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Chapter 1

Introduction

1.1 Brief overview and Motivation

Ever since the discovery of superconductivity by H. Kammerlingh Onnes in 1911, zero

resistance electronic transport has been an interesting physical phenomenon in terms of

fundamental physics as well as in strong industrial applications. From the point of view

of fundamental physics, it is the combination of a superconductor with another metal or

an insulator, that plays an important role in the devices which utilise superconductivity.

The electronic transport is carried out via quantum tunnelling in case of the Josephson

junctions with insulating weak links, while proximity induced superconductivity and

various Andreev processes are responsible for the electronic transport in the Josephson

junctions with metallic/semiconducting weak links, and in superconductor/normal metal

or superconductor/semiconductor junctions [1–5]. In case of normal metal and super-

conductor junctions (NS junctions), the transport properties of the junctions strongly

depend on the interface between the superconductor and the normal metal, i. e., whether

the NS junction is in the metallic regime with no interface barrier or in the tunnelling

regime due to a finite interface barrier [3]. These NS junctions are of obvious interest

due to the fact that while the charge transport in a normal metal is of fermionic single

particle nature, the electronic transport in a superconductor in its ground state is carried

out by the Cooper pairs. The conversion of two Fermi particles into a Cooper pair via

the Andreev reflection is what sparks interest in these normal metal/superconductor

junctions. The nature of the Andreev reflection, local (Andreev retro-reflection, multiple

Andreev reflection, specular Andreev reflection) or nonlocal (crossed Andreev reflection,

specular crossed Andreev reflection), strongly depends not only on the transport prop-

erties of the normal metal and the superconductor, but on their interface as well [3, 4,

6–9].

In electronic transport, graphene takes advantage over the other normal metals due

to its highly tunable electronic properties [10–13]. A single layer graphene (SLG) is
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4 Chapter 1. Introduction

a gapless semiconductor with a linear dispersion relation in the low-energy regime. It

makes SLG a host of relativistic quasiparticles or massless fermions where relativistic

physics can be studied in a device on a small chip without using extremely high energy.

Bilayer graphene (BLG), on the other hand, has significantly different band structure

from its single layer counterpart [10]. It has a gapless parabolic energy dispersion in

the low-energy regime which shows massive fermions in contrast to the SLG. In both

of the graphene systems, an electronic band gap can be opened by breaking the lattice

inversion symmetry [10, 14]. While in a SLG system, a potential difference between the

two sublattices is required to break the inversion symmetry, this symmetry breaking can

be achieved comparatively easily in a BLG system by applying a potential difference

between the two graphene layers [10, 14].

In case of proximity induced superconductivity, graphene has been extensively studied

as a weak link between two superconductors[15–29]. However, in most of these studies

the primary focus has been to measure large supercurrents and signatures of ballistic

transport in the superconducting regime. In terms of Andreev processes, the focus in

these studies has been on studying the multiple Andreev reflections in graphene based

Josephson junctions, while a different approach was implemented by Bretheau et al. [30]

where the authors investigated the Andreev bound states in proximitized graphene by

using tunnelling spectroscopy. On the other hand, there have been very few studies

where graphene has been utilised to study the properties of superconductor/normal

metal interfaces with a single superconducting interface. Observation of the specular

Andreev reflection in BLG based junctions [31], reflectionless tunnelling in SLG [32] and

two-gap superconductivity in niobium diselenide/graphene (NbSe2/SLG) junctions [33]

show that graphene is a suitable material for the investigation of the Andreev processes

in NS junctions. Despite its potential, the research area of graphene based NS interfaces

has remained far from its Josephson junction counterpart in terms of research and

development.

Drawing motivation from the above discussion, the present doctoral thesis is dedicated

to the study of the Andreev processes and superconductivity in single layer graphene

based devices with hybrid contacts, i. e., with a combination of superconducting and

normal metal contacts. To take advantage of the electronic transport properties of

pristine graphene, the devices were fabricated with hexagonal boron nitride (h-BN)

encapsulated graphene [34]. h-BN encapsulation shields the graphene sheet from the

external contamination such as the condensation of the water molecules or hydrocarbons

due to the ambient conditions, and the residues of the polymers that are used during

the lithography processes. At the same time, the bottom h-BN provides a perfectly flat

substrate to the overlying graphene contrary to the graphene on a Si/SiO2 substrate. In

order to achieve a better electrical contact, the metal contact to the graphene is established

on its one-dimensional (1D) edges instead of the two-dimensional (2D) surface [34] by

following a process similar to the one shown by Kraft et al. [25]. Low temperature
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electronic transport characterisation of these devices was carried out by using a He3/He4

dilution refrigerator and standard low frequency lock-in detection technique.

1.2 Outline of the thesis

The thesis is structured as given below with the current chapter being Chapter 1 where

the subject of research is introduced.

In Chapter 2, a brief theoretical background is provided on the subject of the

Andreev processes at the normal metal/superconductor interfaces, proximity induced

superconductivity, and electronic transport in graphene. This chapter includes the recent

developments in the research area of interest.

Device fabrication techniques, and experimental methods employed for the fabrication

and characterisation of the devices are described in Chapter 3. This chapter mainly

focuses on the van der Waals assembly of the h-BN/graphene/h-BN heterostructures,

the processes defining the edge-contact geometry of the devices, and the low temperature

electronic transport measurement setup.

In Chapter 4, experimental characterisation of the devices with simple two-terminal

normal metal/graphene/superconductor junctions is shown and discussed. These devices

were characterised in the normal state where the device configuration is NGN′ (normal

metal/graphene/normal metal, N′ denotes the normal state of the superconductor) due

to two different normal metals, and in the superconducting state where the device

configuration is NGS (normal metal/graphene/superconductor). A modified Octavio-

Tinkham-Blonder-Klapwijk (OTBK) model [4] and a generalized Blonder-Tinkham-

Klapwijk (BTK) model [3, 35, 36] were used to explain the experimental results obtained

in the superconducting regime.

The experimental results obtained from the multiterminal graphene based devices are

discussed in Chapter 5. These devices were fabricated to provide two transverse graphene

based junctions in the configuration SGS (superconductor/graphene/superconductor)

and NGN (normal metal/graphene/normal metal). This chapter is primarily focused on

the tuning of the supercurrent across the SGS junction by applying a current across the

NGN junction.

Chapter 6 shows the experimental results obtained from the same multiterminal

device as shown in Chapter 5, however, here, the focus of the study is the nonlocal Andreev

reflection. These graphene based multiterminal devices offer a perfect testbed for tunable

nonlocal transport. Signatures of the crossed Andreev reflections were observed and

traced as a function of the gate voltage as well as temperature. Along with the modified

OTBK model and the generalized BTK model used to explain the superconducting

transport properties in these devices, a three-terminal beam splitter model was employed
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to explain the observed crossed Andreev reflection.

Chapter 7 concludes the thesis with a summary of the experimental results that

were presented and discussed in the previous chapters. In addition, an outlook on the

future research work in the field of graphene based hybrid junctions is shared.



Chapter 2

Theoretical overview

The electronic transport in a metal or a semiconductor is due to the fermions with half-

integer spin which follow the Fermi-Dirac distribution. In a conventional superconductor,

on the other hand, the electronic transport is due to the bound pairs of electrons having

equal and opposite momentum and spin, very well-known as the Cooper pairs after the

Bardeen-Cooper-Schrieffer (BCS) theory of superconductivity.

In this chapter, a brief theoretical overview of the Andreev processes (which account

for the transport between a normal metal and a superconductor) and Josephson junctions

is provided that forms the basis of this research work. It is followed by an introduction

to the electronic transport properties of graphene and its role as a material of interest in

terms of superconductivity.

2.1 Normal metal/superconductor interfaces

In a normal metal/superconductor (NS) junction, when the Fermi energy of an incident

electron from the metal lies within the superconducting gap, charge transport across

the junction takes place by a process known as the Andreev reflection. In 1964, A. F.

Andreev showed that an electron which incidents from the N on the NS-interface has

a finite probability of being retro-reflected as a hole in N [2]. Due to the conservation

of momentum, this Andreev reflected hole travels along the same path as the incident

electron and its group velocity changes sign. The Andreev reflection probability, however,

depends strongly on the interface between the metal and superconductor as was shown

by Blonder, Tinkham and Klapwijk which is widely known as the BTK model [3]. In

this section, a brief description of this model has been provided to gain an insight into

the NS interfaces.

Fig. 2.1(a) shows the processes considered by the BTK model at an NS interface

in the dynamic equilibrium, the figure is taken from reference [3]. In equilibrium, all

7



8 Chapter 2. Theoretical overview

Figure 2.1: .(a) Energy vs. momentum diagram at an NS interface in dynamic equilibrium.
Closed circles denote electrons and open circles denote holes. The arrows point in the
direction of group velocity. The figure describes an incident electron (0) with the resulting
transmitted (2, 4) and reflected (5,6) particles. (b) Plots of reflection and transmission
coefficients at an NS interface. A denotes the Andreev reflection probability, B gives the
normal reflection probability, C gives transmission probability without branch crossing,
and D gives the transmission probability with branch crossing. Z denotes the barrier
strength at the NS interface. Figure taken from reference [3].
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the quasiparticle states denoted by 0, 1, 2, 3, 4 and 5 are occupied with the same

probability f0(E). It also gives the probability of a hole at −E labelled as state 6 in

the figure. However, as the particles approach the NS interface, they are transmitted or

reflected with certain probabilities. The four processes A, B, C, and D show the Andreev

reflection, normal reflection, transmission without branch crossing, and transmission

with branch crossing, respectively, if the energy E of the incident electron is greater than

the superconducting gap ∆ as shown in the figure.

Blonder et al. calculated these reflection and transmission probabilities in the presence

of a barrier at the NS interface, as shown in Fig. 2.1(b), which ranges from the metallic

regime (Z = 0) with no barrier to the intermediate regime (Z = 3) with a finite barrier. In

the figure, the parameter Z denotes the barrier strength (dimensionless) which is related

to the transmission coefficient τ according to the relation τ = (1 + Z2)−1, and to the

reflection coefficient r as r = Z2/(1 +Z2). Note that the four probabilities, the reflection

probabilities A(E), B(E), and the transmission probabilities C(E), D(E), are bound by

the condition A(E) + B(E) + C(E) + D(E) = 1, due to the conservation of probability.

In Fig. 2.1(b), it can be seen that as the barrier strength increases, the reflection and

transmission probabilities change significantly. The Andreev reflection probability A(E)

is the quantity of interest in the present case, and it can be followed that A(E) = 1

in the metallic contact regime, no barrier since Z = 0, i. e., a perfect contact between

the normal metal and the superconductor. A(E) decreases as Z increases, reducing to

close to zero in the case of strong barriers (corresponding to Z = 3 case in Fig. 2.1(b)).

The model signifies the importance of the interface between the normal metal and the

superconductor for the observation of the Andreev reflection.

Blonder et al. , calculated the current-voltage (I − V ) characteristics of these NS

junctions at a finite voltage with the following relation:

I = 2N(0)evFA
∫ ∞
−∞

[f0(E − eV )− f0(E)][1 + A(E)−B(E)]dE (2.1)

where N(0) denotes the spin-split density of states (prefactor 2 takes into account the

spin degeneracy), vF is the Fermi velocity, A is the effective cross-sectional area, f0(E)

is the distribution function of the incoming electrons from the S side, and f0(E − eV ) is

the distribution function of the incoming electrons from the N side with the accelerating

voltage V .

The quantity [1 + A(E) − B(E)] in Eqn. 2.1 denotes the spectral conductance, and it

can be readily seen that the Andreev reflection increases the current while the normal

reflection decreases it. Fig. 2.2 shows the differential conductance normalized with the

normal state conductance RN (dI/dV ) as a function of the bias voltage V . The evolution

of these curves with the increasing barrier strength shows the diminishing of the Andreev
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Figure 2.2: Differential conductance normalized by the normal state conductance
RN (dI/dV ) as a function of an applied bias across the NS junction for various barrier
strengths at T = 0. The calculated quantity is proportional to the spectral conductance
at E = eV . Figure taken from reference [3].

reflection probability in the region eV ≤ ∆. To summarise, according to the BTK model,

information about the NS-interface in a normal metal/superconductor junction can be

obtained by analysing its subgap differential conductance.

2.2 Andreev reflection processes

Energy conservation in an Andreev process requires |Ee| = |Eh|, where Ee and Eh

denote the energies of the incident electron and the Andreev reflected hole, respectively.

Therefore, a hole is generated as far below the Fermi level as the incident electron is

above the Fermi level [3].

In case of a metallic junction with a single superconducting interface, two distinct

Andreev reflection processes can be realized which depend on the excitation energy

E of the incident particle, the Fermi energy EF and the superconducting gap ∆. The

first process is the Andreev retroreflection process in which the hole is reflected in the

conduction band of the normal metal. This reflected hole travels back through the same

path as the incident electron, which means θinc = −θref for a perfect retro reflection where

θinc and θref denote the angle of incidence and reflection, respectively. In this case, all

components of the velocity change sign for the retroreflected hole. Andreev retroreflection
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is the primary process for the electronic transport across the NS junctions in case of a

normal metal. Fig. 2.3(a) and (b) show the illustration of the Andreev retroreflection

process. In NS junctions, as shown in the previous section, the Andreev reflection

probability depends on the interface of the normal metal and the superconductor. In case

of a point-contact NS junction with no barrier, the subgap conductance of the junction

becomes twice of its normal state conductance due to the Andreev reflections [3].

It was shown by Beenakker in 2006 [7] that a distinct Andreev reflection process can

be realized in NS junctions with zero-gap semiconductors for excitations with energy

E ≤ ∆ if EF ≤ ∆. Under these conditions, for an incident electron the reflected hole

might appear in the valence band instead of the conduction band, a process known as the

specular Andreev reflection (θinc ≈ θref), that can be observed if EF can be tuned close

to the charge neutrality point of the zero-gap semiconductor [7–9]. It was experimentally

observed in bilayer graphene/niobium diselenide (BLG/NbSe2) junctions [31]. Fig. 2.3(c)

and (d) show the illustration of the specular Andreev reflection.

It is to be noted that both of the above mentioned Andreev reflection processes,

Andreev retroreflection and specular Andreev reflection, require only one NS interface.

Since the reflected hole always resides in the same normal metal or semiconductor, these

processes are known as the local Andreev processes.

An entirely different reflection process can be realized in the presence of more than

one NS interface. In a general case, considering a normal metal/superconductor/normal

metal (NSN) junction, it is also possible for an incident electron from one N to be

reflected as a hole in the other N through S, as long as the distance between the two

N terminals is smaller than the superconducting coherence length. In such a case, the

incident electron and the reflected hole reside in two different N terminals, however, the

phase coherence between the electron and the hole is maintained due to the Andreev

reflection. This coherence between two spatially separated particles is the manifestation

of quantum entanglement between the incident electron and the reflected hole in space.

Such a reflection process is known as the nonlocal Andreev reflection or crossed Andreev

reflection (CAR). This process can be observed in a SNS junction as well, where, for

instance, the electron from the N terminal incidents on one of the NS interfaces, and

gets reflected as a hole into the other S terminal. Fig. 2.3(e) and (f) show the illustration

of CAR in an NSN junction. However, in these junctions, there are two other competing

processes, one is the Andreev retroreflection and the second is the elastic co-tunnelling.

In the case of elastic cotunnelling, the incident electron from the N terminal tunnels

through the S to the other N without generating the Cooper pair in the S terminal.

CAR was originally proposed to be observed in ferromagnet/superconductor structures

by taking advantage of the spin-selectivity [37, 38], however, theoretical studies were

further extended to observe CAR in normal metal/superconductor junctions as well [39].

Experimental observation of CAR has been reported in ferromagnet/superconductor
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Figure 2.3: Illustration of the Andreev processes. (a) and (b) Andreev retroreflection, (c)
and (d) Specular Andreev reflection (ZGS: Zero Gap Semiconductor, CB: Conduction
Band, VB: Valence Band) (Figure adapted from [31]), (e) and (f) Crossed Andreev
reflection. (Filled and empty circles denote electrons and holes, respectively.)

structures [40, 41] in the metallic regime where the nonlocal spin valve signal was used as

a probe for CAR. In normal metal/superconductor structures, CAR has been observed

in the tunnelling regime [42] as well as in the metallic regime [43]. Manifestation of

CAR in the form of Cooper pair splitting, where a Cooper pair from a S terminal is split

between two different N terminals, has been reported in quantum dot systems [44–50].

Crossed Andreev effects were proposed to be observed in the superconductor/quantum

Hall systems where the chiral edge states result in CAR [51, 52], and were recently

observed in an encapsulated graphene device in the quantum Hall regime [53].

In case of a superconductor/normal metal/superconductor (SNS) junction known as

the Josephson junction (here, N can be replaced by a semiconductor as well), while all

of the above Andreev reflection processes are possible, another Andreev process known

as the multiple Andreev reflection (MAR) can be observed. This process gives rise to

the subgap conductance features in the conductance spectrum of the junction according
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Figure 2.4: Schematic representation of multiple Andreev reflections for an incident
electron from the left onto the right superconductor (N = 3). Filled and empty circles
denote the electrons and holes, respectively.

to the relation V = 2∆/Ne where V denotes the bias voltage across the Josephson

junction and N is an integer [4, 5, 54]. This process is shown in Fig. 2.4. An electron

with energy eV incidents on the right S terminal and is reflected as a hole in the N. This

Andreev reflected hole gains the energy eV due to the electric field while it travels back

to the right terminal. Here, the hole is Andreev reflected into an electron in N which

can go through the same process as the previous electron. After multiple iterations of

this process, the particle can be transmitted as a quasiparticle above 2∆. These multiple

iterations generate conductance features in the subgap condutance spectrum and strongly

depend on the scattering in the N terminal as well as on the transparency of the NS

interfaces.

2.3 Basic physics of Josephson junctions

This subsection is primarily based on [5].

First proposed by Josephson in 1962 [1], Josephson junctions have been extensively

studied due to their apparent application in tunable superconductivity. Josephson pre-

dicted that a finite supercurrent can flow between two superconductors separated by a

thin insulating layer due to quantum tunnelling. The supercurrent in such a junction

was described by the relation

Is = Ic sinφ (2.2)

where Ic, known as the critical current, denotes the maximum supercurrent that can

be supported by the Josephson junction before it becomes resistive, and φ denotes the

gauge-invariant macroscopic phase-difference between the two superconductors. Under

a finite voltage V across the junction, φ was predicted to be modulating with time
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according to the relation

dφ

dt
=

2eV

~
(2.3)

It results in an alternating current with the amplitude of Ic and frequency ν =

2eV/h, also known as the Josephson frequency. These two effects are known as the

dc and ac Josephson effects. It was later found that the Josephson junctions are not

limited just to the insulators (corresponding to quantum tunnelling process), but can be

extended to metal and semiconductor weak links as well due to the proximity induced

superconductivity.

While the ideal dc Josephson effect can be described by Eqn. 2.2, in case of an ac

Josephson effect, the Josephson junction is described by the resistively-capacitively

shunted junction (RCSJ) model. This model shunts the ideal Josephson junction with

a resistance R and a capacitor C. The resistor corresponds to the dissipation in the

presence of finite bias without affecting the dc response of the junction. The capacitor C

corresponds to the geometric capacitance between the two superconductors. The total

current through the junction can, then, be defined by three parallel current components,

i. e., for a bias current I , the junction can be defined as

I = Ic0 sinφ+ V/R + C (dV/dt) (2.4)

where Ic0 denotes the actual critical current through the ideal Josephson junction which

can be greater than the observable critical current Ic in this case. Using the voltage

dependent phase-modulation, Eqn. 2.4 can be further simplified to give

I/Ic0 = sinφ+Q−1(dφ/dτ ) + d2φ/dτ 2 (2.5)

where τ = ωpt is a dimensionless time variable, ωp = (2eIc0/~C)1/2 is the plasma frequency

of the junction, and Q = ωpRC is the quality factor which characterises the damping of

the junction. Depending on the value of Q, the junctions are categorised as overdamped

junctions (Q� 1 corresponding to very small C), and underdamped junctions (Q > 1

corresponding to large C).

If a Josephson junction is irradiated with a radiation of frequency ω, the supercurrent

in the junction shows constant-voltage steps known as the Shapiro steps at voltages

Vn = n~ω/2e [5, 55, 56]. Beginning with a simple case of an ideal Josephson junction, if

an ac voltage bias of an angular frequency ω is applied in addition to the dc bias, the

voltage across the junction can be described as

V = V0 + V1 cos(ωt) (2.6)
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The phase difference φ across the junction can be determined by integrating Eqn. 2.6

according to the relation shown in Eqn. 2.3, and results in

φ(t) = φ0 +
2e

~
V0t+

2e

~ω
V1 sin(ωt) (2.7)

where φ0 is a constant of integration and (2e/~)V0 is the Josephson frequency ωJ . Sub-

stituting φ(t) in Eqn. 2.2 to obtain the supercurrent in the junction, and using Bessel

functions for the expansion of the sine of a sine, Eqn. 2.2 can be written as

Is = IcΣ(−1)nJn(
2e

~ω
V1) sin(φ0 + ωJt− nωt) (2.8)

It is clear from Eqn. 2.8 that a dc component is observed when ωJ = nω, in other words,

when the dc voltage V0 takes the values

Vn = n
~ω
2e
, (2.9)

it generates step-like features in the current at these voltages in the I −V characteristics

of the junction, and these features are known as the Shapiro-steps.

A phenomenon known as the dual Shapiro steps, can be observed in Josephson

junctions with phase-slip centers (where the superconducting phase changes in discon-

tinuous steps due to the localized resistive centers in the junction). In these junctions,

equidistant steps in the voltage can be observed when the current increases beyond Ic.

This phenomenon was first observed in long tin-whiskers by Webb et al. [57] in 1968,

and studied in detail by Meyer et al. [58] in 1972. In the quantum phase-slip regime,

these dual Shapiro steps are of interest as they represent the charge-phase duality of a

superconductor [59–61].

2.4 Graphene

While the theoretical study on the electronic band structure of graphene was already

developed in 1947 [62], the first experimental study on few layer graphene was reported

by Novoselov et al. [63] in 2004. The authors showed the stable existence of few atomic

layers of graphite (or multilayer graphene) and the possibility to use this material for

charge transport in the field effect transistors. It was later shown that a single layer of

graphite, known as graphene or single layer graphene (SLG), is also stable under ambient

conditions [64], and can be employed for studying the Dirac fermions [65] owing to its

relativistic band structure in the low-energy regime [7, 10, 62]. In the present section, a

brief introduction is provided to the SLG in terms of its electronic transport properties.

It is to be noted that SLG and BLG have very different electronic band structures, e. g.

SLG has a linear dispersion in the low-energy regime which indicates massless Dirac

fermions and exhibits the Klein tunnelling, while BLG has a parabolic dispersion which

indicates massive fermions and exhibits the anti-Klein tunnelling [10].
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Figure 2.5: (a) Graphene lattice in real space. Blue and yellow dots indicate the two
sublattices, A and B. (b) Reciprocal lattice vectors and high symmetry points in the
Brillouin zone Figure taken from reference [11].

2.4.1 Band structure

This subsection is primarily based on references [9–11].

Graphene is a two-dimensional (2D) atomic plane in which carbon atoms are arranged

in a honeycomb lattice formed by two sublattices, A and B. Each atom in sublattice A

is surrounded by three atoms from the sublattice B as shown in Fig. 2.5(a). The Bravais

lattice can be described with the lattice vectors

~a1 =
a

2
(3,
√

3), ~a2 =
a

2
(3,−

√
3), (2.10)

where a ≈ 1.42 Å denotes the nearest-neighbour distance and the lattice constant is

defined as |ac| =
√

3a ≈ 2.46 Å. The honeycomb lattice contains two atoms in each

primitive cell which belong to the two sublattices, A and B. The nearest neighbour

vectors are given as

~δ1 =
a

2
(1,
√

3), ~δ2 =
a

2
(1,−

√
3), ~δ3 = a(−1, 0). (2.11)

The reciprocal lattice can be described with the lattice vectors

~b1 =
2π

3a
(1,
√

3), ~b2 =
2π

3a
(1,−

√
3), (2.12)

as shown in Fig. 2.5(b).

The electronic band structure of graphene was first developed by Wallace in 1947

with the tight-binding model to explain the electronic and optical properties of graphite

[62]. The conduction and the valence band form conically shaped valleys which touch

each other at the six corners of the first Brillouin zone as shown in Fig. 2.6. These points,

where the two bands touch each other, are known as the Dirac points and belong to two

inequivalent set of points known as K and K ′ given by the wave vectors
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Figure 2.6: Electronic band structure of graphene (left) and zoom in of the energy bands
close to one of the Dirac points (right). Figure taken from reference [11].

~K =
2π

3a
(1,

1√
3

), ~K ′ =
2π

3a
(1,− 1√

3
) (2.13)

With the nearest-neighbour hopping energy t ≈2.8eV and the next nearest-neighbour

hopping energy t′ ≈0.1eV [11], the dispersion relation can be written as

E±(~k) = ±t
√

3 + f(~k)− t′f(~k) (2.14)

f(~k) = 2 cos(
√

3kya) + 4 cos(

√
3

2
kya) cos(

3

2
kxa), (2.15)

where the + sign denotes the conduction band and the − sign denotes the valence band.

It is clear from the dispersion relation that the band structure is symmetric around

zero energy if t′ =0. For finite values of t′, the electron-hole symmetry is broken. In the

low-energy regime where |E| � |t|, the electronic transport in graphene is governed by

the relation

E±(~k) = ±~vF|~k| (2.16)

where

vF =
3a|t|

2
≈ 106m/s

is the Fermi velocity.

Due to the linear energy dispersion shown in eqn. 2.16, the low energy excitations in

graphene have zero effective mass. These excitations are governed by the Dirac equation

for the relativistic particles. The Hamiltonian in the linear regime can be defined as:

HK = vFσ~k, HK′ = vFσ
∗~k (2.17)
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for the K and K ′ points where σ = (σx, σy) and σ∗ = (σx,−σy) show the Pauli matrices.

Here, the spin degree of freedom described by the Pauli matrices is called the ’pseu-

dospin’, to distinguish it from the real electron spin, and it appears because of the two

independent sublattices. The momentum space wave functions around the K and the K ′

points are defined as

Ψ±,K(~k) =
1√
2

(e−iθ~k/2,±eiθ~k/2), Ψ±,K′(~k) =
1√
2

(eiθ~k/2,±e−iθ~k/2). (2.18)

where the + and − signs correspond to the conduction and the valence bands, respectively,

and

θ~k = arctan(
kx
ky

)

. Therefore, the complete low-energy Hamiltonian is a 4 x 4 matrix which accounts for

the two sublattices and the two inequivalent conical points, K and K ′, and can be defined

as:

H =

(
HK 0

0 HK′

)
(2.19)

In terms of electronic transport in the low-energy regime (for massless Dirac fermions)

[11, 66], the electron density n is related to the Fermi momentum kF as per the relation

kF =
√
nπ.

2.4.2 Klein tunnelling

In quantum mechanics, a non-relativistic particle has a finite probability of penetrating

through a potential barrier which is higher than its energy. However, the transmission

through the barrier in this case decreases exponentially with the height and the width

of the barrier. Klein tunnelling refers to the relativistic phenomenon in which a Dirac

particle can be transmitted through a potential barrier which is higher than its energy

while the transmission probability τ depends very weakly on the barrier height [67]. It

can be understood by the fact that the Dirac Hamiltonian allows for both types of the

energy states, i. e., the positive and negative energy states corresponding to the electrons

and holes, respectively. In such a case, a barrier which is repulsive for the electrons

is attractive for the holes and vice versa. Considering a positive potential barrier for

instance, the electron states outside the barrier are aligned with the hole states inside

the barrier for the Klein tunnelling.

Due to the relativistic band structure of graphene, Katsnelson et al. [68] proposed

the observation of Klein tunnelling in graphene. The authors showed an angle-dependent

transmission profile for Klein tunnelling in single layer graphene where the barrier

becomes completely transparent at certain incidence angles as shown in Fig. 2.7 for
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Figure 2.7: Angle dependence of the Klein tunnelling in single layer graphene. Trans-
mission probability τ as a function of the incident angle for a 100 nm wide barrier with
barrier heights 200 (red curve) and 285 (blue curve) meV for an incident energy of
≈80 meV. Figure taken from reference [68].

sharp potential barriers. The sharp barrier assumption is valid if the Fermi wavelength

is larger than the width of the edge smearing of the potential barrier. Most importantly,

the barrier remains perfectly transparent for the incidence angles close to zero. This

process can be understood by considering the conservation of the sublattice pseudospin

which results in the prohibition of intervalley scattering as shown in Fig. 2.8. An electron

from the red branch having a pseudospin σ (i. e., belonging to a specific valley) can be

scattered only to a hole state in the same branch with pseudospin σ. This electron cannot

be scattered into any state in the green branch as it would require for the electron to

flip its pseudospin. In the absence of pseudospin-flip processes, this condition results in

a perfect transmission (τ = 1) through the barrier since backscattering is prohibited.

Potential barriers in graphene can be easily created by electrostatic doping through

a gate electrode and hence, provide an easy way to study the Klein tunnelling. The first

experimental report on the observation of Klein tunnelling in graphene was presented

by Young et al. [69] where the authors studied quantum interference pattern in an

electrostatically induced npn junction in the presence of magnetic field.

2.4.3 Superconductivity in graphene

This section is dedicated mainly to experimental reports in single layer graphene systems.

The first experimental study on the proximity induced superconductivity in graphene

was performed by Heersche et al. [70]. The authors reported proximity induced super-
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Figure 2.8: Tunnelling process in graphene through a potential barrier. (a) The red and
the green curves show the linear spectrum in the low-energy regime originating from the
crossing between the energy bands that belong to the sublattices A and B. (b) Potential
barrier of height V0 and width D corresponding to (a). Figure taken from reference [68].

conductivity in electrostatically doped graphene where a supercurrent can be carried by

electrons in the conduction band (n-type doping) or holes in the valence band (p-type

doping). This property makes graphene a bipolar supercurrent transistor. An important

step in this direction was the co-existence of the quantum Hall effect and superconduc-

tivity as demonstrated in graphene based Josephson junctions by Rickhaus et al. [71]

followed by another report by Komatsu et al. [72]. However, most of the early studies

in the field of proximity induced superconductivity in graphene were conducted in the

diffusive regime.

Owing to the improvement in device fabrication methods, ballistic Josephson junctions

were realized in suspended graphene devices [73, 74]. However, the major improvement in

graphene based Josephson junctions can be attributed to hexagonal boron nitride (h-BN)

encapsulated graphene devices (extensive freedom in the substrate-supported device

architecture as compared to the suspended devices) which exhibit large supercurrent

and ballistic interferences [16, 17, 19, 21, 23, 24]. Amet et al. reported the observation of

ballistic supercurrent in the quantum Hall regime using encapsulated graphene based

Josephson junctions [18] which indicates the possibility to use these devices for topo-

logical superconductivity. Nanda et al. studied the current-phase relation (CPR) in

encapsulated graphene based superconducting quantum interference devices (SQUID)

and found that the CPR in these devices is skewed in contrast to the sinusoidal CPR

for Josephson junctions [22]. Moreover, this skewness can be tuned as a function of an

applied gate voltage. Gate tunable microwave circuits were exhibited in encapsulated

graphene Josephson junctions by Schmidt et al. [26] and Kroll et al. [27]. Recent progress
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in graphene based Josephson junctions was the study by Draelos et al. [28] where the

authors studied supercurrent flow in multiterminal Josephson junctions.

In terms of graphene based devices with a single superconducting interface, there are

very few reports and even fewer regarding single layer graphene. The first experimental

report on this subject was presented by Popinciuc et al. [32], where the authors observed a

zero bias conductance peak in a superconductor/graphene/normal metal (SGN) junction.

This zero bias conductance peak was attributed to the reflectionless tunnelling in the

device which results from diffusive transport through the graphene channel. Another

report on the NGS junctions was presented by Efetov et al. [31] which showed the

signatures of specular Andreev reflection in a bilayer graphene device as originally

proposed by Beenakker for a single layer graphene system [7]. Han et al. [33] employed a

few layer graphene as a probe to investigate the superconducting gap structure of NbSe2.

The most recent report in the context of single layer graphene was presented by Lee

et al. [53], where the authors employed a h-BN/graphene/h-BN heterostructure with a

finger-like superconducting contact made of niobium nitride (NbN) to study crossed

Andreev conversion in the quantum Hall regime. This phenomenon was theoretically

proposed by Clarke et al. [51] and Hou et al. [52] to be observed in two-dimensional

quantum hall systems connected to a superconductor.
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Device fabrication methods and

measurement set-up

While the first measurements on graphene were conducted with Si/SiO2 as the substrate

[14, 63–65, 75], results obtained from these devices were inferior to what was expected

from the peculiar band structure of graphene [10]. The reason was the influence of the

underlying SiO2 layer on the electronic properties of graphene. While graphene is a

flat two-dimensional (2D) material, the underlying SiO2 layer is usually disordered and

rough. Graphene on a Si/SiO2 substrate suffers in terms of electronic transport due

to the charge puddles and charge traps which could be present in the substrate or at

the graphene/substrate interface [66, 76, 77]. Suspended graphene devices [74, 78–80]

and graphene on boron nitride devices [16, 17, 19, 34, 81] are shown to have significant

improvement in its electronic transport properties. Amongst the two techniques, the

substrate supported devices are comparatively easier to fabricate. This technique also

allows extensive freedom on the device architecture which is relatively difficult to achieve

in the suspended graphene devices. h-BN serves as a perfect substrate for the substrate

supported graphene devices due to its perfectly flat 2D nature with a mere 1.7% lattice

mismatch between the graphene and h-BN crystal lattices [81].

The other limitation in the early graphene based devices were the 2D on-top electrical

contacts which suffered from the poor bonding between the metal contacts and graphene

[82]. Graphene has strong in-plane σ-bonds while the out-of-plane bonding is the weak

π-bonding. This makes the on-top metal contacts to have weak coupling with graphene

which results in poor graphene/metal contacts. Another important point of consideration

is the contamination of graphene due to the chemicals and polymers used during the

fabrication processes. Both of these detrimental factors were addressed by using the h-BN

encapsulated graphene devices with one-dimensional metallic contact on the edge of the

graphene [34]. This led to the fabrication and measurement of high quality graphene

devices with high charge carrier mobility and ballistic transport [16, 17, 34]. It was

23
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also found that under certain conditions, h-BN can modify the electronic and optical

properties of graphene such as the appearance of the moiré pattern, Hofstadter butterfly

and Brown-Zak oscillations due to the formation of graphene/h-BN superlattice, and

tunable polariton modes due to the hybridization between the polaritons in graphene

and h-BN [83].

All of the above stated factors make h-BN encapsulated graphene an ideal system

to study and modify the electronic transport properties of graphene. Therefore, the

building block of the graphene based devices studied under the scope of this thesis, are

the h-BN/graphene/h-BN heterostructures with 1D edge contacts.

3.1 Fabrication of the h-BN/graphene/h-BN van

der Waals heterostructures

Preparation of the h-BN/graphene/h-BN heterostructures can be crudely divided into

two main parts. One is the exfoliation of graphene and h-BN crystals from their thicker

parent material, and the other is assembling these crystals in a certain order. Since

these crystals are kept together by the van der Waals forces acting between the surfaces

of the constituting material layers, these heterostructures are commonly known as the

van der Waals heterostructures [84]. In the present section, fabrication of these h-BN

encapsulated graphene heterostructures is discussed.

3.1.1 Exfoliation and identification of single layer graphene

Natural graphite crystals (commercially available from NGS Naturgraphit GmbH) and

h-BN powder (commercially available from Momentive, product PT110), were used

as the sources for graphene and h-BN crystals, respectively. Single layer graphene and

multilayer h-BN crystals were exfoliated from their parent crystals by using the traditional

micromechanical cleavage method [63, 64]. In this method, a relatively thicker crystal is

thinned down by peeling it repeatedly with the scotch tape strips. After the crystal is

thinned down to making a weak shadow on the tape, the tape is pressed with slight force

against a pre-cleaned substrate and then, removed gently from the substrate. Due to the

weak forces between the substrate and the crystals on the tape, some part of the crystals

are transferred on to the substrate. This substrate is then checked for the presence of

exfoliated graphene or h-BN crystals.

Since graphene is highly transparent (2.3% absorption in the visible spectrum), the

choice of substrate plays an important role in the exfoliation process. Graphene is clearly

visible on a Si/SiO2 substrate with 300 nm thick SiO2, and hence, it was chosen as the

substrate (1 x 1 cm2 substrate) for the exfoliation process. The substrate was cleaned with

acetone and isopropanol first (to remove any adsorbates/dirt), then ultrasonicated for 2
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Figure 3.1: Optical image of exfoliated (a) single layer graphene (SLG) and multilayer
graphene (MLG), and (b) h-BN crystal. Scalebar is 100µm.

Figure 3.2: Raman spectrum of (a) single layer graphene on a Si/SiO2 substrate, and (b)
bilayer graphene on a Si/SiO2 substrate.

min. It was followed by an oxygen plasma cleaning to remove any remaining contaminant.

This substrate is then used for the exfoliation of graphene or h-BN.

After the exfoliation, the substrate is viewed under an optical microscope. Fig. 3.1(a)

shows the exfoliated single layer and multilayer graphene on the substrate. h-BN crystals

are exfoliated in the same way as graphene, however, the h-BN crystals are chosen with

respect to their thickness. In this work, the chosen top or bottom h-BN crystals were 15

- 30 nm thick as measured with an atomic force microscope after the fabrication of the

van der Waals heterostructures. Fig. 3.1(b) shows an h-BN crystal which was found to

be ∼ 28 nm thick.

The h-BN crystals which are to be used in the van der Waals heterostructures, were

selected just with the contrast from the optical microscope. The graphene layer is chosen

after making an additional test which is to measure a Raman spectrum to verify the single
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Figure 3.3: Raman spectrum of h-BN encapsulated graphene on a Si/SiO2 substrate in
(a) h-BN/graphene/h-BN heterostructure used for two-terminal NGS devices, and (b)
h-BN/graphene/h-BN heterostructure used for multiterminal NGS devices.

layer graphene. Raman spectrometry is a non-invasive, reliable characterisation technique

to obtain information about the vibrational energy levels of a material. Due to its non-

invasiveness, it is highly suitable for graphene based devices where the contamination

of graphene is detrimental for the electronic transport. Since single layer and bilayer

graphene (BLG) have different phonon band structures, the difference between the

two can be directly seen in their Raman spectrum [85–87]. Due to this factor, Raman

spectrometry is a strong tool to characterise graphene in terms of layer thickness as

well. In this work, Renishaw Raman microscope was used to characterise the exfoliated

graphene with an incident laser wavelength of 532 nm. Fig. 3.2(a) and (b) show the

Raman spectrum of SLG and BLG, respectively, on a Si/SiO2 substrate. The first Raman

peak appearing close to 1600 cm−1 corresponds to the G-band phonon process which is a

direct first order Raman process. The other prominent peak is the G′ peak close to 2700

cm−1 which corresponds to the second order double resonance Raman scattering process.

Note that the D peak (appears close to 1350 cm−1 in the disordered graphene systems)

is missing in these spectra indicating defect free graphene layers. Comparing the two

spectra shown in Fig. 3.2(a) and (b), a clear distinction can be made by observing: (i)

the relative intensity of the G′ and G peak IG′/IG, and (ii) the shape of the G′ peak.

In case of SLG, IG′/IG ≈ 4 while it is ≈ 1 in case of BLG. In addition, the G′ peak is

a collection of four peaks (four Raman processes) in case of BLG, hence the peculiar

shape, while in SLG, G′ is only one single peak due to one Raman process.

Fig. 3.3(a) and (b) show the Raman spectrum of h-BN encapsulated graphene in two

different van der Waals heterostructures. The fabrication process of these heterostructures

will be discussed in the next subsection. The effect of the substrate induced effects in
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Figure 3.4: Illustration of the alignment setup used for the fabrication of van der Waals
heterostructures [89].

graphene samples can be clearly seen by comparing Fig. 3.2(a) (graphene on a Si/SiO2

substrate) with Fig. 3.3(a) and (b) (h-BN encapsulated graphene). The G-peak can now

be observed close to 1580 cm−1 with a higher IG′/IG ratio. In addition, the full-width at

half-maximum (FWHM) of the G′ peak, which is a measure of the disorder [87], reduces

from 22 cm−1 for the SLG on Si/SiO2 substrate as shown in Fig. 3.2(a) to 19 cm−1 for the

same SLG in the van der Waals heterostructure as shown in Fig. 3.3(a). The FWHM of

the G′ peak of the encapsulated SLG shown in Fig. 3.3(b) is 18 cm−1. The additional peak

that appears close to 1380 cm−1 belongs to the Raman mode of the h-BN crystallite [88].

Note that these are the same heterostructures that were later used for the fabrication

of the two-terminal and multiterminal graphene devices which will be discussed in the

successive chapters.

3.1.2 Fabrication of the van der Waals heterostructures

After selecting the suitable graphene and h-BN crystals, the next step is to fabricate

a heterostructure using these crystals. The fabrication of the graphene/h-BN van der

Waals heterostructures was carried out by using the dry transfer technique [25, 34]. In

this technique, the graphene layer does not come in contact with any polymer or any

other chemical during the entire transfer process, i. e., the transfer of the top h-BN on

graphene, and later, the transfer of these two on the bottom h-BN.

In order to pick-up and transfer the crystals, a long working distance microscope

was used along with a movable stage with horizontal (xy−movement) and vertical

(z−movement) adjustments. This setup allows to align the crystals during the pick-

up and transfer process to obtain the desired stacking of the h-BN/graphene/h-BN

heterostructure. The schematic of the setup has been shown in Fig. 3.4. As can be seen,

in this figure, the target chip is placed on the hotplate while the stamp which is marked
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as “2D crystal” in the Fig. 3.4, (with/without the 2D crystal) stays above the target. The

in-plane position of the target and the stamp relative to one-another can be adjusted

by the xy−screws of the stage. Usually, the target chip is either glued or clamped with

screws onto the hotplate. The position of the stamp is set by screwing the metallic frame

(which contains the stamp) in such a way that the crystals are roughly aligned in the

xy−plane with respect to each other. The xy−micrometer adjustment screws can, then,

be used to get a fine adjustment by moving only the top part of the alignment setup

which holds the metallic frame relative to the target. After the in-plane adjustment

is good enough for the stacking of the crystals, the target and the stamp are brought

in contact by using the z− screw which raises the hotplate. Fine tuning of the xy−
adjustment is usually required during this process to ensure perfectly aligned stacking of

the crystals in order to cover maximum graphene area with the top and bottom h-BN.

The hotplate is employed to heat the target after the target and the stamp are in contact

to ensure better adhesion between the crystals.

For preparing the van der Waals heterostructures with the dry transfer method, first

of all, a poly-dimethyl-siloxane (PDMS) stamp supported by a thin glass substrate is spin

coated with poly-propyl-carbonate (PPC), PPC 10 wt% in ethyl-acetate. The PDMS

stamp has a central circular knob with the height of 0.5 mm and diameter of 1.5 mm which

helps to restrict the area of the sample that comes in contact with the PPC. This helps in

selectively picking the desired h-BN or graphene with lesser number of surrounding h-BN

or graphite crystals. The PPC-coated PDMS stamp is then glued to a metallic transfer

frame by using polymethyl methacrylate (PMMA). The frame has a central wide opening

to provide the optical view of the transfer process, and the PDMS stamp is glued in a

way to keep the circular knob in this wide opening. The metallic frame containing the

PPC-coated PDMS stamp is then baked in an oven under ambient atmosphere at 80◦C

for 15 min. After the baking, the PPC film around the central knob is carefully removed

under the microscope by using a scalpel and leaving the PPC film only on the central

knob. This is the stamp which is used for the stacking of the crystals. Note that some of

the heterostructures were prepared by using the method employed by Kraft et al. [25].

In this method, the PPC film is spin-coated on the substrate containing the top h-BN

crystal. This PPC-coated substrate is then baked in the oven at 80◦C for 15 min to cure

the PPC. The h-BN crystals on the substrate stick to the PPC-film and this PPC-film is

picked-up by the PDMS stamp. This PDMS stamp which contains the top h-BN is used

for stacking top h-BN/graphene, and subsequently top h-BN/graphene/bottom h-BN.

The process flow of the fabrication of the van der Waals heterostructure is as shown

in Fig. 3.5. The top h-BN (lying on the hotplate shown in Fig. 3.4) is brought in contact

with the PPC-coated PDMS stamp using the z−screw. The substrate is heated to 60◦C

in this position. At this temperature, the PPC softens and sticks to the substrate. With

the help of the z− screw, the hotplate is lowered immediately. Due to the softening,

the PPC leaves the PDMS stamp and sticks onto the substrate. The substrate is, then,
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Figure 3.5: Illustration of the van der Waals assembly process.

allowed to cool to room temperature which solidifies the softened PPC. In this process,

the h-BN crystal sticks to the PPC. This solidified PPC is then picked by the central

knob of the same PDMS stamp by making use of the adhesive forces between the two

polymers.

Now, the stamp contains the top h-BN crystal and the target substrate is the substrate

containing the selected graphene layer. Both, the substrate and the stamp, are now aligned

with respect to each other as explained before. The top h-BN and graphene are brought

in contact where the top h-BN is dropped on the graphene layer by softening the PPC

as before. The van der Waals forces between the top h-BN and graphene ensure that the

graphene sticks to the h-BN crystal and leaves the substrate. After the PPC is solidified

the top h-BN/graphene stack, which is now sticking to the PPC film, is picked by the

PDMS stamp.

The process of aligning the crystals and dropping the PPC is repeated for stacking

the top h-BN/graphene on the bottom h-BN. However, in this step, the PPC is dissolved

in acetone after it solidifies on the substrate. This leaves the h-BN/graphene/h-BN

heterostructure on the Si/SiO2 substrate. This substrate is rinsed with acetone and

isopropanol to remove the residues of the polymer. Note that during the entire process

of encapsulation, the graphene layer remains untouched by the polymer. After this, the

heterostructures are annealed in an oven under ambient atmosphere at 300◦C for 3

hours. This annealing process helps in achieving clean h-BN/graphene interfaces by

squeezing out the dirt or contaminants that are trapped between the crystals. These

contaminants form isolated pockets at high temperature and leave sufficient clean area

in the h-BN/graphene/h-BN heterostructure which is used for the device fabrication.

After the annealing, if required, the heterostructure can be picked up again by using a
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Figure 3.6: (a) and (b) Optical images of two h-BN/graphene/h-BN heterostructures
after the van der Waals assembly. Region enclosed by the dotted black lines roughly
marks the h-BN encapsulated graphene. Scalebar is 100µm.

Figure 3.7: (a) and (b) AFM images of two h-BN/graphene/h-BN heterostructures after
the van der Waals assembly as shown in Fig. 3.6. Region enclosed by the dotted black
lines marks the h-BN encapsulated graphene.

PPC-coated PDMS with a fresh PPC film and transferred to another substrate.

In Fig. 3.6(a) and (b), optical images of two h-BN/graphene/h-BN heterostructures

are shown after the annealing process, followed by their transfer onto a Si/SiO2 substrate

with 1000 nm thick SiO2 layer. The difference in the colour between the two images is due

to the optical filter. The dirt pockets that form after the annealing can be vaguely seen in

these images. However, to fabricate the devices, it is essential to know if the graphene/h-

BN interfaces are clean, which is difficult to conclude from the optical images. Therefore,

an atomic force microscopy (AFM) image of the h-BN/graphene/h-BN heterostructure

is captured as shown in Fig. 3.7(a) and (b) which correspond to the heterostructure

shown in Fig. 3.6(a) and (b), respectively. The region marked with the dotted black lines

shows the h-BN encapsulated graphene. It can be seen that in the dotted region, there is

sufficiently large area which is perfectly flat and free from the dirt pockets. This clean



3.2. Fabrication of graphene devices with hybrid contacts 31

h-BN encapsulated graphene area is later used for the fabrication of the devices.

3.2 Fabrication of graphene devices with hybrid

contacts

The number of devices that can be fabricated on a single chip using a single h-BN/graphene/h-

BN heterostructure is limited only by the size of the clean graphene region, and later by

the size of the chip itself. After selecting a suitable h-BN/graphene/h-BN heterostructure

with a large enough graphene region which is free from the trapped contaminants (the

requirements for the clean graphene region will vary from device to device), the next

step is to fabricate the devices from this heterostructure.

3.2.1 Basic fabrication processes

The devices studied under the scope of this thesis employ two different contact materials,

one for the superconducting electrode(s) and the other for the normal metal electrode(s).

The process flow for the device fabrication is a little different from the one followed in

the early report on the edge-connected graphene devices [34], while individual fabrication

processes are similar to the ones shown by Kraft et al. [25]. Two different types of devices

(two-terminal and multiterminal devices) are fabricated and measured, as will be shown

in the successive chapters. The fabrication process for both type of the devices is identical.

For the sake of clarity, the device fabrication process can be divided into two important

parts as given below:

1. Fabrication of the electrodes

Fig. 3.8 shows the illustration of the electrode fabrication process. First, poly

(methyl methacrylate) (PMMA), used as the positive electron beam resist, is

spin coated on the 1 x 0.5 cm2 Si/SiO2 chip containing the h-BN/graphene/h-BN

heterostructure. The usual thickness of the PMMA 950K (4.5% in anisole) after

spin-coating at 6000 rpm for 90 s is ∼ 280 nm. The PMMA-coated chip is baked in

an oven under ambient atmosphere at 160◦C for 30 min. This chip is then loaded

into the electron beam lithography (EBL) setup (eLine from Raith was used for the

devices reported here). The desired pattern is defined on the chip using EBL at an

acceleration voltage of 30 kV. The defined pattern is then developed using a solution

of methyl-isobutyl-ketone (MIBK) and isopropanol (IPA) (MIBK:IPA ratio of 1:3)

for 15 - 18 s and rinsed with IPA for 10 s afterwards. Following the development

of the pattern, the chip is transferred to the reactive ion etching (RIE) chamber

after checking the developed pattern under the optical microscope or measuring an

AFM map in case of a very fine pattern. RIE is employed to access the edge of the

encapsulated graphene layer by etching through the h-BN/graphene/h-BN stack
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in the selected region (defined by the developed pattern) using a combination of

40 sccm CHF3 and 15 sccm O2 at 60 mTorr chamber pressure and 60 W RF power.

The etching time is calculated from a calibrated etching rate to have an etching

depth slightly more than the thickness of the top h-BN. It is to make sure that

the edge of the graphene layer is exposed for making a metallic contact after the

etching process. Immediately after the etching process, the chip is transferred

to the metal evaporation setup where the electrode material for the contact is

evaporated. Multiple metals can be evaporated one after the other to obtain the

desired material combination in a single metallisation step. The metal deposition

is carried out in an ultra high vacuum metal evaporator setup (pressure is of the

order of 10−9 mbar during the deposition process) at low temperature (sample is

cooled to -120◦C using the liquid nitrogen cooling of the sample holder). After

allowing the chip to come to the room temperature, the last step in the contact

electrode fabrication process is the lift-off of the undesired excess metal. It is done

by keeping the chip in acetone for 3 - 4 hours which usually provides a clean lift-off.

After this, the chip is rinsed gently with acetone followed by IPA to remove any

remaining chemical residues.

It is to be noted that the fabrication process for gate electrodes is similar to the

contact electrodes except the etching of the heterostructure using RIE. In case

of the gate electrode fabrication, the metal deposition is carried out immediately

after the development of the pattern.

2. Etching of the mesa and defining the device geometry

This is a fabrication process which separates the devices form each other as well as

from the surrounding graphene region to avoid any shorts between the devices or

electrodes. This process is identical to the etching process discussed in the above

fabrication step where a combination of CHF3 and O2 is used to etch a pattern

defined using EBL. After the etching process is complete, the chip is rinsed with

acetone to remove the PMMA layer. It is followed by rinsing with IPA to remove

the chemical residues.

3.2.2 Process flow for graphene based junctions with hybrid

contacts

Using the above two processes in a certain order, the graphene devices with normal metal

and superconducting electrodes can be fabricated reliably according to the process flow

described below.

1. Fabrication of the superconducting electrodes

In these devices, a combination of Ti/Al is used to serve as the superconducting

electrodes. This material combination is also quite immune to any damage from the
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Figure 3.8: Illustration of the electrode fabrication process.

subsequent lithography steps due to the formation of a thin natural aluminium oxide

(Al2O3) layer on the surface. Therefore, this is the first step in the device fabrication

process. After using EBL and RIE to pattern the electrodes, superconducting

electrodes in the present step, first a thin layer of Ti (5 nm) was deposited which acts

as an adhesive layer to make contact with graphene. It is followed by the deposition

of a thicker Al layer (60 - 70 nm), thereby establishing the superconducting Ti/Al

electrodes. The usual deposition rate for Ti and Al are usually ∼ 0.5 nm/min and

6 - 7 nm/min, respectively.

2. Defining the device geometry

In the devices fabricated under this study, the normal metal is a combination of

Ti/Cu/Al. Since Cu is highly reactive to PMMA, any fabrication step with the

exposed Cu metal cannot be followed by the coating of the PMMA layer. Therefore,

the etching step, defining the device geometry and separating the devices from the

surroundings, was performed before the deposition of the normal metal electrode.

However, in order to keep the contact between the graphene and the normal metal

free from the polymer contamination, the etching was done in a manner to leave
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some predefined unetched regions where the normal metal contacts will be defined

in the subsequent step.

3. Fabrication of the normal electrodes

The normal metal electrodes are deposited using the same protocol as the super-

conducting electrodes. At first, the electrodes are defined using the EBL and RIE.

It is to be noted that in this step, the region left unetched for the formation of

the normal electrodes in the previous etching step, is precisely the region that is

patterned, developed and etched. After the RIE process, a thin Ti layer (5 nm),

which is the adhesive layer, is deposited. It is followed by the deposition of the

normal metal which in this case, is a thick Cu layer (70 - 80 nm). Since Cu is very

sensitive to oxidation, a 5 nm thick Al layer was deposited which acts as a capping

layer. This capping layer forms a natural Al2O3 layer as the chip is exposed to

the ambient conditions. This Al2O3 capping then protects the underlying Cu layer

from the environment.

4. Atomic layer deposition of the gate dielectric

The graphene devices discussed here were fabricated on Si/SiO2 substrates with a

300 nm thick SiO2 in case of the two-terminal NGS junctions, and with a 1000 nm

thick SiO2 in case of the multiterminal junctions. The substrates with the thicker

SiO2 layer were chosen for the devices fabricated after the two-terminal NGS

junctions in order to avoid the breaking of the SiO2 layer during the wire bonding

of the devices. Since the SiO2 layers are quite thick, very high voltages are required

if the underlying Si substrate is desired to be used as the gate electrode. Taking

this into account, a top gate electrode with a thinner gate dielectric was preferred

which will tune the graphene sheet more efficiently compared to the Si back gate.

It is to be noted that in a h-BN/graphene/h-BN heterostructure, h-BN always acts

as a gate dielectric. However, to tune the device homogeneously, the gate electrode

would need to cover the entire graphene region between the contact electrodes. This

brings the need to have an additional gate dielectric layer to avoid shorts between

the gate electrode and the contact electrodes. Therefore, an Al2O3 layer with a

thickness of ∼ 25 nm was deposited using the atomic layer deposition (ALD) in case

of both, the two-terminal and the multiterminal, devices. The precursors used for

this process were trimethylaluminium (TMA) and water (H2O) where the reaction

temperature/sample temperature was ∼ 110◦C. Atomic layer deposition ensures a

conformal growth of the Al2O3 layer which is required to provide insulation between

the gate electrodes and the contact electrodes.

5. Fabrication of the gate electrodes

The final step in the device fabrication process is the fabrication of the gate

electrodes. The fabrication protocol is similar to the contact electrodes without
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the etching step. The gate electrode is patterned and developed, and the substrate

is transferred to the evaporation chamber for the metallisation process. Here, gate

electrodes with Ti/Cu/Al material combination were used which were metallised

in the same way as the normal metal electrodes with thin Ti and Al layers serving

as the adhesive and capping layers, respectively. It is to be noted that the gate

electrode is required to cover the entire device area. Therefore, an overlap between

the contact electrodes and the gate electrode is necessary. In the devices fabricated

and studied here, the thickness of the Cu layer was 80 - 100 nm with the Ti and

the Al layer being 5 nm each.

This entire process flow is shown in Fig. 3.9(a)-(d) as an example with the help of the

AFM images. Fig. 3.9(a) shows the h-BN/graphene/h-BN stack shown in Fig. 3.7(a) after

the fabrication of the superconducting Ti/Al electrodes. It denotes step 1 of the process

flow. Fig. 3.9(b) shows the device geometry defined by the etching process corresponding

to step 2. The region enclosed by the white dashed lines roughly shows the area where

the encapsulated graphene was before the etching process. Note that some of the region

in the h-BN/graphene/h-BN region is left unetched apart from the defined device area

itself. This marks the region of the normal metal contact electrodes and contact leads

that will be defined in step 3. These normal metal electrodes and leads can be clearly

seen to reside in the marked region by comparing Fig. 3.9(b) and (c) where the latter

corresponds to step 3 of the fabrication process. Step 4 in the process flow, where the

Al2O3 layer is deposited using the ALD process, has not been shown in Fig. 3.9 as the

Al2O3 layer grows conformally over the entire chip. Therefore, it does not change the

topography of the device as measured with the AFM. Fig. 3.9(d) corresponds to the

fabrication step 5 where individual top gate electrodes are defined. The gate electrodes

can be clearly seen by comparing Fig. 3.9(c) and (d).

3.3 Measurement set-up

All of the fabricated devices were characterised by using the low temperature electronic

characterisation methods. Most of the measurements were performed in an Oxford

He3/He4 dilution refrigerator (wet dilution refrigerator), while some of the measurements

were performed in a Bluefors He3/He4 dilution refrigerator (dry dilution refrigerator).

In both of the cases, the devices were first wire bonded to a sample holder with an Al

alloy (Al/Si with 1% Si) bond wire. The devices were then cooled down to ∼ 4 K to

study the normal state electronic transport in the devices. Note that the superconductor

used in these devices is Ti/Al with a superconducting critical temperature TC of ∼1 K.

Therefore, the normal state electronic transport in these devices shows the effect of two

different electrode materials on the electronic transport in graphene. In some of the

cases, the normal state measurement was made below TC with an applied perpendicular
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Figure 3.9: Process flow of the encapsulated graphene based device fabrication with
hybrid contacts as shown using the AFM images. (a) Superconducting (Ti/Al) electrodes
defined with the help of EBL, RIE and subsequent metallisation. (b) Device geometry
defined by EBL and subsequent RIE. Note that the region that is left unetched in the
shape of electrodes, marks the region where the normal electrodes will be defined later.
(c) Normal electrodes (Ti/Cu/Al) defined with EBL, RIE and metallisation. This process
is followed by the deposition of an additional gate dielectric layer (top h-BN is already
present as the gate dielectric) to avoid forming shorts between the contact electrodes
and the gate electrode. (d) Individual gate electrodes defined for each of the device using
EBL, RIE and metallisation. The straight horizontal lines in (b) and (d) are due to the
artifacts induced by the AFM tip during the measurement.
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magnetic field B � BC, where BC < 15 mT is the critical magnetic field as observed

in the measured devices. For characterisation in the superconducting state, the devices

were measured in the base temperature range of 20 - 50 mK, except the temperature

dependent measurements. The temperature dependent measurements were conducted in

a higher temperature range, however, always below a base temperature of 800 mK, i. e.,

below the TC of the measured devices, hence, preserving the superconductivity.

All of the measurements were performed by using standard low frequency (7 - 138 Hz)

lock-in detection technique with a small ac excitation (2 - 50µV). The devices were

always measured in a pseudo four-probe geometry in case of two terminal devices. In

case of multiterminal devices, most of the measurements were performed in a pseudo

four-probe geometry, however, some of the measurements were performed in a pseudo

three-probe geometry due to the limited number of connections available on the sample

holder. In case of dc-bias dependent measurements conducted in the Oxford dilution

refrigerator, bias voltage was supplied by using a home-made battery operated voltage

divider circuit set by a motor-controlled potentiometer. For the measurements performed

in the Bluefors dilution refrigerator, dc-bias voltage was supplied by using an Itest ultra

low noise power supply unit. In both of the cases, the differential conductance/resistance

was determined by using two different lock-in amplifiers for detecting the potential drop

across the device and current through the device. dc component of the current/voltage

was measured with the dc preamplifiers and read with the standard digital multimeters.





Chapter 4

Andreev reflection in ballistic two

terminal normal

metal/graphene/superconductor

junctions

In this chapter, the focus is on the experimental study of the two-terminal graphene based

junctions in normal metal/graphene/superconductor (NGS) geometry. In the normal

state, i. e., in NGN′ (N′ denotes the normal state of the superconductor) configuration,

such a system provides an opportunity to study the effect of asymmetric contacts on the

charge transport in graphene. In the superconducting state, owing to the gate tunability

of graphene, the NGS system serves as a perfect platform to study the properties of

tunable normal metal/superconductor junctions. It is to be noted that there is a single

superconducting interface in these NGS junctions as opposed to the widely studied

graphene based Josephson junctions where the primary focus is on a large supercurrent

and multiple Andreev reflections [16, 17, 19, 21, 23, 24]. Andreev reflection processes in

these NGS junctions are explained with a modified Octavio-Tinkham-Blonder-Klapwijk

(OTBK) model [3, 4, 35, 36] which takes into account the asymmetry of the contacts.

This chapter is based on the results published in reference [90].

4.1 Device geometry

In these devices, single layer graphene is encapsulated between two h-BN crystals which

are 16 and 20 nm thick for the top and bottom BN crystal, respectively. The encapsulated

graphene is then edge-contacted by the normal metal on one of its edges and by the

superconductor on the other parallel edge. For the superconducting contact, Ti/Al (5

and 70 nm, respectively) has been used, while for the normal metal contact, Ti/Cu/Al

39
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(5, 70 and 5 nm, respectively) has been used. In both of the contacts, Ti serves as an

adhesive layer while Al in the normal metal contact serves as a capping layer to protect

Cu from oxidation. To tune the charge carrier density in graphene, overall top-gates

using Ti/Cu/Al (5, 80 and 5 nm, respectively) were fabricated for individual devices.

In addition to the top h-BN, a 25 nm thick Al2O3 layer (by atomic layer deposition)

serves as the gate dielectric. Details on the device fabrication have been provided in

the previous chapter, Chapter 3. Fig. 4.1 shows the device schematics and atomic

force microscope (AFM) image of the measured devices. Geometrical dimensions of the

measured devices are width W (along the graphene/metal interface) = 6µm, length L

(length of the graphene channel between the two contact metals) = 0.25µm, and W =

5µm, L = 0.45µm for devices A and B, respectively. Most of the data presented in this

thesis is obtained from device A unless stated otherwise.

Figure 4.1: (a) AFM image of the measured devices. (b) Device schematics. (c) cross-
section of the device across the line segment shown in (b).

4.2 Normal state characterisation

The normal state characterisation of any graphene device relies on its gate dependent

conductance curve. Fig. 4.2 shows the gate voltage Vg dependent resistance and conduc-

tance of device A measured at T = 4.2 K. The charge carrier density n was estimated

from the Shubnikov de Haas measurements as a function of Vg. (Details of the method are

shown in the next subsection). As can be readily seen in Fig. 4.2, the charge neutrality

point (CNP) is shifted to a negative Vg indicating n-type doping of the graphene channel.

In addition, the device exhibits higher resistance in the hole-doped regime as compared

to the electron-doped regime suggesting a stronger potential barrier for charge transport

in the hole doped regime. Both of these features can be explained by considering the

metal contact induced doping of graphene due to the difference in the work function of
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graphene and the contact metal [82, 91, 92]. On one hand, this charge transfer process

shifts the CNP and on the other hand, it creates a potential barrier for charge transport

in the hole-doped regime which results in the formation of pn junctions in the vicinity

of the graphene/metal interfaces. It is also to be noted that the two different electrode

materials used to contact graphene in these devices might also play a role in the charge

transport asymmetry observed in Fig. 4.2.

Figure 4.2: Resistance R and conductance G of device A at T = 4.2 K as a function of
the charge carrier density n and gate voltage Vg.

4.2.1 Estimation of the charge carrier density

Using a parallel plate capacitor model in graphene/gate dielectric/gate electrode forma-

tion, the charge carrier density n can be defined as

n =
CgVg
Ae

= αVg (4.1)

where Cg is the gate capacitance, A is the effective gate area and α is the gate coupling

efficiency. It is clear that knowing the value of Cg, the charge carrier density can be

easily calculated. However, it is to be noted that in these devices, there are two different

gate dielectric layers, the top h-BN and Al2O3 where the dielectric constant changes at

low temperatures. Therefore, it is difficult to calculate the correct value of Cg from the

dielectric constant values available in the literature.

In such cases, a more precise estimation of the charge carrier density can be achieved

by using the Shubnikov de Haas oscillation measurements. In the presence of a perpendic-

ular magnetic field, the charge carriers experience a Lorentz force which bends the charge
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carrier trajectories and results in the cyclotron orbits with radius rC = (} k)/eB. In case

of a 2D system, if rC becomes smaller than the device dimensions, no charge transport

takes place through the bulk of the device as the charge carriers can now complete their

cyclotron orbits without being scattered. In this state, the charge transport takes place

through the edge modes. At high magnetic field, the energy levels in the system become

quantized into discrete Landau levels and the current is carried only by the edge modes

through skipping orbits whenever the Fermi level lies between the two Landau levels.

This effect, known as the quantum Hall effect (QHE), can be observed by increasing the

magnetic field strength to achieve the Landau quantization. As the charge transport in

a device enters the quantum Hall regime, the longitudinal resistance/conductance of the

device shows oscillations with increasing charge carrier density as the subsequent Landau

levels are filled, and resistance/conductance minima between two consecutive Landau

levels. This quantization can also be observed in the transverse conductance of the device

with respect to the charge carrier density [65, 93, 94]. As edge transport takes place

when the Fermi level lies between two Landau levels, it results in a series of conductance

plateaus in the transverse conductance of the device whenever a Landau level is filled.

In the quantum Hall regime, the relation between the magnetic field B and n is defined as

ν =
nh

eB
(4.2)

where ν is the Landau level filling factor or Landau level index. The energy levels in

single layer graphene are four-fold degenerate due to the spin and valley degeneracy. The

lowest Landau level appears at ν = 2 due to the spin degeneracy while the successive

levels appear at ν = 6, 10, 14, 18.... accounting for the spin and valley degeneracy. From

eqn. 4.1 and 4.2, we have

ν =
αVgh

eB
(4.3)

where α remains the only unknown quantity.

In Fig. 4.3(a), the dependence of the device conductance on varying the applied gate

voltage δVg = Vg−VCNP (which accounts for the shift of the CNP as seen in Fig. 4.2) and

B is shown, commonly known as the Landau fan diagram. The conductance G = dI/dV

of the device is differentiated with respect to Vg in order to enhance the visibility of

the conductance oscillations. While the Fabry-Pérot resonances (discussed in the next

subsection) due to the formation of the pn-junctions can be very well observed at the

low magnetic fields in the p-doped regime, the Landau fan is relatively weaker here as

compared to the n-doped regime because of these pn-junctions [95, 96]. From eqn. 4.3, it

is clear that in a Vg vs B plot for transverse conductance in the quantum Hall regime, a

linear fit can be made depending only on ν and α for the conductance plateaus. Since ν

can only take predefined values as discussed above, such linear fits give a near-perfect

approximation of α which can then be used to calculate n in a precise way. Fig. 4.3(b)
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Figure 4.3: (a) Magnetic field dependence of conductance differentiated with respect to
the gate voltage at T = 4.2 K. (b) Zoomed-in region of (a) showing the linear fit used to
obtain the gate coupling efficiency α by using the Landau level filling factor ν

shows a zoomed-in section of Fig. 4.3(a) where the zero of the differentiated conductance

shows the conductance plateaus. The evolution of these plateaus is followed with linear

fits for various ν with an average α of the order of 6.14 x 1011 V−1cm−2. This value of

α was used to calculate n by substituting it in eqn. 4.1 and δVg = Vg − VCNP was used

instead of Vg.

4.3 Ballistic transport

In this section, the results obtained from the bias spectroscopy and the magnetic field

dependent measurements are presented when the device is in the NGN′ configuration.

It will be shown that the graphene/metal interface asymmetry can be observed easily

in the ballistic regime where the difference in transmission through the two interfaces

modifies the signature of ballistic charge transport in graphene.

4.3.1 Effect of the asymmetric contacts on the energy

dependent interference

As discussed in section 4.2, due to the n-type doping from the metal contacts to the

graphene sheet, pn-junctions are created in the vicinity of the graphene/metal interface

when the Fermi level of graphene lies in the valence band. The two pn-junctions formed

at the two graphene/metal interfaces result in the formation of an electronic npn cavity

where the pn-junctions act as partially transmitting interfaces. This phenomenon is

analogous to an optical Fabry-Pérot (FP) cavity where the pn-junctions play the role

of partially transmitting mirrors in the FP cavity. In this electronic cavity, the charge

carriers travel back and forth in the cavity by getting reflected from the pn-junctions
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in the vicinity of the graphene/metal interfaces before they are transmitted. If the

cavity length is smaller than the mean free path of the charge carriers, i. e., the charge

transport in the cavity is in the ballistic regime, then multiply reflected charge carrier

trajectories result in a conductance/resistance interference pattern. This interference

pattern can be seen as the oscillations in the conductance/resistance of the device due to

the constructive/destructive interference of the charge carrier trajectories. Constructive

interference of the trajectories results in the conductance maxima according to the

relation:

2LC cos θ = NλF (4.4)

where LC is the cavity length, θ is the angle of incidence, λF is the Fermi wavelength

and N ∈ N. In the simplest case where θ = 0, i. e., normal incidence, it is clear that the

interference pattern can be tuned by tuning the Fermi wavelength. Simplifying eqn. 4.4

in this case results in the following relation:

kFLC = Nπ (4.5)

where kF is the Fermi wavevector defined as:

kF =
2π

λF
=
√
π n =

√
π α |Vg − VCNP| (4.6)

In agreement to the relation in eqn. 4.6, the FP resonances can be seen in the p-doped

regime in Fig.4.2 as oscillations in the conductance/resistance with changing Vg. It clearly

indicates that the charge transport in this device is in the ballistic regime. Another way

of tuning the FP resonances is by applying a bias voltage across the device. It leads

to a change in the energy of the charge carriers as δE = eVbias/2 where Vbias is the

applied bias voltage. Due to the linear relation between E and k in the low-energy regime,

this modifies k as per the relation δk = eVbias/(2} vF) where vF is the Fermi velocity.

Therefore, a well-accepted way of characterizing the ballistic transport in graphene-based

devices is to map the FP resonances as a function of Vg and Vbias [75, 97, 98]. Using the

resonance condition shown in eqn. 4.5 and substituting the value of kF and δk, a simple

equation can be derived for the FP resonance pattern:

Vbias = ±(2} vF
√
π α/e)

√
|Vg − VCNP|+N

2π } vF
eL

(4.7)

According to eqn. 4.7, a checkerboard conductance/resistance pattern is usually observed

for graphene devices [75, 97, 98].

In Fig. 4.7(a), the energy dependence of the FP resonances is shown with respect to

the variation in Vg and Vbias. As the conductance profile of the device varies strongly with

Vg and Vbias, a non-oscillating background was subtracted from the data to enhance the

visibility of the oscillatory conductance GOSC. It can be clearly seen that the interference

pattern observed here is stripe-like instead of the usual checkerboard pattern. This
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Figure 4.4: (a) Modulation of the FP resonances with varying Vg and Vbias at T = 100 mK
and B = 50 mT. (b) Linear fit of the conductance resonances shown in (a) according to
eqn. 4.7 where solid fits show the observed resonances and dotted fits show the missing
symmetry of the resonance spectrum.

asymmetric interference pattern indicates the asymmetry of the two graphene/metal

contact interfaces which is expected from this device as the two contact electrodes are

made of different metals. Similar asymmetry in the FP interference pattern was observed

in carbon nanotube (CNT) based devices with energy dependent transmission coefficients

[99]. Linear fits of the conductance resonances as per eqn. 4.7 are shown in Fig. 4.4(b)

where kF is calculated by using eqn. 4.6. These linear fits have two fitting parameters

in accordance with eqn. 4.7, namely α defining the slope of the fits and LC defining the

intercept. Using the value of α obtained from the SdH oscillations as described in section

4.2.1, the value of LC is found to be 240± 5 nm which is in agreement with the length of

the measured device. It is clear that while the charge transport in this device is in the

ballistic regime, the asymmetry of the contact interfaces is clearly reflected in the FP

interference pattern.

4.3.2 Quantum interference in the magnetic field

As discussed earlier in section 4.2.1, at high magnetic fields, the energy levels in a 2D

system are quantized into discrete Landau levels. However, at smaller magnetic fields,

the energy levels are continuous. In this regime, the Lorentz force acting on the charge

carriers bends their electronic trajectory which changes the angle of incidence at the

transmitting interface. Due to the angular dependent transmission in graphene [10, 68],

this leads to an interesting phenomenon known as the Klein tunnelling as discussed

in Chapter 2. In this tunnelling process, the charge carriers with normal incidence or

close to the normal incidence are transmitted with a transmission probability close to
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Figure 4.5: GOSC as a function of the gate voltage Vg and perpendicular magnetic field
B in the normal state at 4.2 K

unity while the transmission at other incidence angles is suppressed. Due to this angle

dependence of the transmission, the FP resonances can be tuned by a perpendicular

magnetic field before the charge transport enters into the quantum Hall regime. Fig. 4.5

shows the tuning of the FP resonances by small magnetic fields where the parabolic

dispersion of the interference pattern comes from the Aharonov-Bohm phase. As the

applied magnetic field increases, the charge carrier trajectories in the FP-cavity bend

to an extent that they enclose the origin in the graphene band structure. This adds a

non-trivial Berry phase of π to these trajectories, thereby modifying the angle dependence

of the transmission through the cavity which serves as a proof of the Klein tunnelling

[69]. This effect is seen as a π-phase shift of the conductance oscillation at a certain

magnetic field which is weakly visible in Fig. 4.5. It is to be noted that this magnetic

field dependence was measured in a different cool-down of the device. It accounts for the

slight change in the position of the conductance maxima/minima with respect to the

data observed in Fig. 4.4(a).

4.4 Superconductivity in hybrid graphene based

junctions

In the previous sections, the measurements were carried out in the NGN′ configuration.

The results obtained from these measurements show the impact on the charge transport in

2-terminal graphene based junctions when the two contact electrodes are made of different

metals. In the present section, the measurement results were obtained after the supercon-

ducting electrode was cooled below its superconducting transition temperature. It results

in the device configuration NGS which implies that the two metal/graphene interfaces

have completely different transport properties. The experimental results obtained in
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Figure 4.6: Modelling schematic for an NGS junction (See text for description).

this configuration are explained by using a modified Octavio-Tinkham-Blonder-Klapwijk

(OTBK) model [4, 35, 36]. A brief description of the model is provided in the next

subsection followed by the experimental results.

4.4.1 Analytical Model

Credit note: This model was developed by Prof. Detlef Beckmann (Supervisor of this

thesis). It is provided in the current thesis for completeness.

In order to address the transport through two different interfaces in the NGS devices,

the system is modelled in the superconducting state by using a modified OTBK model

[4, 35, 36]. As shown in Fig. 4.6, the graphene sheet is modelled as an ideal conductor

which connects a normal metal (N) electrode (left terminal) and a superconductor (S)

electrode (right terminal). This configuration implies that due to a single superconducting

interface in the system, multiple Andreev reflections cannot take place. The two interfaces

have normal-state transmission probabilities τN and τS, respectively. These two different

transmission probabilities account for the different material interfaces and the formation

of pn junctions in the p-doped region. The normal metal terminal is at the electrochemical

potential µ = −eV while the superconducting terminal is at an electrochemical potential

µ = 0. The current through the device can be calculated by using the right- and

left-moving distribution functions, f→(ε) and f←(ε), respectively, from the boundary

conditions provided below:

f→(ε) = τNf0(ε− µ) + rNf←(ε),

f←(ε) = T (ε)f0(ε) + R(ε)f→(ε) + A(ε) (1− f→(−ε)) , (4.8)

where f0 is the Fermi function, ε is the energy, rN = 1− τN is the reflection probability

at the normal metal terminal, and T (ε), R(ε) and A(ε) denote the normal transmission,

normal reflection and Andreev reflection probabilities, respectively, at the superconducting

terminal.

From the analytical solution of the equation system 4.8, the current through the

device can be calculated by integrating the difference between the distribution functions,
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f→(ε)− f←(ε), over energy. The differential conductance dI/dV can be calculated from

the current as shown below.

dI

dV
= GN

∫
g(ε)

(
−∂f0(ε+ eV )

∂eV

)
dε (4.9)

Here, GN is the normal-state conductance, and g(ε) is the normalized spectral con-

ductance which is given as

g(ε) =
1

τ ∗
τN(A2(ε)rN − (R(ε)− 1)(R(ε)rN − 1)− A(ε)τN)

(A2(ε)r2N − (R(ε)rN − 1)2)
(4.10)

where τ ∗ = τSτN/(1− rSrN) gives the effective transmission probability in the normal

state.

Contrary to the original OTBK model where T (ε), R(ε) and A(ε) are calculated with

the BTK model [3], a generalized BTK model [35, 36] is used here. The BTK model

describes ballistic microconstrictions between a BCS superconductor and a normal metal

[100], while the generalized BTK model takes into account the magnetic pair-breaking

in an applied magnetic field, and its effect on the spectral conductance in the supercon-

ducting state. Using this model, A(ε) and R(ε) can be calculated as

A(ε) = τ 2S

∣∣∣∣∣ f̂(ε)

D(ε)

∣∣∣∣∣
2

, (4.11)

R(ε) =
4rS

|D(ε)|2
, (4.12)

Here D(ε) = (1 + rS) + (1 − rS)ĝ(ε), and ĝ(ε) and f̂(ε) are the normal and anoma-

lous Green’s functions of the superconductor, respectively. The Green’s functions are

determined by using the normalization condition ĝ2(ε) + f̂ 2(ε) = 1 along with the Usadel

equation, which in this case is defined as [36]

εf̂(ε) + iαĝ(ε)f̂(ε)− i∆ĝ(ε) = 0, (4.13)

Here α is the magnetic depairing energy which accounts for the magnetic pair-breaking

effects [101], and ∆ is the superconducting order parameter. In the absence of the magnetic

depairing, i. e., α = 0, A(ε) and R(ε) take the form of the analytical BTK expressions [3].

In summary, the fitting parameters required to fit the experimentally obtained con-

ductance spectrum are the normal state conductance GN, the transmission probabilities
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Figure 4.7: Differential conductance dI/dV measured as a function of the applied bias
voltage Vbias for: (a) applied gate voltage Vg at T ∼ 20 mK corresponding to the electron-
doped region (Vg = 9.8 V), the hole-doped region (Vg = −9.8 V), and close to the charge
neutrality point (Vg = −2 V). Note that the dI/dV has been normalized with the normal
state conductance GN (as obtained from the measurement at T 4.2 K). (b) various values
of magnetic field B applied perpendicular to the device at T ∼ 20 mK and Vg = −9.2 V
corresponding to the hole-doped region. (c) different temperatures at Vg = −9 V, i. e.,in
the hole-doped region. In all of the panels, the experimental data is represented by the
symbols while the solid curves represent the fit of the data with the modified OTBK
model.

τS and τN, the superconducting order parameter ∆, the magnetic depairing energy α, and

the effective electronic temperature T . Note that T enters through the Fermi function f0.

4.4.2 Experimental results and discussion

As the superconducting electrode is made of Ti/Al, a superconducting critical tem-

perature TC ∼ 990 mK was observed for the NGS devices. In order to understand the

superconductivity in these hybrid junction devices, a systematic experimental study of

the conductance spectra was performed as a function of the gate voltage Vg, magnetic

field B and temperature T . Results obtained from these measurements are shown in

Fig. 4.7 for device A. Fig. 4.7(a) shows the evolution of the differential conductance

dI/dV normalized with the normal state conductance GN (from the measurement at

T ∼ 4.2 K) as a function of the bias voltage Vbias at B = 0 and T ∼20 mK in three

different charge transport regimes, where Vg = 9.8, -9.8 and -2 V corresponds to the

n-doped region, the p-doped region and close to the CNP, respectively. The non-zero

conductance observed in the subgap regime is due to the Andreev reflections which
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indicates a metallic junction behaviour. The experimental data shown here was fitted

by using the modified OTBK model and a change in the superconducting gap ∆ from

∼ 127µeV in the n-doped region to ∼144µeV in the p-doped region was observed. The

fitting parameters extracted from the modified OTBK fits of the data are shown in Table

4.1. Since the measurements were conducted at the zero magnetic field, it implies α = 0.

The change in ∆ from the p-doped region to the n-doped region can be clearly seen as a

shift in the position of the maxima of dI/dV as shown in Fig. 4.7(a). Two arguments can

be presented to address the difference in ∆, first, the device has a higher conductance in

the n-doped region compared to the p-doped region as can be seen in Fig. 4.2. This could

lead to the self-heating of the device at high charge carrier densities in the n-doped region

which would result in the reduction of ∆. Second, a gate-dependent voltage division

between the normal metal lead and graphene could also appear as a change in ∆.

Vg ∆ τN τS T
(V) (µeV) (mK)

9.8 (n-doped) 127 0.92 0.7 354
-9.8 (p-doped) 144 0.73 0.69 270

-2 (close to the CNP) 140 0.59 0.67 190

Table 4.1: The superconducting order parameter ∆, transmission probabilities τN and τS,
and the effective electronic temperature T as extracted from the fit of the conductance
spectra shown in Fig. 4.7(a)

Fig. 4.7(b) shows the evolution of dI/dV and ∆ in a perpendicular magnetic field B

in the hole-doped regime at Vg = -9.2 V and T ∼20 mK. The magnetic field was kept

below the critical magnetic field in order to preserve superconductivity in the device.

This series of measurement also serves as an additional test for the applicability of the

modified OTBK model in explaining the experimental data. Increasing B from 0 to 6 mT

results in a clear decrease of ∆ as can be seen in the successive curves in Fig. 4.7(b). By

fitting the data with the modified OTBK model, a decrease in ∆ from ∼143µeV at 0 mT

to ∼125µeV at 6 mT was observed. As the model takes into account the pair-breaking

B ∆ α
(mT) (µeV) (∆)

0 143 0
2 143 0.03
4 136 0.09
6 125 0.18

Table 4.2: The superconducting order parameter ∆ and the magnetic depairing energy α
as extracted from the fit of the conductance spectra shown in Fig. 4.7(b). The effective
electronic temperature T was 265 mK and the transmission probabilities τN and τS were
0.73 and 0.69, respectively, for all of the fits.
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Fig. 4.7 Vg τN τS
(V)

(a) 9.8 0.922± 0.01 0.697± 0.002
(a) -9.8 0.729± 0.008 0.694± 0.003
(a) -2 0.589± 0.006 0.667± 0.002
(b) -9.2 0.73± 0.017 0.692± 0.004
(c) -9 0.743± 0.023 0.675± 0.006

Table 4.3: Transmission probabilities τN and τS as extracted from the fits shown in
Fig. 4.7(a), (b) and (c).

effect in an applied magnetic field [101, 102], the magnetic depairing energy was found

to increase from 0 to ∼0.18∆ with the increasing magnetic field. The change in ∆ and α

as a function of B is shown in Table 4.2 as extracted from the fits of the data.

After considering the effect of electrostatic doping, i. e., Vg dependence, and B de-

pendence, temperature is another important parameter to characterise the evolution of

superconductivity. Increasing temperature results in the weakening of superconductivity

which can be seen in Fig. 4.7(c) as the decrease in ∆ with the increase in T . These

measurements were performed in the p-doped region at Vg = -9 V under zero magnetic

field (B = 0 implies α = 0), with T ranging from ∼102 mK to 780 mK. The curves are

shifted downwards in successive steps of 0.4 mS for the sake of clarity. This temperature

dependence of the differential conductance can be very-well described by the modified

OTBK model where a decrease in ∆ from ∼144µeV to ∼119µeV is observed as the

temperature is increased from ∼102 mK to 780 mK. While the series is well captured by

the model in the low temperature regime, it is not very-well fitted as the temperature

approaches to TC. It indicates the limitation of the model with respect to T close to TC.

As has been pointed out in section 4.3.1 and 4.4.1, the two different graphene/metal

interfaces, i. e., the normal metal/graphene and graphene/superconductor interfaces, in-

fluence the charge transport through graphene. This difference between the two interfaces

is accounted by considering their respective transmission probabilities. Table 4.3 shows

the transmission probabilities as extracted from the fits of the data shown in Fig. 4.7(a),

(b) and (c) with respect to the applied gate voltage Vg. In Fig. 4.8(a), the transmission

probabilities τN and τS for the normal metal/graphene and graphene/superconductor

interfaces, respectively, are shown for device A and B as extracted from the OTBK

fits of the experimental data. It is to be noted that the data was collected in a select

gate voltage range for device A with high resolution in the gate voltage step-size while

the data for device B was collected over a large gate voltage range with comparatively

lower resolution in the gate voltage step-size. Therefore, the fine details of the electronic

transport can be traced with the data collected from the measurements on device A,

while an overall trend of the charge transport can be obtained from device B to compare
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Figure 4.8: (a) Transmission probabilities τN and τS, respectively for device A and B.
(b) Normal state conductance GN as a function of the gate voltage Vg in device B.
All of the parameters, τN, τS and GN, are extracted from the fitting of the differential
conductance data by using the modified OTBK model. The measurements were done at
a base temperature of 20 mK and B = 0 T.

it with device A.

For device A, τN varies from 0.74 in the p-doped region to 0.92 in the n-doped region

while it drops to 0.59 close to the CNP. τS, on the other hand, remains fairly constant by

varying between 0.67 to 0.71 for this entire Vg range. The comparatively low value of τS
in terms of the metallic junction indicates a weak barrier at the graphene/superconductor

interface which could be present due to lithographic imperfections. Comparing the values

of τN and τS for device B with device A, it is clear that the normal metal/graphene

interface in device B is comparatively lesser transparent than device A. However, the

dependence of τN and τS on Vg is similar in both of the devices. It is worth noting

that this dependence of doping is clearly visible in the subgap conductance as shown

in Fig. 4.7(a). In addition, the difference between τN and τS confirms and explains the

observed asymmetry of the FP interfernce pattern as shown in Fig. 4.4(a). In Fig. 4.8(b),

the normal state conductance GN is shown for device B which was extracted from the

same OTBK fits that were used to extract τN and τS as shown in Fig. 4.8(a). A large

difference between the conductance in the n-doped region and the p-doped region can

be clearly seen as well as the shift of CNP to the negative Vg due to the n-doping of

graphene from the contact electrodes as discussed in section 4.2. It indicates that the

modified OTBK model used for fitting can qualitatively explain the experimental data

in the entire gate voltage range.

In order to understand the correlation between the transmission probabilities τN
and τS, and the normal state conductance GN, a series of conductance spectra was
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Figure 4.9: (a) Oscillations in GN as a function of the gate voltage Vg in the hole-doped
region (data) as observed at a base temperature of 20 mK and B = 0 T, and fitting value
of GN for the conductance as extracted from the OTBK fits of the experimental data
(fit). (b) Transmission probability τ (showing τN and τS) as obtained from the OTBK
fits of the same experimental data.

measured with varying Vg in the p-doped region in device A at B = 0 T and T ∼20 mK.

Fig. 4.9(a) shows the measured GN as well as the extracted GN (from the OTBK fits of

the experimental data) as a function of Vg. It can be clearly seen that the FP resonances,

as observed in Fig. 4.2, are visible in the extracted value of GN as well. Fig. 4.9(b) shows

the transmission probabilities extracted from the same OTBK fits and the same Vg
dependent oscillation pattern can be seen in the transmission probabilities, most precisely

in τS. It indicates that the transmission through the interfaces in the NGS configuration

is tuned by Vg in a similar way as it was tuned in case of the FP resonances. Using

eqn. 4.5 from section 4.3.1 to calculate the cavity length LC from these oscillations,

LC ∼236±10 nm is obtained. It shows that the oscillations observed here are indeed

due to the FP interference of the Andreev reflected charge carriers. In case of graphene

based Josephson junctions, the signatures of FP interferences can be observed in the

superconducting state as the oscillation in the critical current [16–19, 23, 25] or multiple

Andreev reflections [21]. However, the results shown here clearly indicate that the FP

resonances, which show ballistic transport in these hybrid junctions, can be traced in

the transmission probabilities of the device interfaces as the charge carriers are Andreev

reflected.
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4.5 Conclusion

To conclude, it has been shown that the charge transport through graphene is significantly

tuned by the graphene metal/interfaces. In case of a ballistic device, it can be observed as

the asymmetry in the Fabry-Pérot interference pattern which results from the difference

in the transmission through the two graphene/metal interfaces. In the superconduct-

ing state, the modified OTBK model provides a qualitative explanation of the charge

transport through the normal metal/graphene/superconductor (NGS) junctions by ac-

counting for two different transmission probabilities for the normal metal/graphene and

graphene/superconductor interfaces. In addition, the signature of Fabry-Pérot resonances

in the superconducting state can be observed in these hybrid junctions by following the

transmission probabilities through the two graphene/metal interfaces.



Chapter 5

Tuning the supercurrent in

multiterminal graphene based

Josephson junctions

In this chapter, the electronic transport in multiterminal graphene based devices is

discussed. These devices have a Josephson junction where graphene acts as a weak link

between two superconductors, and a normal junction where graphene acts as a narrow

channel between two normal metal electrodes. This device geometry results in two trans-

verse graphene based junctions, namely the superconductor/graphene/superconductor

(SGS) junction and the normal metal/graphene/normal metal (NGN) junction.

It was observed in case of a diffusive metallic weak link based Josephson junction that

the supercurrent through a Josephson junction can be controlled via a normal transverse

current [103, 104]. This normal transverse current changes the occupation of the Andreev

levels in the weak link. The current-phase relation of the Josephson junction in such a

case can be modified from I = Ic sin(φ) to I = Ic sin(φ + π). These junctions, known

as the π-junctions due to the modified current phase relation, provide control on the

magnitude as well as the direction of the supercurrent by modifying the phase of the

Josephson junction. In a similar direction, control and manipulation of the supercurrent

in ballistic Josephson junctions with two-dimensional electron gas (2DEG) systems was

also observed [105–107]. With a similar analogy, the electronic transport through the

SGS junction can be modified by applying a potential difference or passing a current

across the NGN junction and vice versa, as was shown in case of graphene based diffusive

Josephson junctions [108].

This chapter deals with the experimental results obtained from these multiterminal

devices with the primary focus on the control and manipulation of the supercurrent in

the SGS junction by passing a control current through the transverse NGN junction.

55
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5.1 Device geometry

Figure 5.1: Atomic force microscopy image of (a) device A and (b) device B. Scale bar is
1µm in both of the panels. N and S show the normal and superconducting electrodes,
respectively. In both of the devices, the region enclosed with the white dashed lines shows
the overall top gate electrode and the narrow channel connecting the four electrodes
shows the h-BN encapsulated graphene. In (a), the channel is 4µm long between N-N
and 0.46µm between S-S while the contact region between S and graphene is 2µm wide.
In (b), the channel is 1µm long between N-N, 0.36µm between S-S and the S-graphene
contact region is 0.47µm wide.

In order to fabricate these devices, single layer graphene was encapsulated between

two h-BN crystals with the top h-BN being ∼ 28 nm thick and the bottom h-BN being

∼ 18 nm thick. Graphene was then edge-connected to two superconducting electrodes on

its two parallel edges where the superconducting electrodes were made of Ti/Al (5 and

60 nm, respectively). The other two transverse edges of the graphene were then connected

to two normal metal electrodes made of Ti/Cu/Al (5, 80 and 5 nm, respectively). This

results in the two transverse graphene based junctions as mentioned before, namely the

SGS and the NGN junctions as has been shown in Fig.5.1. In the end, a 25 nm thick

Al2O3 layer was deposited by using atomic layer deposition which was followed by the

fabrication of individual overall top gate electrodes made of Ti/Cu/Al (5, 100 and 5 nm,

respectively). In the normal metal electrode as well as in the gate electrode, the Ti layer

serves as an adhesion layer while the Al layer works as the capping layer to protect

Cu from oxidation. Details on the fabrication methods have already been provided in

Chapter 3.

Fig.5.1 shows the two devices that were experimentally studied to provide the results

discussed in this chapter. Fig.5.1(a) shows device A which shares a 4µm long junction

between the two N electrodes and a 0.46µm long junction between the S electrodes that

defines the width of the NGN junction. The width of the graphene channel along the

S electrodes is 2µm. Across the SGS junction, this device falls in the category of high

aspect ratio with W/L being close to 4.3 . In Fig.5.1(b), device B is shown where the



5.2. Normal state characterisation 57

length of the NGN junction is 1µm and its width is 0.36µm which defines the length of

the SGS junction. The width of the SGS junction for this device is 0.47µm. With W/L

being close to 1.2 across the SGS junction, this device has comparatively lower aspect

ratio than device A.

5.2 Normal state characterisation

As these devices have two transverse junctions with different materials used for the

contact electrodes, the electronic transport through the two transverse graphene based

channels might have different properties despite the fact that they share the same

graphene layer. In the light of this, normal state characterisation of these devices was

carried out before the devices were cooled down below the critical temperature of the

superconducting electrode. The experimental results obtained from the normal state

measurements of the two devices are presented and discussed in this section.

5.2.1 Gate dependent electronic transport

Fig. 5.2(a) and (b) show the gate-dependent resistance across the SGS and NGN junctions,

respectively, as observed in device A at 6 K under zero magnetic field. It is to be noted

that the Ti/Al electrode is in its normal state at this temperature, and hence, the

categorisation “SGS” is not factually correct but has been kept as that for the sake of

simplicity. As the measurements are conducted in a pseudo-four probe or three-probe

configuration which includes the contact resistance, the comparison is only qualitative. It

can be clearly seen that the two curves are quite different from each other with different

charge neutrality points (CNP) for the two junctions (VCNP = -2.3 V for the SGS junction

and VCNP = -1.8 V for the NGN junction), and a higher asymmetry in the resistance

for the p-doped and n-doped regions across the SGS junction as compared to the NGN

junction. It can be explained by taking into account that the two junctions behave like

two individual two-terminal devices. Across the SGS junction, the device is 2µm wide

and 0.46µm long which makes it a wide and short device. On the contrary, the device

is 0.46µm wide and 4µm long across the NGN junction which makes it a narrow and

long device. As the device is quite short across the SGS junction as compared to the

NGN junction and the electrode material is different as well for the two junctions, lower

gate coupling due to short junction effects, and difference in effective doping from the

contact electrodes could result in a higher VCNP across the SGS junction than the VCNP

across the NGN junction. This effective doping from the contact electrodes and the short

channel across the SGS junction also explain the observed asymmetry in the resistance of

the device between the p-doped and n-doped regions. These conditions also suggest the

formation of a coherent electronic cavity in the p-doped region. Fabry-Pérot resonances

observed in the p-doped region in Fig. 5.2(a) (also shown in the inset of the figure) serve
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Figure 5.2: Resistance measured as a function of the gate voltage Vg at T = 6 K across (a)
and (c) the Superconductor/graphene/superconductor (SGS) junction for device A and
device B, respectively, inset: resistance oscillations observed in the hole-doped regime.
(b) and (d) the Normal metal/graphene/normal metal (NGN) junction for device A and
device B, respectively.

as a proof for the formation of the electronic cavity and show that the device is in the

ballistic transport regime across the SGS junction.

Fig. 5.2(c) and (d) show the gate-dependent resistance across the SGS junction and

NGN junction, respectively, for device B which were measured at the same temperature

as for device A. Comparing Fig. 5.2(a) with Fig. 5.2(c), and Fig. 5.2(b) with Fig. 5.2(d), it

can be concluded that the characteristics across the SGS junction and the NGN junction
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in both of the devices are quite similar qualitatively. The main difference between the

two devices across the SGS junction is in terms of the charge neutrality point as VCNP is

-2.6 V for device B as compared to -2.3 V for device A. It can be explained by considering

the dimensions of the SGS channel in the two devices. In device B, the SGS channel

is 0.36µm long as compared to 0.46µm in device A. The difference in VCNP can be

attributed to the difference in the length of the two devices where a comparatively

shorter device might have higher effective contact electrode doping leading to a higher

VCNP. At this point, it is worth noting that the difference in the length of the two devices

across the SGS junction is 0.1µm and hence, a difference in gate coupling efficiency

for the SGS junctions in the two devices, if any, is expected to be insignificant. As

can be seen in Fig. 5.2(c) (also in the inset), device B also exhibits clear Fabry-Pérot

resonances in the p-doped region indicating ballistic transport across the SGS junction.

Comparing the transport across the NGN junction in device A and device B as seen

in Fig. 5.2(b) and (d), respectively, the VCNP across the NGN junction in both of the

devices is measured to be -1.8 V. It suggests that in device B, compared to the SGS

junction, the NGN junction is still in the long junction regime and might have a higher

gate coupling efficiency than the SGS junction.

The gate coupling efficiency α was extracted from the Shubnikov de Haas oscillations

and found to be 3.496 x 1011 V−1cm−2 across the SGS junction and 4.345 x 1011 V−1cm−2

across the NGN junction which indicates that the two junctions are not equally coupled

to the gate. It also suggests that the entire graphene channel across the NGN junction

might behave as a three segment channel with respect to the gate voltage control: the

middle segment being controlled by the gate coupling across the SGS junction and the

two outer segments being controlled by the gate coupling across the NGN junction. It is

to be noted that an applied gate voltage along with the gate coupling efficiency α, defines

the charge carrier density. It suggests that these different gate-controlled segments will

correspond to different charge carrier densities which, therefore, will result in different

doping levels through the junction. Considering different VCNP and αg for the SGS and

NGN junctions, it can be estimated that the charge carrier density n = α|Vg − VCNP|
will be 4.4 x 1012 cm−2 across the mid segment of the graphene channel (SGS junction)

and 5.1 x 1012 cm−2 in the two outer segments (NGN junction) at Vg = 10 V in device

B. This will give rise to additional interfaces in the graphene channel along the NGN

junction in addition to the metal/graphene interfaces at the two ends of the channel.

5.2.2 Fabry-Pérot resonances and ballistic transport

As it is shown in Fig. 5.2(a) and (c), the FP-resonances can be observed for the electronic

transport across the SGS junction in both of the devices. It was discussed in Chapter 4

that these resonances can be tuned by tuning the Fermi wavevector which in turn, can

be modified by the gate voltage while the energy of the resonances can be modified

by the applied bias voltage across the device. Therefore, to study these resonances in
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Figure 5.3: Bias spectroscopy of the Fabry-Pérot resonances in the normal state at T =
6 K and B = 0 as a function of Vg for (a) device A, and (b) device B.

detail, bias spectroscopy measurements were conducted for both of the devices with the

gate voltage being another tuning parameter. Fig. 5.3(a) and (b) show the oscillating

differential conductance GOSC as a function of Vg and bias voltage Vbias for device A and

B, respectively. As the conductance profile of the device changes strongly with Vg and

Vbias, a non-oscillating background conductance was subtracted to increase the visibility

of the conductance oscillations. It can be immediately observed in these FP-resonance

maps that device A shows a stripe-like interference pattern (similar to the one observed

in Chapter 4, Fig. 4.4(a)) while device B shows a comparatively homogeneous but weak

checkerboard pattern with one set of stripes being more prominent than the other. It

indicates that the two graphene/metal contact interfaces defining the FP-cavity region

are asymmetric in terms of transmission and this asymmetry is higher in device A (stripe

like interference pattern) while it is relatively weaker in device B (weak checkerboard

pattern). Another important fact is that these resonances are quite pronounced in device

B compared to device A which suggests that the FP-cavity forming in device B is

comparatively stronger than the cavity in device A. It can be understood by considering

the fact that the cavity in these devices is defined by the formation of the pn-junctions in

the vicinity of the metal graphene interfaces when the graphene channel is p-type doped

by an applied gate voltage. It suggests that the cavity formed in this way will become

weaker and ultimately, incoherent as the graphene channel becomes longer. Estimating

the cavity length from these FP-resonances results in a cavity length LC ∼450± 5 nm in

case of device A and ∼353± 3 nm in case of device B. As the extracted LC is in agreement

with the device length for both of the devices, it can be established that the electronic

transport is in the ballistic regime across the SGS junction in these devices.
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5.3 Magnetic field dependence of the supercurrent

Figure 5.4: (a) and (c) Select I − V characteristics in the presence of the perpendicular
magnetic field B measured at Vg = 10 V and T = 50 mK for device A and device B,
respectively. (b) and (d) Magnetic field dependence of the supercurrent at the same Vg
and T value for device A and device B, respectively. It is to be noted that a magnetic
field offset correction was made in case of device A and therefore, the magnetic field
represents the applied magnetic field in (a) and (b).

Supercurrent in a wide and short Josephson junction (rectangular junction having

uniform current density distribution) modulates with a perpendicular magnetic field

according to the relation

Ic(B) = Ic(0)
sin(πφ/φ0)

πφ/φ0

(5.1)
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where Ic(B) denotes the critical current at a perpendicular magnetic field B, Ic(0) denotes

the critical current at zero magnetic field, φ0 denotes the magnetic flux quantum, and

Φ = B · A is the magnetic flux passing through the junction where A is the junction

area. It is clear from Eqn. 5.1 that in a wide and short Josephson junction, the critical

current follows a sinc(πφ/φ0) interference pattern in the presence of a perpendicular

magnetic field, also known as the Fraunhofer pattern due to its similarity to the single-

slit Fraunhofer interference pattern. However, this magnetic field interference pattern

strongly depends on the current density distribution in the Josephson junction [109].

Fig. 5.4(a) and (b) show the effect of an applied perpendicular magnetic field B

(offset-corrected) in case of device A at Vg = 10V and T = 50 mK. It is to be noted

that during these measurements, no bias voltage or current was applied across the NGN

channel. The supercurrent in the device is strongly tuned by the magnetic field and an

oscillatory dependence can be clearly observed. The maximum critical current observed at

zero magnetic field is ∼130 nA in this device. However, there is a clear asymmetry in the

behaviour of the supercurrent for the positive and negative values of the magnetic field.

This asymmetry is due to the flux trapping in the magnet itself and hence, could not be

remedied in the measurement and analysis. Despite this externally induced asymmetry

in the magneto-interference pattern, it can be loosely concluded that this device shows

the oscillatory behavior of Ic(B) as expected from a rectangular Josephson junction.

Fig. 5.4(c) and (d) show the magnetic field dependence of Ic in device B at Vg = 10V

and T = 50 mK. It corresponds to the same measurement condition as for device A

in Fig. 5.4(a) and (b). The maximum Ic observed at zero magnetic field in this device

is ∼80 nA. Comparing the magnetic field dependence maps of the two devices, clear

distinction can be seen as device B shows a slow, decaying pattern instead of the

oscillatory behavior of Ic(B). The Josephson junction in device B is comparatively

smaller in dimensions than the junction in device A and geometrically falls in the

category of W/L close to 1 . The observed behavior of Ic(B) in this device is in agreement

with the behaviour of low aspect ratio constrictions [25, 110–114].

5.4 Tuning the supercurrent in graphene based

Josephson junctions

Controlling and tuning the supercurrent is an important part of the graphene based

Josephson junctions [16, 17, 19, 25, 74, 115]. In this section, two important parameters

are discussed which are used to control the supercurrent in these multiterminal devices.

The first one is tuning the supercurrent with an applied gate voltage which has been

demonstrated in most of the graphene based Josephson junctions and stems from the

gate-controlled conductance of the graphene weak link.
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Figure 5.5: (a) and (c) Select I − V characteristics at various Vg measured at ICtrl =
0 and T = 50 mK for device A and device B, respectively. (b) and (d) Gate voltage
dependence of the supercurrent at the same ICtrl and T value for device A and device B,
respectively.

The second one is tuning the supercurrent by passing a transverse current or applying

a transverse potential across the Josephson junction which changes the occupation of the

Andreev states in the Josephson junction [103–107]. This change in the occupation of the

Andreev states is reflected in the magnitude of the supercurrent. In these multiterminal

devices, it can be achieved by passing a control current ICtrl along the NGN junction

which influences the supercurrent-carrying states in the graphene channel that forms the

Josephson weak link in the SGS junction.
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5.4.1 Gate voltage controlled supercurrent

One of the most important properties of the graphene based Josephson junctions is

the gate voltage control over the supercurrent [16, 17, 19, 25, 74, 115]. In most of the

graphene based devices, a supercurrent can be observed across the entire gate voltage

range when the doping is tuned from n-type to p-type or vice versa. The magnitude of

the supercurrent is tuned with the gate voltage due to the change in the resistance of

the graphene weak-link.

A similar trend was observed in case of device A as shown in Fig. 5.5(a) and (b) as

measured at T = 50 mK and B = 0. It is to be noted that during these measurements

no bias or current was applied across the NGN junction. Fig. 5.5(a) shows the I − V
characteristics at select Vg. It can be readily seen that the magnitude of the critical

current Ic changes at different Vg values. The device is close to the normal state when

the gate voltage is close to VCNP and has a very small critical current in the p-doped

regime even at high charge carrier density. On the other hand, it has a noticeable Ic in

the n-doped regime. This dependence of Ic fits well with the resistance profile of the

device across the SGS junction. An important point to be noted here is the magnitude of

Ic which is not ∼ 130 nA at Vg = 10 V as seen in Fig. 5.4(a) at B = 0. It is due to a shift

in the effective zero magnetic field and hence, the device was in a non-zero magnetic

field during the measurement which led to a smaller Ic value. Fig. 5.5(b) shows the

differential resistance dV/dI map measured across the SGS junction as a function of the

bias current Idc and Vg. A residual resistance of 6 − 18 Ω was observed and forms the

central dark region of the map defined inside the high resistance envelope. As observed

in the I − V characteristics, the device has a relatively higher Ic in the entire n-doped

region as compared to the p-doped region. Another important feature is the appearance

of the equidistant, self-induced Shapiro steps-like switchings (can be clearly seen as

step-like features in Fig. 5.5(a) and (c) ) which appear as distinct resistance features that

seem to follow the supercurrent. The origin of these features is unclear in these devices

as they appear at constant energy values and their positions remain unaffected by the

gate voltage and the magnetic field, and hence, can be attributed to the electromagnetic

environment of the device.

Fig. 5.5(c) and (d) show the I − V characteristics and the dV/dI map across the SGS

junction as a function of Idc and Vg measured at T = 50 mK and B = 0 in device B.

Similar to the measurements on device A, these measurements were conducted without

any bias voltage or current across the NGN junction. As can be seen in Fig. 5.5(c) the

device shows Ic ∼80 nA at Vg = 10 V in the n-doped region, however, it is not in the

superconducting state close to VCNP which corresponds to the characteristics at Vg =

-2.7 V. The device has slightly non-linear characteristics in the p-doped regime as shown

at Vg = -10 V corresponding to p-type high charge carrier density. This non-linearity

is due to a dip in the resistance of the device in the p-doped regime while the device
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does not show any measurable supercurrent. Fig. 5.5(d) shows the dV/dI across the SGS

junction measured as a function of Idc and Vg in a limited gate voltage range where a

supercurrent could be measured. It can be clearly seen that the device gets highly resistive

as Vg approaches VCNP. Comparing device A and device B, a smaller Ic is observed in

device B than device A which is natural due to the dimensions of the devices. For both

of the devices, superconductivity is suppressed close to their respective VCNP, however,

the major difference between the two devices is their behaviour in the p-doped regime.

Here, device A remains superconducting even though it has a rather small Ic of ∼15 nA,

while device B is not in the superconducting regime despite a small resistance dip close

to zero bias. In case of device B, it is safe to say that a measurable supercurrent appears

only in the n-doped regime, while in the p-doped regime, the supercurrent is too small

to be measured. Therefore, it is clear that the supercurrent can be efficiently tuned in

graphene based Josephson junctions by tuning the dimensions of the weak link.

5.4.2 Tuning the supercurrent with a transverse normal

current

As mentioned before, supercurrent through a Josephson junction can be tuned by a

transverse normal current/potential difference which changes the occupation of the

Andreev states in the weak link. In these devices, the bias current Idc is applied across

the SGS junction, the transverse current or the control current ICtrl is applied across the

NGN junction, and the differential resistance is measured across the SGS junction.

Fig. 5.6 shows the tuning of the supercurrent in the n-doped regime at Vg = 0 V

(Fig. 5.6(a) - (c)), and 10 V (Fig. 5.6(d) - (f)) as measured in device A at T = 50 mK under

zero magnetic field. Comparing the I − V characteristics as shown in Fig. 5.6(a) and (d),

it can be clearly seen that the magnitude of Ic is strongly tuned by the control current

ICtrl. Fig. 5.6(b) and (e) show the dV/dI map across the SGS junction as a function

of Idc and ICtrl. It can be clearly seen that higher the magnitude of the supercurrent,

higher is the magnitude of the control current that is required to diminish it. However,

in both of the cases, even at high control current, the device shows slight non-linearity

indicating a dip in the resistance. Fig. 5.6(c) and (f) show the same data as (b) and (e),

respectively, except the fact that the control current is translated to the control voltage

VCtrl which denotes the potential difference across the NGN junction. For this device,

VCtrl ≈ 300µV shifts the potential difference across the NGN channel above 2∆ where

∆ denotes the superconducting gap. While this device does not show any sign of the

π-junction phenomenon as observed by Baselmans et al. (disappearance and reappearance

of the supercurrent as a function of ICtrl) in a similar device geometry with diffusive

Josephson weak link [104], the supercurrent is continuously tuned by the control current

throughout the entire VCtrl ≤ 2∆ range, as can be clearly seen in Fig. 5.6(b) and (c), and

(e) and (f). Apart from this, there is an asymmetry in the magnitude of Ic for low ICtrl or
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Figure 5.6: Experimental data from device A in the n-doped region at T = 50 mK, B = 0
and Vg = 0 and 10 V, respectively, (a) and (d) Select I−V characteristics with an applied
control current ICtrl, (b) and (e) differential resistance dV/dI map as a function of bias
current Idc and ICtrl, (c) and (f) dV/dI map as a function of Idc and control voltage VCtrl.

VCtrl as seen in Fig. 5.6(d), (e) and (f) with respect to Idc. One plausible reason for this

asymmetry could be the self-heating of the device at high Ic, and since the bias-dependent

measurements were made by sweeping the Idc from the negative to positive side for the

entire measurement range, the self-heating might generate the observed asymmetry with

respect to Idc.

As discussed in section 5.4.1, device A shows superconducting behaviour in the p-

doped regime although with a smaller Ic than in the n-doped regime. Fig. 5.7(a) and (b)

show the I − V characteristics of this device measured in the p-doped regime at Vg =

-10 V and -5 V, respectively, at 50 mK and zero magnetic field. It is clear that the state

of the device can be tuned from superconducting to normal with a relatively lower ICtrl

as compared to Fig. 5.6 (a) and (d).

Fig. 5.8(a)-(c) show the dV/dI across the SGS junction as a function of Idc and ICtrl,

Idc and VCtrl, Vdc (dc bias voltage across SGS junction) and VCtrl, respectively, at Vg =

-10 V. Fig. 5.8(d)-(e) show the similar measurements at Vg = -5 V. Two distinct features

can be observed in the p-doped regime as compared to the n-doped regime: first, Ic can

be quenched completely by applying a comparatively smaller control current/voltage;

second, intersecting linear features making a diamond-like shape in the central region
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Figure 5.7: Select I−V characteristics with an applied control current ICtrl in the p-doped
region for device A at B = 0 mT, T = 50 mK and (a) Vg = -10 V and, (b) Vg = -5 V.

Figure 5.8: Experimental data from device A in the p-doped region at T = 50 mK, B =
0 and Vg = -10 and -5 V, respectively, (a) and (d) differential resistance dV/dI map as a
function of the bias current Idc and control current ICtrl, (b) and (e) dV/dI map as a
function of Idc and control voltage VCtrl, (c) and (f) dV/dI map as a function of the bias
voltage Vdc and VCtrl.
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Figure 5.9: Select I−V characteristics with an applied control current ICtrl in the n-doped
region for device B at B = 0 mT, T = 50 mK and (a) Vg = 10 V and, (b) Vg = 0 V.

of the dV/dI map. The first one can be understood by taking into account that the

magnitude of Ic is quite small in the p-doped regime implying that the device is weakly

superconducting. Therefore, it can be easily influenced by external factors such as a change

in the occupation of the current carrying states caused by the control current/voltage.

The second feature, the diamond-like feature, in these devices corresponds to the charge

transport along the corners of the Josephson weak link under an applied bias, i. e.,

the transport along the NS corners of the device through the graphene channel. While

this feature is present throughout the entire range of the gate voltage, its visibility is

affected by the gate dependent conductance of the graphene channel. Since the overall

conductance of the graphene channel is higher in the n-doped regime, a small change

in the conductance caused by the transport along the NS corners gets overshadowed.

In terms of energy, the tip and the bottom of the diamond along Vdc = 0 denote the

threshold VCtrl = ± 2∆/e for the NGN junction where ∆ denotes the superconducting gap.

In this device, this threshold seems to appear at VCtrl ≈ 300µV. This transport feature

is discussed in detail in the successive chapter and no further details are provided here

in order to avoid redundancy. The vertical conductance lines observed at Vdc = ± 260µV

and ± 130µV in Fig. 5.8(c) and (f) show the multiple Andreev reflections (MAR) at

2∆/e and ∆/e. The other MAR features, if present, are not clearly visible due to the

self-induced Shapiro steps-like feature.

Fig. 5.9(a) and (b) show the I − V characteristics measured in device B at Vg = 10 V

and 0 V at T = 50 mK and zero magnetic field. Similar to the data obtained from device

A (as shown in Fig. 5.6(a) and (e)), the Ic in device B can be tuned with ICtrl. These

I − V characteristics also support the data shown in Fig. 5.7 that the magnitude of ICtrl

required to diminish the supercurrent/superconductivity in the device depends on the
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Figure 5.10: Experimental data from device B in the n-doped region at T = 50 mK, B =
0 and Vg = 10 V and 0 V, respectively, (a) and (d) differential resistance dV/dI map as a
function of the bias current Idc and control current ICtrl, (b) and (e) dV/dI map as a
function of Idc and control voltage VCtrl, (c) and (f) dV/dI map as a function of the bias
voltage Vdc and VCtrl.

magnitude of Ic.

The dV/dI maps for device B are shown in Fig. 5.10 at Vg = 10 V and 0 V, and

they bear similar features to the dV/dI maps shown in Fig. 5.8 and 5.7 for device A.

Comparing Fig. 5.10 with Fig. 5.8, weak hints of the diamond-like pattern can be seen in

the dV/dI maps of device B in the n-doped region as seen in the p-doped region in device

A. It suggests that the transport along the NS corners is a likely mechanism of charge

transport in these devices with the multiterminal geometry. It also supports the fact

that while the transport along the NS corners is always present, its visibility depends on

the conductance of the device. Another similar feature between the two devices is the

appearance of the MAR features at Vdc = ± 260µV and ± 130µV corresponding to 2∆/e

and ∆/e, respectively. The main difference between the two devices is the magnitude

of the Ic, and the ICtrl required to bring the device in the normal state which can be

understood by considering the difference in their dimensions. In this device as well, no

signature of π-junction could be observed while Ic is continuously tuned by ICtrl. One

possible reason for the absence of the π-junction behavior could be the difference in the

charge transport across the Josephson junction itself in these graphene based ballistic



70
Chapter 5. Tuning the supercurrent in multiterminal graphene based Josephson

junctions

devices as compared to the diffusive metallic Josephson junctions, as pointed out by

Wilhelm et al. [103]. The authors acknowledge that the dimensions of the two transverse

junctions might play a significant role in the tuning of the Josephson junction while the

basic physics of the controlled supercurrent (change in the occupation of the Andreev

levels in the weak-link) remains the same. A similar study by Sammuelsson et al. [105]

also shows the significant changes in the transport properties of the Josephson weak links

which depend on the dimensions of the junctions as well as on the contact interfaces.

5.5 Conclusion

To conclude, the electronic transport data in multiterminal graphene devices with two

transverse junctions was presented and discussed in this chapter. It was shown that

while the two junctions share the same graphene channel, they have different response

to an applied gate voltage which was seen in their gate coupling efficiency as well as

their different charge neutrality points. Signature of ballistic transport across the short

junction (SGS junction) was observed in both of the devices as seen in the Fabry-Pérot

interference pattern, however, the interference pattern observed in device B was relatively

regular and homogeneous as compared to device A. In terms of the superconducting

properties, device A exhibits the magnetic field dependence and gate tunable supercurrent

as expected for a wide and short Josephson junction. Device B exhibits the magnetic field

dependence as expected for a rather long and narrow junction. In addition, a supercurrent

is observed only in the n-doped region in Device B contrary to device A where it is

observed in the p-doped region as well. Using the transverse NGN junction for passing a

control current ICtrl through the Josephson weak link in the SGS junction, it was shown

that the critical current Ic through the SGS junction can be tuned in both of the devices.
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Crossed Andreev reflections in

multiterminal graphene based

Josephson junction

Nonlocal Andreev processes are of great interest when it comes to the study of normal

metal/superconductor junctions as discussed in Chapter 2. Signatures of the crossed

Andreev reflections (CAR) were observed in superconductor/ferromagnet spin valves

[40, 41], while in case of normal metal/superconductor structures, CAR was observed

in the metallic as well as in the tunnelling regime [42, 43]. In addition to these hybrid

junctions, observation of the nonlocal Andreev reflections in multiterminal Josephson

junctions is suggested in a recent theoretical report [116]. Owing to its peculiar electronic

band structure, graphene is shown to host the specular Andreev reflection [7, 31], which

sparks an obvious interest in studying the nonlocal Andreev processes in graphene based

systems. In this direction, the crossed Andreev conversion (CAC) was observed in the

encapsulated graphene devices in the quantum Hall regime [53]. CAR features, more

precisely, Cooper-pair splitting is theoretically proposed to be observed in graphene based

NS junctions by Cayssol [117] where the primary advantage comes from the tuning of the

local Fermi level in a graphene channel in n-type graphene/proximitized graphene/p-type

graphene scheme. Taking advantage of the tunability of the Fermi level, CAR features

are proposed to be observed in graphene based superconducting spin-valves as well [118].

Note that both of these studies consider the local tuning of the Fermi level to encourage

the CAR processes in graphene/superconductor systems.

In the light of the above discussion, the focus of the present chapter is to study the

Andreev reflection processes in multiterminal graphene based Josephson junction. Due

to the geometry of the multiterminal devices (presence of multiple terminals, difference

in the gate controlled regions of the graphene channel), these devices are likely to host

the nonlocal or crossed Andreev reflection process as discussed above. The experimental

71
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results obtained from the study are presented and explained with an analytical model.

Figure 6.1: (a) AFM image of the device showing the superconduc-
tor/graphene/superconductor (SGS) and the normal metal/graphene/normal metal
(NGN) junction. The region enclosed with the dashed lines shows the top gate electrode.
Scale bar is 1µm (b) Correlation notation (employed in the model) set for the electrodes
with respect to (a).

Fig. 6.1(a) shows the AFM image of the device studied for the detection of the

nonlocal Andreev reflection. Note that it is the same device, the device B, which was

shown in the previous chapter, (Chapter 5) with a 1µm long and 0.36µm wide normal

metal/graphene/normal metal (NGN) channel, and 0.36µm long and 0.47µm wide

transverse superconductor/graphene/superconductor (SGS) channel. Fig. 6.1(b) shows

the same image as in (a) with the correlation notation for the electrodes that is employed

in the model.

6.1 Experimental results

Fig. 6.2(a) shows the four-terminal or the superconductor/graphene/superconductor

(SGS) measurement configuration. In this case, the bias voltage Vb is applied across the

Figure 6.2: (a) Four-terminal measurement configuration (SGS configuration). (b) Three-
terminal measurement configuration (NGS configuration). See text in section 6.1 for
description.
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Figure 6.3: (a) Local differential conductance dIb/dVb map in the SGS configuration
(as shown in Fig. 6.2(a)), and (b) nonlocal differential conductance dIc/dVb map in the
NGS configuration (as shown in Fig. 6.2(b)) at Vg = -2.7 V, T = 20 mK and B = 0. (c)
dIb/dVb map in the SGS configuration, and (d) dIc/dVb map in the NGS configuration
at Vg = -5.5 V, T = 50 mK and B = 0

SGS junction and the control voltage Vc is applied across the NGN junction. Fig. 6.2(b)

shows the three-terminal or the normal metal/graphene/superconductor (NGS) measure-

ment configuration. In this case, Vb is applied across one of the NGS junctions and Vc is

applied across the SGS junction.

Fig. 6.3(a) shows the local differential conductance dIb/dVb map in the SGS config-

uration as measured at Vg = -2.7 V and 20 mK under zero magnetic field. Vb and Vc,

both are normalized with the superconducting gap ∆. The vertical features appearing at

eVb/∆ = ± 1 and ± 2 are due to the multiple Andreev reflections (MAR) as expected

for the SGS junction. In addition, there are few other distinct features present in the

map. First is the diamond-like pattern which encompasses the entire measurement range,

and second are the cross-like features which can be observed between |eVb/∆| ≤ 1 and

|eVc/∆| ≤ 2. The third feature is a conductance ridge which appears at eVb = 0 when

|eVc/∆| > 2. Fig. 6.3(b) shows the nonlocal differential conductance dIc/dVb map (across

the SGS junction) in the NGS configuration as measured at Vg = -2.7 V under the same

conditions as for the measurement in Fig. 6.3(a). Apart from the nearly vertical features

(might appear due to the direct transport across the biased NGS channel) and the nearly
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horizontal features (might appear due to the transport across the SGS channel), there

are additional features that can be observed in this map as well.

In order to assure that the observed features are robust, similar measurements were

carried out at Vg = -5.5 V in the p-doped regime. This regime was chosen to avoid the

additional features as the supercurrent and the self induced Shapiro-like features which

are prominent in the n-doped regime as well as in the highly p-doped regime. Fig. 6.3(c)

and (d) show the dIb/dVb map in the SGS configuration and the dIc/dVb map in the NGS

configuration, respectively, as measured at Vg = -5.5 V and 50 mK under zero magnetic

field. Comparing Fig. 6.3(a) and (c) for the measurement in the SGS configuration,

the MAR features can be observed at eVb/∆ = ± 1 and ± 2. The diamond-like feature

appears to be more symmetric at Vg = -5.5 V than at Vg = -2.7 V (the lines that form the

diamond appear to be splitting in Fig. 6.3(a)). On the other hand, the cross-like feature,

which appears to be still present at Vg = -5.5 V, suffers in terms of visibility due to the

supercurrent and the Shapiro-like features. In addition, the vertical conductance ridge at

eVb = 0 and |eVc/∆| > 2 also cannot be clearly distinguished at Vg = -5.5 V due to the

supercurrent feature. Comparing Fig. 6.3(b) and (d) for the measurement in the NGS

configuration, similar features can be observed in both of the maps except the additional

features in Fig. 6.3(d) in the low Vc regime. These additional features might appear due

to the supercurrent and the Shapiro-like features.

Therefore, it can be said that there are additional transport processes taking place

other than the directly observable MAR processes. In order to understand and explain

the observed experimental results, an analytical model is employed which is described in

the next section.

6.2 Analytical model

Credit note: This model was developed by Prof. Detlef Beckmann (Supervisor of this

thesis). It is provided in the current thesis for completeness.

As it was shown in Chapter 5, Fig. 5.2(c) and (d), the SGS channel and the NGN

channel have different charge neutrality points ( VCNP is -2.6 V for the SGS junction

and -1.8 V for the NGN junction). It was also discussed that the two junctions have

different gate coupling efficiency αg which translates to the difference in the gate induced

charge carrier doping across the two junctions. Fig. 6.4(a) shows the gate induced charge

carrier density n in the SGS and NGN channel where n is calculated by using the

relation n = α(Vg − VCNP). It can be seen that close to the VCNP of the SGS channel

(n ≈ 0), different doping densities across the SGS channel and the NGN channel can

generate pn-junctions. This process is schematically shown in Fig. 6.4(b) for the condition

Vg = VCNP along the SGS channel. In this situation, the graphene region across the
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Figure 6.4: (a) Gate induced charge carrier density in the SGS and NGN channel. (b)
Schematic of the doping profile across the NGN channel at Vg = VCNP of the SGS channel.
The central Dirac cone shows the doping profile in the graphene region across the SGS
channel, and the outer cones show the doping profile in the two outer graphene regions
along the NGN channel.

SGS junction is at the charge neutrality point (the central Dirac cone in Fig. 6.4(b)),

while the outer graphene regions along the NGN channel are p-doped (the left and right

Dirac cones in Fig. 6.4(b)). As discussed in Chapter 2, section 2.4, in a single layer

graphene system, the charge carriers can be transmitted through a potential barrier via

the Klein tunnelling where the transmission depends on the barrier profile as well as on

the angle of incidence [9, 10, 68]. It is to be noted that the potential barriers generated

by the doping profile in this device might not be as sharp as those achieved by using two

different gate electrodes to tune the carrier density profile [69]. In the present case, the

tunnelling process through the barrier might give rise to nonlocal Andreev reflections.

This process is discussed in the current section by using a three-terminal beam splitter.

The model treats graphene as a multichannel conductor connected to four terminals,

superconducting terminals (S) on the left and the right, normal metal terminals (N) on

the top and the bottom. The terminals labeled l, r, t, and b have transmission probabilities

τl, τr, τt and τb, respectively. The superconducting interfaces are modelled by using the

generalized BTK model [3, 35, 36] as discussed in Chapter 4. To account for all of

the possible transport processes, two types of transport channels are considered. First,

each pair of electrodes is connected with ideal conductors (graphene channels) showing

direct or local transport between the electrodes as shown in Fig. 6.5(a) with solid lines

connecting the terminals. The number of transport channels for each of these conductors

is accounted by using the parametric conductance Gαβ where α, β denote the terminals.

This gives six independent conductances which allow to model the device realistically as it

accounts for the asymmetry between the various contact interfaces. The NS connections
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Figure 6.5: (a) Model schematic showing the transport channels. (b) Three-terminal beam
splitter as shown in (a) and related distribution functions. (See text for description.)

are modelled by using the modified OTBK model [4], as discussed in Chapter 4, where

the device has only one superconducting electrode.

Second, nonlocal transport processes involving three terminals are addressed by using

three-terminal beam splitters as shown in Fig. 6.5(a) with dashed lines connecting the

terminals. Given the geometry of the device, processes involving one N terminal and

both of the S terminals are most likely to contribute to the nonlocal transport. In order

to keep the simplicity of the model for basic understanding of the nonlocal processes,

the model was restricted to the processes where an electron from the N terminal is

transmitted to only one of the S terminals (utilising the contact interface asymmetry of

the device). For reference, Fig. 6.5(b) shows a beam splitter between the top N terminal

and the left S terminal. The transport to the right S terminal takes place only from the

left S terminal via the beam splitter. The incoming and outgoing distribution functions

shown in the three branches are connected by the beam splitter according to the matrix

f outl

f outr

f outt

 =

 0 1− r r

1− r r 0

r 0 1− r

 f inlf inr
f int

 (6.1)

An additional simplification is made that there is no backscattering from the beam

splitter into the left S terminal. It leaves one free parameter r to be chosen. In analogy

to the OTBK model, the boundary condition for the distribution functions at the

superconducting terminal α held at a chemical potential µ is given as

f inα (ε) = Tα(ε− µα)f0(ε− µα) + Rα(ε− µα)f outα (ε) + Aα(ε− µα)(1− f outα (−ε+ 2µα)),

(6.2)
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where Tα, Rα and Aα denote the normal transmission, normal reflection and Andreev

reflection coefficients as obtained from the BTK model. The boundary condition at the

normal terminal γ is given by the same expression as shown in Eqn. 6.2 where Tγ = τγ ,

Rγ = 1− τγ and Aγ = 0. Combining Eqn. 6.2 with Eqn. 6.1 results in a coupled equation

system for the distribution functions. The current in each branch of the beam splitter

system can, then, be calculated as

Iα = fnss
Gαβ

e

∫
(f inα − f outα ) dε, (6.3)

where Gαβ is the two-terminal NS conductance (Gtl in the example shown in

Fig. 6.5(b)), and fnss is an additional fit parameter which allows to scale the nonlo-

cal processes relative to the two-terminal local processes. It is to be noted that the beam

splitter includes the local processes between the NS and SS terminals, however, they have

different weight due to finite transmission of the beam splitter. In particular, the MAR

processes between the superconducting terminals are weighed differently. It also includes

the nonlocal MAR processes where a local MAR cycle between the superconductors

begins due to an initial crossed Andreev reflection.

In the normal state, the model reduces to a conductance matrix as shown below


Il
Ir
It
Ib

 =


Gll Glr Gtl Gbl
Glr Grr Gtr Gbr
Gtl Gtr Gtt Gtb
Gbl Gbr Gtb Gbb



µl

µr

µt

µb

 (6.4)

where the diagonal elements are given by

Gαα = −
∑

β 6=α Gαβ (6.5)

It is to be noted that the conductance parameters Gαβ are not the same as the Gαβ in

Eqn. 6.3. The parameters Gαβ include the finite transmission probabilities of the interfaces

and the additional contributions from the beam splitters. The six independent off-diagonal

conductances in Eqn. 6.4 can be determined from the six two-probe resistances Rαβ in

the normal state, and then, solving Eqn. 6.4 for Iγ = 0 and Iδ = 0, where γ and δ denote

the floating terminals of the two probe measurement. Note that Rαβ is the resistance

between the two terminals and should not be confused with the symbol Rα which denotes

the normal reflection at the superconducting terminal. From the Gαβ, the six model

parameters can be determined. For instance, if all of the transmission probabilities are

fixed, it will give the value of Gαβ.
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6.3 Bias conditions for the crossed Andreev

reflections

Figure 6.6: Bias conditions for the crossed Andreev reflection in (a) measurement
geometry shown in Fig. 6.2(a) in the SGS configuration at Vc = 0, and (b) at Vb = 0. (c)
measurement geometry shown in Fig. 6.2(b) in the NGS configuration. (Filled and empty
circles denote electrons and holes, respectively.)

In Fig. 6.6, schematics for the bias conditions are shown that enable the crossed

Andreev reflection processes. In the SGS configuration corresponding to Fig. 6.2(a), the

threshold for Vb is at eVb = 2∆ /3 when Vc = 0. As shown in Fig. 6.6(a), under these bias

conditions, the CAR process is enabled for an electron from the normal metal with an

Andreev reflection at the right superconductor, and an inverse CAR for a hole from the

normal metal with an Andreev reflection at the left superconductor. As |Vc| > 0, these

thresholds change as one of it is lowered, the other increases and vice versa. This results

in the cross-like feature observed in Fig. 6.8(a) and Fig. 6.10(a) in the region |eVb/∆| ≤ 1

and |eVc/∆| ≤ 2. On the other hand, when eVc/∆ ≥ 2 in the SGS configuration, the CAR

process is always possible when eVb is very small, practically close to zero as shown in

Fig. 6.6(b), and a conductance peak is observed due to a peak in the Andreev reflection

probability at ε = ∆ when the gap features of the two superconductors are aligned. This

results in the vertical CAR feature observed in Fig. 6.8(a) and Fig. 6.10(a) at eVb/∆ = 0

and |eVc/∆| ≥ 2. In the NGS configuration (Fig. 6.2(b)), the CAR process takes place

according to the condition eVb + eVc = ∆ as shown in Fig. 6.6(c).

6.4 Observation of the crossed Andreev reflections

As described in the model, the appearance of the crossed Andreev reflection is explained

by using the beam-splitter model where the beam-splitter forms due to the difference in

the doping density in the graphene channel. It is expected to result in well-pronounced

signatures of CAR close to the charge neutrality point of the SGS junction since the

NGN junction will be in the low p-doping regime forming pn-junctions or pp′-junction



6.4. Observation of the crossed Andreev reflections 79

(due to the different CNP at Vg = −1.8 V for NGN junction as compared to Vg = −2.6 V

for the SGS junction) near the central graphene region as shown in Fig. 6.4.

Vg (V) Glr Gtb Gtl Gtr Gbl Gbr τl = τr τt = τb fnss r
-2.7 0∗ 1.22 3.67 2.38 4.57 6.09 0.72∗ 0.7∗ 0.45 0.6∗

-5.5 0∗ 17.52 5.57 4.84 4.63 5.01 0.76∗ 0.7∗ 0.73 0.47∗

Table 6.1: Parameters used for the modelling of the data. Conductances G are in units
of e2/h. Starred parameters were chosen to model the experimental data, the other
parameters were determined from the two-probe resistances of the device in the normal
state (shown in Table 6.2). The conductance Glr is set to zero as the conductance between
the two S contacts is very low at these gate voltages.

Vg (V) Rlr (kΩ) Rtb (kΩ) Rtl (kΩ) Rtr (kΩ) Rbl (kΩ) Rbr (kΩ)
-2.7 5.13 6.86 6.14 6.42 4.83 3.89
-5.5 3.07 1.87 2.79 2.71 2.88 2.66

Table 6.2: Normal state two-probe resistances as measured at 20 mK, 50 mT and Vb =
Vc = 0.

Fig. 6.7(a), (b) and (c) show the line traces of the differential conductance dIb/dVb map

shown in Fig. 6.3(a) (measured at Vg = -2.7 V, T =20 mK and B = 0) at eVc/∆ = 0,≈ 2

and ≈ 4, respectively, along with the dIb/dVb curves generated with the model. The

parameters used for the modelling are shown in Table 6.1. The transmission probability

for the graphene/superconductor interfaces (τl and τr) is chosen to be 0.72 while it is

chosen to be 0.7 for graphene/normal metal interfaces (τt and τb). It can be readily seen

that the model provides a good comparison with the experimental data. An important

point of consideration is that Glr is set to zero which denotes the transport across the

SGS channel. The reason is that the SGS channel at this gate voltage is close to the Dirac

point, and hence the normal state resistance is very high which results in negligible direct

conductance across the channel. In this scenario, the transport through the NS corners

is more likely to be an effective way of charge transport as can be seen in Table. 6.1.

Therefore, the transport across the SGS channel in this regime is addressed by using the

beam splitters which account for both, the MAR and the CAR, processes.

Fig. 6.8(a) shows the experimental dIb/dVb map as shown in Fig. 6.3(a), which can

be compared with the dIb/dVb map generated with the model as shown in Fig. 6.8(b).

Comparing the two dIb/dVb maps, it can be clearly seen that the the features in the

experimental data can be very well generated with the model. For the interpretation

of the observed features, Fig. 6.8(c) shows the same map as shown in Fig. 6.8(b), with

the guidelines. As discussed before, the vertical lines (orange in Fig. 6.8(c)) appearing

at eVb/∆ = ± 1 and ± 2 are due to the MAR which show the transport between the

superconducting contacts through the graphene channel. The intersecting lines (green
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Figure 6.7: Line traces of the dIb/dVb map shown in Fig. 6.3(a) at Vg = -2.7 V, T =
20 mK, B = 0, and the curves generated with the model for the same measurement
conditions at (a) eVc/∆ = 0, (b) eVc/∆ ≈ 2, and (c) eVc/∆ ≈ 4.

in Fig. 6.8(c)) that form the diamond-like feature are due to the transport between the

N and S contacts along the corners of the graphene channel. The dotted green lines in

Fig. 6.8(c) show the spread of energy for the electronic transport along the NS corners

in the presence of asymmetry in graphene/metal contact interfaces. This asymmetric

coupling of the contacts, which can be observed in the conductance values in Table 6.1,

can be readily seen in the two probe resistances as shown in Table 6.2. This asymmetry

results in the splitting of the intersecting green lines and marks the region shown by

the dotted green lines. This splitting of the intersecting lines can be clearly seen in

Fig. 6.8(a). The feature that appears at eVb/∆ = ± 2/3 when eVc/∆ = 0 and evolves

into a cross-like feature in the region |eVb/∆| ≤ 1 and |eVc/∆| ≤ 2 is attributed to the

CAR process as shown in Fig. 6.6(a). The vertical feature appearing at eVb/∆ = 0 and

|eVb/∆| ≥ 2 is also linked to the CAR process as shown in Fig. 6.6(b).

Fig. 6.8(d) shows the experimental dIc/dVb map as shown in Fig. 6.3(b) for the NGS

configuration. It can be compared with the dIc/dVb map generated with the model as

shown in Fig. 6.8(e) with the same modelling parameters as used for the SGS configuration.

It is to be noted that in the NGS configuration, the experimental measurement is two-

probe instead of the pseudo four-probe as in the SGS configuration, and hence includes the

series resistances from the RC filters. Therefore, the comparison between the experimental

data and the model is only qualitative in the NGS configuration. To interpret the observed

experimental data, Fig. 6.8(f) shows the modelling data with the guidelines. In order to

distinguish the two S terminals, one in the bias junction (NGS) and the other in the

control channel (SGS) which is outside of the bias circuit (as shown in Fig. 6.2(b) ), the

S terminal outside of the NGS bias channel is referred to as S′ for the sake of clarity in

the interpretation.

As shown in Fig. 6.8(f) and can be compared to Fig. 6.8(d), the transport in this

configuration is attributed to four processes. Slightly tilted vertical lines (green in
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Figure 6.8: (a) Experimental dIb/dVb map in the SGS configuration (as shown in
Fig. 6.3(a)) at Vg = -2.7 V, T = 20 mK, B = 0. (b) and (c) show the dIb/dVb map without
and with the guidelines, respectively, obtained from the model for the measurement
conditions in (a). (d) Experimental dIc/dVb in the NGS configuration (as shown in
Fig. 6.3(b)) under the same measurement conditions as in (a). (e) and (f) show the
dIc/dVb map without and with the guidelines, respectively, obtained from the model for
this measurement configuration.

Fig. 6.8(f)) correspond to the transport between the biased NGS channel. The backward

slope in these lines is due to the series resistances from the filters and implies that the

bias sources are not perfectly stiff. It also results in the cross-talk between Vb and Vc of

about 12% which has been taken into account in the model. The nearly horizontal lines

(orange in Fig. 6.8(f)) are due to the direct transport across the SGS′ junction which

is the control channel in this measurement geometry. It appears due to the cross talk

between Vb and Vc. It also leads to a small ac modulation of the voltage along the control

channel. The diagonal lines (blue) show the transport across the NGS′ channel. It is

modulated backwards, and hence it has a negative contribution. In this case too, the

lines shown in red in Fig. 6.8(f), which can be clearly seen in Fig. 6.8(d), are due to the

CAR process as shown in Fig. 6.6(c) for the NGS configuration.

It was shown in Fig. 6.3(c) and (d) that similar measurements were carried out

at Vg =-5.5 V in the p-doped regime. Fig. 6.9(a), (b) and (c) show the line traces of

the dIb/dVb map in the SGS configuration, as shown in Fig. 6.3(c), at eVc/∆ = 0,≈ 2
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Figure 6.9: Line traces of the dIb/dVb map shown in Fig. 6.3(c) at Vg = -5.5 V, T =
50 mK, B = 0, and the curves generated with the model for the same measurement
conditions at (a) eVc/∆ = 0, (b) eVc/∆ ≈ 2, and (c) eVc/∆ ≈ 4.

and ≈ 4 along with the curves generated with the model. The parameters used for

modelling the experimental data are as shown in Table 6.1. The transmission probability

is chosen to be 0.76 for the graphene/superconductor interfaces (τl and τr) and 0.7 for

graphene/normal metal interfaces (τt and τb). In Fig. 6.9(a), the additional peaks and

dips in the conductance close to eVb/∆ = 0 (due to the superconducting dip in resistance

and self-induced Shapiro-like features) are not captured with the model, however, a good

comparison between the experimental data and the model can be seen for the other

features as well as for the data shown in Fig. 6.9(b) and (c).

Fig. 6.10(a) and (b) show the experimental dIb/dVb map (as shown in Fig. 6.3(c) at

Vg = -5.5 V) and the map generated with the model, respectively, in the SGS configuration.

Fig. 6.10(c) shows the modelling data with the guidelines. It can be readily seen in the

experimental data that the CAR features (red lines in Fig. 6.10(c)) are still present,

however, it is not clearly distinguishable from the self induced Shapiro-like feature and

high conductance in the zero bias regime due to the supercurrent. The MAR features

(orange lines in Fig. 6.10(c)) can be observed at eVb = ± 1 and ± 2. A clear difference

between Fig. 6.10 (Vg = -5.5 V) and Fig. 6.8 (Vg = -2.7 V) is in the diamond-like pattern

(green and dotted green lines in Fig. 6.8(c) and green lines in Fig. 6.10(c)). As explained

before, this pattern appears due to the transport along the NGS corners and it splits in

the presence of asymmetry in the coupling of the contacts. This diamond-like pattern is

not split at the present gate voltage Vg = −5.5 V contrary to the pattern observed in

the vicinity of the Dirac point. It suggests that the device has relatively homogeneous

coupling of the contacts at this gate voltage which is also clear from the conductance

values shown in Table 6.1, and the two-probe resistances shown in Table 6.2. It can also

be seen from Table 6.1 that the conductance Gtb (conductance between the N contacts)

is quite high. This could indicate that the pn-junctions forming in the vicinity of the

graphene/superconducting interfaces aid transport between the N contacts.
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Figure 6.10: (a) Experimental local differential conductance dIb/dVb map in the SGS
configuration (as shown in Fig. 6.3(c)) at Vg = -5.5 V, T = 50 mK, B = 0. (b) and (c)
show the dIb/dVb map without and with the guidelines, respectively, obtained from the
model for the measurement conditions in (a). (d) Experimental nonlocal differential
conductance dIc/dVb in the NGS configuration (as shown in Fig. 6.3(d)) under the same
measurement conditions as in (a). (e) and (f) show the dIc/dVb map without and with
the guidelines, respectively, obtained from the model for this measurement configuration.

Fig. 6.10(d) shows the experimental dIc/dVb map as shown in Fig. 6.3(d) in the NGS

configuration at Vg = −5.5 V. Fig. 6.10(e) and (f) show the map generated with the model

with and without the guidelines, respectively. As observed in the nonlocal conductance

at Vg = -2.7 V in this configuration (Fig. 6.8(d)-(f)), the four transport processes can

also be observed in Fig. 6.10(d)-(f) at Vg = -5.5 V: the transport across the biased NGS

channel (slightly tilted vertical green lines), the transport across the SGS′ channel (nearly

horizontal orange and dotted orange lines showing the MAR at 2∆ and ∆), the transport

across the NGS′ channel (diagonal blue lines), and faint signatures of CAR (slanting red

lines). Since the resistance of the device is lower at Vg = -5.5 V compared to Vg = -2.7 V

(close to the Dirac point), the cross-talk between the bias and control voltages is larger.

It results in the increased slope of the transport features in Fig. 6.10 (Vg = -5.5 V) as

compared to Fig. 6.8 (Vg = -2.7 V).
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6.5 Gate dependence of the crossed Andreev

reflections

As discussed in the previous section, the CAR features and their visibility depend on the

gate voltage. While these features can be very clearly observed close to the Dirac point,

they become significantly fainter in the high doping regime due to the supercurrent and

self induced Shapiro-like features. In the present section, the evolution of the CAR features

is traced as a function of the gate voltage Vg in the SGS measurement configuration as

shown in Fig. 6.2(a).

Figure 6.11: Differential conductance map across the SGS junction as a function of Vb
and Vc, both normalized with the superconducting gap energy, measured in the vicinity
of the charge neutrality point at (a) Vg = -2.3 V, (b) Vg = -2.5 V, (c) Vg = -2.6 V, (d)
Vg = -2.7 V showing the evolution of the observed CAR.

Since the CAR features were clearly distinguishable in the vicinity of the SGS Dirac

point as seen in Fig. 6.8(a) and (d), Fig. 6.11 shows a series of the differential conductance

dIb/dVb maps measured in the vicinity of the SGS Dirac point. Fig. 6.11(a), (b), (c)

and (d) show the experimental results at Vg = -2.3, -2.5, -2.6 and -2.7 V, respectively,

measured at 50 mK and zero magnetic field. The MAR features appearing as vertical
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lines at eVb/∆ = ±1 and ±2 can be observed at all of the gate voltages, however,

the diamond-like feature coming from the transport along the NGS corners as well as

the CAR feature change significantly in this gate voltage range. The intersecting lines

creating the diamond-like feature are not split at Vg = -2.3 V, they are weakly split at

Vg = -2.5 V, and they are strongly split at Vg = -2.6 V and -2.7 V. As the splitting of

these lines is related to the asymmetry in the coupling of the contacts, it suggests that

the charge transport in the device is highly asymmetric close to the Dirac point of the

SGS junction while it is relatively symmetric everywhere else. Regarding the observation

of CAR, the features (cross-like features in the region |eVb/∆| ≤ 1 and |eVc/∆| ≤ 2,

and vertical line at eVb = 0 and |eVc/∆| ≥ 2) are not distinguishable at Vg = -2.3 V

due to the supercurrent and the self induced Shapiro-like steps, while they are weakly

distinguishable at Vg = -2.5 V and clearly distinguishable at Vg = -2.6 V and -2.7 V.

It can be concluded form these measurements that in this device, the CAR features

cannot be clearly distinguished in the presence of a large supercurrent. It was shown

in Chapter 5, section 5.4.1 that a critical current magnitude of 80 nA and ∼ 50 nA

was measured in this device at Vg = 10 V and 0 V, respectively. There was no observable

supercurrent close to the SGS Dirac point and only a dip in the resistance was observed

in the p-doped regime. However, as seen in Fig. 6.11(a) at Vg = -2.3 V, the weak residual

superconductivity in graphene still hinders the visibility of the CAR features. It restricts

the measurement window of CAR features in this device to a very small gate voltage

range in the p-doped regime while the observation in the n-doped regime is not possible

due to a high supercurrent despite the formation of nn′ junctions which might also act as

the beam splitters. In addition, it should be noted that the potential barriers in the nn′

region might be different from the pn-junctions or the pp′-junctions, and this could also

modify the transport across the graphene channel with regard to the Klein tunnelling [9,

10, 68].

Fig. 6.12(a)-(f) show the dIb/dVb maps measured in the p-doped region in the SGS

configuration at Vg = -2.85, -3.25, -3.5, -4.5, -5.5 and -10 V, respectively, at 50 mK and

zero magnetic field. The MAR features appearing at eVb/∆ = ±1 and ±2 can be

observed in all of the maps. As seen previously in Fig. 6.11(c) and (d), the intersecting

lines forming the diamond-like feature (transport along the NGS corners) are clearly

split at Vg = -2.85 V (Fig. 6.12(a)) which is close to the CNP. However, these features

become homogeneous with the increasing negative Vg, as seen in Fig. 6.12(b) - (f). It is in

agreement with the argument that the device has higher contact asymmetry close to the

CNP while it is relatively symmetric far from the CNP. Looking at the CAR features,

they are most prominent at Vg = -2.85 V and -3.25 V, Fig. 6.12(a) and (b), respectively.

These features are visible in Fig. 6.12(c) and (d) corresponding to Vg = -3.5 V and -4.5 V,

respectively, along with the vertical superconducting feature at eVc/∆ = 0 and the

accompanying self induced Shapiro-like features in the region |eVb/∆| ≤ 1. However, the

CAR features are faintly visible in Fig. 6.12(e) corresponding to Vg = -5.5 V (same data as
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Figure 6.12: Differential conductance map across the SGS junction as a function of eVb/∆
and Vc/∆ measured in the p-doped region at B = 0, T = 50 mK, and (a) Vg = -2.85 V,
(b) Vg = -3.25 V, (c) Vg = -3.5 V, (d) Vg = -4.5 V, (e) Vg = -5.5 V, and (f) Vg = -10 V
showing the evolution of CAR.
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in Fig. 6.10(a) which is shown here for completeness), they cannot be seen in Fig. 6.12(f)

corresponding to Vg = -10 V (highly p-doped region) due to the higher conductance at

this gate voltage and relatively stronger dip in the resistance appearing at zero Vb. The

vertical CAR feature appearing at eVb/∆ = 0 in the region |eVc/∆| ≥ 2 is present in all

of the maps. This feature can be clearly observed in Fig. 6.12(a) where Vg is close to the

VCNP of the SGS channel, and therefore, the supercurrent and the Shapiro-like features

are weak in this regime. In the successive maps, from Fig. 6.12(b) - (f), this feature is

present along with the supercurrent feature in the zero Vb regime.

6.6 Temperature dependence of the crossed

Andreev reflections

Figure 6.13: Differential conductance map across the SGS junction as a function of eVb/∆
and eVc/∆ measured in the vicinity of the charge neutrality point at Vg = -2.68 V, B =
0 and (a) T = 20 mK (Measurement was conducted in a reduced Vb and Vc range.), (b)
T = 100 mK, (c) T = 200 mK, (d) T = 300 mK, (e) T = 400 mK, and (f) T = 500 mK
showing the dependence of CAR on temperature.

As the Andreev processes originate due to the normal metal/superconductor transport,

they strongly depend on the properties of the superconductor, especially, the supercon-

ducting gap. Increasing temperature results in the decrease of the superconducting gap
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which also changes the energy scale of the Andreev processes. Therefore, it is essential

to study the evolution of the CAR features with the increasing temperature.

As the superconducting electrode in these devices is made of Ti/Al, a critical tem-

perature TC of ∼ 900 mK was observed. Fig. 6.13(a)-(f) show the differential conductance

dIb/dVb maps measured in the SGS configuration at Vg = -2.6 V (close to the CNP

where clear CAR features were observed as shown in Fig. 6.11(c)) under zero magnetic

field and at a base temperature T = 20, 100, 200, 300, 400 and 500 mK, respectively.

Fig. 6.13(a) shows the clearly visible cross-shaped CAR features at 20 mK which are

slightly broader and less prominent at 100 mK. It is to be noted that the measurement

at 20 mK was conducted in a reduced Vb and Vc range which accounts for the missing

data in the map. These features can still be seen as a weak shadow at 200 mK, however,

they become completely obscure at 300 mK and cannot be seen in Fig. 6.13(d), (e) and

(f). It is to be noted that the observed superconducting gap changed by mere 13µeV

from 130µeV at 20 mK to 117µeV at 500 mK. This behaviour of the cross-shaped CAR

feature can be attributed to the thermal broadening because of which, a small change in

conductance due to the CAR features is overshadowed by the background conductance.

This renders the CAR features indistinguishable from the background. The other CAR

feature which appears as a vertical conductance ridge at eVb/∆ = 0 for |eVc/∆| ≥ 2

is robust against temperature change and can be clearly seen upto 500 mK. A valid

reason for its robustness is that the conditions for its appearance are always satisfied

as long as the device is in the superconducting state (shown in Fig. 6.6(b), section 6.3).

An additional detail is the diamond-like feature which becomes less prominent with

increasing temperature, however, it can still be observed in Fig. 6.13(f) at 500 mK. Further

temperature dependence of these features with regard to the TC of the device could not

be measured as the base temperature of the dilution refrigerator is not stable enough in

the desired range of 500 mK< T <900 mK.

6.7 Conclusion

To conclude, the crossed Andreev reflection process was investigated in a multiterminal

graphene device with two transverse junctions, namely the SGS and NGN junctions.

Clear signatures of CAR were observed in the four-terminal measurment geometry (SGS

junction as the bias junction and NGN junction as the control junction) as well as in

the three-terminal measurement geometry (NGS junction as the bias junction and SGS

junction as the control junction). The CAR features were explained by using a beam

splitter model along with the modified OTBK and generalized BTK models. Since the

CAR features appear in the same biasing regime as the supercurrent and self induced

Shapiro-like features, their visibility is affected by the latter features. The CAR features

were found to be most prominent in the vicinity of the charge neutrality point of the

SGS junction due to very weak superconductivity in this regime. These features were
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observed in the p-doped regime as well, however, they become less prominent with higher

negative gate voltage (higher doping density resulting in higher conductance of the device

makes the features indistinguishable from the conductance background). Temperature

dependence of the CAR features revealed that the two features (cross-like feature and

vertical ridge-like feature in SGS measurement configuration) have different response to

increasing temperature. While the cross-like feature becomes indistinguishable from the

background conductance between 200 to 300 mK, the vertical ridge-like feature can be

observed easily till 500 mK (Note that the superconducting critical temperature of the

device is ∼ 900 mK).

It is to be noted that the multiterminal device which was employed to study the

nonlocal Andreev reflection, takes advantage from its simple geometrical configuration

of having a Josephson junction with a longer transverse normal metal junction. Due to

the apparent as well as expected difference in the gate coupling efficiency of the two

junctions, different doping densities across the graphene channel generate efficient beam

splitting interfaces. This process can be loosely correlated to the report by Cayssol [117]

where the author had addressed Cooper-pair splitting in n-type graphene/proximitized

graphene/p-type graphene by using the relativistic band structure of graphene. The

results presented here open the way to study quantum entanglement in these highly

tunable graphene based hybrid junction devices.





Chapter 7

Summary and outlook

During the course of this thesis, the goal was to study the proximity induced supercon-

ductivity and Andreev reflection processes in encapsulated graphene based devices with

hybrid edge contacts.

As the first step in this direction, simple two-terminal devices were fabricated where

a single graphene layer (SLG) was encapsulated between two h-BN crystallites, and

connected to a normal metal (Ti/Cu/Al) electrode on one edge and a superconducting

(Ti/Al) electrode on the other parallel edge. This gives a device configuration of NGN′

(graphene connected to two different normal metals) in the normal state, i. e., above the

critical temperature of the superconductor. In this configuration, the asymmetry of the

two graphene/metal contacts was clearly reflected in the Fabry-Pérot pattern. To analyse

and explain the electronic transport properties of these devices in the superconducting

regime (NGS configuration), modified OTBK and generalized BTK models were employed

[3, 4, 35, 36]. It was shown that the signature of ballistic transport, i. e., the Fabry-Pérot

resonances, could be very well observed in the Andreev reflections as the oscillations

in the transmission probability of the graphene/superconductor interface. While these

Fabry-Pérot resonances are usually observed in graphene based Josephson junctions as

a small modulation in the magnitude of the supercurrent [16–19, 23, 25], it is the first

report on edge-connected NGS devices where this phenomenon was observed.

Building on the experimental results obtained from the two-terminal NGS devices, mul-

titerminal graphene based devices were fabricated. In these devices, h-BN encapsulated

SLG was connected to two superconducting electrodes (Ti/Al) on two parallel edges, and

to two normal metal electrodes (Ti/Cu/Al) on the other two edges. Due to this geometry,

these devices have two transverse junctions, the SGS junction (Josephson junction with

graphene weak link) and the NGN junction. In this device configuration, the electronic

transport through one junction can be tuned by applying a control voltage/current

across the other junction [103–107]. Ballistic charge transport was observed in these

devices across the SGS junction in the normal state. In addition to the gate tunability
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of the supercurrent across the SGS junction, it was shown that the magnitude of the

supercurrent can be significantly tuned by applying the control current across the NGN

junction. The magnitude of the control current required to diminish the supercurrent

was found to depend on the magnitude of the supercurrent, i. e., a smaller supercurrent

would require a smaller control current to bring the device into the normal state. While

this kind of device geometry is apt to observe the π-junction behavior [103–106], this

phenomenon was not observed in the measured devices.

These multiterminal graphene based junctions also open the possibility to study

the nonlocal transport processes in the superconducting state due to the combination

of normal metal and superconducting electrodes. An analytical model based on the

modified OTBK and generalized BTK models was employed to explain the various

transport processes in the superconducting regime. The signatures of crossed Andreev

reflection were observed, and explained with a beam splitter model involving both of

the superconducting electrodes and one normal metal electrode. The visibility of the

observed CAR features was found to strongly depend on the conductance of the graphene

weak link and the magnitude of the supercurrent. It is to be noted that both of these

quantities, conductance of the graphene weak link and the magnitude of the supercurrent,

are tuned by an applied gate voltage. The CAR features were found to be clearly visible

in the vicinity of the Dirac point of the SGS channel due to very low conductance

of the graphene weak link in this regime. Temperature dependent study of the CAR

features in this region showed that the observed features have different response to

the temperature. One of the CAR feature becomes obscure (indistinguishable from the

conductance background) between 200 - 300 mK while the other remains robust upto

500 mK.

To conclude, it has been shown that the graphene based junctions with hybrid contacts

offer interesting possibilities to study Andreev processes. These junctions take advantage

of the gate tunability of graphene which tunes the Andreev processes as well. It suggests

strong possibilities for such kind of devices in terms of fundamental physics as well

as their potential applications in quantum entanglement. A simple approach will be

to study these multiterminal devices using a bilayer graphene (BLG) instead of the

single layer since the electronic properties of these two systems are significantly different

from each other [10]. In contrast to SLG, an electrostatically induced bandgap can be

opened in BLG which provides an additional control knob on the charge transport. In

addition, it also provides an opportunity to observe the specular Andreev reflection

which is relatively harder to observe in SLG due to the strong fluctuations in the Fermi

energy close to the Dirac point. Apart from this, another fascinating field will be to use

ferromagnetic electrodes instead of the normal metal electrodes in these junctions. It is

expected to give a pure nonlocal spin current signal in this transverse junction geometry

due to the spin selectivity of the ferromagnetic electrode and Cooper pair transport in the

superconducting electrode [119]. In this case too, the SLG and BLG systems might offer
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different response, however, both of them will open up the possibility of electrostatically

tunable spin valves with spin-selected Andreev processes.
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[107] Th. Schäpers et al. “Current-injection in a ballistic multiterminal superconductor/two-

dimensional electron gas Josephson junction”. In: Phys. Rev. B 67 (2003),

p. 014522.

[108] S. Sopic. “Superconducting proximity effect in graphene”. Doctoral thesis. Uni-

versity of Geneva, 2015.

[109] A. Barone and G. Paterno. Physics and Applications of the Josephson Effect.

Wiley Interscience, 1982.

[110] J. C. Cuevas and F. S. Bergeret. “Magnetic Interference Patterns and Vortices in

Diffusive SNS Junctions”. In: Phys. Rev. Lett. 99 (2007), p. 217002.

[111] F. S. Bergeret and J. C. Cuevas. “The Vortex State and Josephson Critical Current

of a Diffusive SNS Junction”. In: J Low Temp Phys 153 (2008), p. 304.

[112] L. Angers et al. “Proximity dc squids in the long-junction limit”. In: Phys. Rev.

B 77 (2008), p. 165408.

[113] F. Chiodi et al. “Geometry-related magnetic interference patterns in long SNS

Josephson junctions”. In: Phys. Rev. B 86 (2012), p. 064510.

[114] M. Amado et al. “Electrostatic tailoring of magnetic interference in quantum point

contact ballistic Josephson junctions”. In: Phys. Rev. B 87 (2013), p. 134506.

[115] H. B. Heersche et al. “Induced superconductivity in graphene”. In: Solid State

Commun. 143 (2007), p. 72.



102 Bibliography

[116] M. P. Nowak, M. Wimmer, and A. R. Akhmerov. “Supercurrent carried by

nonequilibrium quasiparticles in a multiterminal Josephson junction”. In: Phys.

Rev. B 99 (2019), p. 075416.

[117] J. Cayssol. “Crossed Andreev Reflection in a Graphene Bipolar Transistor”. In:

Phys. Rev. Lett 100 (2008), p. 147001.

[118] J. Linder, M. Zareyan, and A. Sudbø. “Spin-switch effect from crossed Andreev

reflection in superconducting graphene spin valves”. In: Phys. Rev. B 80 (2009),

p. 014513.

[119] D. Greenbaum et al. “Pure spin current in graphene normal-superconductor

structures”. In: Phys. Rev. B 75 (2007), p. 195437.



Acknowledgements

I would like to thank all the people who supported me during the course of my doctoral

research and made my stay in Karlsruhe wonderful.

I thank the Deutscher Akademischer Austauschdienst (DAAD) for providing the

financial support through the DAAD PhD scholarship programme.

I am indebted to Prof. Dr. Detlef Beckmann and Dr. Romain Danneau for their

guidance and support as my PhD advisors. Without their help, motivation and patience,

it would be very hard for me to finish my work. I am also thankful to Prof. Dr. Wolfgang

Wernsdorfer for being the co-referee for my doctoral thesis.

I am highly grateful to Prof. Dr. Ralph Krupke for his support as the head of the

research unit. I am thankful to the entire Krupke group in INT as they are the nicest

colleagues I could have ever imagined. It has been a pleasure to work with them. I am

specially thankful to Rainer, my colleague and officemate, who has always been there to

help me out with my work.

Special thanks to my friends Pranauv, Shyam, Veena and Aswathi who never let me

feel that I was far away from home. They made it home for me here in Karlsruhe.

There are no words for me to thank my family who has loved me, believed in me,

and always wants the best for me. All that I can say at this point is that I am blessed to

have them in my life.


	Introduction
	Brief overview and Motivation
	Outline of the thesis

	Theoretical overview
	Normal metal/superconductor interfaces
	Andreev reflection processes
	Basic physics of Josephson junctions
	Graphene
	Band structure
	Klein tunnelling
	Superconductivity in graphene


	Device fabrication methods and measurement set-up
	Fabrication of the h-BN/graphene/h-BN van der Waals heterostructures
	Exfoliation and identification of single layer graphene
	Fabrication of the van der Waals heterostructures

	Fabrication of graphene devices with hybrid contacts
	Basic fabrication processes
	Process flow for graphene based junctions with hybrid contacts

	Measurement set-up

	Andreev reflection in ballistic two terminal normal metal/graphene/superconductor junctions
	Device geometry
	Normal state characterisation
	Estimation of the charge carrier density

	Ballistic transport
	Effect of the asymmetric contacts on the energy dependent interference
	Quantum interference in the magnetic field

	Superconductivity in hybrid graphene based junctions
	Analytical Model
	Experimental results and discussion

	Conclusion

	Tuning the supercurrent in multiterminal graphene based Josephson junctions
	Device geometry
	Normal state characterisation
	Gate dependent electronic transport
	Fabry-Pérot resonances and ballistic transport

	Magnetic field dependence of the supercurrent
	Tuning the supercurrent in graphene based Josephson junctions
	Gate voltage controlled supercurrent
	Tuning the supercurrent with a transverse normal current

	Conclusion

	Crossed Andreev reflections in multiterminal graphene based Josephson junction
	Experimental results
	Analytical model
	Bias conditions for the crossed Andreev reflections
	Observation of the crossed Andreev reflections
	Gate dependence of the crossed Andreev reflections
	Temperature dependence of the crossed Andreev reflections
	Conclusion

	Summary and outlook
	Bibliography

