KIT | KIT-Bibliothek | Impressum | Datenschutz

Time-dependent acoustic scattering from generalized impedance boundary conditions via boundary elements and convolution

Banjai, Lehel; Lubich, Christian; Nick, Jörg Nick

Abstract:
Generalized impedance boundary conditions are effective, approximate boundary conditions that describe scattering of waves in situations where the wave interaction with the material involves multiple scales. In particular, this includes materials with a thin coating (with the thickness of the coating as the small scale) and strongly absorbing materials. For the acoustic scattering from generalized impedance boundary conditions, the approach taken here first determines the Dirichlet and Neumann boundary data from a system of time-dependent boundary integral equations with the usual boundary integral operators, and then the scattered wave is obtained from the Kirchhoff representation. The system of time-dependent boundary integral equations is discretized by boundary elements in space and convolution quadrature in time. The well-posedness of the problem and the stability of the numerical discretization rely on the coercivity of the Calderón operator for the Helmholtz equation with frequencies in a complex half-plane. Convergence of optimal order in the natural norms is proved for the full discretization. Numerical experiments illustrate the behaviour of the proposed numerical method.

Open Access Logo


Volltext §
DOI: 10.5445/IR/1000119981
Veröffentlicht am 09.06.2020
Cover der Publikation
Zugehörige Institution(en) am KIT Sonderforschungsbereich 1173 (SFB 1173)
Publikationstyp Forschungsbericht/Preprint
Publikationsjahr 2020
Sprache Englisch
Identifikator ISSN: 2365-662X
KITopen-ID: 1000119981
Verlag KIT, Karlsruhe
Umfang 25 S.
Serie CRC 1173 ; 2020/17
Projektinformation SFB 1173/2 (DFG, DFG KOORD, SFB 1173/2 2019)
Externe Relationen Siehe auch
Schlagwörter generalized impedance boundary conditions, wave equation, exterior domain, boundary elements, convolution quadrature
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page