11)

After backward Fourier transform, we see that the
polynomial-matrices p̂ and q̂ amount to one of the following
differential operators:

p(ω, i∇) ∈ {[α(ω)∇ × ∇×], [∇ × α(ω)∇×],

[∇ × ∇ × α(ω)] }, (12a)

q(ω, i∇) ∈ { [γ (ω)∇ × ∇×], [∇ × γ (ω)∇×],

[∇ × ∇ × γ (ω)] }. (12b)

Thereafter, the nonlocal material law amounts to the following
differential equation:

[I − q(ω, i∇)]D(ω, r) = [ε(ω)I + p(ω, i∇)]E(ω, r). (13)

According to the choices of p(ω, i∇) and q(ω, i∇), Eq. (13)
leads to nine different formulations that we call in the follow-
ing “cases.”

Let us now justify the assumptions on the material param-
eter of being anisotropic diagonal matrices. The anisotropy
of a given material is the property of being directionally de-
pendent. More precisely, anisotropic materials admit different
properties in different directions. They can be represented
by nine element tensors, i.e., C3×3 matrices. However, for
a suitable choice of coordinate system, we can only have
nonzero diagonal elements in the material parameters tensors,
whereas all the off-diagonal elements are zero. For this reason,
instead of full anisotropic tensors, we consider only diagonal
matrices that simplify computations. Furthermore, if the three
values for the diagonal elements are equal, we say that the
material is isotropic. Under an isotropy assumption, the ma-
terial parameters are simply scalars. This fact implies that the
three different formulas of the operator p(ω, i∇) expressed in
(12a) will be identical; the same will hold also for the operator

q(ω, i∇) expressed in (12b). Hence, we get only one wavelike
equation instead of several formulations.

Notice that in this paper we adopted the naming Padé
metamaterials because we used a rational fraction expansion
for the nonlocal response function of the electric field inside
MMs. This kind of expansions, i.e., of Padé type, were already
considered in the literature, for example:

(i) When expressing the properties of metals within a
hydrodynamic Drude model, e.g., applicable to study for
plasmonic nanostructures (see for instance [54,55]), where the
nonlocal response function is given by

R̂(ω, k)Hydro = 1 − ω2
p

ω2 + iωγ − β2|k|2 , (14)

for ωp being the plasma frequency of the free electrons, γ is
the damping constant, and β is a nonlocal term proportional
to the Fermi velocity.

(ii) When expressing the properties of wire media [56,57],
which constitutes an example of complex artificial electro-
magnetic materials, consisting of metallic nanowires embed-
ded in a dielectric host medium. See for instance [58], where a
nonlocal homogenization theory was applied to homogenize a
wire medium and it was compared to a homogenization theory
specifically derived for the wire medium in [59]. We can see
clearly in [59] that the permittivity of a nanowire medium is
of Padé type, having the following form:

εm = εbulk + iω2
pτ (Rb − R)

ω(ωτ + i)(ωτR + iRb)
. (15)

The first term of the permittivity, denoted by εbulk, cor-
responds to the permittivity of bulk gold. The second term
represents additional effects, with ωp being the plasma fre-
quency, Rb and R refer to the mean-free path and the effective
mean-free path of the electrons respectively, τ refers to the
relaxation time of the conducting electrons.

In the next subsection we express one wave equation that
governs the propagation of light in a medium characterized by
each of these constitutive relations.

B. Wave equations

We recall Maxwell’s equation for the electric field

∇ × ∇ × E(ω, r) = k2
0D(ω, r). (16)

By substituting the general nonlocal material law (13) in the
wave equation (16), we obtain

[I − q(ω, i∇)][∇ × ∇ × E(ω, r)]

= k2
0[ε(ω)I + p(ω, i∇)]E(ω, r). (17)

Hence, the general wavelike equation for homogenized MMs
is given by

∇ × ∇ × E(ω, r) = k2
0ε(ω)E(ω, r) + [

k2
0p(ω, i∇)

+ q(ω, i∇)(∇ × ∇×)
]
E(ω, r). (18)

Notice that from Eq. (13) it is clear that the relation between
the fields D and E is given through a differential equation;
and from Eq. (18) we can write a closed formula for the Padé
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TABLE I. Wavelike equations modeling the propagation of light in media, where the upper-half space is vacuum and the lower-half space
is a MM. These equations are obtained by means of a Padé-type approximation of the nonlocal response function to an incident electric field.

Case 1 :
∇ × ∇ × E =
k2

0 ε̃E + k2
0∇ × α̃∇ × E

+∇ × ∇ × γ̃∇ × ∇ × E

Case 2 :
∇ × ∇ × E =
k2

0 ε̃E + k2
0∇ × α̃∇ × E

+∇ × γ̃∇ × ∇ × ∇ × E

Case 3 :
∇ × ∇ × E =
k2

0 ε̃E + k2
0∇ × α̃∇ × E

+γ̃∇ × ∇ × ∇ × ∇ × E
Case 4 :
∇ × ∇ × E =
k2

0 ε̃E + k2
0∇ × ∇ × α̃E

+∇ × ∇ × γ̃∇ × ∇ × E

Case 5 :
∇ × ∇ × E =
k2

0 ε̃E + k2
0∇ × ∇ × α̃E

+∇ × γ̃∇ × ∇ × ∇ × E

Case 6 :
∇ × ∇ × E =
k2

0 ε̃E + k2
0∇ × ∇ × α̃E

+γ̃∇ × ∇ × ∇ × ∇ × E
Case 7 :
∇ × ∇ × E =
k2

0 ε̃E + k2
0 α̃∇ × ∇ × E

+∇ × ∇ × γ̃∇ × ∇ × E

Case 8 :
∇ × ∇ × E =
k2

0 ε̃E + k2
0 α̃∇ × ∇ × E

+∇ × γ̃∇ × ∇ × ∇ × E

Case 9 :
∇ × ∇ × E =
k2

0 ε̃E + k2
0 α̃∇ × ∇ × E

+γ̃∇ × ∇ × ∇ × ∇ × E

approximation to the dielectric function, given by

D[E](ω, r) = R(ω, i∇)E(ω, r)

≈ [
ε(ω)I + p(ω, i∇)

+ (
k2

0

)−1
q(ω, i∇)(∇ × ∇×)

]
E(ω, r), (19)

here I refers to the identity operator. By combining each pos-
sible expression for p(ω, i∇) with each possible expression
for q(ω, i∇), given in (12a) and (12b), we get nine equations
modeling the propagation of light in a homogeneous MM.

In a domain with upper-half space vacuum and lower-half
space MM, the wavelike equations generated from the Padé-
type response functions, named from case 1 to case 9, are
given in Table I.

We draw the attention of the reader that the material
parameters defined in the entire space and in the presence
of an interface � have no longer smooth entries due to their
discontinuity on this surface; we marked them with “˜” and
they are given by

ε̃ =
{

1, z > 0,

ε, z < 0,
α̃ =

{
0, z > 0,

α, z < 0,

γ̃ =
{

0, z > 0,

γ , z < 0.
(20)

Under the anisotropy assumption, these coefficients are al-
ways C3×3 diagonal matrices, such that the parameters ε, α,
and γ , given by (11), characterize a MM in the absence on any
surface and they are written without “˜”.

We stress that the second order terms in all equations in
Table I describe the local effect, i.e., the effect produced using
local constitutive relations. These terms can be regrouped by
means of the parameter μ̃ = (1 − k2

0 α̃)−1. We notice that for
the formulas corresponding to cases 1, 2, and 3 in Table I,
the parameter μ̃ represents the magnetic permeability. For the
other cases, we do not have an explicit physical explanation.
The nonlocal effect is given through the fourth order deriva-
tive terms, and it is represented by the parameter γ̃ .

We emphasize that the present approach, i.e., Padé-type
approximation of the response function, can be considered as
a mathematical justification to the different locations of the
material parameters expressed in Table I. In other words, this
approach shows that these models are not randomly chosen.
Notably, due to the anisotropy of the material parameters, they

do not commute with the curl operators. Together with the fact
of approximating the nonlocal response function R by means
of fractional functions, it is clear that we can easily end up
at a large number of formulations. We highlight that possibly
not all of these formulations are useful. Therefore, a checklist
needs to be established that allows us to conclude which for-
mulations are correct and which are not. Certainly, Padé-type
approximation is not the only way for generating different
formulations, and any future suggestions for a more general
constitutive relation should respect such sort of checklist to
end up with meaningful and sound results.

We remark that the first wavelike equation in Table I,
denoted as case 1, coincides implicitly with the wave equation
obtained in [26,34,39] using a Taylor approximation of the
response function truncated at the fourth order terms. Namely,
for centrosymmetric MMs the constitutive relation in the real
space is given by

Di(ω, r) = ai jE j (ω, r) + ci jlm∇l∇mEj (ω, r)

+ ei jklmn∇k∇l∇m∇nE j (ω, r). (21)

The expansion coefficients are assumed to satisfy the follow-
ing formulas:

ai j
!= ε(ω), (22a)

ci jlm∇l∇mEj
!= {∇ × [α(ω)∇ × E]}i, (22b)

ei jklmn∇k∇l∇m∇nE j
!= {∇ × ∇ × [γ (ω)∇ × ∇ × E]}i.

(22c)

Then the obtained wavelike equation reads

∇ × ∇ × E = k2
0[ε(ω)E + ∇ × α(ω)∇ × E + ∇

×∇ × γ (ω)∇ × ∇ × E]. (23)

On the other hand, if we choose the operators p(ω, i∇) and
q(ω, i∇) as follows:

p(ω, i∇) = ∇ × α(ω)∇×, (24a)

q(ω, i∇) = ∇ × ∇ × γ (ω), (24b)

and we scale the parameter γ (ω), we get exactly the same
equation as in case 1 of the Padé approximation. This equation
was studied in detail in Refs. [26,34,39], and it provided good
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results (reflection and transmission coefficients) when com-
pared to those obtained from a direct solution of Maxwell’s
equations for the actual MM (see, e.g., [60,61]). Our main
concern in this paper is to study the other cases in Table I
and to compare them to case 1.

Before presenting the established checklist, analyzing the
wavelike equations obtained in the present paper, and solv-
ing the interface problems; we solve first the bulk prob-
lems. Namely, we compute and solve the dispersion relations
which are required to define the propagating eigenmodes
within a MM.

V. DISPERSION RELATIONS

For a plane wave propagating within a medium, the dis-
persion relation has to be satisfied to guarantee that the plane
wave indeed solves Maxwell’s equations [62]. The dispersion
relation expresses the functional dependency of the wave
vector components of the wave and its frequency for a given
medium, i.e., kz(kx, ky, k0, ε, α, γ ). For a homogeneous mate-
rial we can obtain the dispersion relation by plugging a plane
wave ansatz in the wave equation. Hence, we get an algebraic
system of equations instead of differential equations. For non-
trivial solutions, the determinant of the corresponding matrix
has to be zero. It is a polynomial with indeterminants the
wave vector’s components. The eigenvalues are the roots of
the dispersion relation and the associated eigenmodes are the
modes sustained inside the homogeneous material. In Fourier
space, the general wavelike Eq. (18) is written as{

k2
0[ε(ω)I + p̂(ω, k)] + [I − q̂(ω, k)](k × k×)

}︸ ︷︷ ︸
W (ω,k)

Ê(ω, k)

= 0, (25)

for p̂(ω, k) and q̂(ω, k) having one of the forms expressed
in (10a) and (10b). The vanishing of the determinant of the
wave operator W (ω, k) represents the dispersion relation.
In vacuum, the dispersion relation is given by k2

z = k2
0 −

(k2
x + k2

y ). It has two solutions kz = ±
√

k2
0 − (k2

x + k2
y ) which

represent the forward and the backward modes, respectively.
In a bulk MM described by the effective material parameters
(11), we will see that the dispersion relations are polynomials
of order four, which gives rise to multiple, exactly four,
modes propagating per polarization. Precisely, in the presence
of interfaces, for example a MM slab with finite thickness,
there will be two forward modes excited at the first interface
and two backward modes at the second interface, instead of
only one at each interface in the absence of strong spatial
dispersion.

Without loss of generality, we assume that the incident
wave propagates in the yz plane with the z direction as a
principal propagation direction. Hence we set kx = 0 and the
wave vector is written k = (0, ky, kz )T . Furthermore, along
an interface �, the system is invariant under translation.
Consequently, the wave vectors for all plane waves at the
interface share the same y component that we commonly
denote by ky. Furthermore, we decompose the incident wave
into its transverse electric (TE) and transverse magnetic (TM)
polarized modes. Due to the absence of optical activity in cen-

trosymmetric MMs, polarization is preserved for the reflected
and transmitted fields, such that:

(i) TE polarization:

E = E0 exp(ik · r), with E0 = (Ex, 0, 0)T and

k = (0, ky, kz )T .

(ii) TM polarization:

E = E0 exp(ik · r), with E0 = (0, Ey, Ez )T and

k = (0, ky, kz )T .

In what follows, we treat the TE and TM polarizations
separately, i.e., we plug the corresponding polarized plane
wave into the wavelike equation for each case in Table I and
seek for the solutions kz(kx, ky, k0, ε, α, γ ). In all nine cases
the dispersion relations are polynomials of order 4 that depend
on the polarization of the field. The corresponding solutions
specify the forward and backward propagating eigenmodes
inside such MMs. The solutions to the wave equation for
the nine studied cases are summarized in Table II. In fact,
only five different functional dependencies of kz(ky) emerge in
these 2 × 9 resulting dispersion relations, leading to identical
isofrequency contours. These five types are

a. Dispersion of type A: k2
z (ky) = − 1

2 (q0 + q1)k2
y + p0 ±√

l0 + (p0 + q0−q1

2 k2
y )

2
,

b. Dispersion of type B: k2
z (ky) = −k2

y + p0 ±√
l0 + p2

0 + 2(p1 − p0)k2
y ,

c. Dispersion of type C: k2
z (ky) = − 1

2 (q0 + q1) + p0 ±√
l0 + (p0 − q0+q1

2 k2
y )

2 + 2q0 p1k2
y − q0q1k4

y ,

d. Dispersion of type D: k2
z (ky) = −k2

y + p0 ±
√

l0 + p2
0,

e. Dispersion of type E: Q0(ky)k2
z (ky) = P0(ky) ±√

[P0(k2
y )]2 + P1(k2

y ).

Here the coefficients p0, p1, q0, q1, l0, P0, P1, and Q0 are
products and ratios of the material parameters and depend on
the polarization and on the case. For the sake of readability, we
summarize the exact coefficients of the dispersion relations in
the Appendix.

Concerning the first case, the dispersion relations (later the
interface conditions as well) for both TE and TM polarization
are identical to the wave equation considered by the Taylor
approach that has been previously introduced in [26], with
a normalization of the parameter expressing the nonlocal
effects. The reader can return to [26,34,39] for detailed dis-
cussions. Here we repeat this dispersion relation for com-
pleteness. While eight out of nine Padé approximants yield a
polynomial type of dispersion relations, the TM polarization
of case 6 seems to be of special type, namely type E. It is
the only case where the functional dependency of kz(ky) is of
Padé type as well, leading to peculiar isofrequency contours,
inaccessible with the other eight cases. The above types of
dispersion relations repeat also in a few occasions. The same
type of dispersion relations will eventually reproduce the
same bulk properties. In cases “4 and 7” and “5 and 8” the
dispersion relations as well as their corresponding coefficients
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TABLE II. Summary of the different types of dispersion relations for the wavelike equations defined in Table I, with respect to the transverse
electric (TE) and the transverse magnetic (TM) polarized modes.

�������p(ω, k)
q(ω, k)

k × k × γ k × γ k× γ k × k×

k × αk× Case 1 Case 2 Case 3
TM: A TE: B TM: A TE: C TM: C TE: B

k × k × α Case 4 Case 5 Case 6
TM: C TE: D TM: C TE: A TM: E TE: D

αk × k× Case 7 Case 8 Case 9
TM: C TE: D TM: C TE: A TM: C TE: D

are pairwise identical. However, this does not forcibly mean
that the corresponding pairs of cases are equivalent, as their
interface conditions differ. Consequently, light at the interface
will couple differently, leading to different electromagnetic
response, i.e., reflection and transmission coefficients. To
reach to these interfaces, we need to say something more
general on the function space setting and the possible weak
formulations that we discuss in the next section.

VI. FUNCTION SPACES SETTING AND WEAK
DERIVATIVES

The wavelike equations expressed in Table I are strong
formulations for Padé MMs. C4(R3) solutions1 do not exist.
However, due to the discontinuity of ε̃(ω), α̃(ω), and γ̃ (ω) on
the surface � separating the upper-half space vacuum to the
lower-half space MM (see Fig. 1), the derivatives in Table I are
no longer considered as classical derivatives. Namely, these
equations are understood in the generalized sense (see, e.g.,
[63]) and their solutions are generalized solutions, which are
linear functionals acting continuously on smooth compactly
supported functions. The space of generalized functions2 is
denoted D′(R3). This space represents the dual space of
compactly supported smooth functions, i.e., C∞

0 (R3).
Locally integrable functions on R3 [i.e., functions f ∈

L1
loc(R3)] provide generalized functions Ff , called regular

generalized functions, acting on � ∈ C∞
0 (R3) by

Ff [�] :=
∫
R3

f (r)�(r) dr.

In the same manner, we can define the associated generalized
functions for a subset of L1

loc(R3), which is the space of locally
square integrable functions, i.e., f ∈ L2

loc(R3). In this paper
we deal with functions located in this space.

To solve the interface problems corresponding to equations
in Table I, we need to write them in a weaker formulation [64].
The essence of this operation consists of formally multiplying
the strong form3 with a test function, i.e., compactly supported
smooth functions, and integrating over the domain on which

1C4(R3): the space of vector functions, with components functions
continuously differentiable up to order 4.

2In some references they are called distributions (see, e.g., [63]).
3The governing partial differential equation, in which the order of

derivatives is not reduced as in the weak form.

the equations are defined. In the generalized sense, the defini-
tion of generalized derivatives mimics partial integration. For
example, for E ∈ L2

loc(R3), ∇ × E ∈ D′(R3), and

(∇ × E )[�] :=
∫
R3

E · (∇ × �) dr, ∀� ∈ C∞
0 (R3).

Let us now consider a term appearing in cases 4, 5, and 6
in Table I, given by ∇ × ∇ × α̃E, and show how to define the
weak derivation. For F := α̃E ∈ L2

loc(R3) and ∇ × ∇ × α̃E ∈
D′(R3), by definition we have

(∇ × ∇ × F)[�] :=
∫
R3

F · (∇ × ∇ × �) dr,

∀� ∈ C∞
0 (R3).

On the other hand, we have∫
R3

F · (∇ × ∇ × �) dr =
∫
R3

α̃E · (∇ × ∇ × �) dr

=
∫
R3

−
αE · (∇ × ∇ × �) dr.

Thus, the weak derivative of ∇ × ∇ × α̃E reads

(∇ × ∇ × F)[�] =
∫
R3

−
αE · (∇ × ∇ × �) dr,

∀� ∈ C∞
0 (R3).

According to the same principle, we define the weak deriva-
tives in all the wavelike equations in Table I (see Sec. VII).

Always dealing with the term ∇ × ∇ × α̃E, we stress that
due to the discontinuity of α̃E at the surface �, it is not correct
to consider the following weak derivative:

(∇ × ∇ × F)[�] =
∫
R3

−
(∇ × αE) · (∇ × �) dr,

∀� ∈ C∞
0 (R3),

because it is not possible to define the corresponding regu-
lar generalized function to ∇ × F since ∇ × F = ∇ × α̃E /∈
L1

loc(R3).
After explaining the principle of generalized derivatives

and weak formulation, we solve the interface problems for the
different cases presented in Table I by deriving the interface
conditions. For the sake of shortness, we combine this task
with the checklist for each model in Table I in the next section.
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VII. SELECTION CRITERIA AND DISCUSSIONS

To decide which case can possibly describe the propagation
of light in homogeneous MMs, we shall present mathematical
and physical criteria that intervene basically in the checking
process.

(1) At first we need to solve the interface problem for each
case, which reveals the main principle one has to respect in
such study. We highlight that the number of unknown field
amplitudes at the interface � is defined through the dispersion
relations by counting the number of eigenmodes (cf. Sec. V).
To define their amplitudes, the number of eigenmodes must
coincide with the number of interface conditions that we can
derive at the interface �.

(2) Second, as the nonlocal approach should always con-
tain the local approach as a limit, we have to analyze the
resulting reflection and transmission coefficients calculated
from the Fresnel equations. To this end, we check the limit
of these coefficients when γ → 0. More precisely, they have
to be the same as the reflection and transmission coefficients
produced by the WSD approach. In case of mismatch, the
case corresponding to the chosen weak formulation cannot be
considered for further applications.

(3) The third criterion that must be fulfilled in the effec-
tive description of optical MMs is the conformity with the
Casimir-Onsager reciprocity principle [65], which imposes
some symmetry conditions for the nonlocal response function
R̂(ω, k).

In the following subsection we derive first of all the inter-
face conditions for all nine cases and verify their conformity
with our first criteria. Afterwards, we impose in the follow-
ing subsections the other criteria and rule out an increasing
number of cases to possibly express constitutive relations.

A. Interface conditions analysis

The number of eigenmodes excited in a half-space or a slab
MM is determined from the dispersion relations (cf. Sec. V
and [33]). When spatial dispersion occurs, the classical inter-
face conditions are not sufficient to compute the amplitudes
of all eigenmodes. For every constitutive relation proposed
in Table I, light-matter interaction is modeled differently.
Therefore, one has to derive additional interface conditions for
each case separately. In the literature they are not often calcu-
lated analytically, but rather introduced on phenomenological
grounds (see, e.g., [19]). For that reason, solving the interface
problems by exploiting the weak formulation of each wavelike
equation in Table I represents one of our main contributions
in this investigation.

Before starting, we recall Green’s formula for the ∇×
derivative (see, e.g., [66]). For � a bounded domain in R3

with a Lipschitz boundary ∂� = �, we define the space
H(curl,�) as follows:

H(curl,�) = {u ∈ L2(�), ∇ × u ∈ L2(�)}.
For u and v two vector fields in the space H(curl,�), we have
the following Green’s formula:∫

�

u · (∇ × v) dr =
∫

�

(∇ × u) · v dr +
∫

�

(u × n) · vt ds,

(26)

where vt represents the tangential component of the vector
field v on the surface � and ds represents the area of the
surface element on �. The normal vector n is outwardly
directed from �.

For E a vector field defined in the upper-half space R3
+, we

denote by E+ its trace on the surface �. Conversely, for E a
vector field defined in the lower-half space R3

−, we denote by
E− its trace on the surface �.

The strategy of deriving the interface conditions consists
in writing the corresponding weak formulations of the wave-
like equations. A weak formulation requires formally writing
the equations in the function space D′(R3) (cf. Sec. VI).
Then, we can derive the additional interface conditions by
re-establishing the strong formulations via partial integration.

We emphasize that because of reasons linked to the dis-
continuity of the material parameters on the surface �, it is
not always possible to write symmetric weak formulations.
Namely, the bilinear form associated with the respective weak
formulation is not always symmetric, i.e., the order of deriva-
tives applied on the vector field E is not always the same as the
order of derivatives applied on the test function �. Actually,
our plan is not necessarily shifting all the ∇× derivatives
located before the parameters α and γ to the test function �.

Some cases will be already excluded due to violation of the
first criterion. Regarding the other cases, they need to fulfill
the second and the third criteria. As previously mentioned,
case 1 coincides implicitly with the model given by the Taylor
approach studied in [34], in this paper we will just recall its
corresponding interface conditions for a self-contained paper.

1. Interface conditions for case 1

We recall the wavelike equation corresponding to case 1:

∇ × ∇ × E = k2
0 ε̃E + k2

0∇ × α̃∇ × E + ∇
×∇ × γ̃∇ × ∇ × E. (27)

a. Weak formulation. Equation (27) is understood in the
generalized sense. We suppose that E has the following regu-
larities:

E ∈ L2
loc(R3), ∇ × E ∈ L2

loc(R3), and ∇ × ∇ × E ∈ L2
loc(R3

−), (28)

which, in particular, implies that E, ∇ × E, and ∇ × ∇ × E cannot contain delta distributions at the interface. For � ∈ C∞
0 (R3),

we define the weak formulation corresponding to the Eq. (27) as follows:∫
R3

(∇ × E) · (∇ × �) dr = k2
0

∫
R3

+
E · � dr + k2

0

∫
R3

−
εE · � dr + k2

0

∫
R3

−
(α∇ × E) · (∇ × �) dr

+
∫
R3

−
(γ∇ × ∇ × E) · (∇ × ∇ × �) dr. (29)
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We say that E is a weak solution to the wavelike Eq. (27) if it has the regularities (28) and satisfies the weak formulation (29).
b. Interface conditions. (See [34])

(E+ − E−) × n = 0, (30a)

(∇ × E+ − ∇ × E−) × n + k2
0 (α∇ × E−) × n + (∇ × γ∇ × ∇ × E−) × n = 0, (30b)

(γ∇ × ∇ × E−) × n = 0. (30c)

The third term in the second interface condition (30b) is purely coming from nonlocality. The interface condition (30c)
represents the one what we call in this context “the additional interface condition.” In contrast to Maxwell’s equations with the
classical constitutive relations, we only have two interface conditions given by

(E+ − E−) × n = 0, (31a)

(∇ × E+ − μ−1∇ × E−) × n = 0. (31b)

Here μ represents the magnetic permeability, that can be written as follows: μ = (1 − k2
0α)−1 (cf. Sec. IV B).

2. Analysis of case 2

The wavelike equation corresponding to case 2 reads

∇ × ∇ × E = k2
0 ε̃E + k2

0∇ × α̃∇ × E + ∇ × γ̃∇ × ∇ × ∇ × E. (32)

a. Weak formulation. In the generalized sense, for E verifying the following regularities:

E ∈ L2
loc(R3), ∇ × E ∈ L2

loc(R3), and ∇ × ∇ × ∇ × E ∈ L2
loc(R3

−), (33)

and for � ∈ C∞
0 (R3), the weak formulation of the wavelike Eq. (32) reads∫
R3

(∇ × E) · (∇ × �) dr = k2
0

∫
R3

+
E · � dr + k2

0

∫
R3

−
εE · � dr + k2

0

∫
R3

−
(α∇ × E) · (∇ × �) dr

+
∫
R3

−
(γ∇ × ∇ × ∇ × E) · (∇ × �) dr. (34)

We say that E is a weak solution to the wavelike Eq. (32) if it has the regularities (33) and satisfies the weak formulation (34).
b. Interface conditions. First interface condition: It represents a natural interface condition obtained from the fact that ∇ × E ∈

L2
loc(R3) and not from the weak formulations. This is why it represents also the first interface condition for all the other cases.

The proof will be presented only in this paragraph, and for the other cases we cite it without showing the proof again.
For E ∈ L2

loc(R3) and ∇ × E ∈ L2
loc(R3) we have

∀� ∈ C∞
0 (R3) :

∫
R3

(∇ × E) · � dr =
∫
R3

E · (∇ × �) dr. (35)

Integrating by parts on each half-space, we get∫
R3

(∇ × E) · � dr =
∫
R3

+
(∇ × E) · � dr +

∫
R3

−
(∇ × E) · � dr

=
∫
R3

+
E · (∇ × �) dr +

∫
R3

−
E · (∇ × �) dr +

∫
�

(E+ × n − E− × n) · �t ds

=
∫
R3

E · (∇ × �) dr +
∫

�

(E+ × n − E− × n) · �t ds. (36)

Since � is arbitrary, we get from Eqs. (35) and (36) the first interface condition, given by

(E+ − E−) × n = [E × n] = 0, (37)

where [·] represents the jump across the surface �.
Second interface condition: For E a weak solution to (32) with the regularities E ∈ L2

loc(R3), ∇ × ∇ × E ∈ L2
loc(R3), by

taking first a test function � ∈ C∞
0 (R3

+) and then in C∞
0 (R3

−), we can show that

∇ × ∇ × E = k2
0E, for a.e. x ∈ R3

+, (38a)

∇ × ∇ × E = k2
0εE + k2

0∇ × α∇ × E + ∇ × γ∇ × ∇ × ∇ × E, for a.e. x ∈ R3
−. (38b)
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For more details, we cite Ref. [34]. We integrate by parts Eq. (34) in a way that we reconstruct in the integrand Eqs. (38a)
and (38b). Then we write volume integrals on the left-hand side and surface integrals on the right-hand side, as follows:∫

R3
(∇ × ∇ × E) · � dr −

∫
R3

+
k2

0E · � dr −
∫
R3

−

(
k2

0εE + k2
0∇ × α∇ × E + ∇ × γ∇ × ∇ × ∇ × E

) · � dr

=
∫

�

[
(∇ × E+ − ∇ × E−) × n + k2

0 (α∇ × E−) × n + (γ∇ × ∇ × ∇ × E−) × n
] · �t ds. (39)

Using Eqs. (38a) and (38b), the left-hand side in (39) vanishes. Since � is arbitrary, we get the second interface condition

(∇ × E+ − ∇ × E−) × n + k2
0 (α∇ × E−) × n + (γ∇ × ∇ × ∇ × E−) × n = 0. (40)

We remark that the number of interface conditions for case 2 is less than the number of the reflected and transmitted fields.
More precisely, from the dispersion relation we know that there are two transmitted fields at the interface � into R3

− and one
reflected field into R3

+. Hence, there are three unknowns, whereas we got only two equations (interface conditions) to identify
them. This system of equations is underdetermined and can, therefore, lead to ambiguous solutions. In addition, case 2 does not
admit any other weak formulation that may give the necessary number of interface conditions. Thus, the corresponding case is not
adequate for describing the propagation of light in Padé MMs. For the same reason, case 8 will be excluded from the investigation
of Padé MMs.

3. Analysis of case 3

The wavelike equation corresponding to case 3 is given by

∇ × ∇ × E = k2
0 ε̃E + k2

0∇ × α̃∇ × E + γ̃∇ × ∇ × ∇ × ∇ × E. (41)

a. Weak formulation. In the generalized sense, for E verifying the following regularities:

E ∈ L2
loc(R3), ∇ × E ∈ L2

loc(R3), and ∇ × ∇ × ∇ × ∇ × E ∈ L2
loc(R3

−), (42)

and for � ∈ C∞
0 (R3), we define the weak formulation corresponding to the wavelike Eq. (41) as follows:∫
R3

(∇ × E) · (∇ × �) dr = k2
0

∫
R3

+
E · � dr + k2

0

∫
R3

−
εE · � dr + k2

0

∫
R3

−
(α∇ × E) · (∇ × �) dr

+
∫
R3

−
(γ∇ × ∇ × ∇ × ∇ × E) · � dr. (43)

We say that E is a weak solution to the wavelike Eq. (41) if it has the regularities (42) and satisfies the weak formulation (43).
b. Interface conditions. We follow the same principle as in case 2. By means of the equations

∇ × ∇ × E = k2
0E, for a.e. x ∈ R3

+, (44a)

∇ × ∇ × E = k2
0εE + k2

0∇ × α∇ × E + γ∇ × ∇ × ∇ × ∇ × E, for a.e. x ∈ R3
−. (44b)

We need to apply just one partial integration on the weak formulation (43) to recover Eqs. (44a) and (44b). Then we obtain∫
R3

+

( ∇ × ∇ × E − k2
0E︸ ︷︷ ︸

=0

) · � dr +
∫
R3

−

(∇ × ∇ × E − k2
0εE − k2

0∇ × α∇ × E − γ∇ × ∇ × ∇ × ∇ × E︸ ︷︷ ︸
=0

) · � dr

=
∫

�

[
(∇ × E+ − ∇ × E−) × n + k2

0 (α∇ × E−) × n
] · �t ds = 0. (45)

For an arbitrary test function �, we get the second interface condition

(∇ × E+ − ∇ × E−) × n + k2
0 (α∇ × E−) × n = 0. (46)

Because of the same reason as in case 2, which is a lack of additional interface conditions, case 3 will be excluded form the
study. This inconsistency is due to the material parameters γ that represents the nonlocal effect, which is located in the first
position in the fourth order differential operator. Cases 6 and 9 share the same nature of the fourth order term. Hence, case 9 will
be immediately excluded in turn. Whereas, because of the nature of the second order term in case 6, we have a chance to keep it
initially in the investigation.
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4. Analysis of case 4

We recall the wavelike equation corresponding to case 4:

∇ × ∇ × E = k2
0 ε̃E + k2

0∇ × ∇ × α̃E + ∇ × ∇ × γ̃∇ × ∇ × E. (47)

a. Weak formulation. Equation (47) is understood in the generalized sense. For E verifying regularities (28) and for � ∈
C∞

0 (R3), we define the weak formulation corresponding to case 4 as follows:∫
R3

(∇ × E) · (∇ × �) dr = k2
0

∫
R3

+
E · � dr + k2

0

∫
R3

−
εE · � dr + k2

0

∫
R3

−
(αE) · (∇ × ∇ × �) dr

+
∫
R3

−
(γ∇ × ∇ × E) · (∇ × ∇ × �) dr. (48)

We say that E is a weak solution to the wavelike Eq. (47) if it has the regularities (28) and satisfies the weak formulation (48).
b. Interface conditions. We follow the same principle as in cases 2 and 3. By means of the equations

∇ × ∇ × E = k2
0E, for a.e. x ∈ R3

+, (49a)

∇ × ∇ × E = k2
0εE + k2

0∇ × ∇ × αE + ∇ × ∇ × γ∇ × ∇ × E, for a.e. x ∈ R3
−, (49b)

after partial integration, the weak formulation (48) leads to the following formula:∫
R3

+

( ∇ × ∇ × E − k2
0E︸ ︷︷ ︸

=0

) · � dr +
∫
R3

−

(∇ × ∇ × E − k2
0εE − k2

0∇ × ∇ × αE − ∇ × ∇ × γ∇ × ∇ × E︸ ︷︷ ︸
=0

) · � dr

=
∫

�

[
(∇ × E+ − ∇ × E−) × n + k2

0 (∇ × αE−) × n + (∇ × γ∇ × ∇ × E−) × n
] · �t ds

+
∫

�

[
k2

0 (αE−) × n + (γ∇ × ∇ × E−) × n
] · (∇ × �)t ds = 0. (50)

The left-hand side is null because of Eqs. (49a) and (49b). To get out the second interface conditions, we choose the test function
� given by

�(r) = [1(x, y)η(z),2(x, y)η(z), 0]T , (51)

where 1,2 are arbitrary functions in C∞
0 (R2) and η(z) ∈ C∞

0 (R), satisfying η|{z<d} = 1. On the surface � we have

�|� = (1,2, 0)T , ∇ × �|� = (0, 0, ∂x2 − ∂y1)T .

Then we obtain

(∇ × E+ − ∇ × E−) × n + k2
0 (∇ × αE−) × n + (∇ × γ∇ × ∇ × E−) × n = 0. (52)

To extract the third interface conditions, we choose the test function � this time in the form

�(r) = [2(x, y)zη(z),−1(x, y)zη(z), 0]T , (53)

such that 1,2 ∈ C∞
0 (R2) and η(z) ∈ C∞

0 (R), satisfying η|{z<d} = 1. On the surface � we have

�|� = (0, 0, 0)T ,

∇ × �|� = (1,2, 0)T .

Since 1 and 2 are arbitrary, we have

k2
0 (αE−) × n + (γ∇ × ∇ × E−) × n = 0. (54)

Now we set all the interface conditions for the case 4 as follows:

(E+ − E−) × n = 0, (55a)

(∇ × E+ − ∇ × E−) × n + k2
0 (∇ × αE−) × n + (∇ × γ∇ × ∇ × E−) × n = 0, (55b)

k2
0 (αE−) × n + (γ∇ × ∇ × E−) × n = 0. (55c)

The first criterion is satisfied by the case 4 since we have three interface conditions as required.
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5. Analysis of case 5

The wave equation corresponding to case 5 reads

∇ × ∇ × E = k2
0 ε̃E + k2

0∇ × ∇ × α̃E + ∇ × γ̃∇ × ∇ × ∇ × E. (56)

a. Weak formulation. Equation (56) is understood in the generalized sense. For E verifying regularities (33) and for � ∈
C∞

0 (R3), we define the weak formulation corresponding to case 5:∫
R3

(∇ × E) · (∇ × �) dr = k2
0

∫
R3

+
E · � dr + k2

0

∫
R3

−
εE · � dr + k2

0

∫
R3

−
(αE) · (∇ × ∇ × �) dr

+
∫
R3

−
(γ∇ × ∇ × ∇ × E) · (∇ × �) dr. (57)

We say that E is a weak solution to the wavelike Eq. (56) if it has the regularities (33) and satisfies the weak formulation (57).
b. Interface conditions. We follow the same process as in case 4. By taking the choices (51) and (53) for the test function �,

we get the following interface conditions:

(E+ − E−) × n = 0, (58a)

(∇ × E+ − ∇ × E−) × n + k2
0 (∇ × αE−) × n + (γ∇ × ∇ × ∇ × E−) × n = 0, (58b)

k2
0 (αE−) × n = 0. (58c)

We obtained three interface conditions as required, then the first criterion is satisfied by the case 5.

6. Analysis of case 6

We recall the wave equation corresponding to case 6:

∇ × ∇ × E = k2
0 ε̃E + k2

0∇ × ∇ × α̃E + γ̃∇ × ∇ × ∇ × ∇ × E. (59)

The nature of the second order term in this case gives the possibility to keep it initially in the study, even if the nonlocal material
parameter γ̃ is located in the first position as in cases 3 and 9. In such equations, the effect of the nonlocal parameter does not
appear explicitly in the interface conditions, but it is present on the level of the dispersion relation.

a. Weak formulation. In the generalized sense, for E verifying regularities (42) and for � ∈ C∞
0 (R3), we define the weak

formulation corresponding to case 6:∫
R3

(∇ × E) · (∇ × �) dr = k2
0

∫
R3

+
E · � dr + k2

0

∫
R3

−
εE · � dr + k2

0

∫
R3

−
(αE) · (∇ × ∇ × �) dr

+
∫
R3

−
(γ∇ × ∇ × ∇ × ∇ × E) · � dr. (60)

We say that E is a weak solution to the wavelike Eq. (59) if it has the regularities (42) and satisfies the weak formulation (60).
b. Interface conditions. Analogous to cases 2, 4, and 5, we derive the interface conditions corresponding to case 6, given by

(E+ − E−) × n = 0, (61a)

(∇ × E+ − ∇ × E−) × n + k2
0 (∇ × αE−) × n = 0, (61b)

k2
0 (αE− × n) = 0. (61c)

7. Analysis of case 7

We recall the wave equation corresponding to case 7:

∇ × ∇ × E = k2
0 ε̃E + k2

0 α̃∇ × ∇ × E + ∇ × ∇ × γ̃∇ × ∇ × E. (62)

a. Weak formulation. Equation (62) is understood in the generalized sense. For E verifying regularities (28) and for � ∈
C∞

0 (R3), we define the weak formulation corresponding to case 7:∫
R3

(∇ × E) · (∇ × �) dr = k2
0

∫
R3

+
E · � dr + k2

0

∫
R3

−
εE · � dr + k2

0

∫
R3

−
(α∇ × ∇ × E) · � dr

+
∫
R3

−
(γ∇ × ∇ × E) · (∇ × ∇ × �) dr. (63)
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We say that E is a weak solution to the wavelike Eq. (62) if
it satisfies the weak formulation (63) and has the following
regularities (28).

b. Interface conditions. Analogous to cases 2, 4, 5, and 6,
we derive the interface conditions corresponding to case 7,
given by

(E+ − E−) × n = 0, (64a)

(∇ × E+ − ∇ × E−) × n + (∇ × γ∇ × ∇ × E−) × n = 0,

(64b)

(γ∇ × ∇ × E−) × n = 0. (64c)

The first criterion in the checklist consisted on deriving
the right number of interface conditions, which are necessary
for computing the amplitudes of all the propagating modes
in MMs. The dispersion relation of each case reveals that
we need exactly three interface conditions on each surface.
Cases 1, 4, 5, 6, and 7 survived, because of fulfilling this
criterion. The weak formulation of cases 2, 3, 8, and 9
are not adequate to give the additional interface condition.
Hence, the systems of equations necessary for defining the
amplitudes of all the propagating modes are underdetermined,
which implies that these cases will be rejected. In the next
subsection we study reflection and transmission coefficients
for the remaining cases and continue to consider only those
that agree in the limiting case of a vanishing nonlocality with
expressions obtained from a WSD.

B. Reflection and transmission coefficients analysis

We recall that the main motivation for proceeding with
the nonlocal analysis is to overcome the limitations exhibited
when using the local theory. This fact implies that the local
approach must be contained in the nonlocal approach. Mean-
ing, by taking the limit of the parameters representing the
nonlocality to zero, we have to recover the local models. On
the level of the mathematical models this can be clearly seen
from equations in Table I. However, for more accurate analy-
sis we need to check the limit of the corresponding interface
conditions and also the produced reflected and transmitted
modes. Already, by using the local approach, we know that we
have only one reflected and one transmitted mode in each half-

FIG. 2. Propagating modes inside a slab MM. We have two
forward modes defined on the the surface �+ and the other backward
modes are defined on the surface �−.

space. Besides, for the nonlocal models we have one reflected
mode together with two transmitted modes. This fact implies
that by taking the limit of the material parameter γ to zero, one
of that two transmitted modes must vanish. Actually, we can
also observe that on the level of the interface conditions. In
other words, one of the three interface conditions vanish when
γ tends to zero. For this reason, we present a quick check
for the remaining cases 1, 4, 5, 6, and 7. Then, we need to
recall the principle of Fresnel equations that serve to compute
the amplitudes of the reflected and transmitted modes, and we
give their formulas for the surviving cases.

a. Analysis of the remaining cases using the second crite-
rion. a. Analysis of case 1. We take the limit of γ to zero in
the interface conditions corresponding to case 1, we get

(E+ − E−) × n = 0,

(∇ × E+ − ∇ × E−) × n + k2
0 (α∇ × E−) × n = 0.

We notice that using the notation μ = (1 − k2
0α)−1 (cf.

Sec. IV B), the limit interface conditions take the same for-
mulas as in the presence of WSD, as follows:

(E+ − E−) × n = 0,

(∇ × E+ − μ−1∇ × E−) × n = 0.

Which implies that the second criterion is fulfilled by the first
case.

b. Analysis of case 4. In the presence of WSD, the wavelike
Eq. (47) reads

∇ × ∇ × E = k2
0 ε̃E + k2

0∇ × ∇ × α̃E.

Its corresponding interface conditions are given by

(E+ − E−) × n = 0,

(∇ × E+ − ∇ × E−) × n + k2
0 (∇ × αE−) × n = 0.

On the other hand, the limiting interface conditions for case 4,
when γ tends to zero read

(E+ − E−) × n = 0,

(∇ × E+ − ∇ × E−) × n + k2
0 (∇ × αE−) × n = 0,

k2
0 (αE−) × n = 0.

We can clearly see that the presence of the material parameter
α in the third interface condition prevents it to vanish. Mean-
while, the dispersion relation for γ → 0 states that there is
only one transmitted field in the half-space filled with the MM.
In this case, the system of equations is overdetermined and

TABLE III. Substitution of the coefficients b(TE)
j and c(TE)

j , for
1 � j � 4, corresponding to TE polarization for cases 1 and 7; with
(k j )2 = (ky )2 + (k j

z )2.

Case 1 Case 7

b(TE)
j −[

1 − k2
0αy − γx (k j )2

]
k j

z −[
1 − γx (k j )2

]
k j

z

c(TE)
j γx (k j )2 γx (k j )2
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leads to unphysical results. From a physical point of view, the
third interface condition states that the tangential component
of E− is zero at the interface. Linking this with the first
(natural) interface condition, would suggest that the tangential
component of E+, i.e., in vacuum is zero. Since the total
field in the incidence half-space is EI + ER, the transversal
components of the incident and reflected fields totally cancel,
independent of the angle of incidence, the permittivity con-
trast between the two half-spaces and polarization. The result
is even stranger when the MM is lossy, i.e., when Im ε >

0, where some energy is absorbed in the MM half-space.
However, here we obtain a total reflection phenomenon, with-
out incorporating loss. This is clearly a contradiction to the
classical reflection and transmission phenomena between two
local materials.

This case represents a counterexample that shows that even
if we have the exact number of interface conditions in the
presence of SSD, that gives the exact number of reflected and
transmitted modes in turn, it is not possible to reproduce the
local forward and backward modes after taking the limit of
the nonlocal parameter to zero. To conclude, case 4 does not
fulfill the second criterion, and will, therefore, be excluded.

For the same reason of no conformity with the modes
produced by the WSD when taking the limit of γ to zero, cases
5 and 6 will be excluded from the investigation of Padé MMs.

c. Analysis of case 7. When we take the limit of γ to zero,
i.e., in the presence of WSD, the wavelike Eq. (62) reads

∇ × ∇ × E = k2
0 ε̃E + k2

0 α̃∇ × ∇ × E.

Its corresponding interface conditions are given by

(E+ − E−) × n = 0,

(∇ × E+ − ∇ × E−) × n = 0.

They represent, exactly, the same limiting interface conditions
for case 7 when γ tends to zero. Which implies that the second
criterion is fulfilled in this case.

2. Fresnel coefficients for cases 1 and 7. We denote the
incident, reflected, and transmitted fields by the superscripts
I, R, and T, respectively, and we refer to each one of them by
∗. Inside the slab MM, we have four propagating linearly in-
dependent eigenmodes. Two modes are forward and the other
two ones are backward, we refer to each one by E j , for j ∈
{1, 2, 3, 4}. The total field in the incidence half-space is given
by EI + ER. Inside the MM slab, the total field is the sum of
the propagating eigenmodes. It is written Eslab = ∑4

j=1 E j . In
the transmission plane, we have just one transmitted field ET

(see Fig. 2).

The reflection (ρ) and transmission (τ ) coefficients represent the ratios of the amplitudes of the reflected and transmitted
waves to the incident wave. We compute the amplitudes of these fields by using Fresnel formulas. We start by plugging the plane
wave ansatzes into the interface conditions defined on the surfaces �+ and �− . For both polarizations, we have

(i) TE polarization:

E∗ = E∗
0 exp(ik∗ · r), with E∗

0 = (E∗
x , 0, 0)T and k∗ = (0, ky, k∗

z )T .

E j = E j
0 exp(ik∗ · r), with E j

0 = (
E j

x , 0, 0
)T

and k j = (
0, ky, k j

z

)T
.

(ii) TM polarization:

E∗ = E∗
0 exp(ik∗ · r), with E∗

0 = (0, E∗
y , E∗

z )T and k∗ = (0, ky, k∗
z )T .

E j = E j
0 exp(ik∗ · r), with E j

0 = (
0, E j

y , E j
z

)T
and k j = (

0, ky, k j
z

)T
.

Using the divergence free equation for the electric displacement field D, we get a relation between the y and z components of the
electric field E, that depends on the medium and is given by

E∗
y = −k∗

z

ky
E∗

z , in �− ∪ �+, (65a)

E j
y = −εzk∗

z

εyky
E j

z , in �δ. (65b)

Then we get an algebraic system in the form

A E = F . (66)

In total we have six unknowns for each polarization, such that E = (ER
(P), E1

(P), E2
(P), E3

(P), E4
(P), ET

(P) )
T . The index (P) refers to

the x component of the electric field for TE polarization and to the z component of the electric field for TM polarization. The
Fresnel matrix A is a 6 × 6 matrix, obtained from the fact that we have on each surface of the slab three interface conditions
leading to three equations. The nonhomogeneity is described by the vector F , which is relative to the incident plane wave.

In the sequel we give Fresnel matrices for TE and TM polarizations separately. Each matrix combines Fresnel coefficients for
cases 1 and 7, followed with tables precising the explicit formulas of some coefficients. Fresnel formulas of case 1 are computed
and written clearly in [39].

195411-15



FATIMA Z. GOFFI et al. PHYSICAL REVIEW B 101, 195411 (2020)

TABLE IV. Substitution of the coefficients b(TM)
j and c(TM)

j , for 1 � j � 4, corresponding to TM polarization for cases 1 and 7.

Case 1 Case 7

b(TM)
j −[

1 − γz(ky )2 − γy

(
k j

z

)2][
(ky )2 + εz

εy

(
k j

z

)2] −[
1 − γz(ky )2 − γy

(
k j

z

)2][
(ky )2 + εz

εy

(
k j

z

)2]
c(TM)

j γy

[
(ky )2 + εz

εy

(
k j

z

)2]
k j

z γy

[
(ky )2 + εz

εy

(
k j

z

)2]
k j

z

a. Fresnel matrix for TE polarization

A(TE) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 −1 −1 −1 0

kR
z b(TE)

1 b(TE)
2 b(TE)

3 b(TE)
4 0

0 c(TE)
1 c(TE)

2 c(TE)
3 c(TE)

4 0

0 −eik1
z d −eik2

z d −eik3
z d −eik4

z d 1

0 c(TE)
1 eik1

z d c(TE)
2 eik2

z d c(TE)
3 eik3

z d c(TE)
4 eik4

z d 0

0 b(TE)
1 eik1

z d b(TE)
2 eik2

z d b(TE)
3 eik3

z d b(TE)
4 eik4

z d kT
z

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (67)

and F (TE) = (−1,−kI
z , 0, 0, 0, 0)T . The coefficients b(TE)

j and c(TE)
j for both cases 1 and 7 and 1 � j � 4 are given in Table III.

b. Fresnel matrix for TM polarization

A(TM) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

kR
z − εz

εy
k1

z − εz

εy
k2

z − εz

εy
k3

z − εz

εy
k4

z 0

(kR)2 b(TM)
1 b(TM)

2 b(TM)
3 b(TM)

4 0

0 c(TM)
1 c(TM)

2 c(TM)
3 c(TM)

4 0

0 − εz

εy
k1

z eik1
z d − εz

εy
k2

z eik2
z d − εz

εy
k3

z eik3
z d − εz

εy
k4

z eik4
z d 1

0 c(TM)
1 eik1

z d c(TM)
2 eik2

z d c(TM)
3 eik3

z d c(TM)
4 eik4

z d 0

0 b(TM)
1 eik1

z d b(TM)
2 eik2

z d b(TM)
3 eik3

z d b(TM)
4 eik4

z d (kT )2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (68)

and F (TM) = [−1,−(kI )2, 0, 0, 0, 0]T . The coefficients b(TM)
j and c(TM)

j for both cases 1 and 7 and 1 � j � 4 are given in
Table IV. In both polarizations, the notation (k∗)2 means the sum (ky)2 + (k∗

z )2.
For both cases 1 and 7, taking the limit of the nonlocal parameter γ towards zero, we get Fresnel matrices identical to those

obtained by considering local constitutive relations. At the level of reflection and transmission coefficients, everything seems to
be fine with cases 1 and 7. Then we have to move to the third and final criterion to end up the checking process.

To summarize this section, the second criterion consists on analyzing the reflection and transmission coefficients. As the
models produced by the WSD are implicitly included in those obtained in the presence of SSD, then we checked whether it is
really the case for the remaining proposed cases. Cases 1 and 7 survived, because we could reproduce the same equations as
in the presence of WSD. Contrary to cases 4, 5, and 6, their weak formulations led to well posed systems; but the produced
interface condition are not valid for computing the right reflection and transmission coefficients corresponding to the WSD.

C. Casimir-Onsager reciprocity

Before setting the last criterion in the checklist, we draw the attention of the reader to the fact that in this study we assume
that the unit cell of the MM is made of reciprocal constituents. Henceforth, the MMs by themselves are reciprocal as well. Now
we check the requirement of time-reversal symmetry for the equations ingredients. In fact, it holds that the displacement field
D̃(t, r) and the electric field Ẽ(t, r) are symmetric under time inversion, but antisymmetric under space inversion (parity); and
the magnetic flux B̃(t, r) and the magnetic field H̃(t, r) are antisymmetric under time inversion, but symmetric under space
inversion [67]. These symmetries of the fields have consequences on the symmetry of the nonlocal response function in Fourier
space.

Due to this fact and to Eq. (8), we deduce that the response function R(ω, r) must contain some symmetry as well. In the
spatial frequency space it holds [68]

R̂i j (ω, k) = R̂ ji(ω, k), (69)

which represents the Casimir-Onsager reciprocity principle for centrosymmetric structures. In the remaining case 7, we argue
with Casimir-Onsager reciprocity that this case can only exist if α is a scalar, i.e., αii = α j j , for (i, j) ∈ {x, y, z} × {x, y, z}.

195411-16



TOWARDS MORE GENERAL CONSTITUTIVE RELATIONS … PHYSICAL REVIEW B 101, 195411 (2020)

Let us first look at the term proportional to α, i.e., γ = 0. The general expression of the nonlocal response function R is

Di(ω, r) = Ri j (ω, i∇)Ej (ω, r) = εi jE j (ω, r) + ci jlm∂l∂mEj (ω, r). (70)

According to symmetry condition (69), it must hold that

ci jlm = c jilm. (71)

We further require that the electric field E is at least a C2(R3
−) function. Consequently, according to the equality of mixed partials

(Schwarz’s theorem), the second-order derivatives can be interchanged which renders

ci jlm∂l∂mEj = ci jlm∂m∂lE j = ci jml∂l∂mEj .

In the first equality we put the fact that E ∈ C2(R3
−) and in the second equation we simply relabeled the indices. In fact, we have

ci jlm = c jilm = ci jml = c jiml . (72)

These are the fundamental symmetry conditions for the fourth-rank tensor ci jlm.
1. Study of case 1 with γ̃ = 0. Let D(ω, r) = ε̃E(ω, r) + ∇ × α̃∇ × E(ω, r). Inside the homogenized MM, this constitutive

relation requires that

ci jlm∂l∂mEj
!= [∇ × (α∇ × E)]i. (73)

We develop the right-hand side in (73), we get

∇ × (α∇ × E) =
⎛⎝αyy∂x∂zEz − αyy∂z∂zEx + αzz∂x∂yEy − αzz∂y∂yEx

αxx∂y∂zEz − αxx∂z∂zEy + αzz∂x∂yEx − αzz∂x∂xEy

αxx∂y∂zEx − αxx∂y∂yEz + αyy∂x∂zEx − αyy∂x∂xEz

⎞⎠, (74)

where it has been assumed that α is a diagonal matrix. Comparing the coefficients yields⎛⎜⎝cxzxz = αyy , cxxzz = −αyy , cxyxy = αzz , cxxyy = −αzz

cyzyz = αxx , cyyzz = −αxx , cyxyx = αzz , cxxyy = −αzz

czyzy = αxx , czzyy = −αxx , czxzx = αyy , czzxx = −αyy

⎞⎟⎠.

The coefficients in the same number of underlines are related to the same material parameter αii. From the comparison, we
note that the assumption in Eq. (73) is compatible with the fundamental symmetry constraints in Eq. (72). For example we
systematically obtain equalities such as cxyxy = cyxyx = αzz or cyzyz = czyzy = αxx.

We also note that there are constraints that impose cii j j = c j jii for all (i, j) ∈ {x, y, z} × {x, y, z} and i = j, which are not
part of the fundamental symmetry constraints. For instance, we have cxxzz = czzxx = −αyy. Furthermore, the fact that such terms
differ by a minus sign as well, i.e., ci ji j = −cii j j for all (i, j) ∈ {x, y, z} × {x, y, z} and i = j suggests that the assumption in
Eq. (73) is of higher symmetry than simply spatial inversion symmetry. The first constraints, i.e., cii j j = c j jii for all (i, j) ∈
{x, y, z} × {x, y, z} and i = j renders the crystal of a tetragonal system, i.e., of fourfold symmetry. They define the symmetry
classes C4 and D4h. We stress that the fishnet MM is of D2h symmetry (only), while we assume Eq. (73) to hold. We technically
try to describe a system with lower symmetry (D2h) with coefficients of higher symmetry (D4h). We highlight that the second
constraint ci ji j = −cii j j for all (i, j) ∈ {x, y, z} × {x, y, z} and i = j, is not linked to a symmetry.

One can prove that the symmetry condition is satisfied by the fourth order term, i.e., when γ̃ = 0. We follow the same
principles as in the second order term, i.e., symmetry condition (69) and the mixed partial derivatives, we can examine the
assumption

ei jklmn∇k∇l∇m∇nE j
!= {∇ × ∇ × [γ (ω)∇ × ∇ × E]}i. (75)

Due to having long formulas, we do not present the computational details in this paper.

2. Study of case 7 with γ̃ = 0. Let D(ω, r) = ε̃E(ω, r) + α̃∇ × ∇ × E(ω, r).
Here α̃ is positioned on the left. This supposition imposes that

ci jlm∂l∂mEj
!= (α∇ × ∇ × E)i. (76)

We develop the right-hand side in (76), we get

α∇ × ∇ × E =
⎛⎝αxx∂x∂yEy − αxx∂y∂yEx + αxx∂x∂zEz − αxx∂z∂zEx

αyy∂x∂yEx − αyy∂x∂xEy + αyy∂y∂zEz − αyy∂z∂zEy

αzz∂x∂zEx − αzz∂x∂xEz + αzz∂y∂zEy − αzz∂y∂yEz

⎞⎠. (77)
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Comparing the coefficients yields⎛⎜⎝cxyxy = αxx , cxxyy = −αxx , cxzxz = αxx , cxxzz = −αxx

cyxyx = αyy , cyyxx = −αyy , cyzyz = αyy , cyyzz = −αyy

czxzx = αzz , czzyy = −αzz , czzyy = αzz , czzyy = −αzz

⎞⎟⎠.

From this comparison, we read out that the assumption in Eq. (76) yields that cxyxy = αxx, cyxyx = αyy and cxzxz = αxx, czxzx = αzz

hold simultaneously. Following the fundamental symmetry constraints (72), it must hold that

αxx = αyy = αzz.

Consequently, the system has to be isotropic, otherwise physical symmetries are violated.
Please notice that cases 1 and 7 are not equivalent, even if α is a scalar. This important point comes down to the fact that

these two cases are physically different since they lead to different boundary conditions [see (30b) and (64b)]; even if their
corresponding constitutive relations are identical. For more details, we draw the attention of the reader to Ref. [21].

VIII. CONCLUSION

In this contribution we investigated the propagation of light in mediums constituted of MMs, where the unit cells are
centrosymmetric and we considered nonlocal constitutive relations. By means of a second-order Padé-type approximation of
the response functions, we modeled the light-matter interaction with nine different constitutive relations that lead to different
wave equations. The main reason for having this diversity is the nature of the material parameters, which are supposed to
be anisotropic diagonal matrices. That means they do not commute with the differential operators, then they do not express
necessarily the same light-matter interaction. Hence, a checklist process was of major necessity to decide which formulation is
suitable for describing the considered optical phenomena. This analysis is mandatory prior to checking the validity of a model
to adequately homogenize a MM. A valid model must simultaneously fulfill the following three criteria:

(1) The first criterion concerns the analysis of interface conditions posed on surfaces separating MMs from vacuum. They are
obtained by means of the weak formulations corresponding to each case and they are necessary for computing the reflected and
transmitted fields. These propagating modes represent the solutions to the dispersion relation relative to each case with respect
to TE and TM polarizations. To compute the amplitudes of the reflected and transmitted fields, we derive the corresponding
Fresnel formulas. For well defined systems, the number of propagating modes within MMs must coincide with the number of
the derived interface conditions. Cases 1, 4, 5, 6, and 7 led to weak formulations that revealed the required number of interface
conditions. For cases 2, 3, 8, and 9 it was not the case; the associated systems of equations obtained by using Fresnel formulas
are underdetermined due to the lack of additional interface conditions. Thus, they are rejected from the investigation for not
fulfilling the first criterion.

(2) The second criterion is called the reflection and transmission coefficients analysis. In principle, by taking the limit of the
nonlocal material parameters to zero, we require us to reproduce the reflection and transmission coefficients produced by the
WSD, as the constitutive relations reduce to those of the local models. More precisely, by following the local approach we get
only two propagating fields at each interface. One of them is reflected and the other one is transmitted. In the nonlocal analysis
approach, we have three fields propagating away from an interface, one reflected and two transmitted. By taking the limit of
the nonlocal material parameter to zero, one of the two transmitted fields must vanish, which is not the case for cases 4, 5, and
6. Namely, for these three cases, if the second transmitted mode vanishes, it implies one of two facts: (a) either the material
parameter related to the second order terms in the wavelike equations is zero, which does not even reflect models with WSD,
(b) or the tangential components of the transmitted electric field are zero. The latter result would imply a total reflection that is
independent from the angle of incidence and the permittivities of the two materials. Both significations are not true. This fact
undeniably rises from the nonvanishing additional interface condition, which makes the system of equations being too restrictive
and overdetermined. For cases 1 and 7 this criterion is fulfilled.

(3) The third and last criterion was based on the requirement of fulfilling the Casimir-Onsager reciprocity. It is a symmetry
constraint, which is satisfied by the first case, whereas, for case 7, it makes sense only when the material parameter α is a scalar.

At the end of the checklist, the only considered cases are case 7 under the claim of being isotropic and case 1, in which
the material parameters are sandwiched between an equal number of curl operators. It represents the model studied previously
[26] by means of a Taylor approximation of the response function. It showed a good description of the propagation of light in
MMs compared to the WSD. The use of Padé-type approximation for the response function opened the path to derive several
representation of the light-matter interaction; it allowed us to set a solid background to study and check the validity of other
models, not necessarily obtained by following the same approach. For further investigations, the Padé-type approximation
confirms that going to higher order spacial dispersion is required. However, other constitutive relations could have been suggested
as well but prior being considered in detail, they have to necessarily pass the checklist that we have put forward in this
contribution. Therefore, our work is quite general and important in the ongoing endeavor to homogenize MMs with advanced
and nonlocal constitutive relations.
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APPENDIX: EXACT COEFFICIENTS OF THE DISPERSION RELATIONS

In this Appendix we shall summarize the resulting coefficients that appear in every case. While the physical discussion is
made in Sec. V, here we merely write down the exact solutions. For each case, the solution and its corresponding coefficients
are written first in TM and then in TE polarization.

1. Case 1 [p̂(ω, k) = −k × αk × and q̂(ω, k) = −k × k × γ]

a. TM polarization.

k2
z (ky) = −1

2

(
qTM

0 + qTM
1

)
k2

y + pTM
0 ±

√
lTM
0 +

(
pTM

0 + qTM
0 − qTM

1

2
k2

y

)2

, (A1)

with

qTM
0 = εy

εz
, qTM

1 = γz

γy
, pTM

0 = −1

2γyμx
, lTM

0 = k2
0εy

γy
.

b. TE polarization.

k2
z (ky) = −k2

y + pTE
0 ±

√
lTE
0 + (

pTE
0

)2 + 2
(
pTE

1 − pTE
0

)
k2

y , (A2)

with

pTE
0 = −1

2γxμy
, pTE

1 = −1

2γxμz
, lTE

0 = k2
0εx

γx
.

2. Case 2 [p̂(ω, k) = −k × αk × and q̂(ω, k) = −k × γk×]

a. TM polarization.

k2
z (ky) = −1

2

(
qTM

0 + qTM
1

) + pTM
0 ±

√
lTM
0 +

(
pTM

0 + qTM
0 − qTM

1

2
k2

y

)2

, (A3)

with

qTM
0 = εy

εz
, qTM

1 = 1, pTM
0 = −1

2γxμx
, lTM

0 = k2
0εy

γy
.

b. TE polarization.

k2
z (ky) = −1

2

(
qTE

0 + qTE
1

) + pTE
0 ±

√
lTE
0 +

(
pTE

0 − qTE
0 + qTE

1

2
k2

y

)2

+ 2qTE
0 pTE

1 k2
y − qTE

0 qTE
1 k4

y , (A4)

with

qTE
0 = 1, qTE

1 = γz

γy
, pTE

0 = −1

2γyμy
, pTE

1 = −1

2γyμz
, lTE

0 = k2
0εx

γy
.

3. Case 3 [p̂(ω, k) = −k × αk × and q̂(ω, k) = −γk × k×]

a. TM polarization.

k2
z (ky) = −1

2

(
qTM

0 + qTM
1

) + pTM
0 ±

√
lTM
0 +

(
pTM

0 − qTM
0 + qTM

1

2
k2

y

)2

+ 2qTM
0 pTM

1 k2
y − qTM

0 qTM
1 k4

y , (A5)

with

qTM
0 = εyγz

εzγy
, qTM

1 = 1, pTM
0 = −1

2γyμx
, pTM

1 = −1

2γzμx
, lTM

0 = k2
0εy

γy
.
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b. TE polarization.

k2
z (ky) = −k2

y + pTE
0 ±

√
lTE
0 + (

pTE
0

)2 + 2
(
pTE

1 − pTE
0

)
k2

y , (A6)

with

pTE
0 = −1

2γxμy
, pTE

1 = −1

2γxμz
, lTE

0 = k2
0εx

γx
.

4. Case 4 [p̂(ω, k) = −k × k × α and q̂(ω, k) = −k × k × γ]

a. TM polarization.

k2
z (ky) = −1

2

(
qTM

0 + qTM
1

) + pTM
0 ±

√
lTM
0 +

(
pTM

0 − qTM
0 + qTM

1

2
k2

y

)2

+ 2qTM
0 pTM

1 k2
y − qTM

0 qTM
1 k4

y , (A7)

with

qTM
0 = εy

εz
, qTM

1 = γz

γy
, pTM

0 = −1

2γyμy
, pTM

1 = −1

2γyμz
, lTM

0 = k2
0εy

γy
.

b. TE polarization.

k2
z (ky) = −k2

y + pTE
0 ±

√
lTE
0 + (

pTE
0

)2
, (A8)

with

pTM
0 = −1

2γxμx
, lTM

0 = k2
0εx

γx
.

5. Case 5 [p̂(ω, k) = −k × k × α and q̂(ω, k) = −k × γk×]

a. TM polarization.

k2
z (ky) = −1

2

(
qTM

0 + qTM
1

) + pTM
0 ±

√
lTM
0 +

(
pTM

0 − qTM
0 + qTM

1

2
k2

y

)2

+ 2qTM
0 pTM

1 k2
y − qTM

0 qTM
1 k4

y , (A9)

with

qTM
0 = εy

εz
, qTM

1 = 1, pTM
0 = −1

2γxμy
, pTM

1 = −1

2γxμz
, lTM

0 = k2
0εy

γx
.

b. TE polarization.

k2
z (ky) = −1

2

(
qTE

0 + qTE
1

)
k2

y + pTE
0 ±

√
lTE
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(
pTE

0 + qTE
0 − qTE
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2
k2
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, (A10)

with

qTE
0 = 1, qTE

1 = γz

γy
, pTE

0 = −1

2γyμx
, lTE

0 = k2
0εx

γy
.

6. Case 6 [p̂(ω, k) = −k × k × α and q̂(ω, k) = −γk × k×]

a. TM polarization.

Q(ky)k2
z (ky) = P0

(
k2

y

) ±
√

[P0(ky)]2 + P1
(
k2

y

)
, (A11)

where

Q0(ky) = 2δky − 2pTM
0 ,

P0(ky) = −δk4
y + (

pTM
0 + pTM

1

)
k2

y + n1,

P1(ky) = 2
(
pTM

1 k4
y + n0k2

y + n0n1
)(

2δk2
y − 2pTM

0

)
,

with

δ = (γy − γz )(μy − μz ), pTM
0 = k2

0γyμyεzμz, pTM
1 = k2

0γzμzεyμy, n0 = k2
0εyμy, n1 = k2

0εzμz.
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b. TE polarization.

k2
z (ky) = −k2

y + pTE
0 ±

√
lTE
0 + (

pTE
0

)2
, (A12)

with

pTE
0 = −1

2γxμx
, lTE

0 = k2
0εx

γx
.

7. Case 7 [p̂(ω, k) = −αk × k × and q̂(ω, k) = −k × k × γ]

The dispersion relations for both TE and TM polarizations for this case, are identical to case 4.

8. Case 8 [p̂(ω, k) = −αk × k × and q̂(ω, k) = −k × γk×]

The dispersion relations for both TE and TM polarizations for this case, are identical to case 5.

9. Case 9 [p̂(ω, k) = −αk × k × and q̂(ω, k) = −γk × k×]

a. TM polarization.

k2
z (ky) = −1

2

(
qTM

0 + qTM
1

) + pTM
0 ±

√
lTM
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pTM
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y
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y , (A13)
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b. TE polarization.
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lTE
0 + (

pTE
0

)2
, (A14)

with

pTM
0 = −1
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