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SUMMARY
Other than commonly assumed in seismology, the phase velocity of Rayleigh waves is not nec-
essarily a single-valued function of frequency. In fact, a single Rayleigh mode can exist with
three different values of phase velocity at one frequency. We demonstrate this for the first higher
mode on a realistic shallow seismic structure of a homogeneous layer of unconsolidated sed-
iments on top of a half-space of solid rock (LOH). In the case of LOH a significant contrast
to the half-space is required to produce the phenomenon. In a simpler structure of a homoge-
neous layer with fixed (rigid) bottom (LFB) the phenomenon exists for values of Poisson’s ratio
between 0.19 and 0.5 and is most pronounced for P-wave velocity being three times S-wave ve-
locity (Poisson’s ratio of 0.4375). A pavement-like structure (PAV) of two layers on top of a
half-space produces the multi-valuedness for the fundamental mode.
Programs for the computation of synthetic dispersion curves are prone to trouble in such cases.
Many of them use mode-follower algorithms which loose track of the dispersion curve and
miss the multi-valued section. We show results for well established programs. Their inability
to properly handle these cases might be one reason why the phenomenon of multi-valuedness
went unnoticed in seismological Rayleigh wave research for so long.
For the very same reason methods of dispersion analysis must fail if they imply wave number
kl(ω) for the l-th Rayleigh mode to be a single-valued function of frequency ω. This applies
in particular to deconvolution methods like phase-matched filters. We demonstrate that a slant-
stack analysis fails in the multi-valued section, while a Fourier-Bessel transformation captures
the complete Rayleigh-wave signal.
Waves of finite bandwidth in the multi-valued section propagate with positive group-velocity
and negative phase-velocity. Their eigenfunctions appear conventional and contain no conspic-
uous feature.
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1 INTRODUCTION

1.1 Statement of the problem

Rayleigh waves are used in tele-seismic studies (Kovach 1978;
Kästle et al. 2018, e. g.) as well as in shallow seismics (Socco
et al. 2010; Foti et al. 2018, e. g.) to investigate Earth’s structure.
On a stratified half-space the propagation velocity of these waves
depends on frequency, i. e. they are dispersive. The dispersion rela-
tion carries information on subsurface properties. In particular the
shear-wave velocity structure controls how Rayleigh-wave velocity
relates to frequency. Commonly used algorithms inherently expect
the relation of phase velocity c(f) to frequency f to be a single-
valued function. For Lamb-waves (Lamb 1917), a particular type

of Rayleigh waves in isolated plates, which are used in engineering
to study mechanical properties of constructional elements, this is
not generally the case. This fact is well known in fields of ultra-
sonic and structural engineering. That this phenomenon also exists
for seismic waves in layered structures on an elastic half-space or
with a rigid bottom to our knowledge went unnoticed in seismol-
ogy until recently (Malischewsky et al. 2017). We investigate the
properties of wave fields with multi-valued dispersion relation for
Rayleigh modes and the applicability of common methods in sur-
face wave seismology.
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1.2 Reported cases from engineering

We refer to the detailed review of literature provided by Cui et al.
(2016) in their introduction. They describe studies of elastic waves
in bodies of different geometry (plates, rods, etc), both theoreti-
cal investigations as well as experimental confirmation. The phe-
nomenon is frequently referred to as ’backward wave propagation’,
or ’negative group velocity’ (NGV) (Negishi 1987, e. g.) and is dis-
cussed as occurrence of ’zero group velocity’ (ZGV) (Kausel 2012,
e. g.). We will discuss this nomenclature below. Similar phenom-
ena of ’negative refraction’ are reported for electromagnetic wave
propagation (Oulton & Pendry 2013; Pendry 2009).

Almost all reported studies of elastic materials use isolated
bodies like rods, pipes, or thin plates with two free surfaces. In
contrast Maznev and Every (2011; 2009) discuss the existence of
this phenomenon for thin layers on a substrate. They study sur-
face acoustic waves in a thin film structure on silicon. The surface
waves in these structures, with one free surface only, hence are sim-
ilar to seismic Rayleigh waves. Every (2002) and Cès et al. (2011)
describe measurements on supported structures. Maznev and Ev-
ery (2011) discuss the ’clamped-free layer’ (which we call ’layer
with fixed bottom’, LFB ), the ’layer on elastic substrate’ (which
we call ’layer on half-space’, LOH ), and the ’bi-layer structure’
(which we call ’pavement structure’, PAV ). They suppose that the
phenomenon went unnoticed for such a long time, because a signif-
icant contrast in elastic properties between layer and substratum is
required for its existence. The phenomenon depends on Poisson’s
ratio ν and is strongest for ν =

√
7/16 = 0.4375, where P-wave

velocity is three times S-wave velocity, a value reported also by
Malischewsky et al. (2017). Maznev and Every (2011) go beyond
normal modes and discuss leaky modes as well. The phenomenon
exists in combination with osculation points of dispersion curves
(Kausel et al. 2015) and according to Maznev and Every (2011)
can be partly understood by consideration of mode degeneracy and
hybridization.

1.3 Multi-valued dispersion in seismic structures

Malischewsky et al. (2017) and Malischewsky and Forbriger
(2020) report that the condition of a single-valued dispersion rela-
tion can as well be violated for simple seismic structures of a layer
on top of a half-space. To our knowledge, these are the only explicit
reports on this phenomenon in the seismological literature so far. In
ignorance of the phenomenon common algorithms were designed
in a way to implicitly require single-valuedness of the dispersion re-
lation. Consequently the phenomenon cannot be discovered when
using these particular algorithms.

The problem might also have been missed because it requires a
strong vertical contrast in seismic velocities and values of Poisson’s
ratio, which are not present in the deeper crust or upper mantle. The
required velocity-contrast and range of Poisson’s ratio however can
exist in shallow seismic structures (Forbriger 2003b, sec. 2.5.1) and
basins like the Mexico City valley (Malischewsky et al. 2017).

The phenomenon is strongest for structures with a rigid bot-
tom. Tuan (2009, Figure 2.6) presents multi-valued dispersion
curves of phase velocity for a gradient layer with fixed bottom.
However, he neither mentions the phenomenon in the text nor in
the figure caption. Below we use a structure of a homogeneous
layer with fixed bottom (LFB) to discuss properties of propagat-
ing waves.

The investigation by Lysmer (1970) is the only example we
are aware of where negative group velocity is reported for a seis-

mic structure (with rigid bottom instead of a free plate) published
in a seismological journal. Lysmer studies layered structures with a
rigid base, where the rigid bottom may be at quasi infinite depth. He
reports negative values of group velocity (Lysmer 1970, Table 4)
for an LFB case, which is a clear indication of the phenomenon of a
multi-valued relation between phase-velocity and frequency. How-
ever, he presents frequency as a function of wave number (Lysmer
1970, Figure 5) and phase-velocity as a function of wave number
(Lysmer 1970, Figure 6), which both are single-valued relations.
If direction of propagation would be defined with respect to the
location of a source, group-velocity will turn positive and phase-
velocity will become negative, as explained below in section 4.1.

1.4 Structure of this contribution

In the current contribution we show examples of multi-valued
Rayleigh wave dispersion in shallow seismic structures, investigate
the nature of wave propagation in the frequency band of multi-
valuedness, and point out consequences for practical application
of common methods and ways to mitigate detriments. We first in-
troduce the phenomenon by a simple example of a single layer on
top of a half-space (LOH ). In that case the first higher Rayleigh
mode can develop a multi-valued section of the dispersion relation.
Next we point out the consequences a multi-valuedness can have.
Most importantly, the application of conventional techniques for
the computation of dispersion curves or the analysis of recorded
Rayleigh waves can produce false results. Because the discussed
type of dispersion characteristic is so unfamiliar, we then investi-
gate the properties of the Rayleigh modes in terms of their eigen-
functions, their group velocity, and the nature of the resulting prop-
agating wave-trains. We find no conspicuous feature in the eigen-
functions but can demonstrate that waves actually propagate with
negative phase-velocity and as a consequence are missed in slant
stack analyses of dispersive waves. As a closing remark, we demon-
strate that the dispersion relation of the fundamental Rayleigh mode
can be multi-valued for pavement-like structures.

2 THE PHENOMENON OF MULTI-VALUED
DISPERSION RELATION

2.1 Normal modes

To provide a proper definition of quantities displayed in the vari-
ous figures, we briefly introduce the fundamental concepts of nor-
mal modes. Normal modes exist for solutions of the homogeneous
elastic vector differential equation which satisfy the boundary con-
dition of a stress-free surface at z = 0 and do not radiate energy
into the half-space. These conditions are satisfied at the roots of the
characteristic function ∆R(f, p) (Takeuchi & Saito 1972, eq. 66).
Hence normal modes exist for pairs of frequency f and phase slow-
ness p where the ’secular equation’

∆R(f, p) = 0 (1)

is satisfied. This is an implicit definition of the dispersion relation.
Phase slowness p may as well be substituted by phase velocity
c = p−1 or wave number k = pω with ω = 2π f . The charac-
teristic function is derived from the determinant of a matrix (Aki &
Richards 2002, eq. 7.59) which sometimes is called the ’Rayleigh
determinant’. Malischewsky et al. (2017, eq. 1) give the character-
istic function for a homogeneous layer with fixed bottom (LFB )
in closed form. It is composed of products of nested transcenden-
tal functions. They result from the expressions which govern the
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Table 1. Model LOH (layer over half-space). Seismic parameters are cho-
sen such that they are realistic for shallow seismic structures. Reasonable
ranges are discussed by Forbriger (2003b, sec. 2.5.1). j: layer index, zj :
depth to bottom of layer, vPj , vSj : velocity of compressional and shear
waves, νj : Poisson’s ratio, ρj : mass density. j = 2 for the elastic half-
space. To provide anelastic dissipation in the computation of Fourier-Bessel
expansion coefficients quality is set to QP = QS = 100.

j zj/m vPj/m s−1 vSj/m s−1 νj ρj/kg m−3

1 2 532.8 177.6 0.4375 1800
2 ∞ 4000.0 2310.0 0.2498 2600

eigenfunctions of the mode. For a structure of a homogeneous layer
on top of a homogeneous half-space (LOH ) the characteristic func-
tion is significantly more complex. Tuan (2009, eq. 3.10) presents
it in closed form with nested expressions for the coefficients.

From the range of values for compressional- and shear-wave
velocity in the structure results a range of phase velocity and phase
slowness, respectively, in which normal modes can exist. In a lay-
ered structure at each phase velocity (or phase slowness, respec-
tively) in this range there exists an infinite number of discrete nor-
mal modes, which are called the fundamental mode (at smallest
frequency) and overtones (or higher modes).

In a stratified half-space the roots of the characteristic func-
tion appear along continuous curves. It hence appears natural to
express the dispersion relation in terms of one function for each
mode relating frequency to phase slowness. In the current contribu-
tion we demonstrate that these continuous relations not necessarily
are single-valued functions. They rather can be multi-valued in that
for a single mode there may exist several values of phase slowness
at one frequency.

Due to reasons of symmetry the direction of wave propagation
along the surface does not affect wave velocity on a layered struc-
ture. Hence identical modes exist for positive as well as the corre-
sponding negative values of phase velocity (or phase slowness, re-
spectively). The sign of velocity with respect to spatial coordinates
only comes into play if a source of energy is explicitly defined.
This is commonly neglected in surface wave theory and only pos-
itive values of phase velocity (or phase slowness, respectively) are
discussed. Their negative counterparts do not add information re-
garding the problem of surface wave dispersion. Only in Fig. 1 we
display both signs. In all other figures the symmetry is understood
implicitly.

At each frequency there can exist Rayleigh waves with sev-
eral different values of phase-slowness. This is because of 1) the
existence of multiple modes (overtones), 2) the continuous disper-
sion relation of each mode appearing at several values of phase-
slowness for the same frequency, and 3) the sign of phase-slowness
indicating different direction of propagation. The different val-
ues of phase-slowness are not alternatives to each other. Rayleigh
waves may exist at all these values at once, their level of excitation
being controlled by the actual seismic source. In the current con-
tribution we specifically discuss cases multi-valued dispersion re-
lation where multiple values of phase-slowness may appear along
the continuous dispersion relation at one single frequency. Occa-
sionally we refer to the phenomenon of ’multi-valued dispersion
relation’ as ’reversal of the dispersion curve’.

2.2 Layer on top of an elastic half-space (LOH )

To demonstrate the phenomenon of a multi-valued dispersion rela-
tion, we use a simple structure of a homogeneous, elastic layer on

Figure 1. Sign of the characteristic function ∆R(f, p) for model LOH (Ta-
ble 1). Grey and white areas have opposite sign. The function is symmetric
with respect to p and ∆R(f, p) = ∆R(f,−p). Normal modes exist where
the secular equation ∆R(f, p) = 0 is satisfied, i. e. along the lines where
areas of different colors touch. Normal modes do not exist in the light-gray
area at phase slowness |p| < v−1

S,halfspace, because energy would be radiated
into the half-space. Usually only solutions for p > 0 are considered. The
direction of propagation and hence the sign of p is meaningless unless a
source location is defined.

top of a homogeneous, elastic half-space (LOH ). Parameters of this
structure are given in Table 1. Values are in the typical range of a
2 m thick layer of unconsolidated sediments on top of a half-space
of solid rock (Forbriger 2003b, sec. 2.5.1). We use an algorithm
by Schwab & Knopoff (1972) to compute the characteristic func-
tion ∆R(f, p) for this structure as a function of frequency f and
phase slowness p. Buchen & Ben-Hador (1996, eq. 13) provide an
excellent review of the theoretical background of established equiv-
alent algorithms for the numerical computation of the characteristic
function for layered structures.

Fig. 1 displays the sign-pattern of the characteristic function.

Figure 2. Roots of the characteristic function ∆R(f, p) for model LOH
(Table 1, Fig. 1). At each frequency f the roots ∆R(f, p) = 0 are searched
and counted in order of decreasing phase-slowness p. They are marked by
colored dots, which are placed very densely.
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Figure 3. Dispersion curves of Rayleigh normal modes for model LOH .
The roots of the characteristic function (Fig. 2) are assigned to the fun-
damental mode and overtones. They are aligned along continues curves,
which mark the dispersion relation of the respective mode. The relation
between phase slowness and frequency for the first higher mode is a multi-
valued function between 56 Hz and 58 Hz. Fig. 2 clearly indicates that three
different values of phase slowness exist for the first higher mode at each
frequency in this interval.

Positive values are white, negative values are gray (or vice versa,
the characteristic function is defined except for a constant factor).
In the light gray area for |p| < v−1

S,halfspace, with vS,halfspace = vS2

in Table 1, there exist no normal modes because the lower bound-
ary condition cannot be satisfied, i. e. shear waves would be ra-
diated into the half-space. Normal modes exist at the contact be-
tween white and gray areas. These are the locations of the roots
of the characteristic function which satisfy the secular equation
∆R(f, p) = 0. The pattern is symmetric with respect to p = 0, be-
cause the direction of propagation is meaningless for the existence
of normal modes as pointed out in the previous section. Because
solutions at p < 0 do not add independent information, all consid-
erations usually are limited to positive values of p. Nevertheless we

Figure 4. Modulus of Fourier-Bessel expansion coefficients for vertical dis-
placement and a vertical single force acting on the surface of structure
LOH (Table 1). See appendix A for a definition. Large amplitudes (dark
gray to black) indicate Rayleigh-wave signals along the dispersion curves
(see Fig. 3). This is displayed for independent confirmation of the reversal
of the dispersion curve for the first higher mode in the frequency interval
between 56 Hz and 58 Hz. Signals at phase slowness p < v−1

S,halfspace ≈
0.433 s km−1 with vS,halfspace = vS2 in Table 1 formally are not attributed
to the normal modes. They radiate energy into the half-space. From the per-
spective of propagating waves they hardly differ from Rayleigh waves.

shall keep in mind that the corresponding solutions at negative p
still exist. Below we will refer to this in the discussion of a wave
field excited by an actual source.

Searching for zero-crossings of ∆R(f, p) at each frequency
f parallel to the the p-axis we locate the roots. They are marked
by densely placed dots in Fig. 2. Roots of ∆R(f, p) exist along
continuous lines, the so-called ’dispersion curves’ (Fig. 3).

2.3 Multi-valued dispersion relation

It is obvious in Fig. 3 that the dispersion relation p(f) of the first
higher mode is multi-valued in the frequency band from 56 Hz to
58 Hz. Strictly, the dispersion relation no longer may be expressed
by a function p(f) which would imply a single-valued relation.
The dispersion better should be expressed by the implicit definition
∆R(f, p) = 0. In this band there exist three different values of
phase slowness at each single frequency. Because phase velocity
c = p−1 and wave number k = 2πfp are just scaled versions
of phase slowness p, the situation is not different if dispersion is
expressed as c(f) or k(ω) = k(2πf).

In seismology and applied seismics the possibility of a multi-
valued dispersion relation usually is ignored on purpose. We are not
aware of any literature in these fields mentioning the possibility of
this phenomenon.

As an independent proof of the existence of this phenomenon,
we display the modulus of Fourier-Bessel expansion coefficients
(see appendix A) for the waves generated by a single vertical force
(like a hammer blow) on the structure defined in Table 1. The large
amplitudes, which are apparent in Fig. 4 by dark gray regions, com-
pose the Rayleigh waves. They are located along the dispersion
curves as displayed in Fig. 3 including the section of reversal of
the dispersion curve. The characteristic function appears in the de-
nominator of the expression for the Fourier-Bessel expansion co-
efficients as pointed out by Kennett and Kerry (1979, section 5.4)
and Müller (1985, eqs. 83 and 86). This would cause singulari-
ties along the dispersion curves. No singularities appear here, be-
cause the roots are slightly shifted away from the real slowness-axis
due to finite Q-values in the seismic parameters (Müller 1985, sec-
tion 4.3). The roots of the characteristic function in the denominator
still result in a large magnitude of the expansion coefficients along
the dispersion curves.

3 FALSE RESULTS DUE TO THE PHENOMENON

3.1 Computation of synthetic dispersion curves fails

Commonly used programs for the computation of synthetic dis-
persion curves use sophisticated algorithms like ’root-followers’
and ’root-count’ (Woodhouse 1988), other than we do by locating
all roots at each single frequency (Fig. 2). These programs esti-
mate the asymptotic phase-slowness at a large frequency (where
only the topmost layer controls surface wave propagation). They
identify one of the roots as the desired overtone at this frequency
and then compute the dispersion relation by following this root to
smaller frequencies. In the case of a multi-valued dispersion rela-
tion these algorithms loose track of the root at the next smaller fre-
quency when the curve actually turns to increasing frequency. They
miss the reversal of the curve. In Fig. 5 we demonstrate this for the
dispersion curves given by geopsy (Geopsy team 2017; Wathelet
et al. 2004; Wathelet 2008). The root-follower looses track at about
56 Hz. It continues the search for roots of the current overtone with
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Figure 5. Dispersion curves computed by geopsy for model LOH (Ta-
ble 1). The so-called ’root-follower’ misses part of the dispersion of the
first higher mode in the frequency interval between 56 Hz and 58 Hz.

Figure 6. Dispersion curves computed by three different programs. Left:
geopsy. Middle: sdisp96 (Computer Programs in Seismology). Right:
flspher. See text for references. All miss part of the dispersion of the
first higher mode in the frequency interval between 56 Hz and 58 Hz.

strictly decreasing frequency. In consequence it misses part of the
dispersion relation in the frequency interval in which it is multi-
valued. Surprisingly these algorithms are rarely discussed in litera-
ture. Their purpose seems to be too trivial.

We test three different well established programs for the com-
putation of dispersion curves. They are all able to properly compute
the characteristic function and its roots. Their root-followers how-
ever fail to capture the complete dispersion relation in the frequency
interval where it is multi-valued. We compare their results in Fig. 6.
Next to the results by geopsy (Geopsy team 2017; Wathelet et al.
2004; Wathelet 2008), which are also shown in Fig. 5, we display
the output of sdisp96 (Herrmann 2013, Computer Programs in
Seismology) and flspher. The latter is based on an algorithm by
Friederich (1999; 1995) modified for shallow seismics. All three
miss the multi-valued section in the above mentioned way.

The common property of many established programs to miss
the multi-valued section might be a reason, why this phenomenon
went unnoticed in seismology and applied seismics for such a long
time. Researchers were simply not able to detect the phenomenon
in computation of synthetic dispersion curves, because the com-
puted relation p(f) in all cases is single-valued by design.

3.2 Methods of dispersion analysis fail

Surface wave dispersion commonly is expressed as a function of
frequency (rather than frequency as a function of wave number),
because the first step in dispersion analysis of recorded seismo-
grams is a Fourier transformation. Analysis algorithms then de-
rive the dispersion relation from the difference in Fourier phase
of signals at different offset to the source. There is only one value
of Fourier phase at each frequency. In cases where multiple over-
tones interfere in the seismogram, phase-matched filter techniques
can be used to isolate a single mode in the waveform signal (Her-
rin & Goforth 1977; Russell et al. 1988; Sèbe et al. 2009). These
techniques essentially apply a deconvolution with a reference dis-
persion pref(f) in order to concentrate the seismic energy of the
respective mode in a small time window. Again there is no room
for more than one value of pref(f) at each frequency f . Even the
simple, robust and widely-used approach of a slant-stack for dis-
persion analysis of multi-channel data (McMechan & Yedlin 1981;
Gabriels et al. 1987; Forbriger 2003a) is likely to fail in the case of
the discussed phenomenon. We demonstrate this below.

4 RAYLEIGH MODE PROPERTIES

4.1 Group slowness

The reported reversal of the dispersion curve for phase velocity
goes along with group velocity apparently becoming negative in
the frequency band of multi-valuedness of the dispersion relation.
Malischewsky and Forbriger (2020) discuss this for the case of the
valley of Mexico City. Appendix B summarizes the well known re-
lation between phase- and group-slowness dispersion. At 57 Hz in
Fig. 3 phase slowness decreases with frequency at a rate of

d p(f)

d f
≈ −0.32

s2

km
< −1.071

57

s2

km
= −0.019

s2

km
. (2)

This corresponds to a negative group-slowness according to
eq. (B.16) in appendix B.

This is common to many cases of multi-valued dispersion re-
ported in literature. Hence ’negative group-velocity’ is a term fre-
quently used to name this phenomenon and has made it into the
title of several papers (Negishi 1987; Wolf et al. 1988; Tamm et al.
2017; Nishimiya et al. 2007). This term is misleading and might
appear like a violation of accepted physics, where group velocity
in non-dissipative media equals velocity of energy transport (Car-
cione et al. 2010). Energy certainly always emerges from the source
and propagates away from the source, the direction which usually
is defined as positive. It only seems there is a conflict here. This is
because no source is defined in normal mode theory. What is meant
by ’negative group-velocity’ hence is synonymous with ’phase-
velocity and group-velocity have opposite sign’ in this case. In fact,
Lamb (1904) in his contribution, which is frequently cited in the
context of ’negative group-velocity’, explicitly states that group ve-
locity always is in direction away from the source. In a coordinate
system defined with respect to the source it always will be positive,
while phase velocity might become negative. In their discussion of
the dispersion of Lamb-waves Tolstoy and Usdin (1957) emphasize
that group velocity never should be taken negative.

Nevertheless we study the physical properties of the Rayleigh
mode in the multi-valued frequency band. The variation of ampli-
tude with depth is defined by the so-called eigenfunctions of normal
mode theory. Properties of actual wave propagation of a signal of
finite bandwidth (including group slowness) are studied by com-
puting synthetic seismograms.
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4.2 Eigenfunctions

Fig. 7 displays eigenfunctions for the displacement components
of the first overtone in the multi-valued section of the disper-
sion curve. The panels start at small frequency and small phase-
slowness, where the eigenfunction penetrates the half space as is
expected at the low-frequency limit. From left to right the panels
are arranged along the continuous dispersion curve to gradually in-
creasing phase-slowness. The rightmost diagram shows eigenfunc-
tions completely confined to the layer, as is expected at the high-
frequency limit. The shape of the eigenfunction varies smoothly
along the dispersion curve and does not change in character, i. e.
the number of zero-crossings does not change. The multi-valued
section does not appear peculiar in any respect.

5 PROPAGATING WAVE-TRAIN

The roots of the secular equation (1) just indicate that eigensolu-
tions of the boundary value problem exist at the respective pairs
of frequency f and phase-slowness p. The normal modes can exist
without explicit excitation and may propagate with phase velocity
c = p−1 in either direction as is indicated by the symmetry of
∆R(f, p) shown in Fig. 1. However, would waves of frequency f
and phase-slowness p all along the multi-valued section of the dis-
persion curve be excited by an actual seismic source? How would
the propagating wave field then look like? How do waves in the re-
gion of ’negative group-velocity’ and ’zero group-velocity’ appear
in actual seismograms?

We use the reflectivity method (Fuchs & Müller 1971; Müller
1985) as implemented by Ungerer (Ungerer & Forbriger 2017; Un-
gerer & Wielandt 2017) to compute full wave forms for a given
seismic source and a given component of surface displacement.
When restricting the wave field to the multi-valued section of the
dispersion relation, signals will be quite narrow-band, and seismo-
grams will keep on oscillating with a single dominating frequency
for a longer time. To allow us to study the propagation of tran-
sient wave groups, confined by a clear envelope, bandwidth shall be
as large as possible. We therefore choose a model of a layer with
a fixed bottom (LFB ) where the multi-valuedness develops over
the largest frequency interval for ν =

√
7/16 = 0.4375 (Malis-

chewsky et al. 2017, Fig. 2). For the computation of synthetic
seismograms, we approximate the rigid bottom by an impedance
contrast of 100 between layer and half-space (Table 2). This is
necessary, because the available implementation of the reflectiv-
ity method (Ungerer 1990) implicitly uses a homogeneous, elastic
lower half-space.

As source we choose an explosion in 3 m depth, which excites
the fundamental mode with smaller amplitude than a source at the
surface would do. Fig. 5 and 9 display the modulus of Fourier-
Bessel expansion coefficients (see appendix A) for the vertical and
radial component of surface displacement, respectively. Like in
Fig. 4 normal mode dispersion becomes visible by large magni-
tude of the coefficients. This is because the characteristic function
appears in the denominator of the expression for the Fourier-Bessel
expansion coefficients as pointed out by Kennett and Kerry (1979,
section 5.4) and Müller (1985, eqs. 83 and 86). The dispersion-
relation for the first overtone is multi-valued between 64 Hz and
74 Hz, approximately. Because the asymptotic phase-slowness at
small frequency is 0 s km−1 in the case of LFB there exist only two
valid, finite values of phase slowness at each frequency. The ampli-
tude minimum of the vertical component at (68 Hz, 0.4 s km−1) is

Table 2. Model LFB (layer with fixed bottom). The rigid bottom of the layer
in this case is simulated by a ratio of 100 for seismic waves in the layer and
the half-space. This is necessary, because the used implementation of the re-
flectivity method implicitly uses a homogeneous lower half-space. j: layer
index, zj : depth to bottom of layer, vPj , vSj : velocity of compressional and
shear waves, νj : Poisson’s ratio, ρj : mass density. j = 2 for the elastic
half-space which approximates the rigid bottom. To provide anelastic dissi-
pation in the computation of Fourier-Bessel expansion coefficients quality
is set to QP = QS = 200.

j zj/m vPj/m s−1 vSj/m s−1 νj ρj/kg m−3

1 10 3000 1000 0.4375 1600
2 ∞ 300000 100000 0.4375 1600

due to the ellipticity of the mode at the surface turning into lin-
ear radial polarization. The minimum does not exist in the radial
component. The expansion coefficients for the radial component
(Fig. 9) demonstrate that the excited wave field contains contribu-
tions from throughout the multi-valued section with all values of
phase-slowness for which normal modes may exist.

5.1 Synthetic seismograms

5.1.1 Full wave field

The complete wave field for the vertical component of displace-
ment is displayed in Fig. 10 in terms of a seismogram section. In
comparison with signals on conventional structures the wave field
is extraordinarily rich for LFB . Because the structure represents a
wave guide with rigid bottom, all seismic energy is confined to the
layer, the range of phase velocity approaches infinity (reverberating
waves of vertical incidence). Nevertheless, two parts of the wave
train can be distinguished. They are separated by the arrival time
of the direct S-wave t = r/vS1 = r · 1 s km−1, where r is offset.
The slower wave group represents the fundamental mode signal.
The earlier group mainly is composed of the higher mode signals.
Both are rich in interference of waves with different phase velocity.
Some waves propagate at phase velocity of 3 km s−1, the velocity
of the direct P-wave. No clear first arrival of a refracted wave is
apparent, because this does not exist in the LFB model.

5.1.2 Wave field section of ’negative group-velocity’

The wave-number integration approach of the reflectivity method
allows us to compute a selected subsection of the wave field. We
choose the section of apparently ’negative group-velocity’ which
is displayed in the upper inset of Fig. 5. This produces seismo-
grams which allow us to study the features of the selected section
in isolation. We emphasize that this wave train would not be ob-
servable, because the given seismic source would always excite all
modes at once. Fig. 11 displays the resulting wave train for the
full time and offset range (upper figure) as well as a section of the
far field only (lower section). Obviously the wave train propagates
with positive group slowness (with respect to the source, as dis-
cussed in section 4.1 above). This is consistent with the concept of
energy emerging from the source. At the same time phase slowness
is negative (Fig. 11, lower figure) and such has the opposite sign
with respect to group slowness, which as well is consistent with
the above made considerations. Phase slowness approximately is
p = −0.14 s km−1, which appears at about f ≈ 66 Hz in the dis-
persion relation (Fig. 5). This matches the dominating frequency
in the wave train. Consider the symmetry with respect to p = 0
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Figure 7. Displacement eigenfunctions for the first higher Rayleigh mode of structure LOH (Table 1). blue solid: vertical component. red dashed: horizontal
component. Displayed amplitudes are normalized to the maximum of the vertical displacement and hence are charted without dimension. Eigenfunctions in
the frequency interval between 56 Hz and 58 Hz are displayed, where the dispersion relation (Fig. 3) is multi-valued. The variation of eigenfunctions along the
dispersion curve is quite ordinary, with displacement penetrating into the half-space at small frequency and displacement being confined to the layer at large
frequency. No additional zero-crossing or other conspicuous feature indicates the unusual nature of the dispersion relation.

like exemplified in Fig. 1. Although only positive values of phase
slowness are charted in Fig. 5, actually waves with negative phase
slowness are excited in this section when referring the origin of the
coordinate system to the seismic source. The ability to compose
waves which are traveling with a negative phase-velocity, although
parameter p the Fourier-Bessel coefficients is positive in a finite
bandwidth, is a surprising but known property of the Bessel ex-
pansion (Forbriger 2003a, Fig. 6). We discuss this in appendix A.
Group slowness approximately is pgr ≈ 0.15 s km−1. Both, group-
and phase-slowness, are consistent with respect to eq. (B.14) and
the gradient at 66 Hz, which is

d p(f)

d f
≈ 0.26 s km−1

10 Hz
(3)

and positive because of p(f) < 0, such that group-slowness esti-
mated on the basis of stationary phase would be

pgr ≈ −0.14 s km−1 + 66 Hz
0.26 s km−1

10 Hz
= 0.16 s km−1. (4)

This is consistent with Fig. 11 (upper figure).

5.1.3 Wave field section of ’zero group-velocity’

Similarly we investigate the wave field properties of the section
where the gradient of the dispersion relation with respect to fre-
quency becomes infinite, i. e. the section of ’zero group-velocity’.
The Fourier-Bessel coefficients which capture the wave field of this
section are displayed in the lower inset of Fig. 5. The bandwidth
of the signal is even smaller than for the case of ’negative group-
slowness’. Consequently the wave train appears quite monochro-
matic with a long lasting oscillation (upper section in Fig. 12). The
far field (lower section in Fig. 12) appears like a standing wave
composed by interference of two waves propagating in opposite di-
rection where both have similar amplitude and the same frequency
of about f ≈ 63 Hz. The wavelength is about λ ≈ 54 m, which
corresponds to phase slowness of p = f−1 λ−1 ≈ 0.29 s km−1.
This is consistent with the location of the point where the verti-
cal tangent touches the dispersion relation as indicated in the lower
inset of Fig. 5.

Wave groups only propagate slowly if time is smaller than
0.4 s and actually do not propagate at larger time (upper section
in Fig. 12). Signals of largest amplitude as well as signals of small-
est amplitude remain at the same location if time is larger. This is
consistent with the conception of ’zero group-velocity’.

Like in the previous section, we emphasize that the wave train
displayed in Fig. 12 would not be observable, because the given
seismic source would always excite all modes at once.

5.2 Slant stack analysis fails

We use the synthetic wave form to test whether methods of wave-
field transformation are able to capture the multi-valued section of
the dispersion relation. We compute complete vertical component
seismograms for an explosion in 3 m depth on the LFB -structure
(Table 2). Seismograms are computed for a time window of 6.6 s
with a sampling interval of about 0.81 ms at 100 offset values with
a receiver interval of 5 m and a maximum offset of 500 m. The
essential part of the wave train is displayed in Fig. 10 (with smaller
receiver interval there).

We apply a Fourier-Bessel transformation as well as a slant-
stack analysis (Forbriger 2003a). The first is most appropriate
for wave trains emerging with cylindrical symmetry from a point
source. It provides Fourier-Bessel expansion coefficients which re-
produce the original wave train. The slant-stack uses a plane wave
concept and in practice is primarily used to determine the disper-
sion of the Rayleigh waves through the location of amplitude max-
ima (McMechan & Yedlin 1981; Gabriels et al. 1987, e. g.). In
case of the slant-stack we scale the wave form to offset indepen-
dent amplitude. For both types of transformation a 20 per cent off-
set domain cosine taper is applied at the distant end of the profile.
Figs. 13 and 14 show the results of Fourier-Bessel transformation
and slant-stack, respectively.

The Fourier-Bessel transform (Fig. 13) essentially captures the
complete wave field. The analysis is necessarily imperfect due to
limited resolution and side-lobes caused by the finite length of pro-
file and due a fragment of aliased signal at frequency larger than
90 Hz and slowness larger than 1 s km−1 which results from the
finite receiver interval. Forbriger (2003a, sec. 2.2) discusses these
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Figure 8. Modulus of Fourier-Bessel
expansion coefficients for vertical dis-
placement of the surface as excited by
an explosion in 3 m depth in the struc-
ture LFB (Table 2). See appendix A
for a definition of the expansion coeffi-
cients. For LFB with ν =

√
7/16 =

0.4375 the largest frequency interval
of multi-valuedness is observed for the
dispersion relation of the first higher
mode. The smaller inset diagrams dis-
play subsets of the expansion coeffi-
cients which are obtained by applica-
tion of tapers. The upper inset dis-
plays the section of apparently ’nega-
tive group-velocity’, the lower inset dis-
plays the section of apparently ’zero
group-velocity’.

Figure 9. Modulus of Fourier-Bessel expansion coefficients for radial dis-
placement of the surface as excited by an explosion in 3 m depth in the
structure LFB (Table 2). See appendix A for a definition of the expansion
coefficients. For LFB with ν =

√
7/16 = 0.4375 the largest frequency

interval of multi-valuedness is observed for the dispersion relation of the
first higher mode. The first overtone of the radial displacement is excited
to finite amplitude throughout the multi-valued section of the dispersion
relation in the frequency band between 64 Hz and 74 Hz.

limitations of wave field transformation. Nevertheless the signal of
the first overtone is completely reproduced in the frequency band
of multi-valued dispersion.

However, the slant-stack is not able to capture the signal of
the first overtone in this region (Fig. 14). Apparently this is caused
by the seismograms having negative phase-slowness, while the
slant-stack procedure can only capture signals of positive phase-
slowness. Forbriger (2003a, sec. 5.1) discusses this with respect to
the traveling wave properties of the Hankel functions of the first and
second kind and refers to the slant-stack analysis. In consequence

Figure 10. Vertical component seismograms computed for an explosion in
3 m depth in the structure LFB (Table 2). Fourier-Bessel expansion coeffi-
cients up to 150 Hz and 1.6 s km−1 (with a 30 per cent cosine taper at the
upper limit of integration) are used. A fourth order Butterworth low-pass
at 80 Hz is applied to the signals. Amplitudes are scaled by (r/1 m)0.8

to partly compensate for geometric spreading and dissipation, where r is
offset. As is common in results of wave-number integration, truncation ar-
tifacts are apparent at small offset. They are due to the finite upper limit
of numerical integration, similar to the Gibbs-Wilbraham phenomenon of
Fourier series. In this case a signal propagating with negative phase slow-
ness of about 1.5 s km−1 is apparent near the source at negative times. It
quickly decays with offset. The artifact can reliably be distinguished from
true wave-field properties, by its phase slowness depending on the upper
limit of integration.

a multi-valued dispersion relation, if present in observed or syn-
thetic seismograms, very likely would be missed by conventional
techniques of dispersion analysis.
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Figure 11. Wave train computed from the Fourier-Bessel expansion coeffi-
cients of the section of ’negative group-velocity’ only. This section of ex-
pansion coefficients is displayed in the upper inset of Fig. 5. Amplitudes
are scaled by (r/1 m)0.8 to partly compensate for geometric spreading and
dissipation, where r is offset. The upper seismogram section displays the
full time and offset range. Obviously the group velocity is positive with re-
spect to source location and group-slowness is about pgr ≈ 0.15 s km−1.
The lower seismogram section displays a section of the far field. Obvi-
ously, group and phase slowness have opposite sign, where phase slowness
is about p ≈ −0.14 s km−1.

6 PAVEMENT STRUCTURES

6.1 Multi-valued dispersion of the fundamental mode

In the model which is defined in Table 3, we add a second layer
with larger velocity on top. This is similar to a pavement struc-
ture which occasionally is investigated in civil engineering using
Rayleigh waves (Ryden & Lowe 2004, e. g.). The stiff layer on
top of the structure is similar to a plate. Consequently we observe
a multi-valued dispersion curve for the fundamental mode in this
case, as is shown in Fig. 15.

6.2 Frequency as a function of wave number

Remarkably, the inverse relation f(p) for the fundamental mode
becomes multi-valued too for this structure. The same would be
observed for f(c) = f(p−1). However f(k) is single-valued, be-
cause k = 2πfp increases sufficiently rapid with frequency f such
that values of k do not appear twice along the curve. Similarly the
curves of frequency as a function of wave number as presented by
Lysmer (1970, Figure 5) as well as phase velocity as a function of

Figure 12. Wave train computed from the Fourier-Bessel expansion coeffi-
cients of the section of ’zero phase-velocity’ only. This section of expansion
coefficients is displayed in the lower inset of Fig. 5. Amplitudes are scaled
by (r/1 m)0.8 to partly compensate for geometric spreading and dissipa-
tion, where r is offset. The upper seismogram section displays the full time
and offset range. Time range is larger than in Fig. 10 and Fig. 11 because
the signal is very narrow-band and therefore sustains for a larger time. The
lower seismogram section displays a section of the far field. This pattern
of the wave train is that of a standing wave composed through interference
of waves propagating in opposite direction with the same phase velocity
and amplitude. Nodes appear in intervals of 27 m. The wave length thus is
λ = 54 m. Up to 70 m offset the group propagation is not obvious or does
not take place at all, which is consistent with the notion of ’zero group-
velocity’.

Table 3. Model PAV (pavement). Seismic parameters are chosen such that
they could be realistic for pavement structures. A thin, stiff layer (pave-
ment) is on top of a weaker layer (unconsolidated sediments) on top of a
half-space (bedrock). Pavement and bedrock have a conventional value of
Poisson’s ratio near ν = 0.25, while ν =

√
7/16 = 0.4375 in the layer of

unconsolidated sediments, which can be due to partial saturation with water.
j: layer index, zj : depth to bottom of layer, vPj , vSj : velocity of compres-
sional and shear waves, νj : Poisson’s ratio, ρj : mass density. j = 3 for the
elastic half-space.

j zj/m vPj/m s−1 vSj/m s−1 νj ρj/kg m−3

1 0.20 4000.0 2310.0 0.2498 2600
2 2.00 532.8 177.6 0.4375 1800
3 ∞ 4000.0 2310.0 0.2498 2600
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Figure 13. Modulus of the Fourier-Bessel transform of the complete seis-
mograms computed for structure LFB (Table 2). Apart from the usual ar-
tifacts of discrete transformation (limited resolution, side-lobes, aliasing)
the full signal is captured. This is obvious in comparison with the Fourier-
Bessel expansion coefficients in Fig. 5. The hatched area indicates the reso-
lution that can be obtained with a profile of 500 m length. Aliasing appears
where the red hyperbola in the upper right hand corner intersects the signal.

wave number (Lysmer 1970, Figure 6) define single-valued rela-
tions.

This might raise the question for the ’natural’ set of dependent
and independent parameters. In shallow seismics dispersion com-
monly is expressed by p(f) or c(f), because we are used to apply
a Fourier transformation to recorded data as a first step of spec-
tral analysis and discuss solutions in terms of propagating waves.
Whereas in global normal mode seismology dispersion commonly
is expressed by f(l), where l is the degree of the spherical har-
monic, which relates to wave number k =

√
l (l + 1) (Dahlen &

Tromp 1998, eq. 12.40). The latter choice is made, because on a

Figure 14. Slant-stack analysis of the complete seismograms computed
for structure LFB (Table 2). Other than the Fourier-Bessel transformation
(Fig. 13) the slant-stack misses the signal component of negative phase-
velocity. This is obvious in comparison with the Fourier-Bessel expansion
coefficients in Fig. 5. A part of the first higher Rayleigh-mode is missing
between 64 Hz and 74 Hz at phase slowness smaller than 0.35 s km−1. The
hatched area indicates the resolution that can be obtained with a profile of
500 m length.

Figure 15. Sign of the characteristic function ∆R(f, p) for model PAV (Ta-
ble 3). Grey and white areas have opposite sign. The characteristic function
∆R(f, p) = 0 is satisfied along the lines where areas of different colors
touch. Normal modes do not exist in the light-gray area at phase slowness
p < v−1

S,halfspace, because energy would be radiated into the half-space. It
is obvious that the relations p(f) and f(p) both are multi-valued for the
fundamental mode.

sphere wave number is quantized naturally due to symmetry which
results in a discrete set of l. For each l the mode’s eigenfrequency
fl then has to be searched.

7 CONCLUSIONS

Rayleigh wave dispersion relations for simple, realistic structures
can be multi-valued. There can exist more than one value of phase
slowness p(f), wave number k(f), and phase velocity c(f) at a
given frequency f . The strength of the phenomenon depends on
Poisson’s ratio and velocity contrast between layers. Physical prop-
erties of the waves, like the variation of amplitude with depth or
the propagation of wave groups, appear inconspicuous. The multi-
valuedness appears to be due to the chosen mathematical decom-
position (Fourier expansion and decomposition by phase-velocity)
rather than due to an odd kind of seismic waves.

Traditional ’root-followers’ inherently miss the multi-valued
section of the dispersion relation. Deconvolution techniques and
slant-stack analysis fail as well in such cases. Fourier phase of a
single mode becomes meaningless. For pavement structures the
fundamental mode can be multi-valued. At least in shallow seis-
mic studies the applied algorithms must account for a possible
multi-valuedness of Rayleigh wave dispersion in order to avoid
false results. The Fourier-Bessel transformation (Forbriger 2003a)
still provides reliable results in the case of multi-valued disper-
sion. Subsurface structure then can be inferred by inversion of the
Fourier-Bessel expansion coefficients (Forbriger 2003b). Alterna-
tively a dispersion curve read manually from the coefficients can
be inverted to subsurface structure with the method proposed by
Maraschini et al. (2010) which directly uses the characteristic func-
tion to setup the objective function and does not require to locate
roots.
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APPENDIX A: FOURIER-BESSEL EXPANSION

Fourier-Bessel expansion coefficients (Forbriger 2003a) are used
by methods for the computation of synthetic seismograms, which
make use of separation of variables and wave-number integration
like the reflectivity method (Fuchs & Müller 1971; Müller 1985,
e. g.) or others (Kennett & Kerry 1979; Wang 1999, e. g.). For a
source with cylindrical symmetry, like a vertical force or an explo-
sion, the vertical component ground displacement

uz(t, r) =

+∞∫
−∞

ũz(ω, r) e−iωt dω

2π
(A.1)

is given as a Fourier expansion with Fourier transform ũz(ω, r)
which itself is expressed by

ũz(ω, r) =

+∞∫
0

Gz(ω, p) J0(ωpr) p d p. (A.2)

Bessel functions J0(ωpr) of the first kind and order zero are used
in the kernel. The Gz(ω, p) are the Fourier-Bessel expansion coef-
ficients of the vertical component of wave field. Likewise that radial
component ground displacement

ur(t, r) =

+∞∫
−∞

+∞∫
0

Gr(ω, p) J1(ωpr) e−iωt p d p
dω

2π
(A.3)

is expressed by using Bessel functions J1(ωpr) of first kind and
order one in the kernel for a source with cylindrical symmetry.

The very same coefficients can be used for the expansion

uLz(t, r) = 2

+∞∫
−∞

+∞∫
0

Gz(ω, p) cos(ωpr) e−iωt C
ω

d p
dω

2π

and

uLr(t, r) = 2

+∞∫
−∞

+∞∫
0

Gr(ω, p) sin(ωpr) e−iωt C
ω

d p
dω

2π

of plane waves emerging from a line source, where C accounts
for the different units of force density in the definition of the line
source with respect to a point source (Forbriger et al. 2014, secs. 2.2
and 4).

All integration takes place over positive values of phase slow-
ness p only. The kernel functions (Bessel functions of the first kind
as well as the trigonometric sine and cosine functions) do not ap-
pear to represent traveling waves. How can these integral expan-
sions then express traveling waves of either propagation direction?
Sommerfeld (1949b; 1949c, §32) discusses this property of the
Bessel expansion. In fact the Bessel function of the first kind

Jn(ωpr) =
1

2

(
H(1)

n (ωpr) +H(2)
n (ωpr)

)
(A.4)

equals the sum of the Hankel functions of first and second kind
(Sommerfeld 1949a, §19). In the far field the Hankel functions rep-
resent propagating waves in either direction. Both contributions
(and hence the Bessel function of the first kind) are required in
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the kernel of the expansion integral when expressing the source in
the separation of variables. The expansion in fact is able to express
propagating waves. Sommerfeld (1949b, §32) points out that with

ũz(ω, r) =

+∞∫
0

Gz(ω, p) J0(ωpr) p d p (A.5)

=
1

2

+∞∫
−∞

Gz(ω, p)H(1)
n (ωpr) p d p (A.6)

=
1

2

+∞∫
−∞

Gz(ω, p)H(2)
n (ωpr) p d p (A.7)

the expansion can be expressed by kernels which represent trav-
eling waves in the far field if Gz(ω, p) = Gz(ω,−p). Integration
then takes place over the range of negative as well as positive values
of phase slowness.

The direction of propagation is controlled by the variation of
the Fourier phase with offset. Let

f(t) =

+∞∫
−∞

f̃(ω) e−iωt dω

2π
(A.8)

be the wave form of a propagating wavelet. Then the Fourier trans-
form

φ̃(x, ω) = f̃(ω) eiωpx (A.9)

defines a plane wave with a propagating wavelet

φ(x, t) = f(px− t) =

+∞∫
−∞

φ̃(x, ω) e−iωt dω

2π
(A.10)

of phase slowness p. Hence the direction of propagation is con-
trolled by the sign of the phase factor in eq. (A.9).

The selection of waves of either direction of propagation in a
Bessel expansion is controlled by the expansion coefficients. This
is demonstrated by the so-called ’Sommerfeld integral’ as used by
Müller (1985, sec. 4.2, eqs. 58–61) and defined by Sommerfeld
(1949b, §31.14). It expresses a propagating spherical wave

eiωp0(ω)r

r
=

+∞∫
0

1√
p2 − p20(ω)

J0(ωpr)ωp d p (A.11)

by Bessel expansion. The wave propagates with phase slowness
p0(ω), where the direction of propagation is controlled by the Rie-
mann sheet taken during integration. In eq. (A.11) the complex
square root must be taken with positive real part.

APPENDIX B: PHASE- AND GROUP-VELOCITY

Let

φ̃(x, ω) = A(ω) eik(ω) x (B.1)

be the Fourier transform of a plane wave

φ(x, t) =

+∞∫
−∞

φ̃(x, ω) e−iωt dω

2π
(B.2)

=

+∞∫
−∞

A(ω) ei {k(ω) x−ω t} dω

2π
. (B.3)

The wave propagates with wave number k(ω) at frequency ω.
Based on this definition Lamb (1904) and Wielandt (1992) give
very concise derivations of phase- and group-velocity.

To obtain phase velocity

c(ω) =
dx(t)

d t
(B.4)

x(t) must be chosen such that the Fourier phase k x(t) − ω t in
eq. (B.3) remains constant. The condition

d

d t
(k x(t)− ω t) = 0 (B.5)

results in

c(ω) =
dx(t)

d t
=
ω

k
. (B.6)

Phase slowness then is

p(ω) =
1

c(ω)
=
k

ω
. (B.7)

To obtain group velocity

vgr =
dx(t)

d t
(B.8)

x(t) must be chosen such that waves of similar frequency interfere
constructively in eq. (B.3) and compose a wave group in the seis-
mogram. This is expressed with the concept of stationary phase by
the condition

d

dω
(k x(t)− ωt) = 0 (B.9)

which results in
d k

dω
x(t) = t (B.10)

and

x(t) = t
dω

d k
. (B.11)

Group velocity hence is

vgr =
dx(t)

d t
=

dω

d k
(B.12)

and correspondingly group slowness

pgr =
d k

dω
. (B.13)

Eq. (B.7) expresses wave-number dispersion k(ω) = ω p(ω)
by phase-slowness dispersion. Using this in eq. (B.13) group-
slowness dispersion

pgr(ω) = p(ω) + ω
d p(ω)

dω
(B.14)

can be expressed by phase-slowness dispersion p(ω). Formally
group slowness becomes negative with pgr(ω) < 0 if

d p(ω)

dω
< − p

ω
(B.15)

which is identical with

d p(f)

d f
< − p

f
. (B.16)

If velocity is defined positive for propagation taking place with in-
creasing distance to the source, it commonly turns out that actually
pgr(ω) is positive and p(ω) is negative as is discussed in the text.

Similar expressions can be derived for phase velocity and
group velocity. Group velocity vanishes for example, where the
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derivative of phase velocity with respect to frequency becomes in-
finite. This is the case at the turning points of the dispersion curve
at 56 Hz and 58 Hz in Fig. 3.

While wave number k(ω) = ω p(ω) (and thus also phase
slowness p(ω)) is a well defined quantity (eigenvalue) in normal
mode theory, this is not the case for group slowness. The above
sketched derivation of group slowness neglects the assumption for
the behavior of the Fourier amplitude A(ω) in the application of
the concept of stationary phase. Only for well behavedA(ω) which
only smoothly varies with ω the above given results are reasonable
in terms of propagating wave-groups.


