
Self-supervised Face Representation
Learning

zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften

von der KIT-Fakultät für Informatik
des Karlsruher Instituts für Technologie (KIT)

genehmigte

Dissertation
von

Vivek Sharma
aus Siliguri, India

Tag der mündlichen Prüfung: 14. May 2020

Hauptreferent: Prof. Dr.-Ing. Rainer Stiefelhagen
Karlsruher Institut für Technologie

Korreferent: Prof. Dr.-Ing. Tamim Asfour
Karlsruher Institut für Technologie

KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft www.kit.edu

Abstract

This thesis investigates fine-tuning deep face features in a self-supervised manner
for discriminative face representation learning, wherein we develop methods to
automatically generate pseudo-labels for training a neural network. Most importantly
solving this problem helps us to advance the state-of-the-art in representation learning
and can be beneficial to a variety of practical downstream tasks. Fortunately, there is a
vast amount of videos on the internet that can be used by machines to learn an effective
representation. We present methods that can learn a strong face representation from
large-scale data be the form of images or video.

However, while learning a good representation using a deep learning algorithm
requires a large-scale dataset with manually curated labels, we propose self-supervised
approaches to generate pseudo-labels utilizing the temporal structure of the video
data and similarity constraints to get supervision from the data itself.

We aim to learn a representation that exhibits small distances between samples from
the same person, and large inter-person distances in feature space. Using metric
learning one could achieve that as it is comprised of a pull-term, pulling data points
from the same class closer, and a push-term, pushing data points from a different
class further away. Metric learning for improving feature quality is useful but requires
some form of external supervision to provide labels for the same or different pairs. In
the case of face clustering in TV series, we may obtain this supervision from tracks
and other cues. The tracking acts as a form of high precision clustering (grouping
detections within a shot) and is used to automatically generate positive and negative
pairs of face images. Inspired from that we propose two variants of discriminative
approaches: Track-supervised Siamese network (TSiam) and Self-supervised Siamese
network (SSiam). In TSiam, we utilize the tracking supervision to obtain the pair,
additional we include negative training pairs for singleton tracks – tracks that are not

ii Abstract

temporally co-occurring. As supervision from tracking may not always be available,
to enable the use of metric learning without any supervision we propose an effective
approach SSiam that can generate the required pairs automatically during training.
In SSiam, we leverage dynamic generation of positive and negative pairs based on
sorting distances (i.e. ranking) on a subset of frames and do not have to only rely on
video/track based supervision.

Next, we present a method namely Clustering-based Contrastive Learning (CCL), a
new clustering-based representation learning approach that utilizes automatically
discovered partitions obtained from a clustering algorithm (FINCH) as weak super-
vision along with inherent video constraints to learn discriminative face features. As
annotating datasets is costly and difficult, using label-free and weak supervision ob-
tained from a clustering algorithm as a proxy learning task is promising. Through our
analysis, we show that creating positive and negative training pairs using clustering
predictions help to improve the performance for video face clustering.

We then propose a method face grouping on graphs (FGG), a method for unsupervised
fine-tuning of deep face feature representations. We utilize a graph structure with
positive and negative edges over a set of face-tracks based on their temporal structure
of the video data and similarity-based constraints. Using graph neural networks,
the features communicate over the edges allowing each track’s feature to exchange
information with its neighbors, and thus push each representation in a direction
in feature space that groups all representations of the same person together and
separates representations of a different person.

Having developed these methods to generate weak-labels for face representation
learning, next we propose to learn compact yet effective representation for describing
face tracks in videos into compact descriptors, that can complement previous methods
towards learning a more powerful face representation. Specifically, we propose
Temporal Compact Bilinear Pooling (TCBP) to encode the temporal segments in
videos into a compact descriptor. TCBP possesses the ability to capture interactions
between each element of the feature representation with one-another over a long-range
temporal context. We integrated our previous methods TSiam, SSiam and CCL
with TCBP and demonstrated that TCBP has excellent capabilities in learning a
strong face representation. We further show TCBP has exceptional transfer abilities
to applications such as multimodal video clip representation that jointly encodes
images, audio, video and text, and video classification.

Abstract iii

All of these contributions are demonstrated on benchmark video clustering datasets:
The Big Bang Theory, Buffy the Vampire Slayer and Harry Potter 1. We provide
extensive evaluations on these datasets achieving a significant boost in performance
over the base features, and in comparison to the state-of-the-art results.

Acknowledgements

Firstly, I would like to thank my supervisor Rainer Stiefelhagen for his guidance,
support, advice and most importantly, encouragement. I also thank Tamim Asfour
for kindly agreeing to be a reviewer and helping to improve the quality of this thesis.

I thank my main collaborators Ali Diba, M. Saquib Sarfraz and Makarand Tapaswi.
They have been an inspiration to me. Their daily and sometimes weekly conversations
have proved to be one of my best learning experiences during my Ph.D. thesis.

Special thanks to Corinna Haas-Hecker for her help with the university’s administra-
tive things and making me feel welcome.

I thank my previous supervisor, Luc Van Gool at KU Leuven/ETH Zürich. He is
one of the most intelligent and inspiring people I have known. He taught me how to
think outside of the box and introduced me to the field of computer vision.

I would also like to thank my other advisors at Massachusetts Institute of Technology,
Harvard Medical School and Harvard University. Ramesh Raskar is to be thanked for
his brilliant ideas and inspiration. Rajiv Gupta inspired me to work harder and better
on problems that can impact billions of lives. Mauricio Santillana inspired me to
work on tracking epidemic outbreaks. I thoroughly enjoyed our weekly conversations
to bounce ideas off of and debate with.

I thank all other collaborators including Davy Neven, Michael S. Brown, Gabriela
Csurka, Naila Murray, Diane Larlus, Ali Pazandeh, Hamed Pirsiavash, Veith Röth-
lingshöfer, Mohsen Fayyaz, Manohar Paluri, Juergen Gall, Praneeth Vepakomma,
Tristan Swedish, Ken Chang, Jayashree Kalpathy-Cramer, Congcong Wang, Faouzi
Alaya Cheikh, Azeddine Beghdadi, Ole Jacob Elle, Jon Yngve Hardeberg, Sony

vi Abstract

George, . . . for your support and help. The final three dots should be interpreted as
the people I forgot to mention here and as an apology.

Further, during my Ph.D. thesis, I was lucky and fortunate enough to find wonderful
numerous friends. Without their company my social life would have been incomplete.
I would also like to thank them. These include Keni Bernardin (the most available,
reliable and lively party guy I have known. Without you, I would have never known
the real music: James Brown, funky jazz, acid jazz, blues and many more, thanks for
that!), Ertunc Ertekin (my unstoppable boxing coach), André Nordbø (my always
reliable soundboard for discussions), Haroon Mughal, Constantin Seibold (after 4am
we start working), Sebastian Bullinger, Piyush Verma, Abhishek Singh, Subhash
Chandra Sadhu, Himi Mathur, Connor Henley (Boston nightlife belongs to you!),
Samuel Schöb (The Muddy Charles Pub misses you!), Kevin Marty (my MIT social
backbone), Fatima Villa (coffee tastes better when you’re around), Guy Satat, Tjada
Schult, Hao Li (the after MIT tech review party stays memorable!), Backtosch
Mustafa (you indeed have impressive social skills - Harvard is complementary!),
César Roberto de Souza, Uta Büchler, Patrick Buehler, Biagio Brattoli, Alessandra
Bernardi, Rafael Rezende, Lagnojita Sinha, Tomohiro Maeda, Arun Nair (we share
the pride of ACMMM’19 best paper together!), Eric Marengaux (you own Mont
Aiguille!), Christoph Feichtenhofer, David Ross, Du Tran, Sourish Chaudhuri, Georg
Buchner, Anca Nicoleta Ciubotaru, Pablo Galindo Zapata, Bert De Brabandere,
Daniel Koester, Elsa Itambo, Amey Chaware, Ankit Ranjan, Syed Qasim Bukhari (the
guy who knows the A-Z of human connections and communication), Ewa Szyszka,
Prithvi Rajasekaran, Andres Mafla Delgado, Martin Humenberger (I agree, you
told me, graduating earlier is better), Ferran Hueto Puig, Leonie Malzacher, Eva
Schlindwein (my first awesome unofficial Ph.D. examiner - secret stays between us!),
. . .

Most importantly, I would like to thank my family for their inestimable support,
understanding, love, care and believing in me.

Contents

1 Introduction . 1
1.1 Objective and motivation. 1
1.2 Key challenges and tasks 2

1.2.1 Key challenges . 2
1.2.2 Key Tasks . 3

1.3 Overview and Contributions 4

2 Background . 9
2.1 Neural Networks . 9
2.2 Learning: Parameter Estimators 11

2.2.1 Loss Function . 11
2.2.2 Regularizer . 13
2.2.3 Optimization . 14
2.2.4 Convolutional Neural Network (CNN) 16

2.3 Datasets. 20
2.3.1 The Big Bang Theory 21
2.3.2 Buffy - The Vampire Slayer 21
2.3.3 Harry Potter 1 . 22

2.4 Metrics . 24

3 Ranking-based Pair Generation 27
3.1 Introduction . 28
3.2 Related Work . 31
3.3 Refining Face Representations for Clustering 34

3.3.1 Discriminative models 36
3.3.2 Generative models . 38

3.4 Evaluation . 41
3.4.1 Experimental Setup. 41

viii Contents

3.4.2 Implementation Details 41
3.4.3 Clustering Performance Ablation Studies 42
3.4.4 Studying Generalization 44
3.4.5 Comparison with the state-of-the-art 48

3.5 Discussion . 50
3.6 Summary. 52

4 Clustering-based Pair Generation 55
4.1 Introduction . 56
4.2 Related Work . 57
4.3 Clustering based Representation Learning 59

4.3.1 Preliminaries . 59
4.3.2 Clustering Algorithm. 61
4.3.3 Video Level Constraints 63
4.3.4 Training and Inference 63
4.3.5 Implementation Details 64

4.4 Evaluation . 65
4.4.1 Clustering Performance and Generalization 65
4.4.2 Sources of Positive and Negative Pairs 68
4.4.3 Impact of Clustering Algorithm 68
4.4.4 Comparison with the state-of-the-art 70

4.5 Summary. 72

5 Self-Supervised Face-Grouping on Graphs 73
5.1 Introduction . 74
5.2 Related Work . 76
5.3 Method . 77

5.3.1 Preliminaries . 77
5.3.2 Graph Construction 78
5.3.3 Training Procedure 82

5.4 Experiments . 85
5.4.1 Clustering Performance and Generalization 85
5.4.2 Ablation Study . 87
5.4.3 Comparison to State-of-the-Art 90

5.5 Feature Space Projections 93
5.6 Summary. 94

6 Temporal Feature Encoding and Representation Learning 97
6.1 Introduction . 98
6.2 Related Work .100

ix

6.3 Learning to Order Clips103
6.3.1 Temporal Compact Bilinear Pooling 104
6.3.2 Learning via Temporal Ordering 107
6.3.3 Implementation details 108

6.4 Evaluation .110
6.4.1 Dataset . 110
6.4.2 Temporal Ordering . 111
6.4.3 Multimodal Retrieval. 115
6.4.4 Action Recognition . 116
6.4.5 Video Face Clustering 119

6.5 Summary. .121

7 Summary and future work123
7.1 Ranking-based learning (Chapter 3)123
7.2 Clustering-based learning (Chapter 4)124
7.3 Graph-based learning (Chapter 5)125
7.4 Compact representation-based learning (Chapter 6)126

Short CV .127

Publications .129

Bibliography .133

Old PhD adage: Not writin’ a few pages a day, is gonna keep the doctor away!

List of Abbreviations

TSiam Track-supervised Siamese network . 5
SSiam Self-supervised Siamese network . 5
CCL Clustering-based Contrastive Learning . 6
FGG Face Grouping on Graphs .6
TCBP Temporal Compact Bilinear Pooling . 6
MLP Multilayer Perceptron . 10
ReLU Rectifying Linear Unit . 10
CNN Convolutional Neural Network . 16
ELU Exponential Linear Unit . 16
SELU Scaled Exponential Linear Unit . 16
BBT The Big Bang Theory. .21
BF Buffy - The Vampire Slayer . 21
ACCIO Harry Potter 1 . 22
WCP Weighted Clustering Purity . 24
ACC Clustering Accuracy . 24
VAE Variational Autoencoder . 30
HAC Hierarchical Agglomerative Clustering . 35
BN Batch Normalization. .65
GCN Graph Convolutional Network . 78
FC Fully-Connected . 82
resGC residual Graph Convolution. .82
PCA Principal Component Analysis . 93

Basic Notations

Unless indicated otherwise, lower-case letters type-set in bold denote vectors, upper-
case letters represent a matrix or tensor and lower-case letters represent scalars.

List of Figures

2.1 Multilayer perceptron (MLP): an example neural network scheme
with 3 layers. 10

2.2 Landscape of popular optimizers. Figure taken from Ruder (2016) . . 15
2.3 Common neural network architectures. 17
2.4 Common face recognition neural network architectures. 19
2.5 Example images for a few characters from our dataset. We show

one easy sample and one difficult sample. The extreme variation in
illumination, pose, resolution, and attributes (spectacles) make the
datasets challenging. 21

2.6 Co-occurrence matrix of ACCIO . 23
2.7 B3 metric explanation . 25

3.1 Track-supervised Siamese network (TSiam). Illustration of the Siamese
architecture used in our track-supervised Siamese networks. Note that
the MLP is shared across both feature maps. 2K corresponds to batch
size. 34

3.2 Self-supervised Siamese network (SSiam). Illustration of the Siamese
architecture used in our self-supervised Siamese networks. SSiam
selects hard pairs: farthest positives and closest negatives using a
ranked list based on Euclidean distance for learning similarity and
dissimilarity respectively. Note that the MLP is the same across both
feature maps. 2K corresponds to batch. 35

3.3 Illustration of a Variational Autoencoder used as a strong baseline
generative model. In contrast to the Siamese networks, the VAE sees
single frames (not pairs) and is trained by two losses: KL-Divergence
and the Reconstruction NLL. 2K corresponds to batch. 39

xvi List of Figures

3.4 Illustration of the test time evaluation scheme. Given our pre-trained
MLPs, TSiam or SSiam, we extract the frame-level features for the
track, followed by mean pooling to obtain a track-level representation.
All such track representations from the video are grouped using HAC
to obtain a known number of clusters. 40

3.5 Histograms of pairwise cosine similarity between tracks of same identity
(positive, blue) and different identity (negative, red) for BBT-0101.
Best seen in color. 43

3.6 Histograms of pairwise cosine similarity between tracks of same identity
(pos) and different identity (neg) for BBT-0101. 52

3.7 Histograms of pairwise cosine similarity between tracks of same identity
(pos) and different identity (neg) for BF-0502. 52

4.1 CCL training overview. Given a video with several face detections
(top left), we first start by extracting features using a deep CNN and
perform clustering using FINCH to obtain a large number of small
but highly pure clusters (top). We create several positive and negative
face image pairs using these cluster labels and train an MLP to further
improve the feature representation using the contrative loss (bottom).
At test time, the MLP is used as an embedding, and we cluster our
samples using Hierarchical Agglomerative Clustering (HAC). 60

4.2 Key characteristics of FINCH (second partition) clustering for BBT-
0101. Left: Histogram showing the number of faces in a cluster.
Even if most clusters have less than 5 samples, we are able to obtain
meaningful positive and negative pairs to train our model. Right: We
plot the number of faces and number of tracks for each of the cluster
indices (sorted by size for convenience). About 900 of the 2200 clusters
created by FINCH contain faces from more than one track, leading to
increased diversity of pairs. 69

5.1 Exemplary split of a toy graph: On the left a graph G = (S(T, 1), Etc)
representing four temporally overlapping tracks. Each node represents
a full track t ∈ T . No must-link edges are present. On the right G′ =
(S(T, [1 3 1 1]), Etc ∪ Ecopy ∪ Etm), with track t1 split into 3 sub-tracks.
The created nodes are t4, t5 and t6. All created nodes are completely
connected with must-link edges, and they adopt the cannot-link edges of t1. 80

xvii

5.2 Our FGG model. The input is a matrix of all pooled sub-track features,
the output is the updated representation of each sub-track. Note that the
model never actually sees any images, they are just used to represent a
sub-track here. The fully-connected layer uses the same weights for each
track, i.e. the batch dimension is equivalent to |V |. 83

5.3 Training on BBT-0101 and BF-0502 with increasing edge dropout (left) and
added wrong edges (right). Each data point corresponds to one training
run for 30 epochs. 91

5.4 Comparison of a PCA projection (Abdi and Williams, 2010) of feature
space at the start and end of training on BF-0502 and BBT-0101 using
FGG. The ground truth character associations to each data point are
color-coded. 95

5.5 Comparison of a t-SNE projections (van der Maaten and Hinton, 2008) of
feature space at the start and end of training on BF-0502 and BBT-0101
using FGG. The ground truth character associations to each data point
are color-coded. 96

6.1 Video ordering: Given an unordered collection of video clips, our goal is
to infer their correct temporal order by utilizing a compact multimodal
feature encoding that exploits high-level semantic concepts such as
objects, scenes, dialogues, and sounds in each clip. We visualize five
clips (first and last frame) from a scene in our dataset. Can you guess
the correct order by considering all modalities? 98

6.2 Deep Multimodal Feature Encoding. Illustration of the multimodal
feature encoding applied for the task of temporal ordering. See Sec. 6.3
for a detailed explanation of the feature learning scheme shown. . . . 103

6.3 CBP-Flat vs. TCBP. In this toy setup, we initialize random vectors
h, s and matrix S such that c = 5, d = 7, and t = 3. In CBP-Flat, h
has different values across the temporal dimension, while in TCBP,
h does not depend on t. This ensures that Tensor Sketch projects
features across time to the same output index. See Sec. 6.3.1 for a
detailed explanation. 106

6.4 Examples scenes from the dataset with 2-4 clips. 113

List of Tables

2.1 Statistics of The Datasets. 22

3.1 Clustering accuracy on the base face representations. 42
3.2 Ignoring singleton tracks (and possibly characters) leads to significant

performance drop. Accuracy on track-level clustering. 43
3.3 Comparison between SSiam and pseudo-RF. 44
3.4 Clustering accuracy computed at track-level on the training episodes,

with a comparison to all evaluated models. 44
3.5 Clustering accuracy computed at track-level across episodes within

the same TV series. Numbers are averaged across 5 test episodes. . . 45
3.6 Clustering accuracy when evaluating across video series. Each row

indicates that the model was trained on one episode of BBT / BF,
but evaluated on all 6 episodes of the two series. 46

3.7 Clustering accuracy when extending to all named characters within
the episode. BBT-0101 has 5 main and 6 named characters. BF-0502
has 6 main and 12 named characters. 46

3.8 In a similar spirit to Tapaswi et al. (2014b), we evaluate the number
of clusters we can reach when maintaining clustering accuracy/purity
at 1. Lower is better. 47

3.9 Impact of training on combined dataset of BBT-0101, BF-0502, and NH. 47
3.10 Comparison to state-of-the-art. Metric is clustering accuracy (%)

evaluated at frame-level. Please note that many previous works use
fewer tracks (# of frames) (also indicated in Table 2.1) making the task
relatively easier. We use an updated version of face tracks provided
by Bäuml et al. (2013). 49

xx List of Tables

3.11 Performance comparison of TSiam and SSiam with JFAC (Zhang
et al., 2016b) on ACCIO with 36 clusters. 50

3.12 Performance comparison of different methods on ACCIO with 40
clusters. 50

3.13 Clustering accuracy (%) performance comparison of TSiam, SSiam,
and VAE over all three dataset BBT-0101, BF-0502 and ACCIO . . . 51

4.1 Clustering accuracy of CCL and comparison to PRF (Yan et al., 2003b)
TSiam (Sharma et al., 2019a) and SSiam (Sharma et al., 2019a) at
track-level. Comparison against all evaluated models. 66

4.2 Clustering accuracy of CCL and comparison to TSiam (Sharma et al.,
2019a) and SSiam (Sharma et al., 2019a) at track-level, extending to
all named characters. BBT-0101 has 5 main and 6 named characters;
BF-0502 has 6 main and 12 named characters. 66

4.3 A study on the impact of clustering algorithm. FINCH partitions
are created for each dataset, and shown as separate table rows. In
each row, results are presented for FINCH (above) and MiniBatch
K-means (below). From left to right, Part. indicates the partition
level of FINCH. #C is the total number of clusters in that partition as
estimated by FINCH. Largest and smallest cluster sizes are indicated
as LC/SC. Clustering purity of FINCH/K-means clusters (before
CCL) is presented as ACC. L+/L- represents the number of samples
correctly and wrongly clustered for the given partition. Finally, CCL-
ACC is the performance of CCL: by training a model using weak
labels from FINCH/K-means estimated clusters. 67

4.4 Impact of mining positive and negative pairs from different sources.
Track-level accuracy of CCL. 68

4.5 Comparison to state-of-the-art with clustering accuracy (%) at frame
level on both videos: BBT-0101 and BF-0502. 70

4.6 Frame-level clustering accuracy (%) of CCL and comparison to TSiam (Sharma
et al., 2019a) and SSiam (Sharma et al., 2019a) over all datasets: BBT-
0101, BF-0502 and ACCIO. 70

4.7 Comparison of CCL with the state-of-the-art on ACCIO, evaluated at
36 and 40 clusters. Clustering accuracy at frame-level. 71

List of Tables xxi

5.1 The layer structure for a graph G = (V, E). Note that |V | is dynamic
and changes depending on the input episode. With several design choices,
we optimized efficiently this network architecture that generalized over all
datasets. 84

5.2 Comparison of WCP on each episode. The first row shows results when
clustering the VGG2 (Cao et al., 2018) face representations of the main
characters as they are contained in each dataset. The second row shows
the performance of our proposed FGG model, averaged over 5 runs. Note
that the standard deviation (std) is in units of permille (%�). The drop in
performance for BBT-0106 is caused by the nature of that episode: The
characters are at a Halloween party wearing costumes. 86

5.3 WCP when evaluating across different episodes of the same dataset and
a different dataset. We show values including and excluding the episode
seen during training. Furthermore, we differentiate between evaluating
each episode separately and then taking the mean (column separate), and
clustering all features jointly (column joint). The best intra- and inter-series
generalization is marked in bold. 88

5.4 Performance when evaluation on more and fewer characters than FGG is
trained on. A comparison the previous works is presented in Table 5.5. . 89

5.5 Generalization to additional characters. We use the best model trained
on the main cast as reported in Table 5.7. TSiam/SSiam and CCL are
described in Chapter 3 (Sharma et al., 2019a) and Chapter 4 (Sharma
et al., 2020) respectively. 89

5.6 WCP when training the FGG model with different features dis/enabled.
Mean and standard deviation are computed across 5 runs. See Sec-
tion 5.4.2 for an explanation of each experiment variation. † indicates
OUT_OF_MEMORY. 91

5.7 Comparison to state-of-the-art with clustering accuracy (%) at frame-level
on both videos: BBT-0101 and BF-0502. Our result is the mean over five
runs. 92

xxii List of Tables

5.8 Influence of similarity-based edges on the ACCIO dataset. FGG-0 does not
add any-similarity based edges. FGG-100* samples 100% of isolated nodes
before splitting. This results in OUT_OF_MEMORY, indicated by †.
FGG-100 computes similarity-based edges after splitting, and samples 100%
of the remaining isolated nodes. Performance degrades slightly because
connecting 3% of the nodes results in relatively more wrong edges compared
to BBT and BF. 92

5.9 Performance comparison on ACCIO with 36 clusters. Score is averaged
over 5 runs. We achieve an absolute improvement of 18.5% in B3 F-Score
over the previous state-of-the-art unsupervised learning method. 93

5.10 Performance comparison on ACCIO with 40 clusters. Score is averaged
over 5 runs. Our method outperforms previous unsupervised methods
significantly, with 19% absolute improvement in B3 F-Score. 94

5.11 Frame-level clustering accuracy (%) of FGG and comparison to CCL (Sharma
et al., 2020), TSiam (Sharma et al., 2019a) and SSiam (Sharma et al.,
2019a) over all datasets: BBT-0101, BF-0502 and ACCIO. 94

6.1 TCBP encodes several temporal segments without much additional
overhead. Parameters c, t, d denote the number of channels, temporal
segments, and the projected dimension. 107

6.2 Number of scenes in our dataset with 2-6 clips. 111
6.3 Temporal ordering performance with different t = 3 segment sampling

strategies and various modality combinations: A: Audio, P: Places, I:
Objects, R: Video, and S: Subtitles/Text. 112

6.4 Ordering accuracy for varying number of clips per scene in the valida-
tion split. 114

6.5 Validation split ordering accuracy by changing the number of temporal
segments used to represent video clips. 114

6.6 Ordering performance with CBP and TCBP. More temporal segments
increases the gap between the two methods. 115

6.7 Comparing TCBP with other popular encoding strategies. 115
6.8 Role of negative mining for temporal ordering. 116
6.9 Multimodal retrieval results. The query set consists of 2770 clips, and

the test consists of 4466 clips, from 2443 scenes. TCBP with negatives.116
6.10 Qualitative top-3 retrieval results for a given query. 117

List of Tables xxiii

6.11 C3D ConvNets. Comparison of accuracy (%) of TCBP with C3D Con-
vNet against state-of-the-art methods over all three splits of UCF101
and HMDB51. 118

6.12 Clustering accuracy computed at track-level on the training episodes,
with a comparison to all evaluated models. † indicates OUT_OF_MEMORY.120

6.13 Performance comparison of different methods when integrated with
TCBP on ACCIO with 36 clusters. † indicates OUT_OF_MEMORY.121

6.14 Performance comparison of different methods when integrated with
TCBP on ACCIO with 40 clusters. † indicates OUT_OF_MEMORY.122

Chapter 1

Introduction

1.1 Objective and motivation

In this thesis we propose several methods to fine-tune deep face features in a self-
supervised manner. Specifically, we address the problem of discriminative face
representation learning in TV series and movies for face recognition tasks. Face
representation learning has attracted quite some attention, due to the potential
applications in video understanding, video summarization, content-based indexing
& retrieval, video descriptions for visually impaired people, and more. We believe
the performance of discriminative learning is driven by two factors: the (base)
feature representation and the learning algorithm. It has been shown, a good
initialized feature representation is complementary to the learning algorithm. An
ideal representation has small distances between samples from the same class, and
large inter-class distances in feature space. While considerable progress has been
made using the current state-of-the-art learning algorithm - deep neural networks,
learning a good representation often requires a large-scale dataset with manually
curated ground-truth labels. On top of the challenges that make face recognition hard,
there are issues like facial expressions, pose variations, ageing, occlusion and more.
To harness the power of deep networks on smaller datasets and tasks, pre-trained
models (e.g. VGG-Face (Cao et al., 2018; Parkhi et al., 2015) trained on a large
number of face images) are often used as a feature extractors or fine-tuned for the
new task.

2 Introduction 1

Deep neural networks to learn powerful features for face recognition can be categorized
into two paradigms: a fully-supervised setting where ground-truth labels are often
provided by humans (Cao et al., 2018; Parkhi et al., 2015; Schroff et al., 2015;
Taigman et al., 2014), and a self-supervised learning paradigm where no ground-truth
labels are used for model training rather weak-information that come with the data
for free are used for learning a representation. (Bäuml et al., 2013; Zhang et al.,
2016a,b). This thesis falls in the pool of self-supervised learning setting where we
generate weak-labels or pseudo-labels by learning objectives properly so as to get
supervision from the data itself to learn discriminative face representations.

In the self-supervised learning paradigm for learning discriminative face representa-
tions in videos, previously several attempts have been made. They mostly utilized
pairwise constraints mined from face-tracks (Bäuml et al., 2013; Zhang et al., 2016a,b),
such as the must-link constraint that two faces from the same track belong to the
same person, and the cannot-link constraint that faces from tracks overlapping in
time belong to different persons. These constraints are then used as a pairwise guide
towards a suitable representation of each person in feature space using a loss function.

Fortunately, there is a vast amounts of video material on television and the Internet
that can be used by machines to learn an effective representation that exhibits a
small intra-person-distance, and large inter-person-distance in feature space. This
thesis develops self-supervised methods that can learn a strong face representation
from large-scale data be in the form of images or video. Specific contributions are
described Section 1.3.

1.2 Key challenges and tasks

There are many key challenges and tasks in dealing with the application of face
recognition, here we list a few.

1.2.1 Key challenges

Appearance variations. In video face clustering, grouping all faces of the same
person into a unique cluster is challenging, due to of several reasons, such as (a)
variations in facial expressions e.g. anger, disgust, fear, happiness, sadness or surprise;

1.2.2 Key Tasks 3

(b) pose variations around egocentric rotation angles i.e. pitch, roll and yaw, or
camera changing point of views’ (c) variations in image resolution; (d) Presence or
absence of structural components such as moustache, cap, and spectacles; (e) Partial
face occlusion by foreground and background objects; (f) Ageing of the human face;
and (g) Variations of illuminations, where low levels of lighting makes face detection
and recognition hard, and high levels of lighting makes face overexposed. All the
variations make the face clustering challenging.

Training data. For learning a good representation, training deep neural networks
often requires a large-scale dataset with manually curated ground-truth labels. An-
notation of video is expensive. For the approach to scale in the age of Netflix,
YouTube and Instagram, where hundreds of hours of video material are uploaded
to the internet per minute, it is vital that no manual annotation is required. The
approach should furthermore not expect the ground-truth labels and rather utilize
weak-information that come with the data for free for learning a good representation.
In this direction, self-supervised learning has shown to be promising and usable in a
general setting as collecting large-scale datasets is extremely expensive.

Speed and scalability. Nowadays, we have digital archives with huge collection of
datasets, searching and indexing to find a certain specific person, object, or place
is a common application. While retrieving specific instances through the video
archival of hours of data and millions of frames, we expect the results to be real-time.
Also, feature description is of paramount importance and needs careful design for
representing faces in billions of images, such that they have: (a) Low computational
overhead; (b) Extremely fast to compute; and (c) Scale to very large data and provide
discrimination.

1.2.2 Key Tasks

Actor identification. An interesting multimedia application is actor identification,
where the goal is to identify on-screen characters. While watching a movie or TV
series, not always we remember all characters names in movie video. The objective
is to identify on-screen character faces and label them with the corresponding names
in the cast list. Usually, this automatic naming assignment is employed without any
manual supervision and rather making use of textual cues, like cast lists, transcripts,

4 Introduction 1

subtitles and closed captions. Netflix already provide these features and services to
their customers.

Instances of person search. An important need in many conditions regarding
video collections (archive video search/reuse, personal video organization/search,
surveillance, law enforcement, protection of brand/logo use) is to locate more video
segments of a certain precise person, object, or place, given a visual example. This
is particularly useful on retrieving specific instances of persons in specific locations
given a query image. This can save hours of efforts to manually look through the
video archival.

Digital photo management. With the explosively increasing amount of personal
photos, due to the rapid popularization of digital cameras and smart phones - there is
a huge demand of digital photo management system for organizing photo collection.
Recently several companies like Facebook, Google, Apple provide API services that
provides a face-based album clustering and person search. The functionality of these
API is to accurately and efficiently cluster photograph collections based totally on
person identities, and group all faces of the same person into a small number of
clusters.

Another rather unexpected application of digital photo management is in portrait
collections, where the goal is to enable searching for portraits of famous identities.
Portrait collection is of great importance to our cultural heritage as the collec-
tion of portraits tell extraordinary stories of encounter, exploration, independence,
individuality and achievement of the famous identity.

1.3 Overview and Contributions

This thesis focuses on self-supervised face representation learning, wherein we pro-
pose methods to automatically generate weak-labels for training a neural network.
Specifically, we propose several self-supervised approaches to generate positive and
negative face pairs utilizing the temporal structure of the video and similarity-based
constraints to learn discriminative face representations. In this section, we list the
main contributions made in this thesis. First in Chapter 2, we give a brief introduc-
tion of neural networks training. Following in Chapter 3 we propose a method to
mine pseudo-labels by sorting distances on a subset of face images. In Chapter 4, we

1.3 Overview and Contributions 5

propose a way to generate weak labels from a clustering algorithm and show how
they can be used efficiently to improve video face clustering. In Chapter 5 we look at
graph neural networks for self-supervised face grouping on graphs, wherein we utilize
the video constraints: must-link/cannot-link constraints to generate weak-labels
for model training. Finally in Chapter 6 we propose Temporal Compact Bilinear
Pooling (TCBP) to encode face tracks in videos into a single descriptor, which we
then integrate with methods presented in Chapter 3 and Chapter 4 for learning a
more powerful representation. The research covered in this thesis has resulted in
several peer-reviewed publications. The contributions of each of these chapters are
briefly discussed next.

Chapter 2 briefly overviews background on the neural networks from basics building
blocks to hyper-parameter optimization via training using back-propagation algorithm.
We also discuss briefly the most popular convolutional neural networks for image
classification and face recognition tasks. The aim of this chapter is to provide the
reader an overview how a neural network is trained, and knowledge that is frequently
needed in this thesis.

Chapter 3 proposes two discriminative approaches to refine the face descriptors au-
tomatically: Track-supervised Siamese network (TSiam) and Self-supervised Siamese
network (SSiam). In Track-supervised Siamese Network (TSiam), we utilize video-
level constraints to generate a set of similar and dissimilar face pairs, and we further
additionally include negative training pairs for singleton (non co-occurring) tracks
by exploiting track-level distances. In Self-supervised Siamese Network (SSiam), we
obtain hard positive and negative pairs by sorting distances on a subset of frames
and not requiring video/track level constraints.

The content of this chapter is based on the following three publications:

• Vivek Sharma, M Saquib Sarfraz, and Rainer Stiefelhagen. “A simple and
effective technique for face clustering in tv series”. In IEEE Computer
Vision and Pattern Recognition (CVPR): Workshop on Brave New Motion
Representations, 2017.

• Vivek Sharma, Makarand Tapaswi, M Saquib Sarfraz, and Rainer Stiefelhagen.
“Self-supervised learning of face representations for video face clus-
tering”. In IEEE International Conference on Automatic Face and Gesture
Recognition (FG), 2019. Oral presentation, Best paper award.

6 Introduction 1

• Vivek Sharma, Makarand Tapaswi, M Saquib Sarfraz, and Rainer Stiefelhagen.
“Video face clustering with self-supervised representation learning”.
IEEE Transactions on Biometrics, Behavior, and Identity Science (TBIOM),
2019.

In Chapter 4 we propose Clustering-based Contrastive Learning (CCL), a new
clustering-based representation learning approach that uses labels obtained from
clustering along with inherent video constraints to learn discriminative face features.
Specifically, we show that we can train discriminative models using positive and
negative pairs obtained through clustering and video-level constraints that do not
rely on face tracking.

The content of this chapter is based on the following publication:

• Vivek Sharma, Makarand Tapaswi, M Saquib Sarfraz, and Rainer Stiefelhagen.
“Clustering based contrastive learning for improving face represen-
tations”. In IEEE International Conference on Automatic Face and Gesture
Recognition (FG), 2020.

In Chapter 5 we look at graph neural networks to learn face representations. We
propose Face Grouping on Graphs (FGG), an approach to self-supervised face group-
ing, where edges represent one of must-link/cannot-link constraints that emulates the
communication. Using a neural network that operates on the graph structure and
differentiates between the different edge types, the features can exchange information
and assimilate their position in feature space compared to other features belonging to
the same person. Additionally, we propose to work with partially pooled features as a
trade-off between robustness on track-level and conservation of variance information
on frame-level.

The content of this chapter is based on the following publication:

• Veith Röthlingshöfer*, Vivek Sharma*, and Rainer Stiefelhagen. “Self su-
pervised face-grouping on graphs”. In ACM International Conference on
Multimedia, 2019. Spotlight: oral presentation.

In Chapter 6 we propose Temporal Compact Bilinear Pooling (TCBP) an extension
of the Tensor Sketch projection algorithm (Pham and Pagh, 2013) to incorporate a
temporal dimension for representing face tracks in videos. We show that encoding

1.3 Overview and Contributions 7

face tracks into a single descriptor are powerful in representing faces in images and
videos.

The overall theme of this chapter is to learn multimodal clip representation that
jointly encodes images, audio, video, and text using TCBP for video ordering task.
Additionally, we show that TCBP features show exceptional transfer abilities to
applications such as video classification, video retrieval and face video face clustering.

The content of this chapter is based on the following publication:

• Vivek Sharma, Makarand Tapaswi, and Rainer Stiefelhagen. “Deep mul-
timodal feature encoding for video ordering”. In IEEE International
Conference on Computer Vision (ICCV): workshop on Large Scale Holistic
Video Understanding, 2019. Oral presentation.

Finally, Chapter 7 concludes the thesis with a summary of the contributions,
limitations and directions for future work.

Chapter 2

Background

In this chapter, we briefly overview the background information and theory related
to the works presented in the manuscript. We first introduce to neural networks.
We then explain the parameter estimators and learning: loss function, regularizer
and training of neural networks. Finally, we present the popular neural network
architectures, datasets and evaluation metrics used frequently in this thesis.

2.1 Neural Networks

Artificial neural network or neural network is the heart of the deep learning techniques.
Neural networks are loosely inspired by neuroscience - biological neurons, and are
designed to recognize patterns. The patterns they recognize are numerical, typically
vector-valued. The neural networks can recognize patterns from the real-world data
be it in the form of images, sound, text or time-series.

Given a training dataset with N samples D = {xi, ci}Ni=1, where x ∈ Rm, and ci is
the vector of target labels corresponding to the input sample xi. A neural network is
employed to learn a function f that maps an input xi to target-output ci. They are
called networks because the learned function can be composed of multiple functions,
connected in chain to form e.g. f(x) = f3(f2(f1(x))), where f1 is the first layer of the
network, f2 is the second layer and f3 is the output layer of the network. ci represents
the desired output of the f3 layer, while f1 and f2 are hidden layers and does not
represent the desired output. Each layer fk is parameterized by a learnable weight
vector wk, fk(x) = φ(wkx), where φ is the activation function. The layer can be

10 Background 2

Figure 2.1: Multilayer perceptron (MLP): an example neural network scheme with 3 layers.

viewed as a group of neurons, also called perceptrons where each neuron has inputs
and learnable weights for each input that maps the vector input to a scalar output,
also referred as Multilayer Perceptron (MLP). The activation function φ serves as a
non-linearity, currently used most popular activation function being Rectifying Linear
Unit (ReLU) (Glorot et al., 2011). They are used depending on the desired range of
the neuron’s output, although other functions are also investigated. Neural networks
can be seen as a universal approximator, meaning that if provided with enough
neurons in the hidden layer and a suitable activation function. The learning of the
neural network occurs through minimizing a loss function, i.e. the difference between
the predicted output and the target output of the neural network. Because of the
non-linearity of a neural network causes loss functions to become non-convex, neural
networks are optimized by using iterative gradient descent steps on batches randomly
sampled from the training set. The gradients of the loss function are computed using
the back-propagation algorithm (Rumelhart et al., 1985) and the chain rule, meaning
that we start from the last layers and backpropagate the estimated loss towards the
preceding layers of the neural network. All the samples are shown during the training
of the neural network in each epoch, and the process is repeated until convergence is
reached. After a local minima is attained, the trained neural network is deployed
for testing new samples that were not shown during the training phase. For a more
extensive review on neural networks, we refer the reader to Goodfellow et al. (2016).
Figure 2.1 illustrates an example neural network scheme with 3 layers.

Often, matrix notations is used to describe the operations in a neural network. The
weight of the layer fk is given as a weight matrix W ∈ Rn×m that transforms the

2.2 Learning: Parameter Estimators 11

input x ∈ Rn to y ∈ Rm following through the activation function φ. An additional
parameter, bias term (b) in the neural network is also added which is used to adjust
the output along with the weighted sum of the inputs to the neuron, b ∈ Rm.

y = φ(Wx + b) (2.1)

During training a neural network, we aim to learn a set of weights for the neurons
that minimizes the divergence between the predicted and target output using an
appropriate loss function. The loss functions are task specific and are user defined.

2.2 Learning: Parameter Estimators

Although in this thesis, we focus on self-supervision only. Here, we explain learning
for supervised setups aswell.

2.2.1 Loss Function

Regression loss. The aim of this loss is to predict a continuous value. Euclidean
loss or L2-loss is the most commonly used regression loss function. L2 loss is the
squared distance between the target output y and the network prediction ŷ. The L2
loss is given as:

L = ‖ŷ− y‖2
2 (2.2)

L1 loss computes absolute differences between the target output and the network
prediction. The loss is defined as:

L = ‖ŷ− y‖1 (2.3)

Other popular regression loss functions e.g. Huber loss (Huber, 1992).

Classification loss. The aim of this loss function is to predict categorical value.
The commonly used loss for classification is cross-entropy loss.

12 Background 2

The softmax function is given as:

Pq = exp(aq)∑C
r=1 exp(ar)

(2.4)

The cross entropy loss also known as softmax loss is defined as:

L = −
C∑
q=1

yq log(Pq) (2.5)

where a is the output of the last layer of neural network that is fed to a C-way
softmax function, y is the vector of target labels for input data x, and C is the
number of output classes.

Metric loss. The objective of this metric loss function is not to classify input
samples, but to learn distances that exhibits small distances between samples for
similar observations, and large distances for different ones. The commonly used
metric loss functions are contrastive loss and triplet loss.

Contrastive loss. The contrastive loss (Hadsell et al., 2006) encourages small
distances between samples from the same label, and far apart at least by the margin
for the samples of different labels in feature space. The contrastive loss is given as
follows:

L = 1
2
(
(1− y) · (dW)2 + y · (max(0,m− dW))2

)
(2.6)

where dW is the euclidean distance between the sample pair x1, x2 with y = 0 for a
positive pair and y = 1 when corresponding to a negative pair, and m is the margin.

Triplet loss. The triplet loss (Schroff et al., 2015) encourages the distances
between anchor and positive pair to be less than the distance between the anchor and
negative by atleast distance margin. Triplet loss comprises of a pull-term, pulling
data points from the same class closer, and a push-term, pushing data points from a
different class further away. The triplet loss is formulated as:

L = max(d(x1,x2)− d(x1,x3) +m, 0) (2.7)

where d is euclidean or cosine distance on the embedding space, m is the margin, and
x1, x2 and x3 are anchor, positive, negative respectively. x1, x2 and x3 are anchor,
positive of the same class as the anchor, negative of a different class respectively.

2.2.2 Regularizer 13

Other losses. There are several custom designed loss functions, specialized for
different tasks, such as for geometric problems (Kendall and Cipolla, 2017), instance
segmentation (Berman et al., 2018; Briggman et al.; De Brabandere et al.), dis-
criminative face representation learning (Chopra et al., 2005; Schroff et al., 2015;
Zhang et al., 2016a), image-caption retrieval (Vendrov et al., 2016) and many more
tasks. In Chapter 3 and Chapter 4, we propose loss functions for discriminative face
representation learning and in Chapter 6 we propose to utilize a loss function for
video representation learning.

2.2.2 Regularizer

A model that learns the train set too well and performs very poorly on the test set is
a sign of overfitting. In such a case, the neural network has a very high variance and
it cannot generalize well to the test data. Common ways to reduce overfitting are,
(a) getting more training data; (b) use regularization to control the model variance.
The commonly used regularization methods for neural networks are L2 regularization
and dropout.

L2 regularization is also known as ridge regression or Tikhonov regularization. In
L2 regularization, `2 norm penalty is added to the cost function that penalizes large
weights, and thus aim at limiting the model capacity.

Dropout randomly ignores nodes from a neural network during training to regularize
it. The nodes are “dropped-out” randomly. That means other available neurons
handle the representation required to make predictions. Thus, for each iteration,
unique internal representations are learned by the network. In this way, the network
becomes less sensitive to the specific weights of neurons, which in turn leads to better
generalization and also helps to overcome from over-fitting.

14 Background 2

2.2.3 Optimization

Once a neural network model, a loss function and a regularization is chosen, we can
optimize the neural network to find the network parameters θ∗ that minimizes the
cost function on the entire training set:

θ∗ = argmin
θ

∑
i

Li(fθ(xi),yi) (2.8)

The network parameters θ = (w,b), where (w,b) is the network weight and bias.
The loss function computes loss for a single training example, while the cost function
is average loss for the entire training set.

The most simple and naive way to optimize the neural network is to compute the
derivative of the loss function wrt. the entire training set and then backpropagate
the gradient through the preceding layers and update the network parameters. It is
naive because of two reasons,

(a) It only relies on the first order information (i.e. the gradient). This can be
addressed using different normalisation techniques.

(b) For computing the gradient it relies on the whole training set which is very
expensive and practically not possible to compute for a large-scale dataset. This
is usually addressed using a stochastic gradient descent (SGD) approximation.

Gradient Descent. The optimization is done using an iterative gradient descent
optimization algorithm that makes use of the gradients to find local minima of the
loss function i.e. iteratively moving in the direction of steepest descent. At each
iteration, the gradients on each weight are computed using the back-propagation
algorithm. Then, we update the parameters of the network, by taking a small step
in the direction as defined by the negative of the gradient:

θ(t+1) = θ(t) − η ∂L
∂θ(t) (2.9)

where η is the learning-rate and it determines the size of the step. η should be chosen
carefully: if a very low learning rate is used, this may lead to slow convergence, and
if a high learning rate is used, this may risk overshooting the lowest point and thus
the training may not converge at all. SGD was used extensively in the thesis.

2.2.3 Optimization 15

Figure 2.2: Landscape of popular optimizers. Figure taken from Ruder (2016)

Other popular optimizers are Adagrad, Adam, Adadelta, RMSProp (Duchi et al.,
2011; Kingma and Ba, 2015; Qian, 1999; Zeiler, 2012). For a more detailed review
on optimizer, we refer the reader to Ruder (2016). Figure 2.2 shows the convergence
behaviour of popular optimizers.

Back-Propagation. The back-propagation algorithm (Rumelhart et al., 1985) also
known as backprop, allows to compute the gradients. Back-propagation is the
method for computing the gradients of the loss function, while SGD is used to
perform learning this gradient. Back-propagation adjusts each weight in the neural
network in proportion to the loss function. Back-propagation is merely an application
of the chain rule to find the derivatives of loss function with respect to the network
parameters. The process of computing the gradients passing through preceding n

16 Background 2

layers with activations yi upto i-th layer for each weight wi from the loss function L
is known as back-propagation, given as:

∂L
∂wi

= ∂L
∂yn
· ∂yn
∂yn−1

. . .
∂yi−2

∂yi−1
· ∂yi−1

∂yi
· ∂yi
∂wi

(2.10)

In the next section, we discuss the convolutional neural networks, and the commonly
used neural network architectures for image classification and face recognition.

2.2.4 Convolutional Neural Network (CNN)

Convolutional neural networks (LeCun et al., 1989) are simply an extension of
multilayer perceptrons. Convolutional neural networks are also known as ConvNets.
The basic difference between MLPs to ConvNets is that the linear layers are replaced
by convolutional layers. ConvNets are easier to train and have shown to generalize
better than feedforward networks or MLPs for vision tasks.

A Convolutional Neural Network (CNN) is composed of a stack of convolutional filter
banks, each followed by the activation layer or non-linearity layer, and the pooling
function or feature pooling layer. Each convolution layer takes an input feature
map and outputs a new feature map through a set of weights called filter banks. In
the convolution layer, the weights are shared that reduces the number of trainable
parameters, and also since the feature map share the filter bank this benefits the
convolution layers to be translation equivariant, meaning if the input changes, the
output changes in the same way. Following the convolution layer, similar to MLPs
we use non-linearity layer, most popular being ReLU (Glorot et al., 2011), other
popular activations functions are Sigmoid, Tanh, Exponential Linear Unit (ELU),
Scaled Exponential Linear Unit (SELU) and Swish (Clevert et al., 2016; He et al.,
2015; Klambauer et al., 2017; Maas et al., 2013; Ramachandran et al., 2017)

Furthermore, pooling layers are used to introduce invariances in the network. Further,
the other important benefit of pooling layers, is that they usually also downsample
the feature maps to reduce dimensionality. Pooling layers are used together with
convolution layers, the commonly use pooling functions are max pooling and average
pooling.

The output of a ConvNet is usually fed as an input to MLPs or a linear classifier.

2.2.4 Convolutional Neural Network (CNN) 17

(a) LeNet-5 (LeCun et al., 1989) (b) AlexNet (Krizhevsky et al., 2012)

(c) GoogLeNet (Szegedy et al., 2015)

(d) VGG-19 (Simonyan and Zisserman, 2014b)

(e) ResNet-34 (He et al., 2016)

(f) DenseNet (Huang et al., 2017)
Figure 2.3: Common neural network architectures.

Now we briefly overview the commonly used neural network architectures for image
classification and face recognition tasks.

Common Neural Network Architectures. Image classification is commonly
used for investigating efficiency/quality trade-offs of ConvNets in computer vision
community. Below we discuss the most popular networks.

LeNet. LeNet (LeCun et al., 1989) was the first convolutional neural network
for classification of hand-written digits. LeNet is a 7-level convolutional network, it

18 Background 2

consists of two convolutional layers with sigmoid non-linearity activation functions,
two pooling layers and a fully connected layer, see Figure 2.3a.

AlexNet. AlexNet (Krizhevsky et al., 2012) won the ILSVRC 2010 competition
on the large-scale ImageNet dataset (Russakovsky et al., 2015) by reducing the top-5
error from 26% to 15.3%. AlexNet is composed of 5 convolutional layers followed by
3 fully connected layers, see Figure 2.3b. AlexNet is very similar to LeNet but was
stacked with more layers to obtain a deeper network and also with more filters per
layer. They replaced the sigmoid with ReLU activations.

GoogLeNet. GoogLeNet (Szegedy et al., 2015) won the ILSVRC 2014 competition
by reducing the top-5 error to 6.67%. In GoogLeNet, the authors proposed the
inception module. The inception module performs convolution on an input with
several very small convolutions (1x1, 3x3, 5x5) in order to drastically reduce the
number of parameters. GoogLeNet is composed of 22 layers, see Figure 2.3c. Further,
in GoogLeNet the authors propose for the first time a structured approach of stacking
uniform modules.

VGG. VGG (Simonyan and Zisserman, 2014b) consists of 16 to 19 convolutional
layers, and is similar to AlexNet. In difference to AlexNet, the author use only 3x3
convolutions uniformly throughout the architecture, see Figure 2.3d.

ResNet. ResNet (He et al., 2016) won the ILSVRC 2015 competition by achieving
a top-5 error rate of 3.57% which beats human-level performance. In ResNet, the
authors introduced a novel architecture with skip connections or residual connec-
tions. Skip connections are also known as gated recurrent units and share a lot of
relevance from Recurrent Neural Networks (RNNs), see Figure 2.3e. ResNet has
lower complexity than VGG architectures.

DenseNet. DenseNet (Huang et al., 2017) is a variant of ResNet. In DenseNet,
there is a dense connectivity that directly connects the output of any layer to all
subsequent layers within a module. This encourages feature re-use and and makes
the network simpler and highly parameter efficient, see Figure 2.3f.

Face Recognition Networks. Another important application, where ConvNets
have been very well deployed is for face recognition, where the general task is to
identify faces present in images and videos.

2.2.4 Convolutional Neural Network (CNN) 19

(a) FaceNet (Schroff et al., 2015)

(b) DeepFace (Taigman et al., 2014)

(c) VGGFace (Parkhi et al., 2015). Image source: Google search.

Figure 2.4: Common face recognition neural network architectures.

FaceNet. FaceNet (Schroff et al., 2015) is a convolutional neural network for
tasks such as face recognition, verification and clustering. FaceNet directly learns a
mapping from face images to a compact Euclidean space. To train the network, the
authors use triplet loss with anchor, positive and negative examples, see Figure 2.4a.

DeepFace. DeepFace (Taigman et al., 2014) is also a deep neural network for
the task of face recognition. It employs a nine-layer neural net. DeepFace is trained
using a dataset of 4 million facial images belonging to around four thousand people.
The model is trained using cross-entropy loss. The conventional pipeline of DeepFace
consists of four stages: detect, align, represent, and classify to achieve the face
recognition, see Figure 2.4b.

VGGFace. VGGFace (Parkhi et al., 2015) is based on the VGG CNN architecture
and VGGFace2 (Cao et al., 2018) is based on the ResNet CNN architecture. Both face

20 Background 2

recognition models are trained on a large scale face dataset: with 2.6 million images of
∼2,600 subjects (VGGFace), and 3.31 million images of 9,131 subjects (VGGFace2).
To train the network, the authors use cross-entropy loss, see Figure 2.4c. The models
are freely available to the research community, unlike FaceNet and DeepFace which
are not available publicly. In this thesis, we use VGGFace and VGGFace2 as the
base model to extract face features.

Next we discuss the datasets and evaluation metrics used in this thesis.

2.3 Datasets

We provide a short description and notation of datasets repeatedly in this thesis.
When referring to a specific episode, we stick to the scheme “[dataset]-[season][episode]”.

We conduct experiments on three challenging face clustering datasets, namely The
Big Bang Theory (BBT) (Wu et al., 2013a; Zhang et al., 2016a), Buffy - The Vampire
Slayer (BF) (Zhang et al., 2016b), and Harry Potter 1 (ACCIO) (Ghaleb et al.,
2015).

We follow the protocol used in several recent video face clustering works (Cinbis
et al., 2011; Wu et al., 2013b; Zhang et al., 2016a,b) that focus on improving feature
representations for video-face clustering. First, they assume the number of main
characters/clusters is known. Second, as the labels are obtained automatically, we
learn episode specific embeddings. We also use the same number of characters as
previous methods (Zhang et al., 2016a,b), however, it is important to note that we
do not discard tracks/faces that are small or have large pose variation. We use the
face tracks released by Bäuml et al. (2013) that incorporate several detectors to
encompass all pan angles and in-plane rotations up to 45 degrees. Tracks are created
via an online tracking-by-detection scheme with a particle filter.

Below we present key information about the datasets. In particular, note that
previous works use much smaller datasets. Additionally, it is important to note that
different characters have wide variations in the number of tracks, indicated by the
cluster skew between largest class (LC) to smallest class (SC).

2.3.1 The Big Bang Theory 21

Figure 2.5: Example images for a few characters from our dataset. We show one easy
sample and one difficult sample. The extreme variation in illumination, pose, resolution,
and attributes (spectacles) make the datasets challenging.

2.3.1 The Big Bang Theory

The first dataset we evaluate is The Big Bang Theory (BBT) (Bäuml et al., 2013;
Zhang et al., 2016a), containing face-tracks from the first six episodes of the first
season. Traditionally, publications evaluating on BBT use the very first episode
for reporting their performance. Since most scenes in BBT are set indoors with
studio-lighting, the face-tracks are generally cleaner than in other datasets. There
are five main characters, namely Sheldon, Leonard, Penny, Raj and Howard. Kurt is
a sixth named character who does not count as a main character. We use the main
characters for evaluation unless stated otherwise and discard all face-tracks of unknown
characters, face-tracks labeled as false-positives and face-tracks containing track-
switches (i.e. the track jumps from one character to another without interruption).
Other works (Cinbis et al., 2011; Wu et al., 2013b; Xiao et al., 2014; Zhang et al.,
2016a) use fewer tracks; many profile tracks were removed. Table 2.1 shows statistics
from BBT and exemplary faces can be found in Figure 2.5.

2.3.2 Buffy - The Vampire Slayer

Buffy - The Vampire Slayer (BF) is a TV series about vampires, and thus naturally
contains many shots in the dark as well as action shots including motion blur or
obstructed faces. The dataset (Bäuml et al., 2013; Zhang et al., 2016b) contains
the first six episodes of the fifth season. The episode used for evaluation in other
works is the second episode, i.e. BF-0502. There are a total of six main characters:
Xander, Buffy, Dawn, Anya, Willow and Giles. Another twelve named characters
exist. Similar to BBT, we use all tracks of the main characters and discard all other

22 Background 2

Table 2.1: Statistics for each episode of The Big Bang Theory (Bäuml et al., 2013; Tapaswi
et al., 2012; Wu et al., 2013a; Zhang et al., 2016a) (5 main characters), Buffy (Bäuml et al.,
2013; Zhang et al., 2016b) (6 main characters) and ACCIO (Ghaleb et al., 2015) (35 main
characters). #TR and #FR is the number of face-tracks and total faces. #Overlaps is the
number of tracks that overlap in time. LC/SC indicates the largest and smallest ground
truth cluster with non-main characters removed. (Cinbis et al., 2011; Wu et al., 2013a,b;
Xiao et al., 2014; Zhang et al., 2016a) use fewer tracks (last column).

This work Previous work
Dataset #TR (#FR) LC/SC (%) #Overlaps #TR (#FR)

BBT-0101 644 (41220) 39.3 / 4.0 313 182 (11525)
BBT-0102 613 (32513) 35.1 / 8.6 302 —
BBT-0103 530 (30626) 44.0 / 7.7 145 —
BBT-0104 449 (27856) 42.1 / 8.5 160 —
BBT-0105 404 (26418) 34.4 / 5.7 154 —
BBT-0106 623 (40713) 31.3 / 13.6 443 —

BF-0501 552 (37758) 42.6 / 5.1 132 —
BF-0502 568 (39263) 34.0 / 5.9 173 229 (17337)
BF-0503 806 (40546) 30.9 / 1.9 211 —
BF-0504 288 (24429) 57.4 / 3.6 44 —
BF-0505 543 (34918) 53.7 / 4.1 91 —
BF-0506 535 (29340) 31.2 / 8.6 232 —

ACCIO 3243 (166885) 30.7 / 0.06 1799 3243 (166885)

tracks in the dataset. Again, previous works (Cinbis et al., 2011; Wu et al., 2013b;
Xiao et al., 2014; Zhang et al., 2016a) have evaluated on a smaller subset of the
dataset containing less face-tracks of the main characters. In Table 2.1 statistics
from each episode of BF are shown. Figure 2.5 provides examples.

2.3.3 Harry Potter 1

The final dataset on which we evaluate is the first movie from the “Harry Potter”
movie series (Ghaleb et al., 2015). Harry Potter 1 (ACCIO) contains a large number
of dark scenes and several tracks with non-frontal faces. In the course of the movie
the characters appear in many diverse lighting conditions, many of which are in
dark, windowless rooms or lit by fire. In contrast to the other two datasets, ACCIO
contains many more main characters, namely 35. Many of them never appear on

2.3.3 Harry Potter 1 23

Figure 2.6: Co-occurrences resulting in temporal cannot-link edges on ACCIO. Brighter
cells appear together more often. Table is log-scale. The regularly scaled table only has
very few distinguishable cells between Harry, Ron and Hermione.

screen simultaneously as can be seen in the co-occurrence matrix in Figure 2.6. This
implies that there is no cannot-link edge between these characters.

The difference in percentage of face-tracks belonging to the most frequently occurring
character (Harry Potter) and the least frequently occurring character is two orders
of magnitude greater compared to BBT and BF as shown in Table 2.1. Exemplary
faces are shown in Figure 2.5.

Further, note that, in accordance with previous literature (Zhang et al., 2016b), for
evaluation of ACCIO throughout the thesis, we use 36 and 40 clusters for the 35
main characters.

24 Background 2

2.4 Metrics

Clustering Accuracy. The metric with which we evaluate our performance on BBT
and BF is Weighted Clustering Purity (WCP) (Tapaswi et al., 2014b), also known
as Clustering Accuracy (ACC) (Zhang et al., 2016b). It is computed by assigning
the most common ground truth label within a cluster to all elements in that cluster:
As we compare methods that generate equal numbers of clusters (number of main
cast), ACC is a fair metric for comparison.

ACC = 1
N

|C|∑
c=1

nc · pc , (2.11)

where N is the total number of tracks in the video, nc is the number of samples in
the cluster c, and cluster purity pc is measured as the fraction of the largest number
of samples from the same label to nc. |C| corresponds to the number of main cast
members, and in our case also the number of clusters.

Additionally, we also report the clustering accuracy for ACCIO.

B3 measures. The metric with which we evaluate our performance on ACCIO is
BCubed (B3) Precision (P), Recall (R) and F-measure (F) (Amigó et al., 2009;
Bagga and Baldwin, 1998; Moreno and Dias, 2015). We used BCubed metrics in
order to have a fair comparison with previous work Zhang et al. (2016b). BCubed
metrics (Amigó et al., 2009) is the best suited technique for evaluating clustering
performance with imbalanced class distribution. This is because B3 metrics estimate
precision and recall for each element of the cluster in comparison to the clustering
purity, where the most common ground truth label is assigned to all elements within
the cluster for computing purity. For each element e, we can define the correctness
of the relation from that element to another element e′ (Amigó et al., 2009):

correctness(e, e′) = 1[L(e) = L(e′)⇔ C(e) = C(e′)] (2.12)

2.4 Metrics 25

Figure 2.7: Computation of B3 precision and recall (Amigó et al., 2009) for one element of
the datasets. The value for the full dataset is the average over all elements.

Here 1 is the indicator function, L is the ground-truth label of the element, and C is
the cluster to which the element is assigned. B3 precision and recall over the full
dataset are then defined as

B3Precision = Avg
e

[Avg
e′

C(e)=C(e′)

[Correctness(e, e′)]] (2.13)

B3Recall = Avg
e

[Avg
e′

L(e)=L(e′)

[Correctness(e, e′)]] (2.14)

The B3 F-Score is the harmonic mean of these values. Figure 2.7 shows how to
compute recall and precision for one element. The B3 score has several advantages
over WCP discussed in Amigó et al. (2009). We follow the example of previous
work (Zhang et al., 2016b) and evaluate with 36 and 40 clusters on the ACCIO
dataset.

For all experiments, unless stated otherwise, clustering evaluation is performed at
track-level i.e. mean-pool of frames.

Chapter 3

Ranking-based Pair Generation

Characters are a key component of understanding the story conveyed in TV series
and movies. With the rise of advanced deep face models, identifying face images
may seem like a solved problem. However, as face detectors get better, clustering
and identification need to be revisited to address the increasing diversity in facial
appearance. In this chapter, we propose unsupervised methods for feature refinement
with application to video face clustering. Our emphasis is on distilling the essential
information, identity, from the representations obtained using deep pre-trained face
networks. We propose a self-supervised Siamese network that can be trained without
the need for video/track based supervision, that can also be applied to image collec-
tions. We evaluate our methods on three video face clustering datasets. Thorough
experiments including generalization studies show that our methods outperform
current state-of-the-art methods on all datasets. The datasets and code are available
at https://github.com/vivoutlaw/SSIAM .

The content of this chapter is based on the following three publications:

• Vivek Sharma, M Saquib Sarfraz, and Rainer Stiefelhagen. “A simple and
effective technique for face clustering in tv series”. In IEEE Computer
Vision and Pattern Recognition (CVPR): Workshop on Brave New Motion
Representations, 2017.

• Vivek Sharma, Makarand Tapaswi, M Saquib Sarfraz, and Rainer Stiefelhagen.
“Self-supervised learning of face representations for video face clus-

https://github.com/vivoutlaw/SSIAM

28 Ranking-based Pair Generation 3

tering”. In IEEE International Conference on Automatic Face and Gesture
Recognition (FG), 2019. Oral presentation, Best paper award.

• Vivek Sharma, Makarand Tapaswi, M Saquib Sarfraz, and Rainer Stiefelhagen.
“Video face clustering with self-supervised representation learning”.
IEEE Transactions on Biometrics, Behavior, and Identity Science (TBIOM),
2019.

3.1 Introduction

Long videos such as TV series episodes or movies are often pre-processed via shot and
scene change detection to make the video more accessible. In recent years, person
clustering and identification are gaining importance as several emerging research
areas (Rohrbach et al., 2017b; Tapaswi et al., 2016; Vicol et al., 2018; Zhou et al.,
2018) can benefit from it. For example, in video question-answering (Tapaswi et al.,
2016), most questions center around the characters asking who they are, what they do,
and even why they act in certain ways. The related task of video captioning (Rohrbach
et al., 2017b) often uses a character agnostic way (replacing names by someone)
making the captions very artificial and uninformative (e.g. someone opens the door).
However, recent work (Rohrbach et al., 2017a) suggests that more meaningful captions
can be achieved from an improved understanding of characters. In general, the ability
to predict which character appears where and when facilitates a deeper understanding
of videos that is grounded in the storyline.

Motivated by this goal, person clustering (Cinbis et al., 2011; Guillaumin et al., 2009;
Jin et al., 2017; Tapaswi et al., 2019; Zhang et al., 2016b) and identification (Bäuml
et al., 2013; Everingham et al., 2006; Nagrani and Zisserman, 2017; Ramanathan
et al., 2014; Sivic et al., 2009) in videos has seen over a decade of research. In
particular, fully automatic person identification is achieved in a weakly supervised
manner either by aligning subtitles and transcripts (Bäuml et al., 2013; Everingham
et al., 2006; Sivic et al., 2009), or using web images for actors and characters (Aljundi
et al., 2016; Nagrani and Zisserman, 2017). On the other hand, clustering (Cinbis
et al., 2011; Datta et al., 2018; Wu et al., 2013a,b; Zhang et al., 2016a,b) has mainly
relied on must-link and cannot-link information obtained by tracking faces in a shot
and analyzing their co-occurrence.

3.1 Introduction 29

As face detectors improve (e.g. Hu and Ramanan (2017)), clustering and identification
need to be revisited as more faces that exhibit extreme viewpoints, illumination, and
resolution become available and need to be grouped or identified. Deep Convolu-
tional Neural Networks (CNNs) have also yielded large performance gains for face
representations (Cao et al., 2018; Parkhi et al., 2015; Schroff et al., 2015; Taigman
et al., 2014). These networks are typically trained using hundreds-of-thousands
to millions of face images gathered from the web, and show super-human perfor-
mance on face verification tasks on images (LFW (Huang et al., 2008)) and videos
(YouTubeFaces (Wolf et al., 2011)). Nevertheless, it is important to note that faces
in videos such as TV series/movies exhibit more variety in comparison to e.g. LFW,
where the images are obtained from Yahoo News by cropping mostly frontal faces.
While these deep models generalize well, they are difficult to train from scratch
(require lots of training data), and are typically transferred to other datasets via net
surgery: fine-tuning (Sharma et al., 2018; Zhang et al., 2016a,b), or use of additional
embeddings on the features from the last layer (Diba et al., 2017; Sarfraz et al., 2018;
Tapaswi et al., 2019), or both.

Video face clustering also has potential applications in understanding other user-
generated videos (e.g. content on YouTube) – mainly towards automatic summa-
rization and content-based retrieval. For a method to work with such videos, it is
especially important that the method be completely unsupervised (or self-supervised),
as any required manual annotation will not scale with the exponential growth in the
amount of video uploaded daily.

Representations. Clustering inherently builds on the notion of representations.
We acknowledge the critical role of good features, and in this chapter, we address
the problem of effectively learning representations to improve video face clustering.
A good feature representation should exhibit small intra-person distances (positive
pair of faces from the same person should be close) and large inter-person-distance
(negative pair of faces from different people should be far). Recent works show
that CNN representations can be improved via positive and negative pairs that are
discovered through a Markov Random Field (MRF) (Zhang et al., 2016b); or a revised
triplet-loss (Zhang et al., 2016a). In contrast, we propose methods that do not require
complex optimization functions or supervision to improve the feature representation.
We emphasize that while video-level constraints are not new, they need to be used
properly to extract the most out of them. This is especially true in light of CNN face

30 Ranking-based Pair Generation 3

representations that are very similar even across different identities. For example,
Figure 3.5 shows a large overlap between the cosine similarity score distributions
of positive (same identity) and negative (different identities) face pairs using base
features. More importantly, the absolute values of similarity scores between different
identities are surprisingly high and all above 0.93.

Contributions. Given a set of face images or tracks from several characters, our
goal is to group them such that face images in a cluster belong to the same character.
We propose and evaluate several simple ideas: discriminative and generative (see
Section 3.3), that aim to further improve deep network representations. Note that
all methods proposed in this chapter are either fully unsupervised, or use supervision
that is obtained automatically, hence can be thought as unsupervised.

We propose two variants of discriminative approaches, and highlight the key differ-
ences below. In Track-supervised Siamese Network (TSiam), we include additional
negative training pairs for singleton tracks – tracks that are not temporally co-
occurring with any others in contrast to previous methods e.g. Cinbis et al. (2011).
In our second approach, Self-supervised Siamese Network (SSiam), we obtain hard
positive and negative pairs by sorting distances (i.e. ranking) on a subset of frames.
Thus, SSiam can mine positive and negative pairs without the need for tracking,
additionally enabling application of our method to image collections.

We compare our proposed methods against alternatives from generative model-
ing (auto-encoders) as strong baselines. In particular, Variational Autoencoder
(VAE) (Kingma and Welling, 2014) can effectively model the distribution of face
representations and achieve good generalization performance when working with the
same set of characters. We perform extensive empirical studies and demonstrate
the effectiveness and generalization of all methods. Our methods are powerful, yet
simple, and obtain performance comparable or higher than state-of-the-art when
evaluated on three challenging video face clustering datasets.

Further the chapter provides several key insights: (1) We discuss the use of generative
models, in particular, Variational Autoencoders, as a strong baseline that can learn
the latent identity information by modeling the underlying distribution of face
representations. (2) We include an in depth empirical analysis and comparison of
TSiam, SSiam, and VAE with comparison of generalization performance across videos

3.2 Related Work 31

with same or different characters. (3) Finally, we include qualitative results to shed
light on what the models may have learned as key identity information.

The remainder of this chapter is structured as follows: Section 3.2 provides an
overview of related work. In Section 3.3, we propose TSiam, SSiam, and present a
strong generative model as a baseline (VAE) to further refine deep features. Extensive
experiments, an ablation study, comparison to the state-of-the-art, and qualitative
results are presented in Section 3.4. We summarize key messages in a discussion
(Section 3.5) and finally conclude in Section 3.6.

3.2 Related Work

Over the last decade, several advances have been made in video face clustering
through discriminative models that aim to improve representations. In this section,
we will review related work in this area, but also discuss some work on generative
modeling (specifically VAEs) that may be used to improve face representations.

Generative face models. Along with MNIST handwritten digits (LeCun et al.,
1998), faces are a common test bed for many generative models as they are a
specific domain of images that can be modeled relatively well. Examples include
Robust Boltzmann machines (Tang et al., 2012), and recent advances in Generative
Adversarial Networks (GANs) that are able to generate stunning high resolution
faces (Karras et al., 2018).

Variational Autoencoders (VAEs) have also seen growing use in face analysis, espe-
cially in generating new face images (Hou et al., 2017; Siddharth et al., 2017; Yan
et al., 2016). In particular, (Yan et al., 2016) produces face images with desired
attributes, while (Lindbo Larsen et al., 2015) combines VAEs and GANs towards the
same goal. (Hou et al., 2017) replaces the pixel-level reconstruction loss by comparing
similarity between deep representations. Recently, VAEs have been used to predict
facial action coding (Tran et al., 2017) and model user reactions to movies (Deng
et al., 2017).

There are some examples of VAEs adopted for clustering, however, video face datasets
so far have not yet been considered. Stacked Autoencoders are used to simultaneously
learn the representation and clustering (Xie et al., 2016), and Gaussian Mixture

32 Ranking-based Pair Generation 3

Models are combined with VAEs for clustering (Dilokthanakul et al., 2016). Perhaps
closest to our work, VAEs are used in conjunction with the triplet loss (Ishfaq et al.,
2018) in a supervised way to learn good representations (but not evaluated on faces).
We propose to use VAEs as a strong baseline and a different approach of learning
feature representations as compared to standard discriminative approaches. To the
best of our knowledge, we are the first to use VAEs in an unsupervised way to model
and improve deep face representations, resulting in improved clustering performance.

Video face clustering. Clustering faces in videos commonly uses pairwise con-
straints obtained by analyzing tracks and some form of representation/metric learning.
Different approaches can generally be categorized by the source of constraints.

One of the most commonly adopted source is the temporal information provided
by face tracks. Face image pairs belonging to the same track are labeled positive
(same character), while face images from co-occurring tracks help create negatives
(different characters). This strategy has been exploited by learning a metric to obtain
cast-specific distances (Cinbis et al., 2011) (ULDML); iteratively clustering and
associating short sequences based on hidden Markov Random Field (HMRF) (Wu
et al., 2013a,b); or performing clustering in a sub-space obtained by a weighted
block-sparse low-rank representation (WBSLRR) (Xiao et al., 2014). In addition to
pairwise constraints, video editing cues are used in an unsupervised way to merge
tracks (Tapaswi et al., 2014b). Here, track and cluster representations are learned on-
the-fly with dense-SIFT Fisher vectors (Parkhi et al., 2014). Recently, the problem of
face detection and clustering is considered jointly (Jin et al., 2017), and a link-based
clustering (Erdös-Rényi) based on rank-1 counts verification is adopted. The linking
is done by comparing a given frame with a reference frame and learning a threshold
to merge/not-merge frames.

Face track clustering/identification methods have also used additional cues such
as clothing appearance (Tapaswi et al., 2012), speech (Paul et al., 2014), voice
models (Nagrani and Zisserman, 2017), context (Zhang et al., 2013), gender (Zhou
et al., 2015), name mentions (first, second, and third person references) in subti-
tles (Haurilet et al., 2016), multispectral information (Sharma and Van Gool, 2016;
Sharma et al., 2016), pose information (Sarfraz and Hellwich, 2008a,b, 2010), weak
labels using transcripts/subtitles (Bäuml et al., 2013; Everingham et al., 2006), and
joint action and actor labeling (Miech et al., 2017a) using transcripts.

3.2 Related Work 33

With the popularity of CNNs, there is a growing focus on improving face represen-
tations using video-level constraints. An improved form of triplet loss is used to
fine-tune the network and push the positive and negative samples apart in addition to
requiring anchor and positive to be close, and anchor and negative far (Zhang et al.,
2016a). Zhang et al. (2016b) learn better representations by dynamic clustering
constraints that are discovered iteratively during clustering that is performed via
a Markov Random Field (MRF). Roethlingshoefer et al. (2019) use graph neural
network to learn representation of face-tracks. In contrast to related work, we propose
a simple, yet effective approach (SSiam) to learn good representations by sorting
distances on a subset of frames and not requiring video/track level constraints to
generate positive/negative training pairs.

Another point of comparison lies in Zhang et al. (2016a,b) and Datta et al. (2018)
who only use video-level constraints to generate a set of similar and dissimilar face
pairs. Thus, the model does not see negative pairs for singleton (non co-occurring)
tracks. In contrast, our method TSiam incorporates negative pairs for the singleton
tracks by exploiting track-level distances.

Recently, advances in clustering approaches themselves have contributed to better
performance. Sarfraz et al. (2019) propose a new clustering algorithm (FINCH)
based on first neighbor relations. However, FINCH is not trainable in contrast to our
method, and would only benefit further from improved feature representations. In He
et al. (2018), the authors use inverse reinforcement learning on a ground-truth dataset
to find a reward function for deciding whether to merge a given pair of facial features.
Contrary to these methods, we expect neither the existence of ground-truth data,
nor a measure of face quality. Parallel to this work, Tapaswi et al. (2019) propose
to learn an embedding space that creates a fixed-radius ball for each character thus
allowing to estimate the number of clusters. However, their work requires supervised
labels during training, while our models learn the embedding in a self-supervised
setting.

Finally, there are related works that “harvest” training data from unlabeled sources
which is in the similar spirit of SSiam and TSiam. Fernando et al. (2017) and
Misra et al. (2016) shuffle the video frames and treat them as positive or negative
training data for reordering video frames; Wang and Gupta (2015) collect positive
and negative training data by tracking bounding boxes (i.e. motion information) in

34 Ranking-based Pair Generation 3

Face track with !
frames

CNN Feature Maps

Contrastive
Loss

" = 0

Pos. Pair Neg. Pair

0/1

MLP

same

2&

'(

')'*
" = 1

Figure 3.1: Track-supervised Siamese network (TSiam). Illustration of the Siamese archi-
tecture used in our track-supervised Siamese networks. Note that the MLP is shared across
both feature maps. 2K corresponds to batch size.

order to learn effective visual representations. In contrast, we propose new techniques
to generate labels and utilize them efficiently to improve video face clustering.

3.3 Refining Face Representations for Clustering

Our goal is to improve face representations using simple methods that build upon
the success of deep CNNs. More precisely, we propose models to refine the face
descriptors automatically, without the need for manually curated labels. Note that
we do not fine-tune the base CNN, and only learn a few linear layers above it. Our
approach has three key benefits: (i) it is easily applicable to new videos (does not
require labels); (ii) it does not need large amounts of training data (few hundred
tracks are enough); and (iii) specialized networks can be trained to specialize on each
episode or film.

We start this section by first introducing the notation used throughout the remainder
of the chapter. We then propose the discriminative models: (1) Track-supervised
Siamese Network (TSiam), and (2) Self-supervised Siamese Network (SSiam) (Sec-
tion 3.3.1). Finally, we present how Variational Autoencoders (VAE) can be used
to improve representation learning and act as a strong generative model baseline
(Section 3.3.2).

Preliminaries. Consider a video with N face tracks {T 1, . . . , TN} belonging to
C characters. Each track corresponds to one of the characters, and consists of

3.3 Refining Face Representations for Clustering 35

CNN Feature Maps

Contrastive
Loss

0/1

MLP

same

2𝐾

𝑥$

𝑥%𝑥&

𝑦 = 0

Pos. Pair Neg. Pair

𝑦 = 1

Image
Collection

Distance Matrix
Based +/- Pair

Generation

Figure 3.2: Self-supervised Siamese network (SSiam). Illustration of the Siamese archi-
tecture used in our self-supervised Siamese networks. SSiam selects hard pairs: farthest
positives and closest negatives using a ranked list based on Euclidean distance for learning
similarity and dissimilarity respectively. Note that the MLP is the same across both feature
maps. 2K corresponds to batch.

T i = {f1, . . . , fM i} face images. Our goal is to group tracks into sets {G1, . . . , G|C|}
such that each track is assigned to only one group, and ideally, each group contains
all tracks from the same character. We use a deep CNN (VGG2 (Cao et al., 2018))
and extract a descriptor for each face image xik ∈ RD, k = 1, . . . ,M i from the
penultimate layer (before classification) of the network. We refer to these as base
features, and demonstrate that they already achieve a high performance. As a form
of data augmentation, we use 10 crops obtained from an expanded bounding box
surrounding the face image during training. Evaluation is based on one center crop.

Track-level representations are obtained by aggregating the face image descriptors

ti = 1
M i

∑
k

xik . (3.1)

We additionally normalize track representations to be unit-norm, t̂i = ti/‖ti‖2 before
using them for clustering.

Hierarchical Agglomerative Clustering (HAC) has been the clustering method adopted
by several previous works (Tapaswi et al., 2014b; Zhang et al., 2016a,b). For a fair
comparison, we also use HAC to obtain a fixed number of clusters equal to the number
of characters (known a priori). We use the minimum variance ward linkage (Ward Jr.,
1963) for all methods which is nowadays commonly used for HAC. See Figure 3.4 for
an illustration.

36 Ranking-based Pair Generation 3

3.3.1 Discriminative models

Discriminative clustering models typically associate a binary label y with a pair of
features. We designate y = 0 when a pair of features (x1,x2) belong to the same
character (identity), and y = 1 otherwise (Hadsell et al., 2006).

We use a shallow MLP to reduce the dimensionality and improve generalization of
the features (see Figure 3.1, 3.2). Here, each face image is encoded as Qφ(xik), where
φ corresponds to the trainable parameters of the MLP. We find Qφ(·) to perform
best when using a linear layer (for details see Section 3.4.2). To perform clustering,
we compute track-level aggregated features by average pooling across the embedded
frame-level representations (Sharma et al., 2017)

ti = 1
M i

∑
k

Qφ(xik) , (3.2)

followed by `2-normalization.

We train our model parameters by minimizing the contrastive loss (Hadsell et al.,
2006) at the frame-level:

L (W, y,Qφ(x1), Qφ(x2)) =
1
2
(
(1− y) · (dW)2 + y · (max(0,m− dW))2

)
,

(3.3)

where x1 and x2 are a pair of face representations with y = 0 when coming from
the same character, and y = 1 otherwise. W : RD×d is a linear layer that embeds
Qφ(x) such that d � D (in our case, d = 2). dW is the Euclidean distance
dW = ‖W ·Qφ(x1)−W ·Qφ(x2)‖2, and m is the margin, empirically chosen to be 1.

In the following, we present two strategies to automatically obtain supervision for
pairs of frames: Figure 3.1 illustrates the Track-level supervision, and Figure 3.2
shows the Self-supervision for Siamese network training.

Track-supervised Siamese network (TSiam).

Video face clustering often employs face tracking to link face detections made in a
series of consecutive frames. The tracking acts as a form of high precision clustering

3.3.1 Discriminative models 37

(grouping detections within a shot) and is popularly used to automatically generate
positive and negative pairs of face images (Cinbis et al., 2011; Datta et al., 2018;
Tapaswi et al., 2014b; Wu et al., 2013b). In each frame, we assume that characters
appear on screen only once. Thus, all face images within a track can be used as
positive pairs, while face images from co-occurring tracks are used as negative pairs.
For each frame in the track, we sample two frames within the same track to form
positive pairs, and sample four frames from a co-occurring track (if it exists) to form
negative pairs.

Depending on the filming style of the series/movie, characters may appear alone or
together on screen. As we will see through experiments on diverse datasets, some
videos have 35% tracks with co-occurring tracks, while this can be as large as 70%
for other videos. For isolated tracks, we sort all other tracks in the same video
based on track-level distances (computed on base features) and randomly sample
frames from the farthest F = 25 tracks. Note that all previous works ignore negative
pairs for singleton (not co-occurring) tracks. We will highlight their impact in our
experiments.

Self-supervised Siamese network (SSiam)

Supervision from tracking may not always be available or may also be unreliable. An
example is face clustering within image collections (e.g. on social media platforms).
To enable the use of metric learning without any supervision we propose an effective
approach that can generate the required pairs automatically during training. SSiam
is inspired by pseudo-relevance feedback (pseudo-RF) (Yan et al., 2003a,b) that is
commonly used in information retrieval.

We hypothesize that the first and last samples of a ranked list based on Euclidean
distance are strong candidates for learning similarity and dissimilarity respectively.
We exploit this in a meaningful way and generate promising similar and dissimilar
pairs from a representative subset of the data.

Formally, consider a subset S = {x1, . . . ,xB} of face image representations from
the dataset (sampled randomly, not from the same track). We treat each frame
xb, b = 1, . . . , B as a query and compute Euclidean distance against every other frame
in the set. We sort rows of the resulting matrix in an ascending order (smallest to

38 Ranking-based Pair Generation 3

largest distance) to obtain an ordered index matrix O(S) = [so1; . . . ; soB]. Each row sob

contains an ordered index of the closest to farthest faces corresponding to xb. Note
that the first column of such a matrix is the index b itself at distance 0. The second
column corresponds to nearest neighbors for each frame and can be used to form the
set of positive pairs S+. Similarly, the last column corresponds to farthest neighbors
and forms the set of negative pairs S−. Each element of the above sets stores: query
index b, nearest/farthest neighbor r, and the Euclidean distance d.

During training, we first form pairs dynamically by picking a random subset of B
frames at each iteration. We compute the distances, sort them, and obtain positive
and negative pairs sets S+,S−, each with B elements as described above. Among
them, we choose K pairs from the positive set that have the largest distances and
K pairs from the negative set with the smallest distances. This allows us to select
semi-hard positive pairs and semi-hard negative pairs from each representative set of
B elements. Finally, these 2K pairs are used in a contrastive setting (Eq. 3.3) to
train network parameters.

To encourage variety in the sample set S and reduce the chance of false posi-
tives/negatives in the chosen 2K pairs, B is chosen to be much larger than K

(B = 1000, K = 64). Experiments on several datasets and generalization studies
show the benefit and effectiveness of this approach in collecting positive and negative
pairs to train the network.

Note that, SSiam can be thought of as an improved version of pseudo-RF with batch
processing. Rather than selecting farthest negatives and closest positives for each
independent query, we emphasize that SSiam selects 2K hard pairs: farthest positives
and closest negatives by looking at the batch of queries B jointly. This selection of
sorted pairs from the positive S+ and negative S− sets is quite important as will be
shown later.

3.3.2 Generative models

We now present generative models as an alternative strong baseline that can also
achieve similar improvements to feature representations. Similar to SSiam, we do
not require track-level supervision, in fact, auto-encoders consider single images (and
not pairs) at a time.

3.3.2 Generative models 39

Face track
with ! frames

Input Feature
Map Encoder

Decoder

,

Σ InputReconstructed

NLL Loss

KLD
Loss

2&

'
z

'/ '

Figure 3.3: Illustration of a Variational Autoencoder used as a strong baseline generative
model. In contrast to the Siamese networks, the VAE sees single frames (not pairs) and is
trained by two losses: KL-Divergence and the Reconstruction NLL. 2K corresponds to
batch.

Variational Autoencoder (VAE)

Deep face CNNs are trained to identify and distinguish between people, and are
supposed to be invariant to effects of pose, illumination, etc.. However, in reality, pose,
background, and other image-specific characteristics leak into the model, reducing
performance. Our goal is to learn a latent variable model that separates identity from
other spurious artifacts given a deep representation. We assume that face descriptors
are generated by a random process that first involves sampling a continuous latent
variable z representing identity of the characters. This is followed by a conditional
model p(x|z; θ) with some parameters θ, modeled as a neural network (specifically,
an MLP)

p(x) =
∫
p(x|z; θ)p(z)dz . (3.4)

We propose to adopt a Variational Autoencoder (VAE) (Kingma and Welling, 2014)
consisting of an encoder MLP Q(z|x;φ) with parameters φ and the decoder P (x|z; θ).
The encoder provides an approximate posterior over the latent variable, and the
model parameters are trained to maximize the variational lower bound

Lv = Eq(z|x;φ)[log p(x|z; θ)]−DKL(q(z|x;φ)‖p(z)) . (3.5)

Note that log p(x) ≥ Lv and thus maximizing Lv corresponds to maximizing the
log-likelihood of the samples. DKL is the Kullback-Leibler Divergence between the
approximate posterior q(z|x;φ) and the latent variable prior p(z), and acts like a
regularization on the distribution of latent variables. The first term corresponds to the

40 Ranking-based Pair Generation 3

Face	track	with		
(frames		

Aggregation	and	Clustering

HA
C

(

* M
LP

+

Figure 3.4: Illustration of the test time evaluation scheme. Given our pre-trained MLPs,
TSiam or SSiam, we extract the frame-level features for the track, followed by mean pooling
to obtain a track-level representation. All such track representations from the video are
grouped using HAC to obtain a known number of clusters.

log-likelihood of observing x given z and is a form of reconstruction error. Note that
it requires sampling from q(z|x;φ) which is achieved using the reparameterization
trick (Kingma and Welling, 2014). In practice, for each input x, the encoder MLP Qφ

predicts the latent variable mean µ and a diagonal variance Σ that model a Gaussian
prior. We refer the interested reader to Doersch (2016) for a gentle introduction.

Our encoder is a two-layer MLP Qφ and generates (µik,Σi
k) for each face image

representation xik. The decoder is also a two-layer MLP Pθ that takes as input a
latent variable sample

zik = µik + εΣi
k

0.5
, ε ∼ N (0, I) , (3.6)

and produces a reconstruction x̂ik = Pθ(zik). Both the reconstructed representation
x̂ik and the latent variable predicted mean µik can be used for clustering. We form
two final track representations based on the reconstructed features tirec = 1

M i

∑
k x̂ik

and based on the latent means tiµ = 1
M i

∑
k µ

i
k. Figure 3.3 illustrates the model.

Note that, we propose VAEs as an alternative method to discriminative approaches,
and a strong baseline. We show in our experiments that discriminative methods
TSiam and SSiam, often perform equally or better than VAEs.

3.4 Evaluation 41

3.4 Evaluation

We present our evaluation on three challenging datasets. We first describe the
clustering metric, followed by a thorough analysis of the proposed methods, ending
with a comparison to state-of-the-art.

3.4.1 Experimental Setup

Datasets and metric. We present our evaluation on three challenging datasets:
BBT, BF and ACCIO, discussed in Section 2.3. We summarize the statistics of
datasets in Table 2.1. In terms of evaluation metric following the previous works,
for BBT and BF we report clustering accuracy (ACC or WCP), and for ACCIO in
addition to ACC, we report BCubed Precision (P), Recall (R) and F-measure (F),
as discussed in Section 2.4.

3.4.2 Implementation Details

Figure 3.4 illustrates the network architecture during test time.

CNN. We adopt the VGG-2 face CNN (Cao et al., 2018), a ResNet50 model, pre-
trained on MS-Celeb-1M (Guo et al., 2016) and fine-tuned on 3.31 million face images
of 9,131 subjects (VGG2 data). Input RGB face images are resized to 224 × 224,
and pushed through the CNN. We extract pool5_7x7_s1 features, resulting in
xik ∈ R2048.

Siamese network MLP. The network1 comprises of two fully-connected layers
(R2048 → R256 → R2). Note that the second linear layer is part of the contrastive
loss (corresponds to W in Eq. 3.3), and we use the feature representations at R256

for clustering.
1We optimized our MLP network architecture by varying the number of hidden layers, and the
number of units in each layer. We varied the number of layers between one-layer to three-layer
model with number of units varying between {256,512,1024} (first layer), {2,64,128,256,512}
(second layer) and {2,64,128,256,512} (third layer). We found that our two-layer model (R256 →
R2) and the extracted feature representations from the first layer (feat-dim=256) generalized
over all datasets and give the best performance.

42 Ranking-based Pair Generation 3

We train our Siamese network with track-level supervision (TSiam) with about 102k
positive and 204k negative frame pairs (for BBT-0101) by mining 2 positive and 4
negative pairs for each frame. For the Self-supervised Siamese network (SSiam), we
generate batches of size B = 1000, and select K = 64 positive and negative pairs
each. Higher batch sizes B = 2000, 3000, did not provide significant improvements.

The MLP is trained using the contrastive loss, and parameters are updated using
Stochastic Gradient Descent (SGD) with a fixed learning rate of 10−3. Since the
labels are obtained automatically for each video, overfitting is not a concern. We
train our model until convergence (loss does not reduce significantly any further).

VAE. Our VAE2 uses a two-layer MLP encoder (R2048 → R1024 → R256×2, µ and
diagonal co-variance Σ); and a two-layer MLP decoder (R256 → R1024 → R2048). The
VAE is trained using SGD, with a learning rate of 10−3 until convergence.

3.4.3 Clustering Performance Ablation Studies

Table 3.1: Clustering accuracy on the base face representations.

Dataset Track-level Frame-level
VGG1 VGG2 VGG1 VGG2

BBT-0101 0.916 0.932 0.938 0.940
BF-0502 0.831 0.836 0.901 0.912

Base features. We begin our analysis by comparing track- and frame-level perfor-
mance of two commonly used CNNs to obtain face representations: VGG1 (Parkhi
et al., 2015) and VGG2 (Cao et al., 2018). Track-level results use mean-pool of
frames. Results are reported in Table 3.1. Note that the differences between VGG1
and VGG2 are typically within 1% of each other indicating that the results in the
subsequent experiments are not just due to having better CNNs trained with more
data. We refer to VGG2 features as Base for the remainder of this chapter.

2From our MLP architecture search, we exploited a lot of insights and restricted our VAE
architecture to two-layer. We optimized our VAE network architecture by varying the number
number of units of first linear layer ({256,512,1024}), µ ({64,128,256}), and Σ ({64,128,256}).
We found that the reconstructed feature representation generalized over all datasets and give the
best performance.

3.4.3 Clustering Performance Ablation Studies 43

0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1.00
Cosine similarity

Positives (same identity)
Negatives (different identity)

Figure 3.5: Histograms of pairwise cosine similarity between tracks of same identity
(positive, blue) and different identity (negative, red) for BBT-0101. Best seen in color.

Role of effective mining of +/- pairs. We emphasize that especially in light of
CNN face representations, the features are very similar even across different identities,
and thus positive and negative pairs need to be created carefully to gain the most
improvements. Figure 3.5 proves this point as (i) we see a large overlap between
the cosine similarity distributions of positive (same identity) and negative (different
identities) track pairs on the base features; and (ii) note the scale on the x-axis, even
negative pairs have cosine similarity scores higher than 0.9.

TSiam, impact of singleton tracks. Previous work with video-level constraints (Zhang
et al., 2016a,b) and (Datta et al., 2018), ignore singleton (not co-occurring) tracks.
In TSiam, we include negative pairs for singletons based on track distances. Table 3.2
shows that 50-70% tracks are singleton and ignoring them lowers accuracy by 3-4%.
This confirms our hypothesis that incorporating negative pairs of singletons helps
improve performance.

Table 3.2: Ignoring singleton tracks (and possibly characters) leads to significant perfor-
mance drop. Accuracy on track-level clustering.

TSiam # Tracks
Dataset w/o Single (Datta et al., 2018) Ours Total Single Co-oc

BBT-0101 0.936 0.964 644 331 313
BF-0502 0.849 0.893 568 395 173

SSiam and Pseudo-Relevance Feedback. In Pseudo-RF (Yan et al., 2003a,b),
all samples are treated independent of each other, there is no batch of data B from
which 2K pairs are chosen. A pair of samples closest in distance are chosen as
positive, and farthest as negative. However, this usually corresponds to samples

44 Ranking-based Pair Generation 3

that already satisfy the loss margin, thus leading to small (possibly even 0) gradient
updates. Table 3.3 shows that SSiam that involves sorting a batch of queries is much
more effective than pseudo-RF as it has the potential to select harder positives and
negatives. We see a consistent gain in performance, 3% for BBT-0101 and over 9%
for BF-0502.

Table 3.3: Comparison between SSiam and pseudo-RF.

Method BBT-0101 BF-0502

Pseudo-RF 0.930 0.814
SSiam 0.962 0.909

3.4.4 Studying Generalization

Please note that generalization experiments are presented here to explore the un-
derlying properties of our discriminative and generative models. If achieving high
performance is the only goal, we assert that our models can be trained and evaluated
on each video rapidly and fully automatically.

Performance on training videos. We report clustering performance on training
videos in Table 3.4. Note that all our models are trained in an unsupervised
manner, or with automatically generated labels. We additionally report results for an
AutoEncoder (AE) with the same network architecture as the VAE, but without the
variational space and sampling. The AE is trained using NLL loss for reconstruction.

We observe that VAE and SSiam show large performance boost over the base VGG2
features on BBT and BF. In particular, VAE shows large improvement on videos
with few characters (BBT). With training and evaluation on the same video, the
generative models demonstrate comparable performance to discriminative models.

Table 3.4: Clustering accuracy computed at track-level on the training episodes, with a
comparison to all evaluated models.

Train/Test Base TSiam SSiam AE VAE

BBT-0101 0.932 0.964 0.962 0.967 0.984
BF-0502 0.836 0.893 0.909 0.842 0.889

3.4.4 Studying Generalization 45

Generalization within series. In this experiment, we evaluate the generalization
capability of our models. We train on one episode each, BBT-0101 and BF-0502,
and evaluate on all other episodes of the same TV series. Table 3.5 reports averaged
clustering accuracy over the remaining 5 episodes for each series. Both SSiam or
TSiam perform similar (slightly lower/higher) to the base features, possibly due to
overfitting. VAE performs better here in comparison to the discriminative models.
This indicates that VAEs are able to model the distribution of face representations
by extracting the latent character identity that is common across the episodes.

Table 3.5: Clustering accuracy computed at track-level across episodes within the same
TV series. Numbers are averaged across 5 test episodes.

Train Test Base TSiam SSiam AE VAE

BBT-0101 BBT-01[02-06] 0.935 0.930 0.914 0.917 0.945
BF-0502 BF-05[01,03-06] 0.892 0.889 0.904 0.899 0.908

Generalization across series. We further analyze our models by evaluating gen-
eralization across series. Based on Table 3.6, we bring the readers attention towards
three key observations:

1. TSiam and SSiam retain their discriminative power and can transfer to other
series more gently. As they learn to score similarity between pairs of faces, the
underlying distribution of identities does not matter much. For example, the
drop when training TSiam on BBT-0101 and evaluating on BF is 0.890 (train
on BF-0502) to 0.875.

2. As filming styles differ, underlying distributions of the face identities can be
quite different. VAEs are unable to cope with this shift, and show drop in
performance. Training on BBT-0101 and evaluating on BF reduces performance
from 0.905 (train on BF-0502) to 0.831.

3. We clearly see that the similarity between videos can affect generative models.
For example, BBT is quite similar with mostly bright scenes during the day. BF
on the other hand has almost half the scenes at night causing large variations.

Generalization to unseen characters. In the ideal setting, we would like to
cluster all characters appearing in an episode including the main characters, other
named characters, and the unknown characters. However, this is a very difficult

46 Ranking-based Pair Generation 3

Table 3.6: Clustering accuracy when evaluating across video series. Each row indicates
that the model was trained on one episode of BBT / BF, but evaluated on all 6 episodes
of the two series.

Train Test series
Episode BBT-01[01-06] BF-05[01-06]

TSiam BBT-0101 0.936 0.875
BF-0502 0.915 0.890

SSiam BBT-0101 0.922 0.862
BF-0502 0.883 0.905

VAE BBT-0101 0.952 0.831
BF-0502 0.830 0.905

setting, and in fact, disambiguating background characters is even hard for humans
and there are no datasets that include such labels. For BBT and BF, we do however
have all named characters labeled. Firstly, expanding the clustering experiment to
include them drastically changes the class balance. For example, BF-0502 has 6 main
and 12 secondary characters with class balance shifting from 36.2/5.0 to 40.8/0.1
(lowest to highest cluster membership in percentage).

We present clustering accuracy for this setting in Table 3.7. All proposed methods
show a drop in performance when extending to unseen characters. Note that the
models have been trained on only the main characters data and tested on all (including
unseen) characters. However, the drop is small when adding just 1 new character
(BBT-0101) vs. introduction of 6 in BF-0502.

SSiam’s performance generalizes gracefully, probably since it is trained with a diverse
set of pairs (dynamically generated during training) and can generalize to unseen
characters.

Table 3.7: Clustering accuracy when extending to all named characters within the episode.
BBT-0101 has 5 main and 6 named characters. BF-0502 has 6 main and 12 named
characters.

BBT-0101 BF-0502
TSiam SSiam VAE TSiam SSiam VAE

Main cast 0.964 0.962 0.984 0.893 0.909 0.889
All named cast 0.958 0.922 0.978 0.829 0.870 0.807

3.4.4 Studying Generalization 47

Number of clusters when purity = 1. Table 3.8 shows the number of clusters
we can achieve while maintaining purity to be 1. In a similar spirit to Tapaswi et al.
(2014b), this metric indicates when the first mistake in agglomerative merging occurs
– smaller the number, the better it is. SSiam works best on the harder BF dataset,
while VAE can reduce the clusters most on BBT.

Table 3.8: In a similar spirit to Tapaswi et al. (2014b), we evaluate the number of clusters
we can reach when maintaining clustering accuracy/purity at 1. Lower is better.

Video #Tracks Base TSiam SSiam VAE Ideal

BBT-0101 644 365 369 389 245 5
BF-0502 568 460 490 253 312 6

Generalization to joint training. For this evaluation, we train a model combining
BBT-0101, BF-0502, and NH 3. We report results in Table 3.9. The drop in
performance is expected, however, note that unsupervised overfitting to each episode
is not necessarily bad. Interestingly, VAE retains performance on BF-0502, we
suspect this may be due to more visual variation in BF. Our discriminative methods
do perform well when trained and evaluated on larger datasets (see Table 3.11), while
VAE suffers due to large number of characters and a high skew in cluster ratios.

We show generalization studies to better understand our methods. VAEs seem to
transfer well to within domain (same characters), while discriminative TSiam and
SSiam transfer well across TV series. However, training on each episode should yield
best performance for all methods.

Table 3.9: Impact of training on combined dataset of BBT-0101, BF-0502, and NH.

Train TSiam SSiam VAE

BBT-0101 BBT-0101 0.964 0.962 0.984
BBT+BF+NH 0.930 0.930 0.938

BF-0502 BF-0502 0.893 0.909 0.889
BBT+BF+NH 0.852 0.887 0.890

3Notting Hill (NH) (Wu et al., 2013b; Zhang et al., 2016b): a romantic comedy movie. NH has 5
main casts with 240 tracks, and 16872 frames. The LC/SC (%) is 43.1/7.4. Tracks for NH are
provided by (Wu et al., 2013b).

48 Ranking-based Pair Generation 3

3.4.5 Comparison with the state-of-the-art

BBT and BF. We compare our proposed methods (TSiam, and SSiam) with the
state-of-the-art approaches in Table 3.10. We report clustering accuracy (%) on
two videos: BBT-0101 and BF-0502. Historically, previous works have reported
performance at a frame-level. We follow this for TSiam and SSiam.

Unlike previous works (Zhang et al., 2016a,b) that use face-tracks from Cinbis et al.
(2011); Everingham et al. (2006); Roth et al. (2012), we use state-of-the-art face
detection and tracking algorithms that recognizes and tracks faces even in poor
illumination and pose variations, thus resulting in a larger number of frames and
face-tracks. Note that our evaluation uses 2-4 times larger number of frames than
previous works (Zhang et al., 2016a,b) making direct comparison hard. Specifically
in BBT-0101 we have 41,220 frames while Zhang et al. (2016a) uses 11,525 frames.
Similarly, we use 39,263 frames for BF-0502 (vs. 17,337 (Zhang et al., 2016b)).
We use these data sources for evaluation of BBT and BF throughout the thesis.
Even though we cluster more frames and tracks (with more visual diversity), our
approaches are comparable to or even better than the current results.

TSiam, SSiam and VAE are all better than the improved triplet method (Zhang
et al., 2016a) on BBT-0101. SSiam obtains 99.04% accuracy which is 3.04% higher,
and VAE obtains 2.4% better performance (absolute gains). On BF-0502, TSiam
performs the best with 92.46% which is 0.33% better than the JFAC (Zhang et al.,
2016b).

ACCIO. We also evaluate our methods on the ACCIO dataset with 35 named
characters, 3,243 tracks, and 166,885 faces4. The largest to smallest cluster ratios are
very skewed: 30.65% and 0.06%. In fact, half the characters correspond to less than
10% of all tracks. Table 3.11 presents the results when performing clustering to yield
36 clusters (equivalent to the number of characters). In addition, as in Zhang et al.
(2016b), Table 3.12 (num. clusters = 40) shows that our discriminative methods are
not affected much by this skew, and in fact improve performance by a significant
margin over the state-of-the-art.

4Note that, in accordance with previous literature (Zhang et al., 2016b), we use 36 and 40 clusters
for the 35 main characters.

3.4.5 Comparison with the state-of-the-art 49

Ta
bl
e
3.
10
:
C
om

pa
ris

on
to

st
at
e-
of
-t
he
-a
rt
.
M
et
ric

is
cl
us
te
rin

g
ac
cu
ra
cy

(%
)
ev
al
ua

te
d
at

fra
m
e-
le
ve
l.

Pl
ea
se

no
te

th
at

m
an

y
pr
ev
io
us

wo
rk
s
us
e
fe
we

r
tr
ac
ks

(#
of

fra
m
es
)
(a
lso

in
di
ca
te
d
in

Ta
bl
e
2.
1)

m
ak

in
g
th
e
ta
sk

re
la
tiv

el
y
ea
sie

r.
W
e
us
e
an

up
da

te
d
ve
rs
io
n
of

fa
ce

tr
ac
ks

pr
ov
id
ed

by
B
äu

m
le

t
al
.(

20
13

).

M
et
ho

d
BB

T
-0
10

1
BF

-0
50

2
D
at
a
So

ur
ce

BB
T

BF

U
LD

M
L

(I
C

C
V

’1
1)
(C

in
bi
s
et

al
.,
20

11
)

57
.0
0

41
.6
2

−
C
in
bi
s
et

al
.(

20
11

)
H
M
R
F

(C
V

P
R

’1
3)
(W

u
et

al
.,
20

13
b)

59
.6
1

50
.3
0

R
ot
h
et

al
.(
20

12
)

Ev
er
in
gh

am
et

al
.(

20
06

)
H
M
R
F2

(I
C

C
V

’1
3)
(W

u
et

al
.,
20

13
a)

66
.7
7

−
R
ot
h
et

al
.(
20

12
)

−
W

BS
LR

R
(E

C
C

V
’1

4)
(X

ia
o
et

al
.,
20

14
)

72
.0
0

62
.7
6

−
Ev

er
in
gh

am
et

al
.(

20
06

)
V
D
F

(C
V

P
R

’1
7)
(S
ha

rm
a
et

al
.,
20

17
)

89
.6
2

87
.4
6

Bä
um

le
t
al
.(
20

13
)

Bä
um

le
t
al
.(
20

13
)

Im
p-
Tr

ip
le
t

(P
ac

R
im

’1
6)
(Z

ha
ng

et
al
.,
20

16
a)

96
.0
0

−
R
ot
h
et

al
.(
20

12
)

−
JF

A
C

(E
C

C
V

’1
6)
(Z

ha
ng

et
al
.,
20

16
b)

−
92

.1
3

−
Ev

er
in
gh

am
et

al
.(

20
06

)
T
Si
am

98
.5
8

92
.4
6

SS
ia
m

99
.0
4

90
.8
7

Bä
um

le
t
al
.(
20

13
)*

Bä
um

le
t
al
.(
20

13
)*

VA
E

98
.4
0

85
.3
0

50 Ranking-based Pair Generation 3

Table 3.11: Performance comparison of TSiam and SSiam with JFAC (Zhang et al., 2016b)
on ACCIO with 36 clusters.

#cluster=36
Methods P R F
JFAC (ECCV ’16) (Zhang et al., 2016b) 0.690 0.350 0.460
TSiam 0.749 0.382 0.506
SSiam 0.766 0.386 0.514
VAE 0.710 0.325 0.446

Table 3.12: Performance comparison of different methods on ACCIO with 40 clusters.
clusters=40

Methods P R F
DIFFRAC-DeepID2+ (ICCV ’11) (Zhang et al., 2016b) 0.557 0.213 0.301
WBSLRR-DeepID2+ (ECCV ’14) (Zhang et al., 2016b) 0.502 0.206 0.292
HMRF-DeepID2+ (CVPR ’13) (Zhang et al., 2016b) 0.599 0.230 0.332
JFAC (ECCV ’16) (Zhang et al., 2016b) 0.711 0.352 0.471
TSiam 0.763 0.362 0.491
SSiam 0.777 0.371 0.502
VAE 0.718 0.305 0.428

Computational complexity. Our models essentially consist of a few linear layers
and are very fast to compute at inference time. In fact, training the SSiam for about
15 epochs on BBT-0101 requires less than 25 minutes (on a GTX 1080 GPU using
the matconvnet framework (Vedaldi and Lenc, 2015)).

3.5 Discussion

Comparison of TSiam/SSiam to VAE. In Table 3.13, we report the frame-level
clustering performance of both discriminative (i.e. TSiam and SSiam) and generative
(VAE) methods. We observe that TSiam and SSiam generally perform better than
the base features. In addition, SSiam is generally better than TSiam. VAEs exhibit
an unclear fluctuating behavior, and in fact, have worse performance than base
features on harder datasets (BF, ACCIO).

3.5 Discussion 51

Table 3.13: Clustering accuracy (%) performance comparison of TSiam, SSiam, and VAE
over all three dataset BBT-0101, BF-0502 and ACCIO

#Clusters Base TSiam SSiam VAE
BBT-0101 5 94.00 98.58 99.04 98.40
BF-0502 6 91.20 92.46 90.87 85.30
ACCIO 36 79.90 81.30 82.00 76.44

Feature representations are a crucial component of face clustering in videos. If
the representation is robust, we can expect that the face tracks of each identity
will be merged together in a unique cluster. Therefore, we recommend the use of
self-supervised discriminative methods, TSiam and SSiam, over the unsupervised
generative method, VAE.

In Figure 3.6 and Figure 3.7, we show the distribution of pairwise cosine similarities
between tracks of same identity and different identity for the base features, TSiam
and SSiam. We can observe that TSiam makes positive pairs have a very strong
peak due to track-level supervision. At the same time SSiam (BF-0502) is hard
to interpret using the histogram of similarity between tracks - this maybe due to
absence of any supervision.

Do constraints help to merge tracks in face clustering? Conventional tech-
niques for face clustering use hand-crafted features that are not very effective in the
presence of illumination, and viewpoint variations. In this setting, must-link and
must-not-link pairwise constraints are useful. However, when the feature representa-
tion is trained in a discriminative manner, one can obtain a similar or even better
clustering performance without using these constraints. We hypothesize that any
modeling performed on a powerful representation is complimentary to using such
constraints, and hence leads to a better face grouping. We have shown, under such a
setting, the face representation can be readily used with simple offline features and
learning an efficient method to model additional constraints is meaningful.

An important consideration in clustering is to automatically infer the number of
clusters along with the clustering. As numbers saturate, we hope the community
moves towards this challenging problem (Tapaswi et al., 2019). We are working
towards methods that can learn and infer an optimal number of clusters while

52 Ranking-based Pair Generation 3

0.92 0.94 0.96 0.98 1.00
Cosine similarity

Positives (same identity)
Negatives (different identity)

(a) BBT-0101 - Base

0.92 0.94 0.96 0.98 1.00
Cosine similarity

Positives (same identity)
Negatives (different identity)

(b) BBT-0101 - TSiam

0.92 0.94 0.96 0.98 1.00
Cosine similarity

Positives (same identity)
Negatives (different identity)

(c) BBT-0101 - SSiam
Figure 3.6: Histograms of pairwise cosine similarity between tracks of same identity (pos)
and different identity (neg) for BBT-0101.

0.92 0.94 0.96 0.98 1.00
Cosine similarity

Positives (same identity)
Negatives (different identity)

(a) BF-0502 - Base

0.92 0.94 0.96 0.98 1.00
Cosine similarity

Positives (same identity)
Negatives (different identity)

(b) BF-0502 - TSiam

0.0 0.2 0.4 0.6 0.8 1.0
Cosine similarity

Positives (same identity)
Negatives (different identity)

(c) BF-0502 - SSiam
Figure 3.7: Histograms of pairwise cosine similarity between tracks of same identity (pos)
and different identity (neg) for BF-0502.

effectively learning representations. Our work is a hint towards achieving this goal
without relying on explicit external constraints as the feature representations are
discriminative enough to learn the data grouping with relaxed thresholds.

3.6 Summary

In this chapter, we proposed self-supervised approaches for face clustering in videos,
by distilling the identity factor from deep face representations. We showed that dis-
criminative models can leverage dynamic generation of positive/negative constraints
based on ordered face distances and do not have to only rely on track-level informa-
tion that is typically used. We also presented Variational Autoencoder as a strong
generative model that can learn the underlying distribution of face representations,
and model identity as the latent variable. Our proposed models are unsupervised (or
use automatically generated labels) and can be trained and evaluated efficiently as
they involve only a few matrix multiplications.

We conducted experiments on three challenging video datasets. We observed that
VAEs are able to generalize well when they have seen the set of characters (e.g. across
episodes of a series), while discriminative models performed better when generalizing

3.6 Summary 53

to new series. Overall, our models are fast to train and evaluate and outperform the
state-of-the-art while operating on datasets that contain more tracks with higher
diversity in appearance. In the next chapter, we consider a way to generate weak
labels from a clustering algorithm and show how they can be used efficiently to
improve video face clustering

Chapter 4

Clustering-based Pair Generation

In the previous chapter, we opted for a method to mine pseudo-labels by sorting
distances on a subset of face images. In this chapter, we consider a different approach
to generating weak-labels using a clustering algorithm. A good clustering algorithm
can discover natural groupings in data. These groupings, if used wisely, can provide
weak supervision for learning representations. In this chapter, we present Clustering-
based Contrastive Learning (CCL), a new clustering-based representation learning
approach that uses labels obtained from clustering along with video constraints to
learn discriminative face features. We demonstrate our method on the challenging task
of learning representations for video face clustering. Through several ablation studies,
we analyze the impact of creating pair-wise positive and negative labels from different
sources. Experiments on three challenging video face clustering datasets, BBT-0101,
BF-0502 and ACCIO, show that CCL achieves a new state-of-the-art on all datasets.
An implementation is available at https://github.com/ssarfraz/FINCH-Clustering.

The content of this chapter is based on the following publication:

• Vivek Sharma, Makarand Tapaswi, M Saquib Sarfraz, and Rainer Stiefelhagen.
“Clustering based contrastive learning for improving face represen-
tations”. In IEEE International Conference on Automatic Face and Gesture
Recognition (FG), 2020.

https://github.com/ssarfraz/FINCH-Clustering

56 Clustering-based Pair Generation 4

4.1 Introduction

Learning strong and discriminative representations is important for diverse applica-
tions such as face analysis, medical imaging, and several other computer vision and
natural language processing (NLP) tasks. While considerable progress has been made
using deep neural networks, learning a representation often requires a large-scale
dataset with manually curated ground-truth labels. To harness the power of deep
networks on smaller datasets and tasks, pre-trained models (e.g. ResNet-101 (He
et al., 2016) trained on ImageNet, VGG-Face (Parkhi et al., 2015) trained on a large
number of face images) are often used as a feature extractors or fine-tuned for the
new task.

We introduce a clustering-based learning method CCL to obtain a strong face
representation on top of features extracted from a deep CNN. An ideal representation
has small distances between samples from the same class, and large inter-class
distances in feature space. Different from a fully-supervised setting where ground-
truth labels are often provided by humans, we view CCL as a self-supervised learning
paradigm where ground-truth labels are obtained automatically based on the structure
of the dataset.

Self-supervised learning methods are receiving increasing attention as collecting large-
scale datasets is extremely expensive. In NLP, word and sentence representations
(e.g. word2vec (Mikolov et al., 2013), BERT (Devlin et al., 2018)) are often learned
by modeling the structure of the sentence. In vision, there are efforts to learn image
representations by leveraging spatial context (Doersch et al., 2015), ordering frames
in a short video clip (Fernando et al., 2017; Misra et al., 2016), or tracking image
regions (Wang and Gupta, 2015). There are also efforts to learn multimodal video
representations by ordering video clips (Sharma et al., 2019b).

Among recent works in the self-supervised learning paradigm, (Caron et al., 2018;
Guo et al., 2017; Jiang et al., 2017; Xie et al., 2016; Yang et al., 2016) propose to
learn image representations (often an auto-encoder) using a clustering algorithm as
objective, or as a means of providing pseudo-labels for training a deep model. One
challenge with the above methods is that the models need to know the number of
clusters (usually target number of clusters) a priori. Our chapter is related to the
above as we utilize clustering algorithms to discover the structure of the data, however,

4.2 Related Work 57

we do not assume knowledge of the number of clusters. In fact, our clustering setup
yields a large number of clusters with high purity and few samples per cluster.

Our primary contribution, CCL, is a method for refining feature representations
obtained using a deep CNN by discovering dataset clusters with high purity (typi-
cally few samples per cluster) and using these cluster labels as (potentially noisy)
supervision. In particular, we obtain positive (same class) and negative (different
class) pairs of samples using the cluster labels and train a Siamese network. We
adopt the recently proposed FINCH clustering algorithm (Sarfraz et al., 2019) as a
backbone since it provides hierarchical partitions with high purity, does not need any
hyper-parameters, and has a low computational overhead while being extremely fast.

Towards our task of clustering faces in videos, we demonstrate how cluster labels can
be integrated with video constraints to obtain positive (within and across neighboring
clusters) and negative pairs (co-occurring faces and samples from farthest clusters).
Both the cluster labels and video constraints are used to learn an effective face
representation.

Our proposed approach is evaluated on three challenging benchmark video face
clustering datasets: Big Bang Theory (BBT), Buffy the Vampire Slayer (BF) and
Harry Potter (ACCIO). We empirically observe that deep features can be further
refined by using weak cluster labels and video constraints leading to state-of-the-art
performance. Importantly, we also discuss why the cluster labels may be more effective
than using labels from alternative groupings such as tracking (e.g. TSiam (Sharma
et al., 2019a)).

The remainder of this chapter is structured as follows: Section 4.2 provides an
overview of related work. In Section 4.3, we propose our method for clustering-
based representation learning, CCL. Extensive experiments, an ablation study, and
comparison to the state-of-the-art are presented in Section 4.4. Finally, we conclude
our chapter in Section 4.5.

4.2 Related Work

This section discusses face clustering and identification in videos. We primarily
present methods for face representation learning with CNNs, followed by a short
overview of FINCH-clustering algorithm and learning from clustering.

58 Clustering-based Pair Generation 4

Video face clustering methods often follow 2 steps: obtain pairwise constraints
typically by analyzing tracks, followed by representation/metric learning approaches
and clustering. We present models through a historical perspective, with CNNs.

Face representation learning with CNNs.With the popularity of Convolutional
Neural Networks (CNNs), there is a growing emphasis on improving face track
representations using CNNs. An improved triplet loss that pushes the positive and
negative samples apart in addition to the anchor relations is used by (Zhang et al.,
2016a) to fine-tune a CNN. Zhang et al. (2016b) (JFAC) use a Markov Random Field
to discover dynamic constraints iteratively to learn better representations during
the clustering process. Inverse reinforcement learning on a ground-truth data is also
used to learn a reward function that decides whether to merge a given pair of face
features (He et al., 2018). In a slightly different vein, the problem of face detection
and clustering is addressed jointly by (Jin et al., 2017), where a link-based clustering
algorithm based on rank-1 counts verification merges frames based on a learned
threshold.

Among recent works, Tapaswi et al. (2019) aim to estimate the number of clusters
and their assignment and learn an embedding space that creates a fixed-radius balls
for each character. Datta et al. (2018) use video constraints to generate a set of
positive and negative face pairs. This chapter is related to the previous Chapter 3
but differs substantially in technical approach, where we proposed two approaches:
SSiam, a distance matrix between features on a subset of frames is used to generate
hard positive/negative face pairs; and TSiam uses temporal constraints and mines
negative pairs for singleton tracks by exploiting track-level distances. Features are
fine-tuned using a Siamese network with contrastive loss (Hadsell et al., 2006).

Different from related work, we propose a simple, yet effective approach where weak
labels are generated using a clustering algorithm that is independent of video/track
level constraints to learn discriminative face representations. In particular while He
et al. (2018); Tapaswi et al. (2019) require ground-truth labels to learn embeddings,
CCL does not.

FINCH clustering algorithm. Sarfraz et al. (2019) propose a new clustering
algorithm (FINCH) based on first neighbor relations. FINCH does not require
training and relies on good representations to discover a hierarchy of partitions.
While FINCH demonstrates that pseudo labels can be used to train simple classifiers

4.3 Clustering based Representation Learning 59

with cross-entropy loss (Sarfraz et al., 2019), such a setup is challenging to use in
the context of faces. When using a partition at high purity with many more clusters
than classes, faces of one character belong to multiple clusters, and the CE loss
pushes these clusters and their samples apart – an undesirable effect for our goal of
clustering. Thus, in our work, we use FINCH to generate weak positive and negative
face pairs that are used to improve video face clustering.

Clustering based learning. Recently clustering is also used to learn an embedding
of data (Caron et al., 2018; Guo et al., 2017; Jiang et al., 2017; Sarfraz and Khan,
2011; Yang et al., 2016). Almost all of these methods cluster data samples at
each forward pass (or at pre-determined epochs) into a given number of clusters.
Subsequently, generated cluster labels or a loss over the clustering function are used
to train a deep model (usually an auto-encoder). These methods require to specify
the number of clusters, that is often the target number of classes. This is different
from CCL that leverages a large number of small and pure clusters without specifying
the particular number of clusters.

In summary, we show how pseudo-labels from clustering can be used effectively: (i)
without needing to know the number of clusters, and (ii) by creating positive/negative
pairs at a high-purity stage of clustering.

4.3 Clustering based Representation Learning

We present our method to improve the face representation automatically using weak
cluster labels instead of manual annotations. We start this section by introducing
the notation used throughout the remainder of the chapter. We then present a short
overview of FINCH, followed by how we use it to obtain automatic labels. Finally, we
discuss how we train our embedding and perform inference at test time. Algorithm 1
provides an overview of the steps in the proposed method.

4.3.1 Preliminaries

Let the dataset contain N face tracks D = {(Ti, yi)Ni=1}, where each track Ti has a
variable number K of face images, i.e. Ti = {(fki)Kk=1}. yi ∈ {1, . . . , C} is the label

60 Clustering-based Pair Generation 4

same

VGG2: Feature Maps

Contrastive

Loss

0/1

MLP

𝐵

𝑥1

𝑥−𝑥+

𝑦 = 0

Pos. Pair Neg. Pair

𝑦 = 1

𝑦 = 1

Face

Detections

𝑥1

C

O

N

V 𝑥

FI
N
C
H

VGG2 Clustering

Weak Cluster Labels

Video

Video

Constraints

𝑥+ 𝑥−

M
LP

M
LP

Figure 4.1: CCL training overview. Given a video with several face detections (top left),
we first start by extracting features using a deep CNN and perform clustering using FINCH
to obtain a large number of small but highly pure clusters (top). We create several positive
and negative face image pairs using these cluster labels and train an MLP to further
improve the feature representation using the contrative loss (bottom). At test time, the
MLP is used as an embedding, and we cluster our samples using Hierarchical Agglomerative
Clustering (HAC).

corresponding to the track Ti, where C is the total number of characters in the
video. Please note that tracks are not necessary for the proposed learning approach,
however, they are used during a part of the evaluation.

We use a CNN trained on face recognition (VGG2Face (Cao et al., 2018)) and
extract features for each face image in the track from the penultimate layer (before
classification) of the network. The features for a track are vectors {x1

i , . . . ,xKi } of size
xki ∈ RD×1, where D denotes the feature dimension of the CNN feature maps. We
refer to these as base features as they are not refined further by a learning approach.

Track-level representations are formed by an aggregation function Φ : {x1
i , . . . ,xKi } →

vi, that combines K frames to produce a single feature vector vi ∈ RD×1. While
there are several methods of aggregation such as Fisher Vectors (Parkhi et al., 2014),
Covariance Learning (Wang et al., 2012), Quality Aware Networks (Liu et al., 2017) or
Neural Aggregation Networks (Yang et al., 2017a), Temporal 3D Convolution (Diba

4.3.2 Clustering Algorithm 61

et al., 2018a), we find that simple average pooling often works quite well. In our
case, averaging allows to learn using features at the frame-level (without requiring
tracking), but evaluate at the track-level.

We additionally `2 normalize the features to be unit vectors before using them
for clustering, i.e. ‖vi‖2 = 1. Several previous works in this area (Sharma et al.,
2017, 2019a; Tapaswi et al., 2019; Zhang et al., 2016a,b) have used Hierarchical
Agglomerative Clustering (HAC) as the preferred technique for clustering. For a
fair comparison, we too use HAC with the stopping condition set to the number of
clusters equalling the number of main cast (C) in the video. We use the minimum
variance ward linkage (Ward Jr., 1963) for all methods.

4.3.2 Clustering Algorithm

As part of our core method to obtain weak labels from clustering, we adopt the
recently proposed FINCH algorithm (Sarfraz et al., 2019). FINCH belongs to the
family of HAC algorithms and automatically discovers groupings in the data without
requiring hyper-parameters or a priori knowledge such as the required number of
clusters. The output of FINCH is a small set of partitions that provide a fine to coarse
view on the discovered clustering. Note that this is different from classical HAC
methods where each iteration merges one sample with existing clusters providing a
complete list of partitions ranging from N clusters (all samples in their own cluster)
to 1 cluster (all samples in one cluster).

FINCH works by linking first neighbors of each sample. Specifically, an adjacency
link matrix is built between all pairs of samples as

A(i, j) =

1 if j = κ1
i or κ1

j = i or κ1
i = κ1

j

0 otherwise
(4.1)

where κ1
i represents the first neighbor of sample i. The adjacency matrix joins each

sample i to their first neighbors via j = κ1
i , enforces symmetry through κ1

j = i, and
links samples that share a common first neighbor κ1

i = κ1
j . Clustering is performed

by identifying the connected components in the adjacency matrix.

62 Clustering-based Pair Generation 4

Using FINCH to obtain weak labels. We use clusters from the second partition
of the FINCH algorithm to mine positive and negative pairs. There are two differences
from previous methods (Sarfraz et al., 2019) that have used clustering labels as a
form of category labels: (i) we achieve a very high purity (usually over 99%) within
each cluster; and (ii) the number of clusters is much greater than the true number of
categories, and each cluster typically contains few samples (< 10).

The first partition corresponds to linking samples through the first neighbor relations,
while the second partition links clusters created in the first step. Using the second
partition provides increases diversity, without compromising on quality of the labels.
We find that most samples clustered in the first partition are from within a track
(e.g. neighboring frames), while those in the second partition are from across tracks
(cf . Fig. 4.2). Empirically, we analyze the impact of choosing different partitions
through ablation studies.

We treat each face image as a sample and perform clustering with FINCH to obtain
the second partition of clusters P2 = {G1, . . . , GM}. Based on the cluster labels, we
obtain pairwise positive and negative labels as follows:

• PosC: All face images in a cluster are considered for positive pairs. For clusters
that have less than 10 samples, we also create positive pairs by combining
samples from the current cluster Gp1 with randomly sampled frames from
another cluster Gp2, where Gp2 is among the Z = 25 nearest clusters to Gp1.

• NegC: We create negative pairs by combining samples from a cluster Gn1 with
randomly sampled frames from a different cluster Gn2, where Gn2 is among the
Z farthest clusters to Gn1.

Impact of clustering approach. We use K-means as an alternative approach
to obtain clusters that provide weak labels. Note that K-means has an important
disadvantage wherein we need to know the number of clusters before hand. For a
fair comparison, we use the number of clusters estimated by FINCH at the second
partition. Specifically, we use MiniBatch K-means (Sculley, 2010) that is more
suitable to work with large datasets. Our analysis shows that FINCH provides purer
clusters that yield more accurate pairwise labels.

4.3.3 Video Level Constraints 63

4.3.3 Video Level Constraints

Video face clustering often employs face tracking to link face detections made in
a sequence of consecutive frames. Note that tracking can be thought of as a form
of clustering in a small temporal window (typically within a shot). Using tracks,
positive pairs are created by sampling frames within a track, while negative pairs
are created by analyzing co-occurring tracks (Cinbis et al., 2011; Datta et al., 2018;
Tapaswi et al., 2014b; Wu et al., 2013b).

In this chapter, we consider video constraints that can be derived at a frame-level
(i.e. without tracking). We include co-occurring face images appearing in the same
frame as potential negative pairs (NVid). About 50%-70% of the face images appear
as singletons in a frame (as shown by TSiam (Sharma et al., 2019a)), and do not
yield negative pairs through the video level constraints. Thus, being able to sample
negative pairs from the singleton tracks using the cluster labels as discussed above is
beneficial.

In addition to sampling negative pairs, we also use co-occurrence to correct clusters
provided by FINCH. For example, if a cluster contains samples from a known negative
pair, we keep the sample closest to the cluster mean, and create a new cluster using
the rejected sample.

4.3.4 Training and Inference

We use the weak cluster labels and video constraints to obtain positive and negative
face pairs for training a shallow Siamese network with Contrastive loss. We sample
a pair of face representations x1 and x2 with y = 0 for a positive pair and y = 1
when corresponding to a negative pair. We train a multi-layer perceptron Qθ using
Contrastive Loss (Hadsell et al., 2006) as

L (W, y,Qθ(x1), Qθ(x2)) =
1
2
(
(1− y) · (dW)2 + y · (max(0,m− dW))2

)
,

(4.2)

where W ∈ RD×d is a linear layer that embeds Qθ(·) such that d� D (in our case,
d = 2). Here, each face image is encoded as Qθ(x), where θ corresponds to the

64 Clustering-based Pair Generation 4

Algorithm 1: Overview of CCL.
Input: Feature maps from VGG2Face CNN. X = {(xn)Nn=1} ∈ RD. N is total
number of faces. D is feature dimension.
Output: Final clustering of the N face samples.
Procedure:
1. Compute the partitions using FINCH clustering algorithm. P1:L = FINCH(X).
2. Select second partition P2 = {G1, . . . , GM}.
3. Train model parameters for 20 epochs:

– Sample positive and negative pairs for a batch.
(xp1, xp2) ∼ (Gp1, Gp2) and (xn1, xn2) ∼ (Gn1, Gn2).

– Train MLP Qθ(·) using Contrastive loss.
4. Compute embeddings for each face image using Qθ(x) and perform HAC to get
C (# main cast) clusters.

trainable parameters. We find that Qθ(·) performs well when using a single linear
layer. dW is the Euclidean distance dW = ‖W ·Qθ(x1)−W ·Qθ(x2)‖2, and m is the
margin, empirically chosen to be 1. Fig. 4.1 illustrates this learning procedure.

During inference, we compute embeddings for face images using the MLP trained
above. For frame-level evaluation, we cluster the features for each face image, while
for track-level evaluation, we first aggregate image features using mean pool, followed
by HAC. We report the clustering performance at the ground truth number of
clusters (i.e. the number of main characters in the video). Algorithm 1 provides an
overview of the entire training and inference procedure.

4.3.5 Implementation Details

CNN. We employ the VGG-2 face CNN (Cao et al., 2018) (ResNet-50) pre-trained
on MS-Celeb-1M (Guo et al., 2016) and fine-tuned on 3.31 million face images of
9,131 subjects (VGG2 data). We extract pool5_7x7_s1 features by first resizing
RGB face images to 224 × 224 and pushing them through the CNN, resulting in
xik ∈ R2048. At test time, we compute face embeddings using the learned MLP Qθ

and `2 normalize before HAC.

Siamese network MLP. For a fair comparison with Chapter 3, we use the
same MLP network architecture. The network comprises of fully-connected lay-
ers: R2048 → R256 → R2. Note that the second linear layer is part of the contrastive

4.4 Evaluation 65

loss (corresponds to W in Eq. 4.2), and we use the feature representations at R256

for clustering same as Chapter 3. The model is trained using the Contrastive loss,
and parameters are updated using Adam optimizer. We initialize the learning rate
with 10−5 and decrease it by a factor of 10 every 15 epochs. We train the model for
20 epochs. We use Batch Normalization (BN).

Sampling positive and negative pairs for training. An epoch corresponds to
sampling pairs from all clusters created by the FINCH algorithm. We consider 5
clusters per batch. For each data point in a cluster, we randomly sample from the
same (or nearest) cluster and create one positive pair, and sample from the farthest
clusters to create two negative pairs. Finally, we randomly subsample the above list
to obtain 25 positive and 25 negative pairs for each cluster, resulting in a batch with
250 pairs (125 positive/negative).

4.4 Evaluation

We present our evaluation on three challenging datasets. We first describe the
clustering metric, followed by a thorough analysis of the proposed method on, and
end this section with a comparison of our approach against state-of-the-art.

Datasets and metric. We present our evaluation on three challenging datasets:
BBT, BF and ACCIO, discussed in Section 2.3. We summarize the statistics of
datasets in Table 2.1. In terms of evaluation metric following the previous works,
for BBT and BF we report clustering accuracy (ACC or WCP), and for ACCIO in
addition to ACC, we report BCubed Precision (P), Recall (R) and F-measure (F),
as discussed in Section 2.4.

4.4.1 Clustering Performance and Generalization

Comparison against baselines.We present a thorough comparison of CCL against
related baselines that employ a similar learning scheme.

In pseudo-relevance feedback (Yan et al., 2003a,b) (PRF), samples are treated
independent of each other, and the pairs are created by considering closest positives

66 Clustering-based Pair Generation 4

Table 4.1: Clustering accuracy of CCL and comparison to PRF (Yan et al., 2003b)
TSiam (Sharma et al., 2019a) and SSiam (Sharma et al., 2019a) at track-level. Comparison
against all evaluated models.

Train/Test Base PRF TSiam SSiam CCL

BBT-0101 0.932 0.930 0.964 0.962 0.982
BF-0502 0.836 0.814 0.893 0.909 0.921

Table 4.2: Clustering accuracy of CCL and comparison to TSiam (Sharma et al., 2019a) and
SSiam (Sharma et al., 2019a) at track-level, extending to all named characters. BBT-0101
has 5 main and 6 named characters; BF-0502 has 6 main and 12 named characters.

BBT-0101 BF-0502
TSiam SSiam CCL TSiam SSiam CCL

Main cast 0.964 0.962 0.982 0.893 0.909 0.921
All named 0.958 0.922 0.966 0.829 0.870 0.903

and farthest negatives. However, these pairs often provide negligible training signal
(gradients) as they already conform to the loss requirements.

SSiam (Sharma et al., 2019a) is an improved version of PRF with batch processing
where farthest positives and closest negatives are formed by looking at a batch of
queries rather than whole dataset. This creates harder training samples that show
improved performance over PRF.

In TSiam (Sharma et al., 2019a), positive pairs are formed by looking at samples
within a track (a track is treated as a cluster of face images) and negative pairs by
using co-occurrence and distances between track representations.

Finally, our proposed method CCL does not rely on tracking and uses pure clusters
created by an automatic partitioning method (FINCH). We sort clusters by distances
between their mean representations and then form positive and negative pairs.

Table 4.1 shows that CCL outperforms both SSiam and TSiam, and also provides
significant gains over the base VGG2 features on BBT and BF. Fig. 4.2 (right)
shows the number of faces in each cluster and the number of tracks that they are
derived from. CCL’s ability to obtain positive pairs from faces across multiple tracks
(different from TSiam) might be an explanation for improved performance.

4.4.1 Clustering Performance and Generalization 67

Ta
bl
e
4.
3:

A
st
ud

y
on

th
e
im

pa
ct

of
cl
us
te
rin

g
al
go
rit

hm
.
FI

N
C
H

pa
rt
iti
on

s
ar
e
cr
ea
te
d
fo
r
ea
ch

da
ta
se
t,

an
d
sh
ow

n
as

se
pa

ra
te

ta
bl
e

ro
w
s.

In
ea
ch

ro
w
,r

es
ul
ts

ar
e
pr
es
en
te
d
fo
r
FI

N
C
H

(a
bo

ve
)
an

d
M
in
iB
at
ch

K
-m

ea
ns

(b
el
ow

).
Fr
om

le
ft

to
rig

ht
,P

ar
t.

in
di
ca
te
s
th
e

pa
rt
iti
on

le
ve
lo

fF
IN

C
H
.
#
C

is
th
e
to
ta
ln

um
be

r
of

cl
us
te
rs

in
th
at

pa
rt
iti
on

as
es
tim

at
ed

by
FI

N
C
H
.
La

rg
es
t
an

d
sm

al
le
st

cl
us
te
r

siz
es

ar
e
in
di
ca
te
d
as

LC
/S

C
.
C
lu
st
er
in
g
pu

rit
y
of

FI
N
C
H
/K

-m
ea
ns

cl
us
te
rs

(b
ef
or
e
C
C
L)

is
pr
es
en
te
d
as

A
C
C
.
L+

/L
-r

ep
re
se
nt
s
th
e

nu
m
be

r
of

sa
m
pl
es

co
rr
ec
tly

an
d
w
ro
ng

ly
cl
us
te
re
d
fo
r
th
e
gi
ve
n
pa

rt
iti
on

.
Fi
na

lly
,C

C
L-
A
C
C

is
th
e
pe

rfo
rm

an
ce

of
C
C
L:

by
tr
ai
ni
ng

a
m
od

el
us
in
g
w
ea
k
la
be

ls
fr
om

FI
N
C
H
/K

-m
ea
ns

es
tim

at
ed

cl
us
te
rs
.

B
B
T
-0
10
1

B
F-
05
02

A
C
C
IO

Pa
rt
.

#
C

LC
/S

C
A
C
C

L+
/L

-
C
C
L-
A
C
C

#
C

LC
/S

C
A
C
C

L+
/L

-
C
C
L-
A
C
C

#
C

LC
/S

C
A
C
C

L+
/L

-
C
C
L-
A
C
C

41
22

0
@
#
C
=
5

39
26

3
@
#
C
=
6

16
68

85
@
#
C
=
36

1
10
15
6

48
/2

0.
99
7

41
12
8/
92

0.
97
8

96
77

42
/2

0.
99
4

39
05
4/
20
9

0.
91
5

21
44
4

39
37
/2

0.
84
7
14
14
96
/2
53
89

0.
81
6

10
30
/1

0.
98
8

40
74
4/
47
6

0.
97
1

75
8/
1

0.
98
6

38
71
7/
54
6

0.
90
9

16
04
1/
1

0.
89
9
15
01
77
/1
67
08

0.
84
1

2
22

36
77
7/
4

0.
99
0

40
80
9/
41
1

0.
99

5
21

67
13
46
/4

0.
97
8

38
41
4/
84
9

0.
93

8
39

72
33
46
1/
4

0.
83
2
13
89
03
/2
79
82

0.
83

7
12
36
/1

0.
98
7

40
68
7/
53
3

0.
99
1

15
66
/1

0.
97
1

38
16
1/
11
02

0.
92
3

18
07
6/
1

0.
86
6
14
46
13
/2
22
72

0.
85

7

3
49
0

20
31
/8

0.
97
4

40
14
9/
10
71

0.
95
4

56
0

25
74
/9

0.
95
7

37
58
8/
16
75

0.
92
2

94
4

41
40
5/
13

0.
81
2
13
55
43
/3
13
42

0.
80
1

15
68
/1

0.
97
9

40
36
7/
85
3

0.
95
7

21
20
/1

0.
96
2

37
80
6/
14
57

0.
92
6

98
38
/1

0.
84
5
14
10
36
/2
58
49

0.
81
3

4
10
1

72
58
/3
2

0.
96
8

39
93
6/
12
84

0.
94
3

12
7

93
35
/2
7

0.
92
3

36
26
0/
30
03

0.
90
3

16
1

70
82
5/
39

0.
78
4
13
09
87
/3
58
98

0.
76
7

20
19
/1

0.
98
1

40
47
5/
74
5

0.
94
5

23
60
/1

0.
95
6

37
55
5/
17
08

0.
92
3

16
50
2/
1

0.
80
0
13
36
39
/3
32
46

0.
78
2

5
13

10
.9
K
/0
.K

0.
96
8

39
.9
K
/1
.2
K

0.
94
3

24
13
.7
K
/0
.2
K

0.
89
5

35
.1
K
/4
.0
K

0.
86
9

24
84
.8
K
/0
.2
K

0.
69
0
11
5.
1K

/5
1.
7K

0.
65
2

7.
3K

/1
0.
96
6

39
.8
K
/1
.3
K

0.
93
1

3.
7K

/0
.2
K

0.
92
0

36
.1
K
/3
.1
K

0.
87
5

26
.7
K
/1

0.
72
4
12
0.
9K

/4
5.
9K

0.
69
6

6
2

26
.4
K
/1
4.
7K

0.
72
4
29
.8
K
/1
1.
3K

-
5

20
.8
K
/1
.2
K

0.
79
9

31
.3
K
/7
.8
K

-
4

15
2.
4K

/1
.1
K

0.
38
7
64
.6
K
/1
02
.2
K

-
26
.5
K
/1
4.
7K

0.
72
7
29
.9
K
/1
1.
2K

-
16
.7
K
/3
.3
K

0.
91
0

35
.7
K
/3
.5
K

-
60
.8
K
/1
7.
2K

0.
50
6

84
.4
K
/8
2.
4K

-

7
1

41
.2
K

0.
37
2
15
.3
K
/2
5.
8K

-
1

39
.3
K

0.
36
1
14
.1
K
/2
5.
0K

-
1

16
6.
9K

0.
30
9
51
.6
K
/1
15
.2
K

-
41
.2
K

0.
37
2
15
.3
K
/2
5.
8K

-
39
.3
K

0.
36
1
14
.1
K
/2
5.
0K

-
16
6.
9K

0.
30
9
51
.6
K
/1
15
.2
K

-

68 Clustering-based Pair Generation 4

Table 4.4: Impact of mining positive and negative pairs from different sources. Track-level
accuracy of CCL.

PosC NegC NVid BBT-0101 BF-0502

1 Base - - - 0.932 0.836

2 3 - - 0.951 0.859
3 - 3 - 0.968 0.883
4 3 - 3 0.956 0.865
5 3 3 - 0.971 0.896
6 - 3 3 0.979 0.917

7 CCL 3 3 3 0.982 0.921

Generalization to unseen characters. We further study how CCL can cope with
adding unseen characters at test time by clustering all named characters in an episode.
Results from Table 4.2 show that CCL is better poised at clustering new characters
and achieves higher performance in all cases. We believe that CCL’s performance
scales well as it is trained on a diverse set of pairs and can generalize to unseen
characters.

4.4.2 Sources of Positive and Negative Pairs

In Table 4.4, we present the importance of each source from which we obtain positive
and negative pairs. Positive pairs obtained from clusters are denoted as PosC;
negative pairs from clusters as NegC; and negative pairs using video constraints as
NVid.

Rows 2 to 6 evaluate different combinations of the sources of pairs and show their
relative importance. It can be seen that negative pairs alone (row 3) are more
important than positive pairs (row 2). Additionally, using pairs from the clusters
alone (row 5) provides performance similar to TSiam and SSiam (refer to Table 4.1),
and including negatives from videos (row 7) provides best performance.

4.4.3 Impact of Clustering Algorithm

We now present a study on the impact of the clustering algorithm used for obtaining
weak labels (see Table 4.3). We first obtain the hierarchy of partitions by processing

4.4.3 Impact of Clustering Algorithm 69

0 10 20 30 40
#Faces per Cluster

0

100

200

300

400

500

600

700

F
re

qu
en

cy

500 1000 1500 2000
Cluster index

0

5

10

15

20

25

30

C
ou

nt
s

#Faces
#Tracks

Figure 4.2: Key characteristics of FINCH (second partition) clustering for BBT-0101. Left:
Histogram showing the number of faces in a cluster. Even if most clusters have less than 5
samples, we are able to obtain meaningful positive and negative pairs to train our model.
Right: We plot the number of faces and number of tracks for each of the cluster indices
(sorted by size for convenience). About 900 of the 2200 clusters created by FINCH contain
faces from more than one track, leading to increased diversity of pairs.

each dataset with the FINCH algorithm. For a fair comparison, we use K-means with
K set to the number of clusters provided by FINCH. Specifically, we use MiniBatch
K-means for this evaluation as computing the full distance matrix would require
∼120 GB memory on larger datasets such as ACCIO.

We observe that FINCH not only automatically discovers meaningful partitions of
the data but also achieves higher-performance (ACC in Table 4.3) as compared to
K-means, especially at higher number of clusters. It is interesting to note the number
of samples that are clustered correctly or wrongly (L+/L- in Table) as these play
an important role while creating weak labels. Fig. 4.2 (left) shows that while the
clusters are often very small (< 10 samples), they contain faces from more than one
track (right). CCL with FINCH (second partition) obtains high performance after
training with the labels (CCL-ACC) and outperforms labels provided by K-means
clustering.

Running FINCH on larger datasets such as ACCIO takes ∼2 minutes (due to the
use of fast nearest neighbors) as compared to MiniBatch K-means that takes ∼1
hour even though it is optimized for large datasets.

70 Clustering-based Pair Generation 4

Table 4.5: Comparison to state-of-the-art with clustering accuracy (%) at frame level on
both videos: BBT-0101 and BF-0502.

Method BBT-0101 BF-0502

FINCH (CVPR ’19) (Sarfraz et al., 2019) 99.16 92.73
ULDML (ICCV ’11) (Cinbis et al., 2011) 57.00 41.62
HMRF (CVPR ’13) (Wu et al., 2013b) 59.61 50.30
HMRF2 (ICCV ’13) (Wu et al., 2013a) 66.77 −
WBSLRR (ECCV ’14) (Xiao et al., 2014) 72.00 62.76
VDF (CVPR ’17) (Sharma et al., 2017) 89.62 87.46
Imp-Triplet (PacRim ’16) (Zhang et al., 2016a) 96.00 −
JFAC (ECCV ’16) (Zhang et al., 2016b) − 92.13
TSiam (FG ’19) (Sharma et al., 2019a) 98.58 92.46
SSiam (FG ’19) (Sharma et al., 2019a) 99.04 90.87
CCL (Ours with HAC) 99.56 93.79

4.4.4 Comparison with the state-of-the-art

Table 4.6: Frame-level clustering accuracy (%) of CCL and comparison to TSiam (Sharma
et al., 2019a) and SSiam (Sharma et al., 2019a) over all datasets: BBT-0101, BF-0502 and
ACCIO.

#Clusters Base TSiam SSiam CCL

BBT-0101 5 94.00 98.58 99.04 99.56
BF-0502 6 91.20 92.46 90.87 93.79
ACCIO 36 79.90 81.30 82.00 83.40

While previous analysis has been done at the track-level, we now report frame-level
clustering performance to present a fair comparison against previous work.

BBT and BF. We compare the results obtained with CCL to the current state-
of-the-art approaches for video face clustering in Table 4.5. We report clustering
accuracy (%) on two videos: BBT-0101 and BF-0502. We can observe that CCL
outperforms previous approaches, achieving 0.52% and 1.33% absolute improvement
in accuracy on BBT-0101 and BF-0502 respectively.

ACCIO. As common in previous works (Sharma et al., 2019a; Zhang et al., 2016b),
we evaluate our method on the ACCIO dataset with 36 and 40 clusters for the 35

4.4.4 Comparison with the state-of-the-art 71

Table 4.7: Comparison of CCL with the state-of-the-art on ACCIO, evaluated at 36 and
40 clusters. Clustering accuracy at frame-level.

#Clusters = 36
Methods P R F

FINCH (CVPR ’19) (Sarfraz et al., 2019) 0.748 0.677 0.711

JFAC (ECCV ’16) (Zhang et al., 2016b) 0.690 0.350 0.460
TSiam (FG ’19) (Sharma et al., 2019a) 0.749 0.382 0.506
SSiam (FG ’19) (Sharma et al., 2019a) 0.766 0.386 0.514

CCL (Ours with HAC) 0.779 0.402 0.530

#Clusters = 40
Methods P R F

FINCH (CVPR ’19) (Sarfraz et al., 2019) 0.733 0.711 0.722

DIFFRAC-DeepID2+ (ICCV ’11) (Zhang et al., 2016b) 0.557 0.213 0.301
WBSLRR-DeepID2+ (ECCV ’14) (Zhang et al., 2016b) 0.502 0.206 0.292
HMRF-DeepID2+ (CVPR ’13) (Zhang et al., 2016b) 0.599 0.230 0.332
JFAC (ECCV ’16) (Zhang et al., 2016b) 0.711 0.352 0.471
TSiam (FG ’19) (Sharma et al., 2019a) 0.763 0.362 0.491
SSiam (FG ’19) (Sharma et al., 2019a) 0.777 0.371 0.502

CCL (Ours with HAC) 0.786 0.392 0.523

main characters – see Table 4.7. CCL significantly outperforms the state-of-the-art
in unsupervised learning techniques and is comparable to Sarfraz et al. (2019). Note
that FINCH (Sarfraz et al., 2019) is not trainable.

CCL vs. TSiam and SSiam. In Table 4.6, we report the frame-level clustering
performance on all three datasets (as compared to track-level performance in Ta-
ble 4.1). We observe that CCL outperforms TSiam, SSiam and also the base features
by significant gains. CCL operates directly on face detections (like SSiam), while
TSiam requires tracks.

Computational complexity. The time to compute FINCH partitions for BBT,
BF, and ACCIO is approximately 45 seconds, and ∼2 minute respectively on CPU.
Training CCL for 20 epochs on BBT-0101 requires less than half an hour on a GTX
1080 GPU using the PyTorch framework.

72 Clustering-based Pair Generation 4

4.5 Summary

In this chapter, we proposed a self-supervised, clustering-based contrastive learning
approach for improving deep face representations. We showed that we can train
discriminative models using positive and negative pairs obtained through clustering
and video level constraints that do not rely on face tracking. Through experiments on
three challenging datasets, we showed that CCL achieves state-of-the-art performance
while being computationally efficient and easily scalable.

In the next chapter, we look at graph neural networks for self-supervised face grouping
on graphs, wherein we utilize the video constraints to generate pseudo-labels.

Chapter 5

Self-Supervised Face-Grouping on
Graphs

In the previous chapters, we opted for multilayer perceptron to learn discriminative
features. In this chapter, we approach the problem using graph neural networks,
the features communicate over the edges allowing each track’s feature to exchange
information with its neighbors.

Specifically, in this chapter, we propose a novel self-supervised method for fine-tuning
deep face representations called Face-Grouping on Graphs. We apply our method
to automatic face grouping, where characters are to be separated based on their
identity. To solve this problem, a graph structure with positive and negative edges
over a set of face-tracks based on their temporal overlap and similarity constraints is
induced, which requires no manual labor. We compute feature representations over
sub-sequences of each track (sub-tracks) in order to obtain robust features whilst
being able to utilize information contained in face variance. Each sub-track is given
the ability to exchange information with adjacent sub-tracks via a typed graph neural
network running over the induced graph. This allows us to push each representation
in a direction in feature space that groups all representations of the same character
together and separates representations of different characters.

We show that our method is capable of improving clustering accuracy on popular
video face clustering datasets The Big Bang Theory and Buffy the Vampire Slayer
by 4.9% and 17.0% respectively compared to baseline performance, and 0.52%

74 Self-Supervised Face-Grouping on Graphs 5

respective 5.55% compared to state-of-the-art methods. Additionally, we achieve
19.0% absolute increase in B3 F-Score on Harry Potter 1 (ACCIO) over other state-
of-the-art unsupervised methods. We provide performance metrics on all episodes of
The Big Bang Theory and Buffy the Vampire Slayer to enable further comparison in
the future. An implementation is available at https://github.com/RunOrVeith/FGG.

The content of this chapter is based on the following publication:

• Veith Röthlingshöfer*, Vivek Sharma*, and Rainer Stiefelhagen. “Self su-
pervised face-grouping on graphs”. In ACM International Conference on
Multimedia, 2019. Spotlight: oral presentation.

V. Sharma came up with the main idea of learning graph like structure for face
representation learning. V. Röthlingshöfer and V. Sharma contributed equally to
the refining the whole idea, writing and experiments. V. Röthlingshöfer focused on
the implementation.

5.1 Introduction

We address the problem of effectively learning and utilizing features to improve
video face grouping. A good feature representation of positive face pairs should have
small intra-person-distance, and large inter-person-distance compared to negative
pairs in feature space. The feature space should be representative and permit better
face clustering under unconstrained appearance variations (Cao et al., 2018; Sharma
et al., 2019a; Tran et al., 2018; Wu et al., 2018). This implies that the solution of
face grouping (or clustering) in videos will benefit potential applications in video
understanding, video summarization, content-based indexing & retrieval and more.
Due to the vast amount of video material created daily and the many different people
that appear potentially, it is critical to use methods that do not require manual
annotations and do not depend on the presence of specific actors.

Many previous works (Bäuml et al., 2013; Wu et al., 2013a; Zhang et al., 2016a,b)
on unsupervised face grouping make use of pairwise constraints mined from the
face-tracks, such as faces from the same track belonging to the same person, and
faces from tracks overlapping in time belonging to different persons. Constraints
based on similarity (Sharma et al., 2019a) or other sources (Tapaswi et al., 2012,
2014b) have also been considered. These constraints are then used as a pairwise

https://github.com/RunOrVeith/FGG

5.1 Introduction 75

guide towards a suitable representation of each person in feature space using a loss
function. The following scenario is a highly abstracted version of this process.

Imagine a room full of people (who represent the data points) with the goal to form
groups within the room based on an attribute that each person was assigned. No
one knows the attributes of anyone else except themselves. The strategy of previous
approaches is to let an external observer pick a limited number of people, and tell
each one the direction where to go based on constraints that the observer knows. The
observer has not seen all attributes before starting. This requires many iterations to
achieve a satisfactory grouping. If the people instead were allowed to communicate
with others around them while knowing the pairwise constraints, they could form
groups themselves in parallel without the need of an external observer. Information
about people further away trickles through the room like a game of Chinese Whispers:
“I talked to a group with a similar attribute as you, they went this way! My attribute
is different, so I’m going to go the other way.” is an example of information being
passed through the room that allows everyone to find their correct group.

Motivated by recent works on graph neural networks, such as message passing (Gilmer
et al., 2017) and more (Battaglia et al., 2018; Derr et al., 2018; Kipf and Welling,
2017), we propose Face-Grouping on Graphs (FGG), an approach to self-supervised
face grouping that emulates the communication in the scenario above. The deep face
features of each data point are laid out in a graph structure, where edges represent
one of must-link/cannot-link constraints. Using a neural network that operates on
the graph structure and differentiates between the different edge types, the features
can exchange information and assimilate their position in feature space compared
to other features belonging to the same person. Additionally, we propose to work
with partially pooled features as a trade-off between robustness on track-level and
conservation of variance information on frame-level. We call this representation
subtrack-level; it is obtained by splitting each track into shorter segments. We make
the following contributions:

1. We show that the exchange of information between different features via a
graph structure provides valuable information to learn discriminative features.

2. The features obtained using FGG have high separability and outperform state-of-
the-art unsupervised face grouping methods on all three examined benchmarks:
A simple, well-lit dataset with few characters (The Big Bang Theory (Bäuml

76 Self-Supervised Face-Grouping on Graphs 5

et al., 2013; Tapaswi et al., 2012; Wu et al., 2013a; Zhang et al., 2016a)), a
more difficult dataset containing many night-time shots (Buffy - The Vampire
Slayer (Bäuml et al., 2013; Zhang et al., 2016b)), and Harry Potter 1 (Ac-
cio) (Ghaleb et al., 2015), a feature length film with many characters across
many different lighting conditions.

3. We provide scores for previously unreported episodes of The Big Bang Theory
and Buffy - The Vampire Slayer to enable further study in the future.

The remainder of this chapter is structured as follows: Section 5.2 gives an overview
over related work. In Section 5.3, we discuss how a graph is constructed and how
features can be learned. Extensive experiments, an ablation study and the comparison
to the state-of-the-art are presented in Section 5.4 before concluding in Section 5.6.

5.2 Related Work

Learning on Graphs. Graphs are explored for a person-ID/retrieval problem
in Huang et al. (2018). An input image of a person is given, and the goal is to
find all instances of that person in a set of videos. They construct a graph over
the input face-tracks using visual as well as temporal links and perform graph
transduction (Subramanya and Bilmes, 2009; Wang et al., 2008) using the input
image as labeled data. Note that their approach does neither update the feature
representation, nor make use of graph convolution methods. Their construction
of the graph over face-tracks is different to ours. Additionally, we try to learn
features that separate identities when clustered, and they perform person search over
a static feature set. Another work has used graph structures to encode the content
of videos (Vicol et al., 2018), including person interactions, relationships, and many
more attributes, such as reasons behind actions. In contrast, we only use the graph
to structurize the information flow using interactions of characters appearing in a
video.

Extending deep learning to work over non-euclidean structures has been a much-
discussed topic recently (Battaglia et al., 2018; Bresson and Laurent, 2017; Bronstein
et al., 2017; Derr et al., 2018; Gilmer et al., 2017; Kipf and Welling, 2017; Li et al.,
2016). In Kipf and Welling (2017), the authors introduce a feasible approximation

5.3 Method 77

scheme for spectral graph convolutions and introduce the Graph Convolutional Net-
work (GCN). More generalizations, such as the message passing framework (Gilmer
et al., 2017) and the more recent graph network framework (Battaglia et al., 2018)
have been proposed. In the context of Battaglia et al. (2018), we use a node-focused
approach, since we collect output features from each node in the graph. We base our
network on Kipf and Welling (2017) with the modification of residuality from (Bresson
and Laurent, 2017; He et al., 2016) and multiple edge types (Li et al., 2016).

Other works (Hamilton et al., 2017; Narayanan et al., 2017) are looking to find
representations for graphs, i.e. encode the structure of a graph. We use graph
structure to learn representations of face-tracks. In Cai et al. (2011), a nearest-
neighbor graph structure is used to cluster documents in a matrix-factorization
framework. Utilizing must-link and cannot-link constraints implies a signed graph
with positive and negative edges. The authors of Derr et al. (2018) explore link
prediction on signed graphs using balance theory: “The friend of my friend is my
friend” and “The enemy of my friend is my enemy”. We have direct edges satisfying
this assumption, and thus do not have to learn it. We want to acknowledge the
concurrent work of Wang et al. (2019), who tackle the problem of face grouping as
link prediction in a graph using GCNs.

5.3 Method

5.3.1 Preliminaries

Assume a given set of face-tracks T obtained from a video sequence. Each track
tia,b
∈ T, i ∈ [1, . . . , |T |] consists of b − a + 1 individual, temporally ordered faces.

The track starts at frame a and ends at frame b (inclusive). Each track consists of
per-frame faces ti[a,b],j , j ∈ [0, b− a+ 1), that belong to a person c out of the set of
possible persons C. Each face is represented by a deep feature fij ∈ Rd, d ∈ N+. We
use features fij ∈ R2048 from a VGG2 pretrained CNN (Cao et al., 2018).

In summary, ti[a,b],j = fij corresponds to the jth face in the ith track, which starts at
frame a and ends at frame b. Note that a single face that has no temporal information
is a special case where a = b, but can otherwise be treated the same as a face-track
with temporal information. For notational convenience and readability, we drop
(some of) the indices in the following where they are not needed.

78 Self-Supervised Face-Grouping on Graphs 5

We want to group all tracks that belong to the same person together into clusters
Ĉ1, . . . , Ĉ|C|, so that any Ĉ contains exactly all tracks belonging to a single person.
The number of total clusters |C| is assumed to be known in advance and is equal
to the number of characters. A Graph Convolutional Network (GCN) (Kipf and
Welling, 2017) (discussed in more detail in Section 5.3.3) is used to fine-tune the
features, and Hierarchical Agglomerative Clustering (HAC) (Ward Jr., 1963) is used
for grouping.

Next, we describe how a graph on which the GCN is trained can be obtained from
the face-tracks.

5.3.2 Graph Construction

An undirected Graph G = (V,E) can be constructed over T by representing each
track ti with a node and connecting the nodes using one of several constraints. We
use ti both for the track and the node that it represents. A node is associated with a
mean-pooled deep feature fi ∈ R2048 over a track:

fi = mean-pool(ti,a,b
) = 1

b− a+ 1

b−a∑
j=0
fij (5.1)

We define two edge types with which any two nodes can be connected: We call the
first kind must-link edge, and the second kind cannot-link edge in accordance with
previous literature (Cour et al., 2010; Sharma et al., 2019a; Tapaswi et al., 2014b;
Wu et al., 2013b). The different edge types are used by the GCN to differentiate
whether features should either be brought closer together or pushed further apart.
This allows information to flow differently across must-link and cannot-link edges,
thus enabling each track to update its representation depending on the representation
of its neighbors. We use separate learnable weight tensors per edge type and layer to
enable this behavior (Li et al., 2016). Note that even though the edge names contain
the word “must” and “cannot”, they are not enforced strictly but serve as a soft guide
towards a representation that fulfills these constraints. Each edge (ti, tj, wij, k) ∈ E
has an associated weight wij ∈ R that acts as a proxy for the certainty with which
the edge is present, and an edge type k ∈ {must− link, cannot− link}. The initial
graph contains no edges and all tracks: V = T and E = ∅. Edges are created
based on the following constraints. The constraints are used similarly to previous

5.3.2 Graph Construction 79

works (Sharma et al., 2019a; Zhang et al., 2016a) to generate labels for the loss
function (see Section 5.3.3). To the best of our knowledge, we are the first to
additionally use these constraints to guide information flow between sub-tracks.

Temporal Constraints. Some information is inherent to the face-tracks: Under the
assumption that no person appears more than once at a given time, it is guaranteed
that face-tracks overlapping in time correspond to different persons. Thus, we add
temporal cannot-link edges Etc between any track pair that overlaps in time. Because
these edges are known to be correct, their weight is always set to 1.

Etc = {(tia,b
, tja′,b′ , 1, cannot− link)|tia,b

∈ T, tja′,b′ ∈ T, i 6= j,

[a, b] ∩ [a′, b′] 6= ∅}
(5.2)

Must-link constraints are mined from the fact that each face-track contains only
one person. In this formulation however, we can not add any temporal must-link
edges Etm, since each track corresponds to exactly one node. There are no two
nodes for which it is known solely based on temporal constraints that they must
correspond to the same person. To alleviate this issue, we propose an intermediate
representation of the face-tracks: Each track tia,b

is split into si ∈ [1, . . . , b− a+ 1]
disjunct, roughly evenly-sized sub-tracks tic1,d1

, . . . , ticsi ,dsi
so that

si⋃
k=1

[ck, dk] = [a, b]

and
si⋂
k=1

[ck, dk] = ∅.

Applying the split operation

S(ti, si) =
si⋃
k=1

tick,dk
(5.3)

retrieves the set of resulting sub-tracks. Because any existing edges connected to ti
also apply to each sub-track, these edges are copied to each sub-track as Ecopy:

ecopy(ti, si) = S(ti, si)×
⋃

(ti,v,w,k)∈E
(v, w, k) (5.4)

Ecopy =
|T |⋃
i=0

ecopy(ti, si) (5.5)

Here, × indicates Cartesian product. A split graph is iteratively constructed by
replacing the ith node with all created sub-tracks S(ti, si) and updating the edges
with the copied edges. Each split grows the graph by si − 1 nodes. This procedure

80 Self-Supervised Face-Grouping on Graphs 5

Figure 5.1: Exemplary split of a toy graph: On the left a graph G = (S(T, 1), Etc)
representing four temporally overlapping tracks. Each node represents a full track t ∈ T .
No must-link edges are present. On the right G′ = (S(T, [1 3 1 1]), Etc ∪ Ecopy ∪ Etm),
with track t1 split into 3 sub-tracks. The created nodes are t4, t5 and t6. All created nodes
are completely connected with must-link edges, and they adopt the cannot-link edges of t1.

is fully characterized by a split-vector s ∈ ×
ta,b∈T

[1, b− a+ 1]. We call this the split

construction S(T, s). Note that using s = 1 is equivalent to the unsplit track-level
graph, and using sframe-level := si = b − a + 1 ∀tia,b

∈ T corresponds to a graph on
frame-level. When a track is split, the feature representation of each created node is
the mean-pooled feature over the corresponding sub-track.

Working on a split graph allows to add temporal must-link edges Etm. All sub-tracks
of a given track ti are connected with a must-link edge of weight 1:

etm(ti, si) = (S(ti, si)× S(ti, si)) \
si⋃
k=1

(tick,dk
, tick,dk

) (5.6)

Etm =
|T |⋃
i=1

⋃
tj ,tk∈etm(ti,si)

(tj, tk, 1,must− link) (5.7)

The graph is now defined by G = (S(T, s), Etc ∪ Ecopy ∪ Etm). See Figure 5.1 for an
example.

Split Variants. To find a suitable split s, we must discuss the trade-offs that splitting
has. The more nodes and edges the graph has, the bigger the feature matrix and
adjacency matrix. This results in a higher run time and memory requirement, even
when utilizing sparse matrix multiplications. Furthermore, a smaller graph allows
information to flow across the graph faster. Since we utilize GCN (see Section 5.3.3),
the receptive field for k layers is the kth order neighborhood for each node (Kipf
and Welling, 2017). This means that for information to propagate as far in a

5.3.2 Graph Construction 81

split graph as in an un-split graph, more layers are required, which again increases
the computational burden. When operating on a track-level graph, all must-link
constraints are met automatically, because there is only one node to cluster per
track. In contrast, it is possible for each sub-track to end up in a different cluster
when splitting. We argue that this is in fact a positive effect. Mean representations
provide protection against outliers on the one hand side. Splitting can be regarded
as de-blurring on the other hand side: The mean feature over a full (long) face-track
can not express the variance across multiple head poses and lighting conditions -
resulting in a relatively uniform feature vector - whereas the same track split into
a reasonable amount of sub-tracks retains information about the variance. More
distinct features per person on the sub-track level make it more probable to find
suitable clusters, instead of having to cluster similar features on track-level.

It is thus important to choose s in such a way to keep the run time low and minimize
the influence of outliers, but split enough times to be able to learn from the intra-
person variance within the features. We find a simple length-based heuristic sh to
work well across datasets. Given a number of maximal sub-tracks X ∈ N+, a step
size ∆ ∈ N+ and a lower bound B ∈ N+ below which no split is applied, we define

sh(ta,b) = max(1,min(X, 1 + (b− a+ 1)−B
∆)) (5.8)

and shi = sh(ti). Intuitively, this does not split a track if it is less than B frames
long and splits into one more sub-track every additional ∆ frames up to a maximum
number of sub-tracks X.

Similarity Constraints. In addition to the temporal constraints that are inherent
in the data and provide a learning signal for all co-occurring face-tracks, we explore
mining additional edges for tracks that occur by themselves based on the cosine
similarity of the input features. The approach is similar to Sharma et al. (2019a).
Given a graph G, we sample a fraction α ∈ [0, 1] of the graph’s isolated nodes and
compute the pairwise cosine similarity between the sampled nodes’ features, resulting
in a similarity matrix D ∈ [0, 1]n×n, where n is the number of sampled nodes. A node
is only an isolate node, if the corresponding track is too short to be split (less than B
frames). With β ∈ [0, 1] we then connect the β

2 most similar pairs with a must-link
edge to obtain E+ with the weight corresponding to the similarity score. The β

2

least similar pairs are connected with a cannot-link edge in E−. The weight is set to

82 Self-Supervised Face-Grouping on Graphs 5

1− similarity, since a low similarity indicates a high certainty for the cannot-link
edge. Let k = nβ

2 .

E+ = argk min
Dij ,i 6=j

(ti, tj, Dij,must− link) (5.9)

E− = argk max
Dij ,i 6=j

(ti, tj, 1−Dij, cannot− link) (5.10)

The final graph is obtained as

G = (S(T, s), Etc ∪ Ecopy ∪ Etm ∪ E+ ∪ E−) (5.11)

5.3.3 Training Procedure

The procedure to group a set of face-tracks using our proposed Face-Grouping on
Graphs (FGG) method is as follows: First, a graph is constructed over the face-tracks
of a given episode. Each node represents a full track. Then, the cannot-link edges
based on temporal overlap are added. Next, the temporal must-link edges are added
by splitting the graph with heuristic sh. We fix X = 10 to keep the computation
time short and find B = 50,∆ = 10 to work well in practice. Finally, the remaining
isolated tracks are connected with similarity-based edges. We use α = 1 and β = 0.03,
which was verified on a validation set to produce on average ≥ 99% correct edges. A
study on the influence of wrong edges is presented in Section 5.4.2.

The graph is then run through a graph neural network, which outputs a final feature
embedding. Our model consists of the following layers: Fully-Connected (FC), a
fully connected layer that only receives the features, but not the graph structure as
input. It allows us to decrease computational cost of the following graph convolutions.
resGC is a residual graph convolution layer (Bresson and Laurent, 2017; He et al.,
2016; Kipf and Welling, 2017). Each node updates its representation based on
the features in the neighboring nodes. It is important to differentiate whether a
neighbor is connected with a must-link or a cannot-link edge, and how each edge
type should influence the feature update. Thus, the graph convolution layers have a
separate weight tensor for each edge type. The contributions of the different types are
summed to obtain the combined output as suggested in (Li et al., 2016). The residual
Graph Convolution (resGC) layers are initialized with the uniform He-method (He
et al., 2015), which improves stability. BN is a batch norm layer with tracking of

5.3.3 Training Procedure 83

Fi
gu

re
5.
2:

O
ur

FG
G

m
od

el
.
T
he

in
pu

t
is

a
m
at
rix

of
al
lp

oo
le
d
su
b-
tr
ac
k
fe
at
ur
es
,t

he
ou

tp
ut

is
th
e
up

da
te
d
re
pr
es
en
ta
tio

n
of

ea
ch

su
b-
tr
ac
k.

N
ot
e
th
at

th
e
m
od

el
ne

ve
r
ac
tu
al
ly

se
es

an
y
im

ag
es
,t

he
y
ar
e
ju
st

us
ed

to
re
pr
es
en
t
a
su
b-
tr
ac
k
he

re
.
T
he

fu
lly

-c
on

ne
ct
ed

la
ye
r
us
es

th
e
sa
m
e
w
ei
gh

ts
fo
r
ea
ch

tr
ac
k,

i.e
.
th
e
ba

tc
h
di
m
en

sio
n
is

eq
ui
va
le
nt

to
|V
|.

84 Self-Supervised Face-Grouping on Graphs 5

Table 5.1: The layer structure for a graph G = (V, E). Note that |V | is dynamic and changes
depending on the input episode. With several design choices, we optimized efficiently this
network architecture that generalized over all datasets.

Layer Input Dim. Output Dim.
Features Adjacency

FC + ELU |V | × 2048 — |V | × 1024
resGC + BN + ELU |V | × 1024 2× |V | × |V | |V | × 512
resGC + BN + ELU |V | × 512 2× |V | × |V | |V | × 256
resGC |V | × 256 2× |V | × |V | |V | × 128

running statistics disabled (Ioffe and Szegedy, 2015). We use a batch size of 1, which
is the full graph of one episode. ELU is the Exponential Linear Unit activation
function (Clevert et al., 2016). The model is described in detail in Table 5.1. See
Figure 5.2 for a graphical description. In order to train the neural network, we use a
Contrastive Loss (Hadsell et al., 2006) over connected nodes in the graph:

L(fW , E,A+, A−,m) =
1

2|E|
∑

ti,tj∈E
(1[A+

ij 6= 0]d(fW (ti), fW (tj))2+

1[A−ij 6= 0]max(0,m− d(fW (ti), fW (tj))2))

(5.12)

Here, fW : RN → Rn embeds input features ∈ RN into a lower dimensional feature
space Rn using the trainable weights W . In our context, fW is the neural network
described in Table 5.1. d is the euclidean distance function. E is the set of edges
in the graph, m is the margin parameter empirically set to 1, and A+, A− are the
must-link and cannot-link adjacency matrices. 1 is the indicator function.

We use Adam (Kingma and Ba, 2015) as an optimizer and train for 30 epochs with
a learning rate of 0.0001. One epoch consists of one step over each selected episode.

During testing, the resulting features are l2-normalized and clustered with Hierarchical
Agglomerative Clustering (Ward Jr., 1963) using the number of characters as the
number of clusters. This procedure is highly extensible: Other clustering algorithms
can be swapped in, and any possible additional (pairwise) constraints can be encoded
by adding new edges, or even new edge types.

5.4 Experiments 85

5.4 Experiments

In this section, we first introduce the datasets and implementation details of our
proposed approach, followed by a thorough analysis of the proposed methods, and
end this section with a comparison of our approach against state-of-the-art.

Datasets and metric. We present our evaluation on three challenging datasets:
BBT, BF and ACCIO, discussed in Section 2.3. We summarize the statistics of
datasets in Table 2.1. In terms of evaluation metric following the previous works,
for BBT and BF we report clustering accuracy (ACC or WCP), and for ACCIO in
addition to ACC, we report BCubed Precision (P), Recall (R) and F-measure (F),
as discussed in Section 2.4.

5.4.1 Clustering Performance and Generalization

Base Features. In Table 5.2 we show WCP of each episode when clustering the
VGG2 (Cao et al., 2018) features directly using HAC (Ward Jr., 1963). We exclude
any non-main characters for fair comparison. Track-level results use mean-pooled
frame-level features. The number of clusters is set to the number of main characters.
Note that there is a significant spread in performance across episodes.

Performance on Training Videos. We report the clustering performance when
training and testing on each episode in Table 5.2. Note that training is self-supervised
through the temporal and similarity edges, and no ground-truth labels are required.
Section 5.5 gives an empiric example of the high degree of separation achieved by our
method. The training time for one episode is limited by the evaluation step, which
requires clustering to be run. Training by itself takes 10 seconds per epoch on a
GTX TitanX GPU plus a one-time cost of about 2 minutes to load the features into
memory and construct the graph for a total of 7 minutes. The time per epoch could
be improved by utilizing multi-dimensional sparse tensor multiplications, which are
unavailable in PyTorch (version 1.0.1) (Paszke et al., 2017).

Intra- and Inter-Series Generalization. We evaluate our model on unseen
episodes of the series that it has been trained on (intra-series generalization), and
on episodes of a series that it has never seen before (inter-series generalization). In
particular, this changes the number of characters. Table 5.3 shows the results of

86 Self-Supervised Face-Grouping on Graphs 5

Table
5.2:

C
om

parison
of

W
C
P

on
each

episode.
T
he

first
row

show
s
results

w
hen

clustering
the

V
G
G
2
(C

ao
et

al.,
2018)

face
representations

ofthe
m
ain

characters
as

they
are

contained
in

each
dataset.

T
he

second
row

show
s
the

perform
ance

ofour
proposed

FG
G

m
odel,averaged

over
5
runs.

N
ote

that
the

standard
deviation

(std)
is

in
units

ofperm
ille

(%
�).

T
he

drop
in

perform
ance

for
B
B
T
-0106

is
caused

by
the

nature
ofthat

episode:
T
he

characters
are

at
a
H
allow

een
party

w
earing

costum
es.

B
B
T

B
F

0101
0102

0103
0104

0105
0106

0501
0502

0503
0504

0505
0506

V
G
G
2
base

track-level
0.947

0.984
0.996

0.875
0.936

0.888
0.891

0.812
0.954

0.905
0.866

0.804
fram

e-level
0.936

0.968
0.924

0.981
0.920

0.925
0.927

0.903
0.947

0.887
0.905

0.843

FG
G

(5
runs)

m
ean

0.996
0.996

0.997
0.947

0.996
0.931

0.955
0.980

0.982
0.965

0.952
0.97

std
(in

%
�)

1.2
0.9

0.7
31.3

1.5
1.3

14.5
6.3

4.1
16.5

14.5
6.0

5.4.2 Ablation Study 87

both intra- and inter-series generalization between BBT and BF. Notably, using a
model trained on an episode A can improve the performance on another episode B
compared to a model that has been trained on B, if it achieves a high performance
on A. For example, we found that a model trained on BBT-0101 achieves a WCP of
97.4% and 96.2% on BBT-0104 and BBT-0106 respectively —an increase of ∼ 3%
compared to the model trained and tested on BBT-0104 and BBT-0106 with 94.7%
and 93.1% respectively (see Table 5.2). This indicates generalization ability within
series. The inter-series generalization is significantly worse compared to previous
approaches. Since the graph structure is a proxy for how often characters interact,
which is different per series, this is expected. The network learns features that fit
a given graph structure. Interactions within the same series are more likely to be
similar across episodes, but can be completely different between different series. Note
that our main goal is not generalization, and we do not use any measures to increase
generalization ability such as dropout or introduce stochasticity in other ways.

Generalization to Unseen Characters. A further study on how FGG is able to
cope with adding or removing characters is presented in Table 5.4. We cross-evaluate
models trained on the main cast (5 for BBT-0101, 6 for BF-0502) and all named
characters (6 for BBT-0101, 12 for BF-0502). On BBT-0101, the graph structure is
highly similar, since only one character is added. This allows the model to obtain
a high score. On BF-0502, the graph structure changes more dramatically, since
nodes for tracks of six characters are added. This explains the greater drop in WCP
compared to BBT-0101. However, much of the graph structure is still the same,
allowing us to outperform previous methods (see Table 5.5). Note that the FGG
model trained on the main cast and evaluated on all named characters achieves a
higher WCP than Sharma et al. (2019a), even when compared to their evaluation
on the main cast. Additionally, FGG can handle a reduction of characters from
training on all named cast to evaluation on the main cast. Again, we can observe
that in Table 5.5, BF-0502 is affected more since the graph structure changes more
dramatically.

5.4.2 Ablation Study

In order to investigate how the graph structure is used by the model, we perform
several ablation studies. First, edge dropout is used to determine how the model can

88 Self-Supervised Face-Grouping on Graphs 5

Table
5.3:

W
C
P

w
hen

evaluating
across

different
episodes

ofthe
sam

e
dataset

and
a
different

dataset.
W
e
show

values
including

and
excluding

the
episode

seen
during

training.
Furtherm

ore,we
differentiate

between
evaluating

each
episode

separately
and

then
taking

the
m
ean

(colum
n

separate),and
clustering

allfeatures
jointly

(colum
n

joint).
T
he

best
intra-and

inter-series
generalization

is
m
arked

in
bold.

Trained
O
n

M
ethod

BBT
01[01-06]

BF05[01-06]
BBT

01[02-06]
BF05[01,03-06]

separate
joint

separate
joint

separate
joint

separate
joint

BBT
-0101

T
Siam

(Sharm
a
et

al.,2019a)
—

0.936
—

0.875
—

0.930
—

—
SSiam

(Sharm
a
et

al.,2019a)
—

0.922
—

0.862
—

0.914
—

—
FG

G
0.983

0.980
0.684

0.578
0.980

0.975
—

—

BF-0502
T
Siam

(Sharm
a
et

al.,2019a)
—

0.915
—

0.890
—

—
—

0.889
SSiam

(Sharm
a
et

al.,2019a)
—

0.883
—

0.905
—

—
—

0.904
FG

G
0.767

0.702
0.933

0.875
—

—
0.922

0.932

5.4.2 Ablation Study 89

Table 5.4: Performance when evaluation on more and fewer characters than FGG is trained
on. A comparison the previous works is presented in Table 5.5.

Train \ Test BBT-0101 BF-0502
All named Main All named Main

All named cast 0.994 0.997 0.931 0.943
Main cast 0.993 0.996 0.928 0.980

Table 5.5: Generalization to additional characters. We use the best model trained on
the main cast as reported in Table 5.7. TSiam/SSiam and CCL are described in Chap-
ter 3 (Sharma et al., 2019a) and Chapter 4 (Sharma et al., 2020) respectively.

BBT-0101 BF-0502
TSiam SSiam CCL FGG TSiam SSiam CCL FGG

Main cast 0.964 0.962 0.982 0.996 0.893 0.909 0.921 0.980
All named cast 0.958 0.922 0.966 0.993 0.829 0.870 0.903 0.928

cope with fewer edges. A dropout rate of x% is independent between must-link edges
and of cannot-link edges, i.e. x% of must-link edges and x% of cannot-link edges are
dropped out. We evaluate in 10% steps, and in 1% steps for dropout rates ≥ 90%.

Second, an experiment is conducted with regard to handling the addition of wrong
edges. We add an increasing amount of wrong edges between previously unconnected
nodes. A wrong edge is a must-link edge if the samples nodes belong to different
persons, and a cannot-link edge otherwise. The weight for each additional edge is set
to 1. We randomly sample x% of nodes and add wrong edges between all pairs in the
sample where there is not already an existing edge. We stop after a memory error
occurs due to the amount of edges. Both experiments can be seen in Figure 5.3. The
model is insensitive to the amount of edges; stability decreases as edges are removed,
but the overall performance trend only drops considerably after using a dropout
probability of over 90%. At a dropout rate of 1, the model layers are not updated
during training, since the graph contrastive loss (Eq. 5.12) is 0 when there are no
edges present. The model then acts as a randomly initialized non-linear projection
of the VGG2 features, which explains why the performance is not decreasing more.
In contrast, it is very sensitive to the addition of wrong edges due to the spread of
information over these edges.

Furthermore, different changes to the graph and model structure are evaluated:
FGG-track-level uses the graph before being split into sub-tracks, and without any

90 Self-Supervised Face-Grouping on Graphs 5

similarity-based features. Thus, only cannot-link edges are present and the graph is
on track-level. FGG-track-level-similarity is like FGG-track-level, but similarity-based
edges are added. This improves the performance as well as the stability, especially
on BF-0502, where there is a lower amount of cannot-link edges present (equal to
the number of overlaps in Table 2.1). FGG-random-split uses all edge types, but
each track is split into uniformly sampled random number of sub-tracks between 1
and 10 (or the maximum possible split for short tracks). In FGG-cannot-link, all
must-link edges are removed; only cannot-link edges are present. FGG-frame-level
splits each node as much as possible, i.e. uses a frame-level graph with all edge types.
FGG is our full model using temporal must-link and cannot-link edges as well as
similarity-based edges on the sub-track level graph as defined in Eq. 5.11. We use
FGG as default model, as it performs the best.

Table 5.6 summarizes these experiments. The performance on BBT-0101 fluctuates
considerably less than on BF-0502, indicating that it is a simpler dataset and that
the base VGG2 features are already much more discriminative (as can also been seen
in Table 5.2).

We analyse the impact of pooling over sub-tracks. To allow a meaningful comparison,
the same split graph structure is used, but each node is associated with the mean-
pooled feature of the full track. We compare the performance on all episodes of
BBT and BF. On average, pooling over sub-tracks increases the WCP by 1.65%,
confirming that information contained in the variance of features is beneficial to the
overall performance.

Finally, we observe that pooling the learned subtrack-level features over the complete
original track before clustering does not alter the performance. This indicates that
passing information along the edges of the sub-tracks produces robust features.

5.4.3 Comparison to State-of-the-Art

BBT and BF. We compare the results obtained with FGG to the current state-
of-the-art approaches for video face clustering in Table 5.7. Other approaches are
evaluated at frame-level, where we report track-level performance. Since splitting
the tracks into shorter sub-tracks is a main component of our approach, we evaluate
on sub-track level. We can observe that FGG outperforms previous approaches,

5.4.3 Comparison to State-of-the-Art 91

Table 5.6: WCP when training the FGG model with different features dis/enabled. Mean
and standard deviation are computed across 5 runs. See Section 5.4.2 for an explanation
of each experiment variation. † indicates OUT_OF_MEMORY.

Version BBT-0101 BF-0502
mean std mean std

FGG-track-level 98.48 0.99 83.73 1.00
FGG-track-level-similarity 99.28 0.18 93.80 0.64
FGG-random-split 98.24 0.58 92.01 0.77
FGG-cannot-link 99.36 0.23 85.43 4.67
FGG-must-link 99.16 0.11 97.42 0.71
FGG-frame-level † † † †
FGG 99.56 0.12 98.01 0.63

Figure 5.3: Training on BBT-0101 and BF-0502 with increasing edge dropout (left) and
added wrong edges (right). Each data point corresponds to one training run for 30 epochs.

achieving 0.52% and 5.55% absolute increase in WCP on BBT-0101 and BF-0502
respectively.

ACCIO. ACCIO provides a more difficult dataset compared to BF and BBT. There
are 35 named characters, and many of them never appear on screen at the same
time, thus providing no cannot-link edges between these characters. Additionally,
the most frequently occurring character is depicted in 30.7% of tracks, whereas the
least frequent character in only 0.06% of tracks. The impact of similarity-based
edges is compared in Table 5.8. As common in previous works (Sharma et al., 2019a;
Zhang et al., 2016b), we evaluate with 36 and 40 clusters for the 35 main character
in Table 5.9 and Table 5.10 respectively. Our method significantly outperforms the

92 Self-Supervised Face-Grouping on Graphs 5

Table 5.7: Comparison to state-of-the-art with clustering accuracy (%) at frame-level on
both videos: BBT-0101 and BF-0502. Our result is the mean over five runs.

BBT-0101 BF-0502

ULDML (ICCV ’11) (Cinbis et al., 2011) 57.00 41.62
HMRF (CVPR ’13) (Wu et al., 2013b) 59.61 50.30
wu2013simultaneous (ICCV ’13) (Wu et al., 2013a) 66.77 —
WBSLRR (ECCV ’14) (Xiao et al., 2014) 72.00 62.76
VDF (CVPR ’17) (Sharma et al., 2017) 89.62 87.46
Imp-Triplet (PacRim ’16) (Zhang et al., 2016a) 96.00 −
JFAC (ECCV ’16) (Zhang et al., 2016b) — 92.13
TSiam (FG ’19) (Sharma et al., 2019a) 98.58 92.46
SSiam (FG ’19) (Sharma et al., 2019a) 99.04 90.87
FINCH (CVPR ’19) (Sarfraz et al., 2019) 99.16 92.73
CCL (FG ’20) (Sharma et al., 2020) 99.56 93.79
FGG 99.56 98.01

state-of-the-art in unsupervised learning techniques and is comparable to Sarfraz
et al. (2019). Note that Sarfraz et al. (2019) is not trainable and He et al. (2018)
requires a labeled dataset.

Table 5.8: Influence of similarity-based edges on the ACCIO dataset. FGG-0 does not
add any-similarity based edges. FGG-100* samples 100% of isolated nodes before splitting.
This results in OUT_OF_MEMORY, indicated by †. FGG-100 computes similarity-based
edges after splitting, and samples 100% of the remaining isolated nodes. Performance
degrades slightly because connecting 3% of the nodes results in relatively more wrong edges
compared to BBT and BF.

#cluster=36
P R F

FGG-0 0.676 0.755 0.714
FGG-100* † † †
FGG-100 0.654 0.728 0.689

FGG vs. CCL, TSiam and SSiam. In Table 5.11, we report the frame-level
clustering performance on all three datasets (as compared to track-level performance
in Table 5.2). We observe that FGG outperforms CCL, TSiam, SSiam and also the
base features by significant gains.

5.5 Feature Space Projections 93

Table 5.9: Performance comparison on ACCIO with 36 clusters. Score is averaged over
5 runs. We achieve an absolute improvement of 18.5% in B3 F-Score over the previous
state-of-the-art unsupervised learning method.

#cluster=36
P R F

IL-HC (AAAI ’18) (He et al., 2018) 0.908 0.786 0.843
FINCH (CVPR ’19) (Sarfraz et al., 2019) 0.748 0.677 0.711
JFAC (ECCV ’16) (Zhang et al., 2016b) 0.690 0.350 0.460
TSiam (FG ’19) (Sharma et al., 2019a) 0.749 0.382 0.506
SSiam (FG ’19) (Sharma et al., 2019a) 0.766 0.386 0.514
CCL (FG ’20) (Sharma et al., 2020) 0.779 0.402 0.530
FGG 0.654 0.728 0.689

Computational Complexity. This approach does not scale to arbitrarily large
graphs, as the full set of features must be present in memory, and a large adjacency
matrix is constructed. We do not optimize our implementation to the highest possible
degree, which currently requires the transformation of a dense matrix into a sparse
matrix. For this reason, a frame-level evaluation consumes too much memory (see.
Table 5.6). However, our sub-track level implementation requires only a reasonable
amount of memory even for datasets originating from a feature film such as ACCIO.
If required, some more refined implementation tricks could be employed to enable
running on larger datasets. See Section 5.4.1 for a discussion on run time. Please
note that running on ACCIO takes considerably longer than BF and BBT due to
at least 4.5 times more tracks and edges. With the smaller datasets, we can use
dense multidimensional tensor multiplications, but due to memory issues we have to
use multiple sparse multiplications with ACCIO. This can be resolved once sparse
multidimensional tensor multiplications are available in pyTorch.

5.5 Feature Space Projections

We show projections of feature space before the start and after the end of training
using t-SNE (van der Maaten and Hinton, 2008) in Figure 5.5 and using Principal
Component Analysis (PCA) (Abdi and Williams, 2010) in Figure 5.4. The overlap
between clusters as well as the cluster spread is visibly reduced.

94 Self-Supervised Face-Grouping on Graphs 5

Table 5.10: Performance comparison on ACCIO with 40 clusters. Score is averaged over
5 runs. Our method outperforms previous unsupervised methods significantly, with 19%
absolute improvement in B3 F-Score.

clusters=40
P R F

FINCH (CVPR ’19) (Sarfraz et al., 2019) 0.733 0.711 0.722
DIFFRAC-DeepID2+ (ICCV ’11) (Zhang et al., 2016b) 0.557 0.213 0.301
WBSLRR-DeepID2+ (ECCV ’14) (Zhang et al., 2016b) 0.502 0.206 0.292
HMRF-DeepID2+ (CVPR ’13) (Zhang et al., 2016b) 0.599 0.23.0 0.332
JFAC (ECCV ’16) (Zhang et al., 2016b) 0.711 0.352 0.471
TSiam (FG ’19) (Sharma et al., 2019a) 0.763 0.362 0.491
SSiam (FG ’19) (Sharma et al., 2019a) 0.777 0.371 0.502
CCL (FG ’20) (Sharma et al., 2020) 0.786 0.392 0.523
FGG 0.663 0.724 0.692

Table 5.11: Frame-level clustering accuracy (%) of FGG and comparison to CCL (Sharma
et al., 2020), TSiam (Sharma et al., 2019a) and SSiam (Sharma et al., 2019a) over all
datasets: BBT-0101, BF-0502 and ACCIO.

#Clusters Base TSiam SSiam CCL FGG

BBT-0101 5 94.00 98.58 99.04 99.56 99.56
BF-0502 6 91.20 92.46 90.87 93.79 98.01
ACCIO 36 79.90 81.30 82.00 83.40 77.17

5.6 Summary

In this chapter, we have presented a method to obtain improved face feature rep-
resentations by utilizing the underlying structure of person appearances in video
data. A graph is constructed based on this structure, where each node represents
a face sub-track and edges indicate either that two tracks belong to the same, or a
different person. We exploit the structure as a supervision signal to compute feature
representations over each sub-track using graph convolutions, allowing each track’s
feature to exchange information with its neighbors. The approach creates face-track
representations with improved performance for face clustering. We outperform other
recent unsupervised approaches on the Buffy, Big Bang Theory and ACCIO datasets
significantly. In future work, we would like to interpret the approach as a link
prediction problem. Another potential future step is a smarter utilization of negative

5.6 Summary 95

BF-0502 after 1 epoch BF-0502 after 30 epochs

BBT-0101 after 1 epoch BBT-0101 after 30 epochs

Figure 5.4: Comparison of a PCA projection (Abdi and Williams, 2010) of feature space
at the start and end of training on BF-0502 and BBT-0101 using FGG. The ground truth
character associations to each data point are color-coded.

edges (cannot-link), similar to recent work on signed graphs (Derr et al., 2018; Kumar
et al., 2016; Yuan et al., 2017).

In the next chapter, we present an alternative strategy to encode the face sub-track
in videos into a single descriptor, which we then integrate into our previous method
for learning a more powerful representation.

96 Self-Supervised Face-Grouping on Graphs 5

BF-0502 after 1 epoch BF-0502 after 30 epochs

BBT-0101 after 1 epoch BBT-0101 after 30 epochs

Figure 5.5: Comparison of a t-SNE projections (van der Maaten and Hinton, 2008) of
feature space at the start and end of training on BF-0502 and BBT-0101 using FGG. The
ground truth character associations to each data point are color-coded.

Chapter 6

Temporal Feature Encoding and
Representation Learning

The previous chapters proposed novel methods to generate weak-labels for face
representation learning. In this chapter, we study the role of feature encoding, to
encode the face sub-track in videos into a single descriptor, which we then use towards
learning a more powerful face representation.

Specifically, in this chapter, we first start with presenting a new task of sorting by time
a scrambled collection of video clips. Ordering video clips requires us to learn intrinsic
characteristics of videos such as how people act, events unfold, and scenes change over
time. We propose to learn video ordering using a self-supervised approach and a new
feature encoding method that creates a compact feature representation encompassing
several modalities including video (images), audio and dialog. We create a new
multimodal dataset, namely LSMDC-Ordering for temporal ordering that consists of
almost 30K scenes (2-6 clips per scene) from movies that are derived from the Large
Scale Movie Description Challenge dataset. The influence of individual and joint
modalities are analyzed on two challenging tasks: inferring the temporal order for
a set of videos, and multimodal clip retrieval. Our experiments demonstrate that
different modalities are indeed complementary and can play an important role in
both applications. Following video ordering, as other use cases of feature encoding,
we then show that our feature encoding method performs well on action recognition
and video face clustering, and achieve gains in performance. The datasets and code
are available at https://github.com/vivoutlaw/tcbp.

https://github.com/vivoutlaw/tcbp

98 Temporal Feature Encoding and Representation Learning 6

C D EA

- You can sit here if
you want.

(nar.) I had never
seen anything like her.

- Jenny.
- I am Forrest.

- Forrest Gump.
(nar.) From that day

13.47 - 13.50 14.36 - 14.37 14.03 - 14.07 14.37 - 14.4013:50 - 13:55

B

Figure 6.1: Video ordering: Given an unordered collection of video clips, our goal is to
infer their correct temporal order by utilizing a compact multimodal feature encoding that
exploits high-level semantic concepts such as objects, scenes, dialogues, and sounds in each
clip. We visualize five clips (first and last frame) from a scene in our dataset. Can you
guess the correct order by considering all modalities?

The content of this chapter is based on the following publication:

• Vivek Sharma, Makarand Tapaswi, and Rainer Stiefelhagen. “Deep mul-
timodal feature encoding for video ordering”. In IEEE International
Conference on Computer Vision (ICCV): workshop on Large Scale Holistic
Video Understanding, 2019. Oral presentation.

6.1 Introduction

Temporal sequences are frequently encountered in computer vision problems such as
object tracking, video action recognition, video segmentation, video captioning, etc..
Compelling advantages of exploiting temporal cues over merely spatial ones have
been shown in the recent years (Carreira and Zisserman, 2017; Diba et al., 2017,
2018a, 2019b; Hara et al., 2018). However, such information can only be utilized if
the temporal ordering of the data is known.5

In this chapter, we consider the task of ordering video clips to create a timeline.
While ordering a sequence of photos has received much attention (Basha et al., 2012;
Dicle et al., 2016; Matzen and Snavely, 2014; Moses et al., 2013; Sadeghi et al., 2015;
Schindler et al., 2007), our task is arguably more complex due to motion, variations

5The correct order is B - A - D - C - E. Forrest approaches Jenny on the school bus, asks her if
he can sit with her, and they introduce each other.

6.1 Introduction 99

in activities, objects, and context in videos (see Fig. 6.1). To address this problem,
we learn a semantic representation for video clips by exploiting high-level concepts
from multiple complementary sources – objects, scenes, events, dialog, and activities
of interest.

Learning a joint representation for images/videos and text is popular in captioning (Jin
et al., 2016; Wu and Han, 2018; Yang et al., 2017b), description (Hori et al., 2017)
cross-modal retrieval (Cascante-Bonilla et al., 2019; Guo et al., 2019; He et al.,
2019; Peng et al., 2018; Qi et al., 2018; Ren et al., 2019), and summarization (Kim
et al., 2014), and is typically achieved using a combination of Convolutional Neural
Networks (CNNs) (Carreira and Zisserman, 2017; He et al., 2016) and Recurrent
Neural Networks (RNN) (Hochreiter and Schmidhuber, 1997; Kiros et al., 2015).
Typical fusion strategies often include concatenation, element-wise product, sum-,
average-, or max-pooling, and (self-)attention. Recently, bilinear pooling (Fukui
et al., 2016; Yu et al., 2017) has gained interest as it efficiently captures pairwise
interactions between representations. This is often implemented by using the Tensor
Sketch (Gao et al., 2016; Pham and Pagh, 2013) or matrix factorization (Yu et al.,
2017) algorithms. Effectively understanding a short video clip (2-5 seconds), involves
understanding and capturing interactions between all its modalities - audio, video, and
dialog (text). To this end, we propose Temporal Compact Bilinear Pooling (TCBP),
an extension of the Tensor Sketch algorithm (Pham and Pagh, 2013) that incorporates
a temporal dimension. We use TCBP to aggregate features computed by pre-trained
multimodal networks over several parts of the video (multiple time-steps) into a
compact representation.

Our approach can also be categorized under self-supervised visual representation
learning (e.g. Fernando et al. (2017); Misra et al. (2016); Sharma et al. (2019a); Wang
and Gupta (2015)), that uses video constraints to create millions of positive/negative
image pairs (e.g. predict the next frame) to learn discriminative image features.
Generating such frame-level training data assumes that the video is stationary in
a short temporal neighborhood. Complementary to above methods, while ordering
clips requires understanding the dynamics of each video, it also affords automatic
supervision at the clip-level as a long video (e.g. a movie) can be easily segmented
into temporally ordered clips.

We highlight our key contributions below:
1) We present temporal ordering of video clips as a holistic video understanding task

100 Temporal Feature Encoding and Representation Learning 6

that requires learning the dynamics of how events unfold and people act over time.
To facilitate this study, we design a new dataset LSMDC-Ordering of almost 30K
ordered scenes (each with 2-6 clips) from movies (Sec. 6.4.1).
2) We propose to learn in a self-supervised setting and extend a popular bilinear
pooling method to the temporal domain – Temporal Compact Bilinear Pooling
(TCBP) aggregates multiple temporal segments from a video clip combining audio,
video, places, objects, and text (Sec. 6.3).
3) We perform an exhaustive study of the effects of individual and joint modalities
on temporal ordering and multimodal clip retrieval. We also demonstrate that
TCBP achieves performance gains in action recognition and video face clustering by
effectively combining temporal cues.

The remainder of this chapter is structured as follows. Section 6.2 overviews related
work. Section 6.3 describes our proposed architecture. Experimental results and their
analysis are presented in Sections 6.4. Finally, conclusions are drawn in Section 6.5.

6.2 Related Work

We contrast related topics in self-supervised representation learning, the use of time
as supervision, audio-visual learning, and briefly discuss feature encoding methods.

Self-supervised representation learning is increasing in popularity in recent
years. This learning paradigm obtains supervision by exploiting the structure
within the data, and thus removes the need for an often costly labeling effort. For
example, one may learn image representations by exploiting the spatial consistency
of images (Doersch et al., 2015), or using a host of spatial/color transforms to train
a model that recognizes instances of the transformed images (Dosovitskiy et al.,
2014). In a similar vein, face representations are fine-tuned for clustering by creating
similar/dissimilar pairs within video sub-structures (Tapaswi et al., 2014b) or a
distance matrix (Roethlingshoefer et al., 2019; Sharma et al., 2019a).

Videos are another popular source of learning image representations. Here, tracking
an object over several frames can be used to generate similar/dissimilar pairs (Wang
and Gupta, 2015). At the frame-level, using temporal consistency within neighboring
frames (Misra et al., 2016); or finding an odd frame in a triplet of frames (Fernando
et al., 2017) are examples of deriving supervision from videos. Perhaps closest to our

6.2 Related Work 101

work, recently Xu et al. (2019) learn video representations by shuffling a triplet of
clips (a similar strategy to (Fernando et al., 2017; Misra et al., 2016)). Their method
divides a short clip into three contiguous non-overlapping 16-frame segments, and
aims to order these short clips correctly.

Our work differs substantially in scope and technical approach from above approaches.
We do not learn image/video representations from scratch, but are interested in
learning holistic, multimodal clip representations that can be used to order a variable
set of clips (up to 6, but can be extended further) ranging from 2-5 seconds. We
use strong pre-trained networks (e.g. objects (He et al., 2016), sounds (Aytar et al.,
2016)) and combine their information over multiple temporal windows using a new
temporal pooling approach.

Time as a supervisory signal. The idea of using temporal continuity or ordering
as a signal for supervision is quite popular. For example, Misra et al. (Misra et al.,
2016) shuffle 3 frames from a video to generate positive/negative sequences and
train a model to predict whether the order is correct. However, the use of 3-frame
sequences only allows learning image representations. Predicting whether a video
flows forwards or backwards is another related task (Pickup et al., 2014; Wei et al.,
2018). However, they often require computationally intensive optical flow, and
do not encode semantics about objects/scenes. More importantly, only a binary
forward/backward ordering is learned, and other shuffled permutations are ignored.
The goal of our task is to predict the complete order of video clips (up to 6) and not
frames, each of 2-5 seconds.

Temporal ordering has also been used for other applications: predicting the future in
egocentric videos (Zhou and Berg, 2015), learning the steadiness of visual change
in videos (Jayaraman and Grauman, 2016), or to recognize complex, long-term
activities (Laxton et al., 2007).

Similar in spirit to our task of ordering of video clips, arranging photos by time has
received some attention. In particular, automating the process of creating ordered
photo albums from an unordered image collection (Sadeghi et al., 2015); sorting
photo collections spanning many years (Matzen and Snavely, 2014; Schindler et al.,
2007); or ordering a set of photos taken from uncalibrated cameras (Basha et al.,
2012; Dicle et al., 2016; Moses et al., 2013) are all related works. In contrast, we
work with an unordered collection of video clips.

102 Temporal Feature Encoding and Representation Learning 6

Audio-visual learning. Audio-visual speech recognition (Yuhas et al., 1989) is
among the earliest examples of using both modalities. More recent works include
predicting the sound an object makes upon hitting by observing silent videos (Owens
et al., 2016a), or predicting the ambient sound that an image conveys (Owens et al.,
2016b). There is also work on learning representations in a joint space. A student-
teacher approach is used to transfer the knowledge from visual to audio networks (Ay-
tar et al., 2016); or image captioning is extended to spoken captions (Yusuf Aytar,
2017). Audio-visual representation learning has applications in several tasks such
as event classification (Parekh et al., 2018), audio-visual localization (Arandjelović
and Zisserman, 2018; Parekh et al., 2018), biometric matching (Nagrani et al.,
2018b), sound localization (Arandjelović and Zisserman, 2018; Owens and Efros,
2018), person identification (Azab et al., 2019; Nagrani et al., 2018a; Ngiam et al.,
2011; Tapaswi et al., 2012), action recognition (Owens and Efros, 2018), on/off-
screen audio separation (Ephrat et al., 2018; Owens and Efros, 2018), and video
captioning/description (Hori et al., 2017; Wu and Han, 2018).

Other works in multimodal feature learning transfer knowledge across modalities such
as RGB → RGB (Hinton et al., 2015), RGB → Depth (Gupta et al., 2016), RGB →
Optical-Flow (Diba et al., 2016; Gupta et al., 2016), RGB → Sound (Arandjelovic
and Zisserman, 2017), and NIR → RGB (Limmer and Lensch, 2016) to learn joint
representations in a shared feature space.

In contrast to all these previous works, our goal is to learn a joint video clip repre-
sentation combining information from audio, images, video, and text sources.

Feature encoding methods have been a mainstay in vision for several decades.
Popular approaches before deep learning include bag-of-words (BoW) (Csurka et al.,
2004; Sivic and Zisserman, 2003), Fisher vector (FV) encoding (Perronnin et al., 2010)
and sparse coding (Yang et al., 2009). In fact, owing to their popularity, FV (Tang
et al., 2016), VLAD (Arandjelović et al., 2016; Gong et al., 2014; Miech et al., 2017b),
and Bilinear models (Lin et al., 2015; Tenenbaum and Freeman, 2000) with Tensor
Sketch (Pham and Pagh, 2013) have also been integrated as specialized layers in
neural networks. Such encodings yield promising results on many challenging tasks
including action recognition (Diba et al., 2017; Girdhar et al., 2017), and image
classification (Chowdhury et al., 2016; Lin et al., 2015). In this work, we adopt

6.3 Learning to Order Clips 103

CONVCONVCONV

mean

Ordering
Loss

CONVCONVCONV

VideoFramesAudioText VideoFramesAudioText

MultiModal
Encoding

! = 3! = 3

Dialog 3

Dialog 2

Dialog 1

! = 3

$% $&

MultiModal
Encoding

'% '&

mean

Dialog 3

Dialog 2

Dialog 1

Word
Embedding

Word
Embedding

Figure 6.2: Deep Multimodal Feature Encoding. Illustration of the multimodal feature
encoding applied for the task of temporal ordering. See Sec. 6.3 for a detailed explanation
of the feature learning scheme shown.

bilinear models to encode multimodal information, and extend the Tensor Sketch
algorithm to incorporate a temporal dimension.

6.3 Learning to Order Clips

We present our model to obtain multimodal clip representations that can be used to
order video clips, as shown in Fig. 6.2. Note that our parameters are learned in a
self-supervised approach, as the order of short clips can be inferred automatically by
pre-selecting them from a long video.

Deep multimodal video clip representation. For a video clip with N modalities,
we compute one output feature map per modality produced by a pre-trained (convolu-
tional) neural network. We denote these feature maps as matrices {G1, G2, . . . , GN},
where Gi ∈ Rci×t, ci denotes the number of channels for the ith modality, and t is

104 Temporal Feature Encoding and Representation Learning 6

Algorithm 2: Deep Multimodal Feature Encoding Layer
Input: Multimodal Neural Network features for a video clip {G1, G2, ..., GN},
Gi ∈ Rci×t, where ci denotes channels of feature maps for each modality, t is the
temporal length, and N is the number of modalities.
Output: Encoded feature map v ∈ Rd representing the video clip.
Temporal Multimodal Feature Encoding:
1. X = G1 ++G2 ++ . . .++GN , X ∈ Rc×t, where
c = ∑N

i=1 ci, and ++ is the concatenation operator.
2. v = EncodingMethod(X), v ∈ Rd, where d denotes the encoded feature
dimensions.

the temporal length or number of segments in which the video is divided for feature
extraction.

For each clip, we concatenate all feature maps across channels, i.e.X = [G1, . . . , GN], X ∈
Rc×t, where c = ∑N

i=1 ci. We choose concatenation as it allows us to combine a vari-
able number of modalities, while preserving the complete information obtained from
them. The aggregated feature X is encoded using some method E : X → v, to
compute the multimodal representation v ∈ Rd, where d is the dimensionality of the
final embedding space. Algorithm 2 sketches the steps of the proposed multimodal
feature encoding.

6.3.1 Temporal Compact Bilinear Pooling

We adopt bilinear pooling to learn multimodal representations as it possesses the
ability to capture interactions between each element of the feature representation
with one-another (much like a polynomial kernel in SVMs (Burges et al., 1998)).
Additionally, bilinear pooling methods have been shown to work well for related tasks
of image classification (Chowdhury et al., 2016; Gao et al., 2016; Lin et al., 2015),
video classification (Diba et al., 2017) and visual-question answering (Fukui et al.,
2016). We briefly discuss bilinear models, Tensor Sketch projection and Compact
Bilinear Pooling (CBP), and then propose our extension for handling temporal data.

Preliminaries. A bilinear pooling function is an operator on the outer product of a
vector x ∈ Rc to obtain v ∈ Rd such that:

v = W [x⊗ xT] , (6.1)

6.3.1 Temporal Compact Bilinear Pooling 105

where ⊗ denotes the outer product, [·] turns the matrix into a vector by concatenating
the columns, and W ∈ Rd×c2 are model parameters. However, as feature dimensions
are often big (e.g. c = 1024), the number of parametersW is in the billions (assuming
d = 1024 as well), making learning challenging.

To alleviate this problem, Gao et al. (2016) show how the high-dimensional second-
order function can be approximated by a low dimensional projection function using
the Tensor Sketch algorithm (Pham and Pagh, 2013). This removes the need for
computation of the expensive outer product and obtains the final vector directly.

Tensor Sketch (TS) (Pham and Pagh, 2013) also called the Count Sketch, projects
a vector x ∈ Rc to v ∈ Rd. Two sets of auxiliary vectors h and s are initialized
randomly from a uniform distribution (and held fixed thereafter) to perform this
projection u1 = ψ(x,h1, s1) and u2 = ψ(x,h2, s2). The sign vector s ∈ {−1, 1}c

indicates whether the element in x will be added or subtracted from the final
value at a location determined by h ∈ {1, . . . , d}c. In particular, for every element
x[i], its destination in u is given by j = h[i], and the value is accumulated as
u[j] = u[j] + s[i] · x[i]. Finally, u1 and u2 (corresponding to h1, s1 and h2, s2) are
convolved with each other to compute v by performing element-wise multiplication
in the Fourier domain.

Compact Bilinear Pooling (CBP) (Gao et al., 2016). When working with images,
a CNN feature map X often preserves the encoding of spatial locations to yield
X ∈ Rc×s, where c is number of channels (as in the above discussion) and s refers to
spatial locations (typically, h× w). To work with such features, (Gao et al., 2016)
first performs TS projection on the vector at each spatial element s, followed by sum
pooling.

X ∈ Rc×s TS projection−−−−−−−→ Rd×s sum pool over s−−−−−−−−−→ v ∈ Rd . (6.2)

For more details please refer to (Gao et al., 2016).

Temporal Compact Bilinear Pooling (TCBP).We now present our extension of
the Tensor Sketch projection algorithm to incorporate a temporal dimension. Recall,
our feature X ∈ Rc×t is the result of stacking features from all modalities. The key
difference between CBP and TCBP is the process in which the TS projection vector
h and matrix S are created (see Fig. 6.3). In particular, we initialize h ∈ {1, . . . , d}c

as a c dimensional vector, while S ∈ {−1, 1}c×t as a matrix. Choosing h independent

106 Temporal Feature Encoding and Representation Learning 6

𝑋 ∈ 𝑅!×# 𝑅!#
1

3

4

6

7

1

3

5

7

4

𝒉$ ∈ {1…𝑑}
!#

𝒉% ∈ {1…𝑑}
!#

𝒔$ ∈ {−1,1}
!#

𝒔% ∈ {−1,1}
!#

TS

TS

𝒖% ∈ 𝑅
&

𝒖$ ∈ 𝑅
&

⊙

𝐅𝐅𝐓

𝐅𝐅𝐓

𝐅𝐅𝐓'𝟏

𝒗 ∈ 𝑅&
1

-1

1

-1

1

-1

-1

-1

1

-1

(a) Compact Bilinear Pooling (CBP)-Flat

𝑋 ∈ 𝑅!×#

1

3

4

6

7

1

3

5

7

4

𝒉$ ∈ {1…𝑑}
!

𝒉% ∈ {1…𝑑}
!

-1 1 -1

-1 -1 1

-1 1 1

1 -1 -1

1 1 1

-1 1 -1

-1 -1 -1

1 1 -1

1 1 1

-1 1 -1

𝑆$ ∈ {−1,1}
!×#

𝑆% ∈ {−1,1}
!×#

TS

TS

𝒖% ∈ 𝑅
&

𝒖$ ∈ 𝑅
&

⊙

𝐅𝐅𝐓

𝐅𝐅𝐓

𝐅𝐅𝐓'𝟏

𝒗 ∈ 𝑅&

(b) Temporal Compact Bilinear Pooling (TCBP)
Figure 6.3: CBP-Flat vs. TCBP. In this toy setup, we initialize random vectors h, s and
matrix S such that c = 5, d = 7, and t = 3. In CBP-Flat, h has different values across the
temporal dimension, while in TCBP, h does not depend on t. This ensures that Tensor
Sketch projects features across time to the same output index. See Sec. 6.3.1 for a detailed
explanation.

of time, ensures that a feature index i in X (X[i, t]) is always encoded to the same
destination j = h[i], albeit with a different sign. Similar to TS, we can write j = h[i]
(independent of t), while, u[j] = u[j] + ∑

t S[i, t] · X[i, t]. The TS projection is
followed by the convolution in Fourier domain. Algorithm 3 presents a summary of
the above approach.

X ∈ Rc×t TCBP−−−→ v ∈ Rd . (6.3)

We compare CBP and TCBP with regards to number of parameters and computational
efficiency in Table 6.1. We wish to assert that the use of both CBP as well as TCBP
for multimodal feature encoding is novel. We learn a projection function to model
multimodal data that includes text, images, audio and video.

6.3.2 Learning via Temporal Ordering 107

Algorithm 3: Temporal Compact Bilinear Pooling
Input: Multimodal feature map X ∈ Rc×t, where c and t are the number of
channels and temporal segments.
Output: Multimodal encoded feature map v ∈ Rd, where d is the encoded feature
dimension.
Procedure:
1. Initialize random vector hk ∈ {1, . . . , d}c, and Sk ∈ {−1, 1}c×t from a uniform
distribution, k = 1, 2.
2. Compute the count sketch projection function u = Ψ(X,h, S) = {u1, . . .ud},
where uj = ∑

i:h[i]=j
∑
t S[i, t] ·X[i, t].

3. Finally, compute the output encoded vector as v = FFT−1(FFT (Ψ(X,h1, S1))◦
FFT (Ψ(X,h2, S2))), where ◦ denotes element-wise multiplication operator.

Table 6.1: TCBP encodes several temporal segments without much additional overhead.
Parameters c, t, d denote the number of channels, temporal segments, and the projected
dimension.

CBP TCBP
Input dimensions Rc Rc×t

Output dimensions d d
Parameters (h, s) 2 · 2c 2 · (c+ ct)
Computation O(c+ d log d) O(ct+ d log d)

CBP-Flat. Note that TCBP is not the same as applying CBP directly on a flattened
vector X ∈ Rc×t → Rct, as this would require creating h ∈ {1, . . . , d}ct and s ∈
{−1, 1}ct (see Fig. 6.3). We empirically show that TCBP also outperforms CBP-Flat.

6.3.2 Learning via Temporal Ordering

We learn a multimodal representation for video clips using temporal ordering. For
example, consider a movie scene that consists of M video clips, (V1, . . . , VM). These
clips are ordered by the content creators to tell a story in the most natural way,
and often encode principles such as causality (e.g. pushing a car gets it rolling) or
temporal progression (e.g. enter the house before removing coat).

108 Temporal Feature Encoding and Representation Learning 6

Training. We randomly sample an ordered consecutive pair of clips (Vi, Vj) from the
scene and train our model to learn that Vi appears before Vj , denoted as Vi � Vj . We
use the order violation error (Vendrov et al., 2016) between a pair of ordered clips:

E(Vi, Vj) = ‖max (0, φ(Vi)− φ(Vj)) ‖2 , (6.4)

where φ(V) ∈ RD
+ is the clip representation used for temporal ordering, and the

loss encodes feature φ(Vi) to appear “before” φ(Vj) (e.g. below and to the left of
in the 2D positive subspace). As the error function has a trivial solution (learning
all representations as 0 vectors), we also include unordered (negative) pairs in our
formulation. In particular we learn the parameters of φ(·) by minimizing

L =
∑

(Vi,Vj)∈O
E(Vi, Vj) +

∑
(Vi,V

′
j)∈U

max(0, α− E(Vi, V ′j)) , (6.5)

where O is the set of all ordered pairs, U contains unordered pairs, and α represents
an expected margin of separation between representations of unordered video clips.
We implement unordered pairs by selecting a different clip V ′j from the same batch
as training ordered pairs.

Inference. To order the clips during inference, we first encode them as φ(V) and
compute ordering error E(Vi, Vj) between all pairs of clips in the scene. Note that,
there are M ! possible ways to sort M unordered clips. We use a simple brute-force
approach and pick the sequence that results in the smallest overall pairwise ordering
error. While this approach does not scale well, it is an acceptable solution when the
maximum number of clips in a scene is limited, Mmax = 6. We leave exploration of
other sorting/ranking techniques (e.g. Doughty et al. (2019) regresses one value) for
the future. We treat a collection of clips as correctly sorted only when the predicted
order fully matches the ground-truth order.

6.3.3 Implementation details

We present clip representation and training details below.

Sampling temporal segments from a clip. We treat 16 contiguous frames of
a video clip as a temporal segment (commonly used in spatio-temporal networks).
While most clips from our dataset have 4 to 6 segments, we use 3 segments for

6.3.3 Implementation details 109

most experiments to incorporate some variation in selected segments during training.
As TCBP depends on the number of temporal segments (recall S ∈ {−1, 1}c×t),
we choose to use t = 3 segments to represent all clips. We consider three segment
sampling strategies: S-Random chooses three contiguous segments randomly; S-First
picks the first three segments; and S-Last picks the last three segments.

Multimodal representations from pre-trained models. We extract a variety
of features for each temporal segment of a video. (1) Object (I) features are extracted
using a ResNet50 pre-trained on the ImageNet dataset (Russakovsky et al., 2015); (2)
Place/Scene (P) features are obtained using a ResNet50 pre-trained on the Places365
dataset (Zhou et al., 2017); (3) Video/Activity (R) features are obtained using
a 3D ResNet50 (Hara et al., 2018) pre-trained on the Kinetics-400 dataset (Car-
reira and Zisserman, 2017); (4) Dialog/Subtitle (S) features are computed using
Glove6B (Pennington et al., 2014) pre-trained word vectors; and (5) Audio (A)
features are extracted using the SoundNet (Aytar et al., 2016) model pre-trained on
Flickr videos.

Object (I) and place/scene (P) frame-level representations are obtained from the
avgpool layer of ResNet50, and are in R2048. We additionally mean pool across
16 frames of the temporal segment. To compute a video (R) representation, we
reshape the temporal segment to 112× 112× 16, and extract avgpool features from
our 3D ResNet50 resulting in R2048. We encode the audio signal (A) corresponding
to the temporal segment and compute pool5 features, from the SoundNet model.
Averaging across channels results in a feature in R256. Our text modality (S) consists
of transcribed dialog, closed captions, or subtitles, and not manually curated video
captions. We use word embeddings from Glove6B (Pennington et al., 2014), and
mean pool all words in a clip to obtain the feature map in R300. As splitting words
across temporal segments is not trivial, we use the same feature for all temporal
segments.

Clip representations. We use the same network architecture for both CBP and
TCBP. The input X ∈ Rc×t is a concatenation of modalities discussed above. We
first apply a linear layer W1 to obtain X̄ ∈ R2048×t. Encoding this with CBP/TCBP6

6In practice, with several design choices we found that d = 8, 192 was sufficient for reaching the
best performance, and that increasing the Tensor Sketch (TS) projection dimension d further
more had a very small boost in performance. The projection parameter for the TS was optimized
efficiently for our task.

110 Temporal Feature Encoding and Representation Learning 6

results in venc ∈ R8192. We perform feature normalization via a signed square-root
operation followed by `2 normalization. We add a second linear layer W2 to obtain
a generic clip representation that may be used for any application, vclip ∈ R4096.
Finally, we compute the temporal ordering feature with a third linear layer as
φ(V) = |W3(ReLU(vclip))|. The absolute value φ(V) ∈ R2048

+ , is used to compute the
ordering error. All linear layers have biases, but are omitted for brevity.

Training. Our model is implemented in PyTorch v0.4. We use a batch of 32 samples
and update parameters with SGD: 10−3 learning rate, 0.9 momentum, and weight
decay 5× 10−4 for 5K-8K iterations. We train the model with S-Random sampling
strategy as a form of data augmentation.

6.4 Evaluation

In this section, we first introduce our dataset for video clip ordering. Then, we
present experiments on inferring the temporal order for a set of scrambled clips, and
a multimodal clip retrieval task. Finally, we also show how TCBP can be applied to
action recognition and video face clustering.

6.4.1 Dataset

We create a new dataset LSMDC-Ordering to train and evaluate our task of temporal
ordering videos. We choose to use clips from the Large Scale Movie Description
Challenge (LSMDC) (Maharaj et al., 2017; Rohrbach et al., 2017b; Torabi et al.,
2016) dataset as they are publicly available, contain several modalities, and are
sourced from movies (stories) that usually care about temporal order. The LSMDC
dataset consists of 202 movies and 118,081 video clips (2-5 seconds). Each clip is
associated with an Audio Description (AD) that narrates the visual content. However,
as we are interested in applying our model to any video, we use subtitles (spoken
dialog), and AD are not part of our text modality. Unfortunately, having clips with
AD implies that they contain little to no dialog.

Scene boundary detection. We group temporally contiguous clips into a scene
– a set of clips that occur in one place, or contain a group of related events. The
clips often have small (few seconds) to large (few minutes) gaps between them. Clips

6.4.2 Temporal Ordering 111

Table 6.2: Number of scenes in our dataset with 2-6 clips.

Scene size 2 3 4 5 6 2-6

Training 13455 6711 3097 1382 624 25269
Validation 958 472 203 100 51 1784
Test 1333 588 325 135 62 2443

within a scene are used for the ordering task. Detecting scenes is often preceded by
detecting shots. However, as the LSMDC dataset contains pre-segmented clips, we
redefine the problem as grouping clips into unique scenes. We first use a dynamic
programming algorithm (Tapaswi et al., 2014a) to assign clips to scenes. However,
scenes created using this method are often quite large and contain between 15-30
clips. We further segment the scenes into shorter sequences (2-6 clips) using the
FINCH clustering algorithm (Sarfraz et al., 2019), and manually verify the data for
consistency.

We use the training, validation, and test splits, as used in the LSMDC captioning
task. In total, there are almost 30K scenes over all splits. In Table 6.2, we present
the number of scenes that have 2 to 6 clips in each split. See Fig. 6.4 for some
example scenes of variable length from our dataset. Approximately 65% of clips have
4 temporal segments (of 16 frames at 24fps), and there are no clips with less than 48
frames (i.e. with t = 3).

6.4.2 Temporal Ordering

We present an ablation study evaluating various design choices, followed by a com-
parison against baselines. We use ordering accuracy, a strict metric that requires
all clips to be sorted in the correct sequence. When not specified otherwise, the
encoding is CBP with t = 3 and S-Last sampling. Methods are trained with the
ordered component of the loss, (Vi, Vj) ∈ O (first term in Eq. 6.5).

Study of modalities and sampling strategy. Table 6.3 reports performance
of using individual and joint modalities over three different clip sampling options.
For the individual modalities, we do not perform channel reduction, however do
include the W2 and W3 linear layers (see impl. details). Audio (A), Places (P),
and ImageNet (I) modalities seem important for this task, while the joint PI and

112 Temporal Feature Encoding and Representation Learning 6

Table 6.3: Temporal ordering performance with different t = 3 segment sampling strategies
and various modality combinations: A: Audio, P: Places, I: Objects, R: Video, and S:
Subtitles/Text.

Modality S-First S-Last S-Random Chance

Va
lid

at
io
n

A 22.90 57.97 57.21 31.78
P 26.40 76.35 73.93 31.78
I 22.42 77.32 74.57 31.78
R 39.13 28.08 26.90 31.78
S 23.79 22.74 21.70 31.78
PI 30.16 79.65 71.86 31.78
API 24.56 78.70 73.15 31.78
APIS 21.47 77.39 71.33 31.78
APIR 17.04 77.24 46.92 31.78

Te
st

PI 34.10 81.13 79.39 31.89
API 39.13 85.06 84.57 31.89
APIS 38.41 83.24 82.11 31.89
APIR 25.01 82.48 79.38 31.89

API feature representations perform best. It is interesting to see that the video
features (APIR) and text embedding (APIS) reduce performance as compared to
API. This may be as motion features encoded in R are not strong enough to predict
what happens over larger temporal ranges, while the absence of subtitles hurts the
text modality. Among the sampling strategies, we see that S-Last performs best,
possibly since it contains information closest to the next clip.

Impact of number of clips in a scene. Recall, our dataset consists of scenes
with 2-6 clips. In Table 6.4, we present ordering accuracy on subsets of scenes that
contain an equal number of clips. While PI and API are similar for scenes with
2-4 clips, API works much better for scenes with more clips (5 or 6). Analyzing
failures, we see that in stationary scenes, PI fails to accurately predict the future,
while audio may provide some help. We choose API as the default modality for all
further experiments.

Impact of number of temporal segments. Recall each segment t represents a
chunk of 16 frames, and clips in our dataset range from 4 to 11 segments. Table 6.5
confirms our hypothesis that using more segments leads to better clip representations
improving performance for both modalities.

6.4.2 Temporal Ordering 113

Figure 6.4: Examples scenes from the dataset with 2-4 clips.

CBP vs. TCBP. Table 6.6 compares the impact of our encoding approach with
increasing number of temporal segments. In particular, CBP and TCBP are identical
when t = 1, while TCBP shows improvements over CBP for t = 2 and 3 as it is
better able to encode longer clips, while CBP uses sum pooling. We also compare
TCBP against CBP-Flat that uses flattened ct-dimension. At t = 3, the ordering
accuracy on the test set with CBP-Flat is 84.37%, while TCBP achieves 86.23%.

Comparing TCBP against other encoding baselines.We compare TCBP with
several popular pooling methods. As before, we start with an input feature map
X ∈ Rc×t. Specifically, in Table 6.7, we compare TCBP against variants of method
to exploit the temporal dimension effectively, they are ConcatT-MLP, Mean-Pool
and NetVLAD. Now, we briefly explain the architecture for each pooling method.
ConcatT-MLP first applies the linear layer to obtain X̄ ∈ R2048×t. We then
concatenate the temporal segments to form a vector in R2048·t. Mean-Pool averages
the feature across temporal segments t, resulting in a vector in Rc. NetVLAD first

114 Temporal Feature Encoding and Representation Learning 6

Table 6.4: Ordering accuracy for varying number of clips per scene in the validation split.

Clips in scene 2 3 4 5 6 2-6
Samples 958 472 203 100 51 1784

Random 50.00 16.67 4.17 0.83 0.14 31.78
PI 96.86 60.38 91.13 22.00 1.96 79.65
API 95.51 56.14 87.19 31.00 31.37 78.70
APIS 98.28 54.01 76.34 16.45 25.13 77.39
APIR 100 42.58 88.18 40.00 0.0 77.24

Table 6.5: Validation split ordering accuracy by changing the number of temporal segments
used to represent video clips.

PI API
t = 1 t = 2 t = 3 t = 1 t = 2 t = 3

71.14 77.30 79.65 54.88 77.92 78.70

applies a linear layer with 512 output dim, resulting in a feature map in R512×t. This
is fed to NetVLAD (Arandjelović et al., 2016; Girdhar et al., 2017; Miech et al.,
2017b) with 32 clusters7 resulting in a feature vector of R16,384. All above methods
are followed by two fully-connected layers resulting in a vector in R1024 that is used
for the ordering loss.

Table 6.7 shows that TCBP outperforms all methods, including strong baselines
of CBP and NetVLAD. In fact, ConcatT-MLP performs very poorly, while simple
Mean-Pool shows limited performance. We expect small improvements for TCBP
over CBP as the main difference lies in the projection of temporal segments directly
instead of pooling over time after projection. However, we believe that TCBP is a
principled way to handle multiple temporal segments within the bilinear pooling
framework.

Role of negative mining. We now analyze the impact of also including unordered
examples during training. We observe that including unordered/negative pairs
consistently improves the performance for all methods (Table 6.8). However, contrary
to our initial expectation, it seems that we do not necessarily need negative examples.

7We optimized NetVLAD hyperparameters by evaluating #clusters={16,32,64} × feat-
dim={256,512,1024}, and found #clusters=32 and feat-dim=512 to provide the best performance.

6.4.3 Multimodal Retrieval 115

Table 6.6: Ordering performance with CBP and TCBP. More temporal segments increases
the gap between the two methods.

Validation Test
Method t = 1 t = 2 t = 3 t = 1 t = 2 t = 3

CBP 54.87 77.92 78.70 68.65 84.69 85.06
TCBP 54.87 78.13 79.43 68.65 85.26 86.23

Table 6.7: Comparing TCBP with other popular encoding strategies.

Method Validation Test

Chance 31.78 31.89
ConcatT-MLP 19.78 37.17
Mean-Pool 66.59 69.58
NetVLAD 68.11 83.79

CBP 78.70 85.06
TCBP 79.43 86.23

6.4.3 Multimodal Retrieval

We present a second task that showcases the effectiveness of our video representation.
Given a query clip, our goal is to find other clips that are from the same scene.

Dataset. We only consider the test set that has 2,443 scenes. We use at least one
clip (up to 25%) from each scene as a query, and the rest are treated as gallery for
retrieval. In total, we obtain 2,770 clips as queries and 4,466 as gallery.

Metrics. Retrieval performance is measured using mean Average Precision (mAP)
at various ranks.

Method. We do not train new models for this task, but analyze the quality of clip
representations (vclip in Sec. 6.3.3) learned from the temporal ordering task. In
particular, we represent a video clip by taking 3 segments at a time and encode
them with TCBP, followed by W2. For clips longer than 3 segments, we average pool
multiple non-overlapping 3 segment chunks, to obtain a final 4096-d representation.

As baselines, we compare against individual modalities by average pooling base
features obtained from our pre-trained models. We also compare against a late score
fusion of modalities PI (LF-PI) and API (LF-API).

116 Temporal Feature Encoding and Representation Learning 6

Table 6.8: Role of negative mining for temporal ordering.

Negatives? NetVLAD CBP TCBP
Val Test Val Test Val Test

No Neg. 68.11 83.79 78.70 85.06 79.43 86.23
With Neg. 71.21 84.99 84.59 88.95 83.18 89.19

Table 6.9: Multimodal retrieval results. The query set consists of 2770 clips, and the test
consists of 4466 clips, from 2443 scenes. TCBP with negatives.

Methods mAP P1 P5 P10 P50

A 1.65 1.73 3.17 4.22 9.27
P 68.49 73.93 88.66 91.80 95.81
I 72.30 81.22 91.40 93.79 96.96
LF-PI 73.53 80.54 92.22 94.25 97.50
LF-API 72.39 79.31 91.73 93.68 97.15

TCBP-API (Ours) 74.61 82.52 94.35 95.75 98.43

Results. Table 6.9 shows that our multimodal feature representation using TCBP
outperforms late fusion models as well as individual modalities. Interestingly, we see
that LF-API performs worse than LF-PI, indicating that fusion of multiple modalities
is not trivial. We argue that a better encoding method like TCBP helps obtain an
effective multimodal representation. Fig. 6.10 shows qualitative retrieval results for
LF-API and TCBP-API. In particular, we highlight examples where TCBP-API
seems to be more effective.

6.4.4 Action Recognition

In our final experiment, we evaluate the effectiveness of TCBP for video action
recognition.

Dataset.We evaluate TCBP on two action and activities datasets: HMDB51 (Kuehne
et al., 2013) (51 actions, 6,766 clips) and UCF101 (Soomro et al., 2012) (101 actions,
13,320 clips). We report average accuracy over the pre-defined splits for both datasets.

Method. We use TLE (Diba et al., 2017) as the base architecture, and employ
TCBP as the encoding method. In particular, we use the C3D ConvNet (Tran et al.,
2015) pre-trained on the Sport-1M dataset (Karpathy et al., 2014). The network

6.4.4 Action Recognition 117

Ta
bl
e
6.
10

:
Q
ua

lit
at
iv
e
to
p-
3
re
tr
ie
va
lr

es
ul
ts

fo
r
a
gi
ve
n
qu

er
y.

118 Temporal Feature Encoding and Representation Learning 6

Table 6.11: C3D ConvNets. Comparison of accuracy (%) of TCBP with C3D ConvNet
against state-of-the-art methods over all three splits of UCF101 and HMDB51.

Method UCF101 HMDB51

SpatioTemporal ConvNet (CVPR ’14) (Karpathy et al., 2014) 65.4 −
LRCN (CVPR ’15) (Donahue et al., 2015) 82.9 −
Composite LSTM Model (ICML ’15) (Srivastava et al., 2015) 84.3 44.0
iDT+FV (ICCV ’13) (Wang and Schmid, 2013) 85.9 57.2
Two Stream (NIPS ’14) (Simonyan and Zisserman, 2014a) 88.0 59.4
C3D (ICCV ’15) (Tran et al., 2015) 82.3 56.8
TLE: Bilinear+TS (CBP) (CVPR ’17) (Diba et al., 2017) 85.6 59.7
TLE: Bilinear (CVPR ’17) (Diba et al., 2017) 86.3 60.3

TLE: TCBP (ours) 88.03 61.58

operates on a stack of 16 RGB frames of size 112 × 112. Following the setup of
Diba et al. (2017), we employ TSN (Wang et al., 2016) architecture with 3 segments
pushed through the C3D ConvNet. Same as (Diba et al., 2017), we extract the
convolutional feature maps from the last convolutional layers and feed them as input
to TCBP. This is followed by a classification layer with a K-way softmax, where K
is the number of action categories. Note that convolutional feature maps from each
segment of the last layer of C3D produce an output of size R512×2×7×7. Three such
segments are first aggregated via element-wise multiplication (similar to TLE), and
followed by TCBP projection with t = 2 resulting in a vector of R8192 dimensions.
We use the same training and evaluation setup as (Diba et al., 2017) for a fair
comparison.

Results. Table 6.11 shows the performance of TCBP with C3D ConvNets compared
against several other methods. The goal of this experiment is to show that TCBP can
improve the performance of the base C3D (Tran et al., 2015). It is also interesting
to see that, TCBP improves the C3D ConvNet performance over the two-stream
ConvNets (Simonyan and Zisserman, 2014a) on both datasets. Further, TCBP
outperforms Bilinear pooling, CBP (Diba et al., 2017), and iDT+FV (Wang and
Schmid, 2013) by a significant margin. We believe that TCBP outperforms other
methods due to its ability to effectively encode temporal cues in the video, something
that other methods (Diba et al., 2017; Simonyan and Zisserman, 2014a; Tran et al.,
2015; Wang and Schmid, 2013) do not. Note that, one would expect to obtain better
performance on any task when using features from a newer model (e.g. Hara et al.
(2018)). For a fair comparison with (Diba et al., 2017; Tran et al., 2015) we resort

6.4.5 Video Face Clustering 119

to C3D features. It is good to see that TCBP can also improve performance when
using C3D. In practice, NetVLAD has been shown to perform worse than Bilinear
pooling (e.g. CBP) in (Diba et al., 2017; Girdhar et al., 2017). This is most likely
due to CBP capturing interactions between features at each channel, thus leading to
a strong representation.

6.4.5 Video Face Clustering

In our last experiment, we evaluate the effectiveness of TCBP for video face clustering
task.

Datasets and metric. We present our evaluation on three challenging datasets:
BBT, BF and ACCIO8, discussed in Section 2.3. We summarize the statistics of
datasets in Table 2.1. In terms of evaluation metric following the previous works,
for BBT and BF we report clustering accuracy (ACC or WCP), and for ACCIO in
addition to ACC, we report BCubed Precision (P), Recall (R) and F-measure (F),
as discussed in Section 2.4.

Method. We adopt the VGG-2 face CNN (Cao et al., 2018), a ResNet50 model, pre-
trained on MS-Celeb-1M (Guo et al., 2016) and fine-tuned on 3.31 million face images
of 9,131 subjects (VGG2 data). Input RGB face images are resized to 224× 224, and
pushed through the CNN. We extract pool5_7x7_s1 features, resulting in R2048.

In particular, we employ TCBP as the encoding method to train our Siamese
network with track-level supervision (TSiam). Note that we stack feature maps
for 5 consecutive frames R2048×5, and then encode them via TCBP projection with
t = 5 resulting in a vector of R8192 dimensions, followed by fully-connected layers
R512 and R2. The full network comprises as (R2048×5 → R8192 → R512 → R2).
Note that the last linear layer is part of the contrastive loss, and we use the feature
representations at R512 for clustering. For a fair comparison, we use the same network
architecture with TCBP for all methods. The network is trained using the contrastive
loss, and parameters are updated using Stochastic Gradient Descent (SGD) with
a fixed learning rate of 10−3. Since the labels are obtained automatically for each
video, overfitting is not a concern. For model training, we decompose each tracklet

8Note that, in accordance with previous literature (Zhang et al., 2016b), we use 36 and 40 clusters
for the 35 main characters.

120 Temporal Feature Encoding and Representation Learning 6

Table 6.12: Clustering accuracy computed at track-level on the training episodes, with a
comparison to all evaluated models. † indicates OUT_OF_MEMORY.

BBT-0101 BF-0502

Base 0.932 0.836
TSiam (FG ’19) (Sharma et al., 2019a) 0.964 0.893
SSiam (FG ’19) (Sharma et al., 2019a) 0.962 0.909
CCL (FG ’20) (Sharma et al., 2020) 0.982 0.921
FGG (ACMMM ’19) (Roethlingshoefer et al., 2019) 0.996 0.980

with TCBP

TSiam 0.972 0.912
SSiam 0.976 0.919
CCL 0.991 0.935
FGG † †

into non-overlapping sub-tracks of 5 frames and obtain must-link and must-not-link
constraints. We follow the same protocols as described in Chapter 3 (Sharma et al.,
2019a), Chapter 4 (Sharma et al., 2020) and Chapter 5 (Roethlingshoefer et al., 2019)
and mine the same number of positive and negative pairs for training the methods.
For testing, we decompose each tracklet into non-overlapping sub-tracks of 5 frames,
we then extract feature maps for each sub-track followed by taking average over all
the groups of a track to make a track-level representation which is then fed to HAC
clustering with fixed number of clusters. Finally, we evaluate the quality of clustering
via Accuracy and B-Cubed Precision (P), Recall (R) and F1-measures (F). We use
the same training, testing and evaluation setup as described in Chapter 3 (Sharma
et al., 2019a), Chapter 4 (Sharma et al., 2020) and Chapter 5 (Roethlingshoefer
et al., 2019) for a fair comparison.

Results. We report clustering performance on training videos in Table 6.12 and
Table 6.13. Note that all our models are trained in an unsupervised manner, or with
automatically generated labels. The goal of this experiment is to show that TCBP
encoding can improve the base performance.

In addition for ACCIO, as in (Zhang et al., 2016b), Table 6.14 (num. clusters = 40)
shows that our encoding methods improve performance by a significant margin over
the state-of-the-art.

6.5 Summary 121

Table 6.13: Performance comparison of different methods when integrated with TCBP on
ACCIO with 36 clusters. † indicates OUT_OF_MEMORY.

#cluster=36
Methods P R F
JFAC (ECCV ’16) (Zhang et al., 2016b) 0.690 0.350 0.460
TSiam (FG ’19) (Sharma et al., 2019a) 0.749 0.382 0.506
SSiam (FG ’19) (Sharma et al., 2019a) 0.766 0.386 0.514
CCL (FG ’20) (Sharma et al., 2020) 0.779 0.402 0.530
FGG (ACMMM ’19) (Roethlingshoefer et al., 2019) 0.654 0.728 0.689

with TCBP
TSiam 0.767 0.401 0.527
SSiam 0.773 0.408 0.534
CCL 0.792 0.415 0.544
FGG † † †

On a practical side, for FGG (see Chapter 5) training, we found that for all datasets
when we integrated FGG with TCBP resulted in out-of-memory issue. The reason
behind this is at this moment the whole graph of FGG needs to be present in the
memory that means for large scale datasets it causes run time limitations. FGG when
integrated with TCBP results to be much more computationally and memory-wise
expensive, thus leading to out-of-memory.

6.5 Summary

In this chapter, we introduced a novel task of ordering scrambled video clips in time,
and presented an approach that leverages multimodal semantic concepts. We proposed
a network architecture to learn a compact multimodal video clip representation
that jointly encodes images, audio, video, and text and learns parameters in a self-
supervised manner. In particular, Temporal Compact Bilinear Pooling extended CBP
to effectively encode multiple temporal segments of a video clip. We evaluated our
methods on temporal ordering of video clips and a multimodal video clip retrieval task,
where, multiple modalities and TCBP proved to be helpful. We also demonstrated
that TCBP is a strong encoding method that performs well on other video tasks such
as action recognition and video face clustering. We strongly believe that complete
understanding of video clips can only be achieved by analyzing all modalities jointly,

122 Temporal Feature Encoding and Representation Learning 6

Table 6.14: Performance comparison of different methods when integrated with TCBP on
ACCIO with 40 clusters. † indicates OUT_OF_MEMORY.

#clusters=40
Methods P R F
DIFFRAC-DeepID2+ (ICCV ’11) (Zhang et al., 2016b) 0.557 0.213 0.301
WBSLRR-DeepID2+ (ECCV ’14) (Zhang et al., 2016b) 0.502 0.206 0.292
HMRF-DeepID2+ (CVPR ’13) (Zhang et al., 2016b) 0.599 0.230 0.332
JFAC (ECCV ’16) (Zhang et al., 2016b) 0.711 0.352 0.471
TSiam (FG ’19) (Sharma et al., 2019a) 0.763 0.362 0.491
SSiam (FG ’19) (Sharma et al., 2019a) 0.777 0.371 0.502
CCL (FG ’20) (Sharma et al., 2020) 0.786 0.392 0.523
FGG (ACMMM ’19) (Roethlingshoefer et al., 2019) 0.663 0.724 0.692

with TCBP
TSiam 0.772 0.371 0.501
SSiam 0.786 0.379 0.511
CCL 0.795 0.401 0.533
FGG † † †

and hope that such multimodal representations will inspire the community in the
future.

Chapter 7

Summary and future work

In this thesis, we have focused on self-supervised face representation learning, wherein
we proposed methods to automatically generate pseudo-labels for training a neural
network. Specifically, we have shown that with our proposed new techniques to
generate weak-labels based on sorting distances (i.e. ranking), clustering algorithm
and video constraints, one can efficiently learn discriminative face representations,
and thus improve video face clustering. We now conclude this thesis by summarising
the contributions and conclusions of each chapter. We also discuss promising research
directions for future research.

7.1 Ranking-based learning (Chapter 3)

In Chapter 3, we propose two variants of discriminative approaches that build
upon deep network representations to learn facial representations: Track-supervised
Siamese network (TSiam) and Self-supervised Siamese network (SSiam). In Track-
supervised Siamese Network (TSiam), we include additional negative training pairs
for singleton tracks – tracks that are not temporally co-occurring with any others in
contrast to previous methods e.g. Cinbis et al. (2011). In Self-supervised Siamese
Network (SSiam), we leverage dynamic generation of positive and negative pairs
based on sorting distances (i.e. ranking) on a subset of frames and do not have to
only rely on track-level information that is typically used. Note that the methods
proposed in this paper are either fully unsupervised, or use supervision that is
obtained automatically, hence can be thought as unsupervised.

124 Summary and future work 7

Future work. In terms of future work, there are several interesting extensions to
consider: in the current setup in SSiam the positive and negative pairs are obtained
by sorting distances (i.e. ranking) on a subset of samples as a pre-processing step -
we believe one can easily integrate SSiam as a loss function(online learning) where
mining of samples can be jointly optimized along with the representation learning
objective. Further, since, SSiam can mine positive and negative pairs without the
need for tracking, thus additionally enabling its applicability to image collections,
such as photo albums.

7.2 Clustering-based learning (Chapter 4)

In Chapter 4, we propose to improve face representations using positive and negative
pairs obtained through clustering and video level constraints. The main contribu-
tion of our work is to utilize automatically discovered partitions obtained from a
clustering algorithm as weak supervision for learning improved face representations.
In particular, we propose a new clustering-based representation learning approach
that uses labels obtained from clustering along with inherent video constraints to
learn discriminative face features. As annotating datasets is costly and difficult,
using label-free and weak supervision obtained from a clustering algorithm as a
proxy learning task is promising, and we clearly show that this helps improve the
performance for video face clustering.

Our work aims at improving face representations utilizing both weak cluster labels
along with video constraints. In particular, our method uses FINCH-clustering
algorithm (Sarfraz et al., 2019) that creates several partitions of the data without
needing to know the number of clusters. Early partitions of FINCH often produce
many more clusters than the true number of categories, yielding small clusters of
very high purity. Through our analysis we show that creating positive and negative
training pairs using high purity partitions outperforms pairs obtained from partitions
closer to the true number of characters.

In summary, we show how pseudo-labels from clustering can be used effectively: (i)
without the need to know the number of clusters, and (ii) by creating positive/negative
pairs at a high-purity stage of clustering.

7.3 Graph-based learning (Chapter 5) 125

Future work. Using FINCH cluster labels as weak-labels results in high purity is
indeed an important aspect. Though obtaining negative pairs from farthest clusters
makes it difficult to generate hard samples. In future work, it is worth investigating
directions for negative pairs generation, rather than using the farthest clusters.

Also, while previous methods like TSiam obtain positive pairs from faces within a
track, CCL creates positive pairs within FINCH clusters. In our analysis, we find
that FINCH clusters even at the high-purity setting often contain faces from more
than one track. This means that our learning approach sees relatively hard positive
pairs, and standard (neither hard nor easy) negative pairs. We believe that jointly
optimizing the clustering loss together with the contrastive loss is a good future
direction to learn representations.

7.3 Graph-based learning (Chapter 5)

In Chapter 5 we present face grouping on graphs (FGG), a method for unsupervised
fine-tuning of deep face feature representations. By enabling feature representations
to update their representations in relation to other representations instead of globally.
The representations of face-tracks are related using a graph structure that is induced
over temporal and similarity-based constraints, where each node represents a face
sub-track and edges indicate either that two tracks belong to the same, or a different
person. Using graph neural networks, the features communicate over the edges
allowing each track’s feature to exchange information with its neighbors. We use
separate learnable weight tensors: a must-link tensor and a cannot-link tensor per edge
type and a layer to learn the representation that is aware of the manifold on which
the representations of each character live. Further, to increase the number of samples
for each character while obtaining a robust estimation of the manifold, we split each
face-track into partial tracks (sub-tracks) and pool the feature representations over
each sub-track.

Future work. In future work, one could interpret the approach as a link prediction
problem, in which one wants to learn whether (and what kind of) edge exists between
two nodes given a graph structure. Another potential future step is a wiser utilization
of edges by introducing the signed GCN, where the sign refers to the existence of
positive and negative edges, in direction similar to that of the signed graphs (Derr
et al., 2018; Kumar et al., 2016; Yuan et al., 2017).

126 Summary and future work 7

On a practical side, at this moment the whole graph needs to be present in the
memory that means for large scale datasets it will cause run time limitations. In order
to tackle this issue, one could optimize the FGG using sparse tensor implementation.

7.4 Compact representation-based learning (Chapter 6)

In Chapter 6 we propose Temporal Compact Bilinear Pooling (TCBP) an extension
of the Tensor Sketch projection algorithm (Pham and Pagh, 2013) to effectively
encode the temporal data (e.g. face tracks) in videos into a compact descriptor.
TCBP is a form of temporal encoding of several chunks of features into a compact
representation. TCBP possesses the ability to capture interactions between each
element of the feature representation with one-another over a long-range temporal
context. We demonstrated that TCBP is a strong encoding method that performs
well on face representation learning, multimodal video clip representation that jointly
encodes images, audio, video, and text, and video classification.

Future work. The contributions we have introduced are applicable to other tasks
where compact and efficient representation is required. Carrying forward the compact
encoding of the chapter and combining it with the video-captioning methods and
jointly training is also an interesting extensions to consider.

Short CV

Vivek Sharma
Contact Sharma.Vivek@live.in
Website https://vivoutlaw.github.io/

Education and Experience
since 2019 Non-Employee Ph.D. Student / Research Affiliate

Prof. Rajiv Gupta, Massachusetts General Hospital
Prof. Mauricio Santillana, Boston Children’s Hospital
Harvard Medical School, Harvard University, USA

since 2019 Research Affiliate
Prof. Ramesh Raskar, Camera Culture Group
MIT Media Lab, Massachusetts Institute of Technology, USA

since 2017 Research Assistant and Ph.D. Student
Computer Vision for Human-Computer Interaction Lab
Karlsruhe Institute of Technology, Germany

2015 - 2017 Researcher
Prof. Luc Van Gool, VISICS / Computer Vision Lab
KU Leuven / ETH Zürich

2012 - 2014 Master of Science (M.Sc.)
Informatics and Media Technology, Erasmus Mundus CIMET
UJM France, UGR Spain, NTNU Norway, and KIT Germany

2007 - 2011 Bachelor of Technology (B.Tech.)
Computer Science & Engineering
B.K. Birla Institute of Engineering and Technology, Pilani, India

mailto:sharma.vivek@live.in
https://vivoutlaw.github.io/

Publications

Vivek Sharma, M Saquib Sarfraz, and Rainer Stiefelhagen. A simple and effective
technique for face clustering in tv series. In Proceedings of the IEEE Com-
puter Vision and Pattern Recognition (CVPR) workshop on Brave New Motion
Representations, 2017a.

Vivek Sharma, Ali Diba, Davy Neven, Michael S Brown, Luc Van Gool, and Rainer
Stiefelhagen. Classification-driven dynamic image enhancement. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2018.

Congcong Wang*, Vivek Sharma*, Yu Fan, Faouzi Alaya Cheikh, Azeddine Beghdadi,
Ole Jacob Elle, and Rainer Stiefelhagen. Can image enhancement be beneficial
to find smoke images in laparoscopic surgery? In Proceedings of the Color and
Imaging Conference (CIC), 2018.

Vivek Sharma, Makarand Tapaswi, M Saquib Sarfraz, and Rainer Stiefelhagen.
Self-supervised learning of face representations for video face clustering. In
Proceedings of the IEEE International Conference on Automatic Face and Gesture
Recognition (FG), 2019a.

Vivek Sharma, Makarand Tapaswi, M Saquib Sarfraz, and Rainer Stiefelhagen. Video
face clustering with self-supervised representation learning. IEEE Transactions
on Biometrics, Behavior, and Identity Science (T-BIOM), 2019b.

Veith Röthlingshöfer*, Vivek Sharma*, and Rainer Stiefelhagen. Self-supervised
face-grouping on graphs. In Proceedings of the ACM International Conference on
Multimedia (ACMMM), 2019.

Vivek Sharma, Makarand Tapaswi, and Rainer Stiefelhagen. Deep multimodal
feature encoding for video ordering. In Proceedings of the IEEE International
Conference on Computer Vision (ICCV) workshop on Large Scale Holistic Video
Understanding, 2019c.

M Saquib Sarfraz, Vivek Sharma, and Rainer Stiefelhagen. Efficient parameter-free
clustering using first neighbor relations. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2019.

130 Bibliography

Ali Diba*, Vivek Sharma*, Rainer Stiefelhagen, and Luc Van Gool. Weakly super-
vised object discovery by generative adversarial & ranking networks. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
workshop on Efficient Feature Representation and Learning in Computer Vision,
2019a.

Ali Diba*, Vivek Sharma*, Luc Van Gool, and Rainer Stiefelhagen. Dynamonet:
Dynamic action and motion network. In Proceedings of the IEEE International
Conference on Computer Vision (ICCV), 2019b.

Vivek Sharma, Makarand Tapaswi, Saquib Sarfraz, and Rainer Stiefelhagen. Cluster-
ing based contrastive learning for improving face representations. In Proceedings
of the IEEE International Conference on Automatic Face and Gesture Recogni-
tion (FG), 2020a.

Ali Diba*, Mohsen Fayyaz*, Vivek Sharma*, Manohar Paluri, Jurgen Gall, Rainer
Stiefelhagen, and Luc Van Gool. Large scale holistic video understanding. In
Proceedings of the European Conference on Computer Vision (ECCV), 2020.

Vivek Sharma, Gabriela Csurka, Naila Murray, Diane Larlus, M Saquib Sarfraz, and
Rainer Stiefelhagen. Unsupervised meta-domain adaptation for fashion retrieval.
Under Review, 2020b.

Ali Diba*, Vivek Sharma*, and Luc Van Gool. Deep temporal linear encoding
networks. In Proceedings of the IEEE conference on Computer Vision and Pattern
Recognition (CVPR), 2017.

Ali Diba, Vivek Sharma, Ali Pazandeh, Hamed Pirsiavash, and Luc Van Gool.
Weakly supervised cascaded convolutional networks. In Proceedings of the IEEE
conference on Computer Vision and Pattern Recognition (CVPR), 2017.

Vivek Sharma, Jon Yngve Hardeberg, and Sony George. Rgb-nir image enhancement
by fusing bilateral and weighted least squares filters. Journal of Imaging Science
and Technology, 2017b.

Ali Diba, Mohsen Fayyaz, Vivek Sharma, A Hossein Karami, M Mahdi Arzani,
Rahman Yousefzadeh, and Luc Van Gool. Temporal 3d convnets using tem-
poral transition layer. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR) workshop on Brave New Ideas for Video
Understanding, 2018a.

Ali Diba, Mohsen Fayyaz, Vivek Sharma, M Mahdi Arzani, Rahman Yousefzadeh,
Juergen Gall, and Luc Van Gool. Spatio-temporal channel correlation networks
for action classification. In Proceedings of the European Conference on Computer
Vision (ECCV), 2018b.

131

Vivek Sharma, Praneeth Vepakomma, Tristan Swedish, Ken Chang, Jayashree
Kalpathy-Cramer, and Ramesh Raskar. Expertmatcher: Automating ml model
selection for users in resource constrained countries. In Proceedings of the Neural
Information Processing Systems (NeurIPS) workshop on Machine learning for the
Developing World, 2019d.

Vivek Sharma, Praneeth Vepakomma, Tristan Swedish, Ken Chang, Jayashree
Kalpathy-Cramer, and Ramesh Raskar. Expertmatcher: Automating ml model
selection for clients using hidden representations. In Proceedings of the Neural
Information Processing Systems (NeurIPS) workshop on Robust AI in Financial
Services: Data, Fairness, Explainability, Trustworthiness, and Privacy, 2019e.

Bibliography

H. Abdi and L. J. Williams. Principal component analysis. WIREs Computational
Statistics, 2010. xvii, 93, 95

R. Aljundi, P. Chakravarty, and T. Tuytelaars. Who’s that Actor? Automatic
Labelling of Actors in TV series starting from IMDB Images. In Asian Conference
on Computer Vision (ACCV), 2016. 28

E. Amigó, J. Gonzalo, J. Artiles, and F. Verdejo. A comparison of extrinsic clustering
evaluation metrics based on formal constraints. Information retrieval, 2009. 24,
25

R. Arandjelović, P. Gronat, A. Torii, T. Pajdla, and J. Sivic. Netvlad: Cnn
architecture for weakly supervised place recognition. In Conference on Computer
Vision and Pattern Recognition (CVPR), 2016. 102, 114

R. Arandjelovic and A. Zisserman. Look, listen and learn. In International
Conference on Computer Vision (ICCV), 2017. 102

R. Arandjelović and A. Zisserman. Objects that sound. In European Conference on
Computer Vision (ECCV), 2018. 102

Y. Aytar, C. Vondrick, and A. Torralba. Soundnet: Learning sound representations
from unlabeled video. In Workshop at Advances in Neural Information Processing
Systems (NIPSW), 2016. 101, 102, 109

M. Azab, N. Kojima, J. Deng, and R. Mihalcea. Representing movie characters in
dialogues. In Computational Natural Language Learning (CoNLL), 2019. 102

A. Bagga and B. Baldwin. Entity-based cross-document coreferencing using the
vector space model. In Association of Computational Linguistics (ACL), 1998. 24

T. Basha, Y. Moses, and S. Avidan. Photo sequencing. In European Conference on
Computer Vision (ECCV), 2012. 98, 101

P. W. Battaglia, J. B. Hamrick, V. Bapst, A. Sanchez-Gonzalez, V. Zambaldi,
M. Malinowski, A. Tacchetti, D. Raposo, A. Santoro, R. Faulkner, et al. Relational
inductive biases, deep learning, and graph networks. arXiv:1806.01261, 2018. 75,
76, 77

134 Bibliography

M. Bäuml, M. Tapaswi, and R. Stiefelhagen. Semi-supervised Learning with
Constraints for Person Identification in Multimedia Data. In Conference on
Computer Vision and Pattern Recognition (CVPR), 2013. xix, 2, 20, 21, 22, 28,
32, 49, 74, 75, 76

M. Berman, A. Rannen Triki, and M. B. Blaschko. The lovász-softmax loss: a
tractable surrogate for the optimization of the intersection-over-union measure
in neural networks. In Conference on Computer Vision and Pattern Recognition
(CVPR), 2018. 13

X. Bresson and T. Laurent. Residual gated graph convnets. arXiv:1711.07553, 2017.
76, 77, 82

K. Briggman, W. Denk, S. Seung, M. N. Helmstaedter, and S. C. Turaga. Maximin
affinity learning of image segmentation. In Workshop at Advances in Neural
Information Processing Systems (NIPSW). 13

M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst. Geometric
deep learning: going beyond euclidean data. IEEE Signal Processing Magazine,
2017. 76

C. J. C. Burges, B. Schölkopf, and A. J. Smola. Advances in Kernel Methods:
Support Vector Learning. MIT Press, 1998. 104

D. Cai, X. He, and J. Han. Locally consistent concept factorization for document
clustering. IEEE Transactions on Knowledge and Data Engineering, 2011. 77

Q. Cao, L. Shen, W. Xie, O. M. Parkhi, and A. Zisserman. VGGFace2: A Dataset for
Recognising Faces across Pose and Age. In International Conference on Automatic
Face and Gesture Recognition (FG), 2018. xxi, 1, 2, 19, 29, 35, 41, 42, 60, 64, 74,
77, 85, 86, 119

M. Caron, P. Bojanowski, A. Joulin, and M. Douze. Deep clustering for unsupervised
learning of visual features. In European Conference on Computer Vision (ECCV),
2018. 56, 59

J. Carreira and A. Zisserman. Quo vadis, action recognition? a new model and
the kinetics dataset. In Conference on Computer Vision and Pattern Recognition
(CVPR), 2017. 98, 99, 109

P. Cascante-Bonilla, K. Sitaraman, M. Luo, and V. Ordonez. Moviescope: Large-scale
analysis of movies using multiple modalities. arXiv:1908.03180, 2019. 99

S. Chopra, R. Hadsell, and Y. LeCun. Learning a similarity metric discriminatively,
with application to face verification. In Conference on Computer Vision and
Pattern Recognition (CVPR), 2005. 13

A. R. Chowdhury, T.-Y. Lin, S. Maji, and E. Learned-Miller. One-to-many face
recognition with bilinear cnns. 2016. 102, 104

Bibliography 135

R. G. Cinbis, J. Verbeek, and C. Schmid. Unsupervised Metric Learning for Face
Identification in TV Video. In International Conference on Computer Vision
(ICCV), 2011. 20, 21, 22, 28, 30, 32, 37, 48, 49, 63, 70, 92, 123

D. Clevert, T. Unterthiner, and S. Hochreiter. Fast and accurate deep network
learning by exponential linear units (elus). In International Conference on Learning
Representations (ICLR), 2016. 16, 84

T. Cour, B. Sapp, A. Nagle, and B. Taskar. Talking pictures: Temporal grouping
and dialog-supervised person recognition. In Conference on Computer Vision and
Pattern Recognition (CVPR), 2010. 78

G. Csurka, C. Dance, L. Fan, J. Willamowski, and C. Bray. Visual categorization
with bags of keypoints. In Workshop at Conference on European Conference on
Computer Vision (ECCVW), 2004. 102

S. Datta, G. Sharma, and C. Jawahar. Unsupervised learning of face representations.
In International Conference on Automatic Face and Gesture Recognition (FG),
2018. 28, 33, 37, 43, 58, 63

B. De Brabandere, D. Neven, and L. Van Gool. Semantic instance segmentation
with a discriminative loss function. In Workshop at Conference on Computer
Vision and Pattern Recognition (CVPRW). 13

Z. Deng, R. Navarathna, P. Carr, S. Mandt, Y. Yue, I. Matthews, and G. Mori.
Factorized Variational Autoencoders for Modeling Audience Reactions to Movies.
In Conference on Computer Vision and Pattern Recognition (CVPR), 2017. 31

T. Derr, Y. Ma, and J. Tang. Signed graph convolutional networks. In International
Conference on Data Mining (ICDM), 2018. 75, 76, 77, 95, 125

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Association of Compu-
tational Linguistics (ACL), 2018. 56

A. Diba, A. M. Pazandeh, and L. Van Gool. Efficient two-stream motion and
appearance 3d cnns for video classification. In Workshop at Conference on
European Conference on Computer Vision (ECCVW), 2016. 102

A. Diba, V. Sharma, and L. Van Gool. Deep temporal linear encoding networks. In
Conference on Computer Vision and Pattern Recognition (CVPR), 2017. 29, 98,
102, 104, 116, 118, 119

A. Diba, M. Fayyaz, V. Sharma, A. Hossein Karami, M. Mahdi Arzani, R. Youse-
fzadeh, and L. Van Gool. Temporal 3d convnets using temporal transition layer. In
Workshop at Conference on Computer Vision and Pattern Recognition (CVPRW),
2018a. 60, 98

136 Bibliography

A. Diba, V. Sharma, L. Van Gool, and R. Stiefelhagen. Dynamonet: Dynamic action
and motion network. In Conference on Computer Vision and Pattern Recognition
(CVPR), 2019b. 98

C. Dicle, B. Yilmaz, O. Camps, and M. Sznaier. Solving temporal puzzles. In
Conference on Computer Vision and Pattern Recognition (CVPR), 2016. 98, 101

N. Dilokthanakul, P. A. Mediano, M. Garnelo, M. C. Lee, H. Salimbeni, K. Arulku-
maran, and M. Shanahan. Deep Unsupervised Clustering with Gaussian Mixture
Variational Autoencoders. arXiv:1611.02648, 2016. 32

C. Doersch. Tutorial on Variational Autoencoders. arXiv:1606.05908, 2016. 40

C. Doersch, A. Gupta, and A. A. Efros. Unsupervised visual representation learning
by context prediction. In International Conference on Computer Vision (ICCV),
2015. 56, 100

J. Donahue, L. Anne Hendricks, S. Guadarrama, M. Rohrbach, S. Venugopalan,
K. Saenko, and T. Darrell. Long-term recurrent convolutional networks for visual
recognition and description. In Conference on Computer Vision and Pattern
Recognition (CVPR), 2015. 118

A. Dosovitskiy, J. T. Springenberg, M. Riedmiller, and T. Brox. Discriminative
unsupervised feature learning with convolutional neural networks. In Workshop at
Advances in Neural Information Processing Systems (NIPSW), 2014. 100

H. Doughty, W. Mayol-Cuevas, and D. Damen. The pros and cons: Rank-aware
temporal attention for skill determination in long videos. In Conference on
Computer Vision and Pattern Recognition (CVPR), 2019. 108

J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning
and stochastic optimization. Journal of Machine Learning Research (JMLR), 2011.
15

A. Ephrat, I. Mosseri, O. Lang, T. Dekel, K. Wilson, A. Hassidim, W. T. Freeman,
and M. Rubinstein. Looking to listen at the cocktail party: A speaker-independent
audio-visual model for speech separation. In ACM SIGGRAPH, 2018. 102

M. Everingham, J. Sivic, and A. Zisserman. “Hello! My name is ... Buffy” –
Automatic Naming of Characters in TV Video. In British Machine Vision
Conference (BMVC), 2006. 28, 32, 48, 49

B. Fernando, H. Bilen, E. Gavves, and S. Gould. Self-supervised video representation
learning with odd-one-out networks. In Conference on Computer Vision and
Pattern Recognition (CVPR), 2017. 33, 56, 99, 100, 101

A. Fukui, D. H. Park, D. Yang, A. Rohrbach, T. Darrell, and M. Rohrbach.
Multimodal compact bilinear pooling for visual question answering and visual
grounding. In Association of Computational Linguistics (ACL), 2016. 99, 104

Bibliography 137

Y. Gao, O. Beijbom, N. Zhang, and T. Darrell. Compact bilinear pooling. In
Conference on Computer Vision and Pattern Recognition (CVPR), 2016. 99, 104,
105

E. Ghaleb, M. Tapaswi, Z. Al-Halah, H. K. Ekenel, and R. Stiefelhagen. Accio: A
Dataset for Face Track Retrieval in Movies Across Age. In International Conference
on Multimedia Retrieval (ICMR), 2015. 20, 22, 76

J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl. Neural
message passing for quantum chemistry. In International Conference on Machine
Learning (ICML), 2017. 75, 76, 77

R. Girdhar, D. Ramanan, A. Gupta, J. Sivic, and B. Russell. Actionvlad: Learning
spatio-temporal aggregation for action classification. In Conference on Computer
Vision and Pattern Recognition (CVPR), 2017. 102, 114, 119

X. Glorot, A. Bordes, and Y. Bengio. Deep sparse rectifier neural networks. In
International Conference on Artificial Intelligence and Statistics (AISTATS), 2011.
10, 16

Y. Gong, L. Wang, R. Guo, and S. Lazebnik. Multi-scale orderless pooling of deep
convolutional activation features. In European Conference on Computer Vision
(ECCV), 2014. 102

I. Goodfellow, Y. Bengio, and A. Courville. Deep learning. book in preparation for
mit press. URL¡ http://www. deeplearningbook. org, 2016. 10

M. Guillaumin, J. Verbeek, and C. Schmid. Is that you? Metric Learning Approaches
for Face Identification. In International Conference on Computer Vision (ICCV),
2009. 28

W. Guo, H. Huang, X. Kong, and R. He. Learning disentangled representation
for cross-modal retrieval with deep mutual information estimation. In ACM
Multimedia (MM), 2019. 99

X. Guo, L. Gao, X. Liu, and J. Yin. Improved deep embedded clustering with
local structure preservation. In International Joint Conferences on Artificial
Intelligence (IJCAI), 2017. 56, 59

Y. Guo, L. Zhang, Y. Hu, X. He, and J. Gao. MS-Celeb-1M: A Dataset and
Benchmark for Large-Scale Face Recognition. In European Conference on Computer
Vision (ECCV), 2016. 41, 64, 119

S. Gupta, J. Hoffman, and J. Malik. Cross modal distillation for supervision transfer.
In Conference on Computer Vision and Pattern Recognition (CVPR), 2016. 102

R. Hadsell, S. Chopra, and Y. LeCun. Dimensionality Reduction by Learning an
Invariant Mapping. In Conference on Computer Vision and Pattern Recognition
(CVPR), 2006. 12, 36, 58, 63, 84

138 Bibliography

W. L. Hamilton, R. Ying, and J. Leskovec. Representation learning on graphs:
Methods and applications. IEEE Data Engineering Bulletin, 2017. 77

K. Hara, H. Kataoka, and Y. Satoh. Can spatiotemporal 3d cnns retrace the
history of 2d cnns and imagenet? In Conference on Computer Vision and Pattern
Recognition (CVPR), 2018. 98, 109, 118

M.-L. Haurilet, M. Tapaswi, Z. Al-Halah, and R. Stiefelhagen. Naming TV
Characters by Watching and Analyzing Dialogs. 2016. 32

K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In International Conference
on Computer Vision (ICCV), 2015. 16, 82

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition.
In Conference on Computer Vision and Pattern Recognition (CVPR), 2016. 17,
18, 56, 77, 82, 99, 101

X. He, Y. Peng, and L. Xie. A new benchmark and approach for fine-grained
cross-media retrieval. In ACM Multimedia (MM), 2019. 99

Y. He, K. Cao, C. Li, and C. C. Loy. Merge or not? learning to group faces via
imitation learning. In Association for the Advancement of Artificial Intelligence
(AAAI), 2018. 33, 58, 92, 93

G. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge in a neural network.
arXiv:1503.02531, 2015. 102

S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation,
1997. 99

C. Hori, T. Hori, T.-Y. Lee, Z. Zhang, B. Harsham, J. R. Hershey, T. K. Marks, and
K. Sumi. Attention-based multimodal fusion for video description. In International
Conference on Computer Vision (ICCV), 2017. 99, 102

X. Hou, L. Shen, K. Sun, and G. Qiu. Deep Feature Consistent Variational
Autoencoder. 2017. 31

P. Hu and D. Ramanan. Finding Tiny Faces. In Conference on Computer Vision
and Pattern Recognition (CVPR), 2017. 29

G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller. Labeled Faces in the Wild:
A Database for Studying Face Recognition in Unconstrained Environments. In
Workshop at Conference on European Conference on Computer Vision (ECCVW),
2008. 29

G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger. Densely connected con-
volutional networks. In Conference on Computer Vision and Pattern Recognition
(CVPR), 2017. 17, 18

Bibliography 139

Q. Huang, W. Liu, and D. Lin. Person search in videos with one portrait through
visual and temporal links. In European Conference on Computer Vision (ECCV),
2018. 76

P. J. Huber. Robust estimation of a location parameter. In Breakthroughs in
statistics. 1992. 11

S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. In International Conference on Machine
Learning (ICML), 2015. 84

H. Ishfaq, A. Hoogi, and D. Rubin. TVAE: Deep Metric Learning Approach for
Variational Autoencoder. In Workshop at International Conference on Learning
Representations (ICLRW), 2018. 32

D. Jayaraman and K. Grauman. Slow and steady feature analysis: higher order
temporal coherence in video. In Conference on Computer Vision and Pattern
Recognition (CVPR), 2016. 101

Z. Jiang, Y. Zheng, H. Tan, B. Tang, and H. Zhou. Variational deep embedding:
An unsupervised and generative approach to clustering. In International Joint
Conferences on Artificial Intelligence (IJCAI), 2017. 56, 59

Q. Jin, J. Chen, S. Chen, Y. Xiong, and A. Hauptmann. Describing videos using
multi-modal fusion. In ACM Multimedia (MM), 2016. 99

S. Jin, H. Su, C. Stauffer, and E. Learned-Miller. End-to-end Face Detection and Cast
Grouping in Movies using Erdős–Rényi Clustering. In International Conference
on Computer Vision (ICCV), 2017. 28, 32, 58

A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and L. Fei-Fei. Large-
scale video classification with convolutional neural networks. In Conference on
Computer Vision and Pattern Recognition (CVPR), 2014. 116, 118

T. Karras, T. Aila, S. Laine, and J. Lehtinen. Progressive Growing of GANs
for Improved Quality, Stability, and Variation. In International Conference on
Learning Representations (ICLR), 2018. 31

A. Kendall and R. Cipolla. Geometric loss functions for camera pose regression
with deep learning. In Conference on Computer Vision and Pattern Recognition
(CVPR), 2017. 13

G. Kim, L. Sigal, and E. P. Xing. Joint summarization of large-scale collections of
web images and videos for storyline reconstruction. In Conference on Computer
Vision and Pattern Recognition (CVPR), 2014. 99

D. Kingma and M. Welling. Auto-encoding Variational Bayes. In International
Conference on Learning Representations (ICLR), 2014. 30, 39, 40

140 Bibliography

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. 2015. 15,
84

T. N. Kipf and M. Welling. Semi-supervised classification with graph convolutional
networks. 2017. 75, 76, 77, 78, 80, 82

R. Kiros, Y. Zhu, R. R. Salakhutdinov, R. Zemel, R. Urtasun, A. Torralba, and
S. Fidler. Skip-thought vectors. In Workshop at Advances in Neural Information
Processing Systems (NIPSW), 2015. 99

G. Klambauer, T. Unterthiner, A. Mayr, and S. Hochreiter. Self-normalizing neural
networks. In Workshop at Advances in Neural Information Processing Systems
(NIPSW), 2017. 16

A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep
convolutional neural networks. In Workshop at Advances in Neural Information
Processing Systems (NIPSW), 2012. 17, 18

H. Kuehne, H. Jhuang, R. Stiefelhagen, and T. Serre. Hmdb51: A large video
database for human motion recognition. In High Performance Computing in
Science and Engineering. 2013. 116

S. Kumar, F. Spezzano, V. S. Subrahmanian, and C. Faloutsos. Edge weight
prediction in weighted signed networks. In Conference on International Conference
on Data Mining (ICDM), 2016. 95, 125

B. Laxton, J. Lim, and D. Kriegman. Leveraging temporal, contextual and ordering
constraints for recognizing complex activities in video. In Conference on Computer
Vision and Pattern Recognition (CVPR), 2007. 101

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based Learning Applied
to Document Recognition. Proceedings of IEEE, 1998. 31

Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard,
and L. D. Jackel. Backpropagation applied to handwritten zip code recognition.
Neural computation, 1989. 16, 17

Y. Li, D. Tarlow, M. Brockschmidt, and R. S. Zemel. Gated graph sequence neural
networks. In International Conference on Learning Representations (ICLR), 2016.
76, 77, 78, 82

M. Limmer and H. P. Lensch. Infrared colorization using deep convolutional
neural networks. In IEEE International Conference on Machine Learning and
Applications (ICMLA), 2016. 102

T.-Y. Lin, A. RoyChowdhury, and S. Maji. Bilinear cnn models for fine-grained
visual recognition. In International Conference on Computer Vision (ICCV), 2015.
102, 104

Bibliography 141

A. B. Lindbo Larsen, S. K. Sønderby, H. Larochelle, and O. Winther. Autoencoding
beyond pixels using a learned similarity metric. arXiv:1512.09300, 2015. 31

Y. Liu, J. Yan, and W. Ouyang. Quality Aware Network for Set to Set Recognition.
In Conference on Computer Vision and Pattern Recognition (CVPR), 2017. 60

A. L. Maas, A. Y. Hannun, and A. Y. Ng. Rectifier nonlinearities improve
neural network acoustic models. In International Conference on Machine Learning
(ICML), 2013. 16

T. Maharaj, N. Ballas, A. Rohrbach, A. C. Courville, and C. J. Pal. A dataset
and exploration of models for understanding video data through fill-in-the-blank
question-answering. In Conference on Computer Vision and Pattern Recognition
(CVPR), 2017. 110

K. Matzen and N. Snavely. Scene chronology. In European Conference on Computer
Vision (ECCV), 2014. 98, 101

A. Miech, J.-B. Alayrac, P. Bojanowski, I. Laptev, and J. Sivic. Learning from video
and text via large-scale discriminative clustering. In International Conference on
Computer Vision (ICCV), 2017a. 32

A. Miech, I. Laptev, and J. Sivic. Learnable pooling with context gating for video
classification. In Workshop at Conference on Computer Vision and Pattern
Recognition (CVPRW), 2017b. 102, 114

T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed
representations of words and phrases and their compositionality. In Workshop at
Advances in Neural Information Processing Systems (NIPSW), 2013. 56

I. Misra, C. L. Zitnick, and M. Hebert. Shuffle and learn: unsupervised learning
using temporal order verification. In European Conference on Computer Vision
(ECCV), 2016. 33, 56, 99, 100, 101

J. G. Moreno and G. Dias. Adapted b-cubed metrics to unbalanced datasets. In
ACM Conference on Research and Development in Information Retrieval, 2015.
24

Y. Moses, S. Avidan, et al. Space-time tradeoffs in photo sequencing. In International
Conference on Computer Vision (ICCV), 2013. 98, 101

A. Nagrani and A. Zisserman. From Benedict Cumberbatch to Sherlock Holmes:
Character Identification in TV series without a Script. In British Machine Vision
Conference (BMVC), 2017. 28, 32

A. Nagrani, S. Albanie, and A. Zisserman. Learnable pins: Cross-modal embeddings
for person identity. In European Conference on Computer Vision (ECCV), 2018a.
102

142 Bibliography

A. Nagrani, S. Albanie, and A. Zisserman. Seeing voices and hearing faces: Cross-
modal biometric matching. In Conference on Computer Vision and Pattern
Recognition (CVPR), 2018b. 102

A. Narayanan, M. Chandramohan, R. Venkatesan, L. Chen, Y. Liu, and S. Jaiswal.
graph2vec: Learning distributed representations of graphs. In International
Workshop on Mining and Learning with Graphs (MLG), 2017. 77

J. Ngiam, A. Khosla, M. Kim, J. Nam, H. Lee, and A. Y. Ng. Multimodal deep
learning. In International Conference on Machine Learning (ICML), 2011. 102

A. Owens and A. A. Efros. Audio-visual scene analysis with self-supervised
multisensory features. In European Conference on Computer Vision (ECCV),
2018. 102

A. Owens, P. Isola, J. McDermott, A. Torralba, E. H. Adelson, and W. T. Freeman.
Visually indicated sounds. In Conference on Computer Vision and Pattern
Recognition (CVPR), 2016a. 102

A. Owens, J. Wu, J. H. McDermott, W. T. Freeman, and A. Torralba. Ambient sound
provides supervision for visual learning. In European Conference on Computer
Vision (ECCV), 2016b. 102

S. Parekh, S. Essid, A. Ozerov, N. Q. Duong, P. Pérez, and G. Richard. Weakly
supervised representation learning for unsynchronized audio-visual events. Journal
of Multimedia, 2018. 102

O. M. Parkhi, K. Simonyan, A. Vedaldi, and A. Zisserman. A Compact and
Discriminative Face Track Descriptor. In Conference on Computer Vision and
Pattern Recognition (CVPR), 2014. 32, 60

O. M. Parkhi, A. Vedaldi, and A. Zisserman. Deep Face Recognition. In British
Machine Vision Conference (BMVC), 2015. 1, 2, 19, 29, 42, 56

A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Des-
maison, L. Antiga, and A. Lerer. Automatic differentiation in pytorch. 2017.
85

G. Paul, K. Elie, M. Sylvain, O. Jean-Marc, and D. Paul. A conditional random
field approach for audio-visual people diarization. In International Conference on
Acoustics, Speech and Signal Processing (ICASSP), 2014. 32

Y. Peng, J. Qi, X. Huang, and Y. Yuan. Ccl: Cross-modal correlation learning with
multigrained fusion by hierarchical network. IEEE Transactions on Multimedia,
2018. 99

J. Pennington, R. Socher, and C. Manning. Glove: Global vectors for word represen-
tation. In Empirical Methods in Natural Language Processing (EMNLP), 2014.
109

Bibliography 143

F. Perronnin, J. Sánchez, and T. Mensink. Improving the fisher kernel for large-scale
image classification. In European Conference on Computer Vision (ECCV), 2010.
102

N. Pham and R. Pagh. Fast and scalable polynomial kernels via explicit feature
maps. In ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, 2013. 6, 99, 102, 105, 126

L. C. Pickup, Z. Pan, D. Wei, Y. Shih, C. Zhang, A. Zisserman, B. Scholkopf, and
W. T. Freeman. Seeing the Arrow of Time. In Conference on Computer Vision
and Pattern Recognition (CVPR), 2014. 101

F. Qi, X. Yang, and C. Xu. A unified framework for multimodal domain adaptation.
In ACM Multimedia (MM), 2018. 99

N. Qian. On the momentum term in gradient descent learning algorithms. Neural
networks, 1999. 15

P. Ramachandran, B. Zoph, and Q. V. Le. Searching for activation functions.
arXiv:1710.05941, 2017. 16

V. Ramanathan, A. Joulin, P. Liang, and L. Fei-Fei. Linking people in videos with
“their” names using coreference resolution. In European Conference on Computer
Vision (ECCV), 2014. 28

L. Ren, S. Liu, H. Huang, J. Han, S. Yan, and B. Li. Finding images by dialoguing
with image. In ACM Multimedia (MM), 2019. 99

V. Roethlingshoefer, V. Sharma, and R. Stiefelhagen. Self-supervised face-grouping
on graph. In ACM Multimedia (MM), 2019. 33, 100, 120, 121, 122

A. Rohrbach, M. Rohrbach, S. Tang, S. J. Oh, and B. Schiele. Generating De-
scriptions with Grounded and Co-Referenced People. In Conference on Computer
Vision and Pattern Recognition (CVPR), 2017a. 28

A. Rohrbach, A. Torabi, M. Rohrbach, N. Tandon, C. Pal, H. Larochelle, A. Courville,
and B. Schiele. Movie description. International Journal of Computer Vision
(IJCV), 2017b. 28, 110

M. Roth, M. Bäuml, R. Nevatia, and R. Stiefelhagen. Robust Multi-pose Face
Tracking by Multi-stage Tracklet Association. In International Conference on
Pattern Recognition (ICPR), 2012. 48, 49

S. Ruder. An overview of gradient descent optimization algorithms. arXiv:1609.04747,
2016. xv, 15

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal representa-
tions by error propagation. Technical report, California Univ San Diego La Jolla
Inst for Cognitive Science, 1985. 10, 15

144 Bibliography

O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy,
A. Khosla, M. Bernstein, et al. Imagenet large scale visual recognition challenge.
International Journal of Computer Vision (IJCV), 2015. 18, 109

F. Sadeghi, J. R. Tena, A. Farhadi, and L. Sigal. Learning to select and order
vacation photographs. 2015. 98, 101

M. S. Sarfraz and O. Hellwich. An efficient front-end facial pose estimation system
for face recognition. Pattern Recognition and Image Analysis, 2008a. 32

M. S. Sarfraz and O. Hellwich. Head pose estimation in face recognition across pose
scenarios. VISAPP (1), 2008b. 32

M. S. Sarfraz and O. Hellwich. Probabilistic learning for fully automatic face
recognition across pose. Image and Vision Computing, 2010. 32

M. S. Sarfraz and M. H. Khan. A probabilistic framework for patch based vehicle
type recognition. VISAPP, 2011. 59

M. S. Sarfraz, A. Schumann, A. Eberle, and R. Stiefelhagen. A pose-sensitive em-
bedding for person re-identification with expanded cross neighborhood re-ranking.
In Conference on Computer Vision and Pattern Recognition (CVPR), 2018. 29

M. S. Sarfraz, V. Sharma, and R. Stiefelhagen. Efficient parameter-free clustering
using first neighbor relations. In Conference on Computer Vision and Pattern
Recognition (CVPR), 2019. 33, 57, 58, 59, 61, 62, 70, 71, 92, 93, 94, 111, 124

G. Schindler, F. Dellaert, and S. B. Kang. Inferring temporal order of images
from 3d structure. In Conference on Computer Vision and Pattern Recognition
(CVPR), 2007. 98, 101

F. Schroff, D. Kalenichenko, and J. Philbin. FaceNet: A Unified Embedding for
Face Recognition and Clustering. In Conference on Computer Vision and Pattern
Recognition (CVPR), 2015. 2, 12, 13, 19, 29

D. Sculley. Web-scale K-means Clustering. In International Conference on World
Wide Web, 2010. 62

V. Sharma and L. Van Gool. Image-level classification in hyperspectral images using
feature descriptors, with application to face recognition. arXiv:1605.03428, 2016.
32

V. Sharma, A. Diba, T. Tuytelaars, and L. Van Gool. Hyperspectral cnn for image
classification & band selection, with application to face recognition. Technical
report KUL/ESAT/PSI/1604, KU Leuven, ESAT, Leuven, Belgium, 2016. 32

V. Sharma, M. S. Sarfraz, and R. Stiefelhagen. A simple and effective technique for
face clustering in tv series. In Workshop at Conference on Computer Vision and
Pattern Recognition (CVPRW), 2017. 36, 49, 61, 70, 92

Bibliography 145

V. Sharma, A. Diba, D. Neven, M. S. Brown, L. Van Gool, and R. Stiefelhagen.
Classification driven dynamic image enhancement. In Conference on Computer
Vision and Pattern Recognition (CVPR), 2018. 29

V. Sharma, M. Tapaswi, M. S. Sarfraz, and R. Stiefelhagen. Self-supervised learning
of face representations for video face clustering. In International Conference on
Automatic Face and Gesture Recognition (FG), 2019a. xx, xxi, xxii, 57, 61, 63, 66,
70, 71, 74, 78, 79, 81, 87, 88, 89, 91, 92, 93, 94, 99, 100, 120, 121, 122

V. Sharma, M. Tapaswi, and R. Stiefelhagen. Deep multimodal feature encoding
for video ordering and retrieval tasks. In International Conference on Computer
Vision (ICCV): Workshop on Holistic Video Understanding (HVU), 2019b. 56

V. Sharma, M. Tapaswi, and R. Stiefelhagen. Clustering based contrastive learning
for improving face representations. In International Conference on Automatic
Face and Gesture Recognition (FG), 2020. xxi, xxii, 89, 92, 93, 94, 120, 121, 122

N. Siddharth, B. Paige, J.-W. van de Meent, A. Desmaison, N. D. Goodman,
P. Kohli, F. Wood, and P. Torr. Learning Disentangled Representations with
Semi-Supervised Deep Generative Models. In Workshop at Advances in Neural
Information Processing Systems (NIPSW), 2017. 31

K. Simonyan and A. Zisserman. Two-stream convolutional networks for action
recognition in videos. In Workshop at Advances in Neural Information Processing
Systems (NIPSW), 2014a. 118

K. Simonyan and A. Zisserman. Very Deep Convolutional Networks for Large-scale
Image Recognition. In International Conference on Learning Representations
(ICLR), 2014b. 17, 18

J. Sivic and A. Zisserman. Video google: A text retrieval approach to object matching
in videos. In International Conference on Computer Vision (ICCV), 2003. 102

J. Sivic, M. Everingham, and A. Zisserman. “Who are you?” – Learning person
specific classifiers from video. In Conference on Computer Vision and Pattern
Recognition (CVPR), 2009. 28

K. Soomro, A. R. Zamir, and M. Shah. Ucf101: A dataset of 101 human actions
classes from videos in the wild. arXiv:1212.0402, 2012. 116

N. Srivastava, E. Mansimov, and R. Salakhutdinov. Unsupervised learning of video
representations using lstms. In International Conference on Machine Learning
(ICML), 2015. 118

A. Subramanya and J. Bilmes. Large scale graph transduction. 2009. 76

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-
houcke, and A. Rabinovich. Going deeper with convolutions. In Conference on
Computer Vision and Pattern Recognition (CVPR), 2015. 17, 18

146 Bibliography

Y. Taigman, M. Yang, M. Ranzato, and L. Wolf. DeepFace: Closing the Gap to
Human-Level Performance in Face Verification. In Conference on Computer Vision
and Pattern Recognition (CVPR), 2014. 2, 19, 29

P. Tang, X. Wang, B. Shi, X. Bai, W. Liu, and Z. Tu. Deep fishernet for object
classification. IEEE Transactions on Neural Networks and Learning Systems, 2016.
102

Y. Tang, R. Salakhutdinov, and G. Hinton. Robust Boltzmann Machines for
Recognition and Denoising. In Conference on Computer Vision and Pattern
Recognition (CVPR), 2012. 31

M. Tapaswi, M. Bäuml, and R. Stiefelhagen. “Knock! Knock! Who is it?” Prob-
abilistic Person Identification in TV-Series. In Conference on Computer Vision
and Pattern Recognition (CVPR), 2012. 22, 32, 74, 76, 102

M. Tapaswi, M. Bäuml, and R. Stiefelhagen. StoryGraphs: Visualizing Character
Interactions as a Timeline. In Conference on Computer Vision and Pattern
Recognition (CVPR), 2014a. 111

M. Tapaswi, O. M. Parkhi, E. Rahtu, E. Sommerlade, R. Stiefelhagen, and A. Zis-
serman. Total Cluster: A Person Agnostic Clustering Method for Broadcast
Videos. In Indian Conference on Computer Vision, Graphics and Image Process-
ing (ICVGIP), 2014b. xix, 24, 32, 35, 37, 47, 63, 74, 78, 100

M. Tapaswi, Y. Zhu, R. Stiefelhagen, A. Torralba, R. Urtasun, and S. Fidler. Movieqa:
Understanding stories in movies through question-answering. In Conference on
Computer Vision and Pattern Recognition (CVPR), 2016. 28

M. Tapaswi, M. T. Law, and S. Fidler. Video face clustering with unknown number
of clusters. In International Conference on Computer Vision (ICCV), 2019. 28,
29, 33, 51, 58, 61

J. B. Tenenbaum and W. T. Freeman. Separating style and content with bilinear
models. Neural computation, 2000. 102

A. Torabi, N. Tandon, and L. Sigal. Learning language-visual embedding for movie
understanding with natural-language. arXiv:1609.08124, 2016. 110

D. L. Tran, R. Walecki, O. Rudovic, S. Eleftheriadis, B. Schuller, and M. Pantic.
DeepCoder: Semi-parametric Variational Autoencoders for Automatic Facial Action
Coding. In International Conference on Computer Vision (ICCV), 2017. 31

D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri. Learning spatiotemporal
features with 3d convolutional networks. In International Conference on Computer
Vision (ICCV), 2015. 116, 118

L. Tran, X. Yin, and X. Liu. Representation learning by rotating your faces. 2018.
74

Bibliography 147

L. van der Maaten and G. Hinton. Visualizing data using t-SNE. Journal of Machine
Learning Research (JMLR), 2008. xvii, 93, 96

A. Vedaldi and K. Lenc. Matconvnet: Convolutional neural networks for matlab. In
ACM Multimedia (MM), 2015. 50

I. Vendrov, R. Kiros, S. Fidler, and R. Urtasun. Order-embeddings of images and
language. In International Conference on Learning Representations (ICLR), 2016.
13, 108

P. Vicol, M. Tapaswi, L. Castrejon, and S. Fidler. Moviegraphs: Towards under-
standing human-centric situations from videos. In Conference on Computer Vision
and Pattern Recognition (CVPR), 2018. 28, 76

H. Wang and C. Schmid. Action recognition with improved trajectories. In
International Conference on Computer Vision (ICCV), 2013. 118

J. Wang, T. Jebara, and S.-F. Chang. Graph transduction via alternating min-
imization. In International Conference on Machine Learning (ICML), 2008.
76

L. Wang, Y. Xiong, Z. Wang, Y. Qiao, D. Lin, X. Tang, and L. Van Gool. Temporal
segment networks: towards good practices for deep action recognition. In European
Conference on Computer Vision (ECCV), 2016. 118

R. Wang, H. Guo, L. S. Davis, and Q. Dai. Covariance Discriminative Learning:
A Natural and Efficient Approach to Image Set Classification. In Conference on
Computer Vision and Pattern Recognition (CVPR), 2012. 60

X. Wang and A. Gupta. Unsupervised learning of visual representations using videos.
In International Conference on Computer Vision (ICCV), 2015. 33, 56, 99, 100

Z. Wang, L. Zheng, Y. Li, and S. Wang. Linkage based face clustering via graph
convolution network. In Conference on Computer Vision and Pattern Recognition
(CVPR), 2019. 77

J. H. Ward Jr. Hierarchical Grouping to Optimize an Objective Function. Journal
of the American Statistical Association, 1963. 35, 61, 78, 84, 85

D. Wei, J. Lim, A. Zisserman, and W. T. Freeman. Learning and using the arrow of
time. In Conference on Computer Vision and Pattern Recognition (CVPR), 2018.
101

L. Wolf, T. Hassner, and I. Maoz. Face Recognition in Unconstrained Videos with
Matched Background Similarity. In Conference on Computer Vision and Pattern
Recognition (CVPR), 2011. 29

A. Wu and Y. Han. Multi-modal circulant fusion for video-to-language and backward.
In International Joint Conferences on Artificial Intelligence (IJCAI), 2018. 99,
102

148 Bibliography

B. Wu, S. Lyu, B.-G. Hu, and Q. Ji. Simultaneous Clustering and Tracklet Linking
for Multi-face Tracking in Videos. In International Conference on Computer
Vision (ICCV), 2013a. 20, 22, 28, 32, 49, 70, 74, 76, 92

B. Wu, Y. Zhang, B.-G. Hu, and Q. Ji. Constrained Clustering and its Application
to Face Clustering in Videos. In Conference on Computer Vision and Pattern
Recognition (CVPR), 2013b. 20, 21, 22, 28, 32, 37, 47, 49, 63, 70, 78, 92

Y. Wu, H. Liu, J. Li, and Y. Fu. Improving face representation learning with center
invariant loss. Image and Vision Computing, 2018. 74

S. Xiao, M. Tan, and D. Xu. Weighted Block-sparse Low Rank Representation for
Face Clustering in Videos. In European Conference on Computer Vision (ECCV),
2014. 21, 22, 32, 49, 70, 92

J. Xie, R. Girshick, and A. Farhadi. Unsupervised Deep Embedding for Clustering
Analysis. In International Conference on Machine Learning (ICML), 2016. 31, 56

D. Xu, J. Xiao, Z. Zhao, J. Shao, D. Xie, and Y. Zhuang. Self-supervised spatiotem-
poral learning via video clip order prediction. In Conference on Computer Vision
and Pattern Recognition (CVPR), 2019. 101

R. Yan, A. Hauptmann, and R. Jin. Multimedia search with pseudo-relevance
feedback. In International Conference on Image and Video Retrieval, 2003a. 37,
43, 65

R. Yan, A. G. Hauptmann, and R. Jin. Negative pseudo-relevance feedback in
content-based video retrieval. In ACM Multimedia (MM), 2003b. xx, 37, 43, 65,
66

X. Yan, J. Yang, K. Sohn, and H. Lee. Attribute2Image: Conditional Image
Generation from Visual Attributes. In European Conference on Computer Vision
(ECCV), 2016. 31

J. Yang, K. Yu, Y. Gong, and T. Huang. Linear spatial pyramid matching using
sparse coding for image classification. In Conference on Computer Vision and
Pattern Recognition (CVPR), 2009. 102

J. Yang, D. Parikh, and D. Batra. Joint unsupervised learning of deep representations
and image clusters. In Conference on Computer Vision and Pattern Recognition
(CVPR), 2016. 56, 59

J. Yang, P. Ren, D. Zhang, D. Chen, F. Wen, H. Li, and G. Hua. Neural Aggregation
Network for Video Face Recognition. In Conference on Computer Vision and
Pattern Recognition (CVPR), 2017a. 60

Z. Yang, Y. Xu, H. Wang, B. Wang, and Y. Han. Multirate multimodal video
captioning. In ACM Multimedia (MM), 2017b. 99

Bibliography 149

Z. Yu, J. Yu, J. Fan, and D. Tao. Multi-modal factorized bilinear pooling with
co-attention learning for visual question answering. In International Conference
on Computer Vision (ICCV), 2017. 99

S. Yuan, X. Wu, and Y. Xiang. Sne: Signed network embedding. In J. Kim,
K. Shim, L. Cao, J.-G. Lee, X. Lin, and Y.-S. Moon (eds), Advances in Knowledge
Discovery and Data Mining, 2017. 95, 125

B. P. Yuhas, M. H. Goldstein, and T. J. Sejnowski. Integration of acoustic and
visual speech signals using neural networks. IEEE Communications Magazine,
1989. 102

A. T. Yusuf Aytar, Carl Vondrick. See, hear, and read: Deep aligned representations.
In arXiv:1706.00932, 2017. 102

M. D. Zeiler. Adadelta: an adaptive learning rate method. arXiv:1212.5701, 2012.
15

L. Zhang, D. V. Kalashnikov, and S. Mehrotra. A unified framework for context
assisted face clustering. In International Conference on Multimedia Retrieval
(ICMR), 2013. 32

S. Zhang, Y. Gong, and J. Wang. Deep metric learning with improved triplet loss
for face clustering in videos. In Pacific Rim Conference on Multimedia, 2016a. 2,
13, 20, 21, 22, 28, 29, 33, 35, 43, 48, 49, 58, 61, 70, 74, 76, 79, 92

Z. Zhang, P. Luo, C. C. Loy, and X. Tang. Joint face representation adaptation and
clustering in videos. In European Conference on Computer Vision (ECCV), 2016b.
xx, 2, 20, 21, 22, 23, 24, 25, 28, 29, 33, 35, 43, 47, 48, 49, 50, 58, 61, 70, 71, 74, 76,
91, 92, 93, 94, 119, 120, 121, 122

B. Zhou, A. Lapedriza, A. Khosla, A. Oliva, and A. Torralba. Places: A 10 million
image database for scene recognition. IEEE Transactions on Pattern Analysis
and Machine Intelligence (PAMI), 2017. 109

C. Zhou, C. Zhang, H. Fu, R. Wang, and X. Cao. Multi-cue augmented face
clustering. In ACM Multimedia (MM), 2015. 32

H. Zhou, M. Tapaswi, and S. Fidler. Now You Shake Me: Towards Automatic 4D
Cinema. In Conference on Computer Vision and Pattern Recognition (CVPR),
2018. 28

Y. Zhou and T. L. Berg. Temporal perception and prediction in ego-centric video.
In International Conference on Computer Vision (ICCV), 2015. 101

	Introduction
	Objective and motivation
	Key challenges and tasks
	Key challenges
	Key Tasks

	Overview and Contributions

	Background
	Neural Networks
	Learning: Parameter Estimators
	Loss Function
	Regularizer
	Optimization
	Convolutional Neural Network (CNN)

	Datasets
	The Big Bang Theory
	Buffy - The Vampire Slayer
	Harry Potter 1

	Metrics

	Ranking-based Pair Generation
	Introduction
	Related Work
	Refining Face Representations for Clustering
	Discriminative models
	Generative models

	Evaluation
	Experimental Setup
	Implementation Details
	Clustering Performance Ablation Studies
	Studying Generalization
	Comparison with the state-of-the-art

	Discussion
	Summary

	Clustering-based Pair Generation
	Introduction
	Related Work
	Clustering based Representation Learning
	Preliminaries
	Clustering Algorithm
	Video Level Constraints
	Training and Inference
	Implementation Details

	Evaluation
	Clustering Performance and Generalization
	Sources of Positive and Negative Pairs
	Impact of Clustering Algorithm
	Comparison with the state-of-the-art

	Summary

	Self-Supervised Face-Grouping on Graphs
	Introduction
	Related Work
	Method
	Preliminaries
	Graph Construction
	Training Procedure

	Experiments
	Clustering Performance and Generalization
	Ablation Study
	Comparison to State-of-the-Art

	Feature Space Projections
	Summary

	Temporal Feature Encoding and Representation Learning
	Introduction
	Related Work
	Learning to Order Clips
	Temporal Compact Bilinear Pooling
	Learning via Temporal Ordering
	Implementation details

	Evaluation
	Dataset
	Temporal Ordering
	Multimodal Retrieval
	Action Recognition
	Video Face Clustering

	Summary

	Summary and future work
	Ranking-based learning (Chapter 3)
	Clustering-based learning (Chapter 4)
	Graph-based learning (Chapter 5)
	Compact representation-based learning (Chapter 6)

	Short CV
	Publications
	Bibliography

