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Abstract 

Physio-adaptive systems define a class of information systems that refer to an innovative mode where 

system interaction is reached by monitoring, analyzing, and responding to hidden psychophysiological 

user activity in real-time. However, despite a strong interest of scholars and practitioners in physio-
adaptive systems, there exists a lack of a structured and systematic form in which physio-adaptive sys-

tems research can be classified. Against this backdrop, this article showcases the current state-of-the-

art of physio-adaptive systems research along three different stages, namely (1) collection of physiolog-
ical data, (2) state determination, as well as (3) system adaptation. Analyzing 44 articles during the 

years 1994 – 2019, our main contribution resides in the synopsis of physio-adaptive systems literature 

along these stages. For instance, we illustrate that there exist three categories for adaptive responses: 
state display (20% of the analyzed studies), assistance offering (18%), and challenge adaptation (61%). 

On the grounds of our review, we propose seven promising avenues, which will support scholars in their 

endeavors on how to pursue with future research in the field of physio-adaptive systems. 

Keywords: Physiology, Physio-adaptive Systems, Literature Review. 

1 Introduction 

In today’s increasingly digital economy, the usage of IT presents an essential part of peoples’ daily life 

(Agarwal and Karahanna, 2000). Hereby, an increasing number of activities are supported by IT already 
today and even more activities will be supported by IT in the future (Forrester Research Inc, 2017; van 

der Meulen and Bamiduro, 2018). While IT support is continuously increasing productivity and sim-

plicity in many areas, the human-computer interaction (HCI) remained asymmetrical and dependent on 
mouse and keyboard or voice interfaces since many years (Hettinger et al., 2003; Fairclough and Gil-

leade, 2014). Against this backdrop, it has been argued that physiological data available about the cog-

nitive and affective states of the user can create a symmetrical form of HCI and thereby increase the 
quality of the user experience (Hettinger et al., 2003). The recent rise of the NeuroIS field with the 

inclusion and development of physiological measures provides new opportunities in this direction by 

investigating these cognitive and affective user states (Riedl and Léger, 2016). Particularly towards re-

sponding to the user’s needs in real-time, the benefit of increasingly reliable physiological measurement 
(Bastarache-Roberge et al., 2015; Labonté-LeMoyne et al., 2016; Shearer, 2016) but also the design and 

implementation of physio-adaptive systems have been emphasized in research (Adam et al., 2014).  

Physio-adaptive systems define a class of information systems that refer to an innovative mode where 

system interaction is reached by the monitoring, analyzation and response to covered human psycho-

physiological activity in real-time (Fairclough, 2009). These systems may be designed to improve per-
formance efficiency or the pleasure linked with HCI (Fairclough, 2009). Such systems incorporate a 

range of application areas, such as: (1) health (e.g., Bailey et al., 2006a), (2) gaming (e.g., Rani et al., 

2005), (3) aviation (e.g., Wilson and Russell, 2007), (4) traffic (e.g., Cao et al., 2016), and (5) learning 
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(e.g., Shen et al., 2009). For example, in the traffic environment, physio-adaptive systems rely on the 

driver’s heart rate to control for certain vehicle actions. In the case of boredom, for example, a joke is 
told; in the case of panic the driver is advised to calm down (Nasoz et al., 2010). In the gaming context, 

on the other hand, physio-adaptive systems may manipulate the game difficulty based on the player’s 

state. For instance, if the rule-based system is sensing overload relying on data from the electroenceph-

alogram (EEG) the game difficulty is reduced, whereas states of boredom would trigger an increase in 
difficulty (Fairclough and Gilleade, 2012). Other studies controlled for the degree of automation by 

recording continuous signals from the EEG (Bailey et al., 2006b). Only if the EEG signals suggested 

that the user engaged with the task, automation was active; otherwise automation was deactivated to 
force the user to return to the task via manual control. Similarly, research efforts relied on EEG in com-

bination with a number of autonomic variables (e.g., heart rate, respiration rate) to categorize different 

level of users’ mental workload using an artificial neural net (Wilson and Russell, 2007). In case of 

users’ “overload”, some task elements are automatized. In sum, significant performance improvements 

could be shown when adaptation was controlled by psychophysiology.  

However, in defiance of the relevance of physio-adaptive systems, a systematic approach to illustrate 

the current state-of-the-art in this domain is missing. Thus, reviewing this research area in a systematic 
way is needed due to several reasons: First, numerous articles have already been published which de-

mand structuration. In addition, to the best of our knowledge, no systematic literature review (SLR) on 

physio-adaptive systems has been published to date. Second, although some researchers (e.g., Novak et 
al., 2012) formulated a rough process for the creation of physio-adaptive systems based on measures 

from the peripheral nervous system, an overall guidance for future research endeavors to be well-di-

rected still need to materialize to date. Third, physio-adaptive systems have been applied by various 

fields, leading to a lack of integration of the present work. However referring to Fairclough (2009, p. 
143) their realization “is a multidisciplinary challenge for psychophysiologists, human factors profes-

sionals and computer scientists”. Our SLR supports this debate by systematically structuring the scat-

tered research results, analyzing 44 articles that explicitly refer to physio-adaptive systems. Our key 
goals are (1) to review the state-of-the-art of physio-adaptive systems research as well as (2) to recom-

mend avenues for future research. Hereby, we formulate the following research question: “What is the 

state-of-the art and future research directions of physio-adaptive systems?” Following this introduction, 
we describe the foundations in section 2. In section 3, we introduce the research method of our SLR. 

The results of our article are presented in section 4. In section 5, we suggest avenues for future research. 

Lastly, section 6 concludes our article. 

2 Foundations 

The biocybernetic loop represents the core concept of physio-adaptive systems (Fairclough, 2009; Pope 
et al., 1995) that is derived from control theory (Wiener, 1948). The loop serves as a conceptual unit 

and also characterizes the data flow within the system along three different stages, namely (1) collection 

of physiological data, (2) state determination, as well as (3) system adaptation (see Figure 1).  

The loop begins in the first stage with the collection of physiological data from the user via sensors 

(Fairclough, 2009). Within this stage, three knowledge components are generally suggested for the un-
derlying architecture of a physio-adaptive system: (1) signal acquisition, (2) signal processing, and (3) 

signal storage. The signal acquisition component may support multiple sensor devices. Typically, schol-

ars distinguish between ambulatory (Fairclough, 2009), remote (Anttonen and Surakka, 2005), or wire-

less sensors (Anttonen and Surakka, 2005; Strauss et al., 2005). When selecting the sensor device for a 
physio-adaptive system, its strengths and weaknesses must be carefully assessed with regards to acces-

sibility, costs, labor- and time-intensity of data processing, level of artificiality/intrusiveness, and meas-

urement problems/susceptibility (Lux et al., 2018; Dimoka et al., 2012). For instance, designers that rely 
on cardiovascular activity must weigh up the advantages (e.g., little impairment) and disadvantages (e.g., 

increased susceptibility through movement artefacts) of heart rate measurement through remote photo-

plethysmography (rPPG) against the advantages (e.g., high accuracy) and disadvantages (e.g., higher 

costs) of electrocardiogram (ECG) (Lux et al., 2018; Rouast et al., 2018). 
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Figure 1. Scheme of the biocybernetic loop 

In general, five different signal types can be distinguished. Mechanical signals, for instance, can include 
data from acceleration sensors (Badesa et al., 2016). Thermic signals, on the other hand, cover temper-

ature data from skin thermometers that perform measurements either in the periphery or on the trunk of 

the body (Nasoz et al., 2010; Rani et al., 2005). Alternatively, disposable capsules can be used to meas-
ure the body temperature (Xu et al., 2013). In turn, electric signals include highly specialized voltage 

potentials, for instance, on the skin via electrodermal activity (EDA) sensors, from the heart via ECG 

sensors, on the eye utilizing electro oculography (EOG) sensors, in the brain using EEG sensors, or on 
muscles through electromyography (EMG) sensors (Rani et al., 2005; Ting et al., 2010; Wilson and 

Russell, 2007; Pope et al., 1995; Liu et al., 2009). For the measurement of acoustic signals, microphones 

close to the body are able to sample signals, such as acoustic data from the heart beats (Liu et al., 2009). 

Finally, optical signals can provide information about peripheral and near-brain pulses. Devices such 
as blood volume pulse (BVP) and functional near-infrared spectroscopy (fNIRS) sensors measure these 

signals and complete the physiological data collection (Rani et al., 2005; van der Vijgh et al., 2014). 

Next, the acquired signals need to be processed. Depending on the number, type, and sampling rates of 

the sensors used, the implementation takes place via direct or interval-based means. Particularly, the 

processing of the acquired signals in real-time is an engineering challenge that requires the consideration 
of ordinary filters (Jacucci et al., 2015). For instance, for the processing of cardiovascular activity, re-

search suggests a variety of filters in form of high-pass filters (Järvelä et al., 2016), low-pass filters (Yu 

et al., 2016), band-pass filters (Gervais et al., 2016), or the Butterworth filter (Xiong et al., 2013) to 
eliminate implausible frequencies from the signal created by movement or signal noise artifacts in order 

to derive the heart rate and related features from ECG signals (Lux et al., 2018). Finally, in the majority 

of cases a dedicated database for signal storage is used to supplement the first stage (Adam et al., 2014). 

In the second stage, the physio-adaptive system analyses these data to quantify or label the correspond-

ing user state (Fairclough, 2009). Hereby, one can observe a wide range of cognitive (e.g., mental work-
load - Teo et al., 2018, concentration - Saiwaki et al., 1996) and affective (e.g., frustration - Nasoz et 

al., 2010, fun - Conn et al., 2008) user states, which can be targeted by the system. Within this stage, 

two knowledge components are typically proposed for the underlying architecture of a physio-adaptive 

system: (1) a feature engineering component and (2) an analytics engine.  

Feature engineering refers to the process of extracting meaningful features from data using domain 
knowledge and/or data preprocessing techniques. Physiological features allow conclusions to be drawn 

about complex physical processes and activities of the nervous system (Shaffer and Ginsberg, 2017). 

However, the extent of the features can vary depending on the amount of body-related information. In 

general, two different procedures are used (Fairclough, 2009). On the one hand, absolute (e.g., a specific 
threshold for the heart rate or blood pressure) or relative (e.g., changes in physiological data relative to 

the previous epoch or to a dedicated physiological baseline) criteria can be used for classification. For 
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instance, in terms of temperature, it may be sufficient to use the temperature value itself, its mean or 

standard deviation as a feature. On the other hand, other signals contain much more body-related infor-
mation (Novak et al., 2012). In this light, more-advanced features such as heart rate variability (HRV) 

require a more-complex course of action with regards to data preprocessing and outlier cleaning of the 

input data (Task Force of The European Society of Cardiology and The North American, 1996).  

With regards to the analytics engine, two dominant approaches exist to determine the user state, namely 

rule-based and machine learning (ML) approaches (Fairclough, 2009). Whereas rule-based approaches 

incorporate expert and domain-specific knowledge within formalized rules, ML-algorithms such as neu-
ral networks and other discriminatory algorithms are trained for the detection of specific user states with 

suitable use case-specific data for whose selection and pre-processing domain knowledge is also re-

quired. Hereby, ML approaches seem to be in particular feasible for the recognition of complex physi-
ological patterns (Fairclough, 2009). In summary, the extraction of meaningful features from physio-

logical data as well as the choice of the underlying analytics engine determine the technical repertoire 

that can be used to classify the user state. Scholars emphasize the correct classification of the user’s state 

as an important vehicle for user acceptance (Parasuraman and Miller, 2004; Lee and See, 2004).  

Finally, in the third stage, the response of the system to the determined user state is triggered (Hettinger 
et al., 2003). Within this stage, the adaptation logic represents the central knowledge component for the 

underlying architecture of a physio-adaptive system. The objective is to offer adaptive responses to 

cognitive and affective states that are perceived as timely and intuitive by the user (Fairclough, 2009). 
The adaptive response of the system may either try to transform undesirable user states, such as frustra-

tion, into desirable ones (the so-called positive control dynamics) or to preserve desirable states, such 

as attention (the so-called negative control dynamics).  

In general, literature defines three categories for adaptive responses (Gilleade et al., 2005). In particular, 

emotion display (e.g., Katmada et al., 2015) could draw users’ attention to their emotional situation in 
order to foster positive emotions and/or alleviate negative ones. For instance, pilots can be given feed-

back on their individual engagement level in mentally less demanding phases of work, with the aim of 

avoiding inattention (Prinzel III et al., 2002). In turn, other physio-adaptive systems offer assistance 

(e.g., Rodriguez-Guerrero et al., 2017) in order to avoid user frustration when they are in a stuck situation 
or cannot continue the activity without support. For instance, Dorneich et al. (2005) proposed a physio-

adaptive system capable of detecting arousal and stress based on physiological data. The system helps 

soldiers to focus on combat in stressful situations by adaptively reducing the amount of communication 
on the radio channel. Lastly, challenge adaptation (e.g., Wilson and Russell, 2007) requires system 

access to the difficulty or distribution of activities in order to adapt the challenge in a way that negative 

effects are avoided. If a user is bored the challenge of the corresponding activity could be increased. For 

instance, Haarmann et al. (2009) proposed a physio-adaptive system capable of adapting the challenge 
for pilots by controlling the level of automation of the flight-related systems based on their personal 

arousal level that is retrieved by physiological data. Compared to the study by Prinzel III et al. (2002), 

the pilots no longer need to take action themselves to keep their condition in the optimal range, but the 

system adjusts the demand level so that it is automatically reached and maintained. 

3 Method 

Following well-established guidelines presented by Kitchenham and Charters (2007) and Webster and 

Watson (2002), we conducted a SLR. Generally, literature reviews can be grouped along quantitative 

versus qualitative approaches (King and He, 2005). In particular, literature reviews can be classified as 
meta-analysis, vote counting, descriptive review, or narrative review (Guzzo et al., 1987). While narra-

tive reviews primarily extract qualitative statements, meta-analyses in particular serve to concentrate on 

quantitative aspects of the literature examined (King and He, 2005). Our article applies a descriptive 
approach, which can be classified in between vote counting and a narrative review. The focus of de-

scriptive reviews is on the collection of quantifications and identification of patterns from existing liter-

ature (Guzzo et al., 1987). To ensure generalizability, a descriptive review offers codes for all relevant 
articles and their characteristics within an area of interest (King and He, 2005). Hence, a descriptive 
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literature review seems most suitable to develop a classification framework, which corresponds well to 

the purpose of our research, that is, offering a state-of-art overview of physio-adaptive systems.  

 

Figure 2. Stages of the SLR 

As suggested by Kitchenham and Charters (2007), we organized our SLR along three stages (plan, con-

duct, and report, see Figure 2). In the plan stage, we identified a need for a SLR, developed a review 
protocol and evaluated it. Hereby, we developed a search string based on terms from highly cited articles 

in the field of physio-adaptive systems. Such an approach seems to be beneficial, since highly cited 

articles often shape the terminology and foundational concepts within the scientific discourse and typi-
cally help to integrate existing, not always congruent research approaches in the field. Thus, these types 

of articles offer an efficient basis for the derivation of a search string. Such course of action is also well 

established and has already been successfully applied by various SLRs in the field of Information Sys-

tems (e.g., Rissler et al., 2017). In the conduct stage, we carried out a databases search, selected relevant 

articles, and analyzed them. Lastly, within the report stage, we described our findings. 

Plan. We created the search string in four steps. First, we conducted an exploratory search using Google 

Scholar with the search term “physiology AND adaptive systems”. Second, we reviewed the first 100 

search results and identified 7 highly cited articles (Wilson and Russell, 2007; Rani et al., 2005; Ting et 

al., 2010; Liu et al., 2009; Pope et al., 1995; Fairclough, 2009; Novak et al., 2012). Third, we analyzed 
the full text of these articles for relevant concepts and terminology and extracted the terms “physiology” 

and “biocybernetic loop” as highly relevant to our SLR. In addition, we identified “psychophysiology” 

as relevant term for our search string. The terms “adaptive-system”, “adaptive-automation”, “bio-feed-
back”, “adaptive-interface”, and “adaptive-computing” were also included as they strongly relate to the 

concept of the “biocybernetic loop” (see section 2). Finally, we used wildcards and Boolean operators 

to create the final search string according to the two building blocks of physiology and adaptive systems: 

(physiol* OR psychophysiol*) AND (adaptive-system* OR “adaptive-automation” OR adaptive-inter-

face* OR “adaptive-computing” OR biocybernetic* OR “bio-feedback”).  

 

No. Criterion Description 

1 The article studies systems that adapt to human states. 

2 The adaptation is based on physiological data. 

3 The article is published in a peer reviewed outlet. 

4 The article implements a prototype. 

Table 1. Study selection criteria for the filter process 

Report 

Conduct 

Plan 

1.1 Need for SLR 

2.2 Select (# 44) 

1.3 Digital Databases 

Article identified 

Title/Abstract/ Keyw. 

Synonyms 

 

Web of Science (# 194) ACM Digit. Lib. (# 106) 

Title/Abstr/ Keyw. (# 56) 
 

Full Text Review (# 40) 

Forward/Backward (# 4) 2.3 Analyse & Extract 

3 Report Results 

1.4 Selection Criteria 

2.1 Search (# 605) 

IEEE Explore (# 295) AISeL (# 10) 

1.2 Search String 

See Section 4 

See Section 1 Exploratory Search 



Loewe and Nadj /Physio-adaptive Systems – a Review 

Twenty-Eigth European Conference on Information Systems (ECIS2020), Marrakesh, Morocco. 6 

 

We have not limited our SLR to a specific time period in order to ensure a holistic search. Next, the 

databases Web of Science, ACM Digital Library, IEEE Explore, and AISeL were selected for our SLR 
as these databases are well-established and used by scholars as reliable sources for literature reviews 

(e.g., Bandara et al., 2015). All studies that met the following criteria were incorporated (see Table 1). 

Conduct. The search was executed with the defined search string in the selected databases and 605 

initial articles were identified (see Figure 2). 8 articles were found in more than one database and thus 

only counted once. Next, the selection criteria were applied on the title, abstract, and keyword section 

of the results, excluding 541 articles (56 remained) that did not meet the criteria 1-3. Due to the unclear 
definition of the article scope in the abstracts of various articles, selection criterion 4 could first be 

evaluated when the articles were fully read. As a result, 16 articles were excluded (40 remained). Fol-

lowing criteria 1-4, 4 further articles were included into the literature pool by conducting a forward and 

backward search. In sum, 44 relevant articles were identified. 

In the following, the articles found are analyzed regarding their meta-information. In particular, the type 

of literature (journal versus conference article) and the research method used were evaluated. 

 

Figure 3. Overview of Meta-Information 

A majority of articles (27 articles, 61%) were published in journals, while the remaining 17 articles 

(39%) were extracted from conference proceedings or conference workshops (see Figure 3). The re-
search methods along the articles found were very unevenly distributed. Most of the articles (37 articles, 

84%) dealt with a laboratory experiment, while only a small proportion was devoted to a case study (5 

articles, 11%) or a conceptual study (2 articles, 5%). 

4 Results 

In the following, we describe the classification process of the framework before each (sub)category is 

explained along the publication results. 

4.1 Classification Process 

We applied a three-step approach for the classification process. In a first step, categories for our frame-

work were created deductively (top-down) by focusing on extant concepts from physio-adaptive sys-

tems. First due to the broad range of application areas for physio-adaptive systems (e.g. Fairclough, 
2009) we introduced the category “context”. Furthermore, we relied on the biocybernetic loop scheme 

as a theoretically grounded and well-established concept to setup a solid basis for the classification 

process (see section 2). Each stage (i.e., (1) collection of physiological data, (2) state determination, and 

(3) system adaptation) referred to one category in our classification framework.  

Within the category “collection of physiological data”, we also introduced subcategories. As described 
in section 2, we relied on the (1.1) “type of signal” (i.e., mechanical, thermic, electric, acoustic, and 

optical) as one subcategory. Furthermore, we created a subcategory for (1.2) “dimensionality reduction”. 

Following Novak et al., 2012, this aspect is especially important for physio-adaptive systems leveraging 

ML approaches, since not all physiological feature classes always provide added value for condition 

Journal article
61%

Conference article
39%

Literature Type

Case Study
11%

Lab Experiment
84%

Conceptual
5%

Research Method
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classification, but large numbers of feature classes make it difficult to recognize patterns during training. 

Lastly, due to the complex and individual character of physiological data, we relied on the recommen-
dations from Novak (2014) and added a subcategory (1.3) “normalization” because it seems relevant for 

both ML-based and rule-based approaches. Within the category “state determination”, we relied on the 

subcategory (2.1) “algorithm” as the correct classification of the user’s state represents an important 

vehicle for user acceptance. The relevance of this category was emphasized by several studies within 
the field of physio-adaptive systems (Parasuraman and Miller, 2004; Lee and See, 2004). In addition, as 

suggested by Fairclough (2009), we used an additional subcategory for the (2.2) “user state” in order to 

be able to describe the goal of the system’s adaptive response. Lastly, we introduced three subcategories 
within “system adaptation”: (3.1), adaptive delivery (i.e., implicit versus explicit), (3.2) adaptive type 

(i.e., proactive versus reactive), and (3.3) adaptive response (i.e., emotion displays, assistance offering, 

and challenge adaptation, as suggested by the biocybernetic loop scheme; see section 2). Adaptive de-

livery refers to how adaptive changes are made. According to Fairclough (2009), it is called explicit 
adaptation, in case that the user is aware of the adaptation. It is called implicit adaptation when the user 

does not notice it. The adaptive type rather investigates whether the system adapts before a certain state 

is reached (proactively) or whether the system only reacts to certain state changes (Fairclough, 2009).  

In the second step, we used inductive reasoning (bottom-up) to analyze, whether all articles could be 

classified under the previously introduced (sub)categories. It became evident that changes on the initial 
framework were required to typecast all the different articles within the reviewed literature. In particular, 

the adaptive response is sometimes not only based on a cognitive or affective user state but also on the 

activity itself or a sleep stage (Korres et al., 2018; Nirjon et al., 2012). Against this backdrop, we differ-
entiated between “cognitive”, “affective”, and “activity” states in our review. Furthermore, the “emotion 

display” was renamed to “state display” since this categorization so far lacks the possibility to classify 

solutions besides affective user states. However, several studies offer an explicit display for users on 

their cognitive state (e.g., Maior et al., 2018; Cao et al., 2016).  

In the third step, the studies were assigned to the respective (sub)categories. Any discrepancy was 
discussed and resolved by two researchers. In particular, mismatches occurred concerning the subcate-

gory “adaptive delivery”. Some articles were unclear as to whether the participants perceived the adap-

tation or not. We solved the issue by specifying that the adaptation is considered explicitly when sub-
stantial changes are made, such as changing the user interface or drastically accelerating a game. Simi-

larly, in the area of work, large speed changes or task omissions represented an obvious change in the 

task sequence and were therefore regarded as explicit adaptation (Takahashi et al., 1994; Yu et al., 2017). 

The physio-adaptive systems of all other articles, where the adaptation was more subtle and not explic-
itly or implicitly named, were classified as implicit (Fairclough and Gilleade, 2012). Furthermore, the 

assignment to the subcategory of “normalization” was difficult due to missing information. If the authors 

did not specify if they relied on normalization procedures, we assumed that no procedure was applied. 

4.2 Classification Framework 

This section explains the classification framework along each (sub)category. Besides the categories de-
livery and type, all categories are mutually exclusive. The total number of articles found for each 

(sub)category is summed up in the lower part of the classification framework (see Table 2, p. 9). For 

each category, the numerical distribution of the articles is illustrated. 

4.2.1 Context 

Work (22 articles / 50%) represented the most frequently named context for physio-adaptive systems. 

In particular, every second article referred to this context. Hereby, we were able to identify two main 
working contexts, namely aviation (16 articles) [1, 3, 5, 6, 12, 14, 15, 16, 17, 18, 19, 24, 31, 40, 42, 43] 

and military (4 articles) [7, 8, 23, 34]. Within the aviation field, articles investigated the adaptive auto-

mation of the control of breathing air parameters in a space capsule depending on the operator functional 
state of the pilot [3]. For instance, [18] examined the development of the individual engagement level 

of the pilot depending on the degree of automation during a complex observation task. In contrast, [5] 
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manipulated aircraft speed and other complexity measures of a flight simulation based on the mental 

workload of the pilot in order to achieve an optimal task performance. In turn, articles in the military 
field tried to adapt the activated communication channels to the mental workload of the soldier [23]. 

However, only two articles [36, 39] within the working context did not address the aviation or military 

field. In particular, [36] focused on a general working context without mentioning a specific domain. 

The authors tried to examine the effects of a state display showing the stress level to employees during 
their work. In turn, [39] concentrated on the effects of an arousal meter showing the arousal level to the 

user in a trading dashboard during stock exchange trading activities. 

Gaming (15 articles / 34%), on the other hand, was the second most frequently named context. 34% of 

the articles [2, 4, 9, 11, 20, 21, 25, 27, 28, 29, 32, 33, 37, 41, 44] addressed it. Various games domains 

were addressed. In [29], the difficulty of a Tetris game was changed in such a manner to keep the player 
in a desirable state. In turn, [28] manipulated the difficulty of a robotic basketball game, where the 

basket moves depending on the level of difficulty to improve the learning ability of children who suffer 

from autism. The health (3 articles / 7%) context was less frequently mentioned with a share of only 
7% the reviewed articles [22, 26, 38]. [26] investigated an alarm system that adapts the signal type and 

time of alarm to the sleep state of the participants to avoid the disturbance of deep sleep states. Further-

more, [38] concluded that physio-adaptive systems can independently dose narcotic drugs depending on 

the depth of narcosis of the patient. [22] selected a different approach and supported the movement 
rehabilitation of mobility-impaired patients by modifying the complexity of the training based on the 

arousal and valance level classified by acceleration, temperature, EDA, and BVP. Finally, articles in the 

context of traffic (3 articles / 7%) [10, 13, 30] and other (1 articles / 2%) [35] were only named three 
times respectively once. In particular, [10] addressed the problem of fatigue during vehicle driving, 

providing adaptive warning messages depending on decreasing levels of vigilance, while [13] show-

cased the adaptive provision of solutions and advices to problematic driver states such as provision of 
jokes in frustrating situations or a calm down advice in situations of high anger. In turn, [30] adaptively 

increased the seating comfort of car drivers depending on potholes in combination with a system that 

provides feedback on changes in driving behavior (e.g., abrupt accelerations or braking) based on the 

individual’s emotional and cognitive state. Within the other context, the article referred to the adaptation 
of the music type according to the level of activity (e.g., providing fast music during jogging or slow 

relaxing beats during calm phases) [35].  
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[1] (Wilson and Russell, 2007) Work - - - X X - X - - - - - X - - - - X - Mental workload (c) - X - X - - X 

[2] (Rani et al., 2005) Game - X X - X X - - - X - - - - - X - X - Anxiety (a) - X - X - - X 

[3] (Ting et al., 2010) Work - - - X X - X - - - - - - - - - - - X OFS (c) X - - X - X - 

[4] (Liu et al., 2009) Game - X X - X X - X - X - - - - X X - X - Anxiety (a) - X - X - - X 

[5] (Pope et al., 1995) Work - - - - - X X - - - - - - - - - - - X Engagement (c) - X - X - - X 

[6] (Di Flumeri et al., 2019) Work - - - - - - X - - - - - - X - - - X - Vigilance (c) - X - X - - X 

[7] (Teo et al., 2018) Work - - - - X - X - X - - - - - - X - - X Mental workload (c) - X - X - X - 

[8] (Rusnock and Geiger, 

2017) 
Work - - - - X - - - - - - - - - - X - - X Mental workload (c) - X - X - X - 

[9] (Ewing et al., 2016) Game - - - - - - X - - - - - - - - X - - X Mental workload (c) X - - X - - X 

[10] (Cao et al., 2016) Traffic - - - X - - X - - - X - - X - X - X - Vigilance (c) - X - X X - - 

[11] (van der Vijgh et al., 

2014) 
Game - - X - X - X - - X - - - - - X - - X Stress (a) X - - X - - X 

[12] (Christensen and Estepp, 

2013) 
Work - - - X X - X - - - - - X - - X - X - Mental workload (c) - X - X - - X 

[13] (Nasoz et al., 2010) Traffic - X X - X - - - - - - - - - - X X X - 
Neutrality (a), Panic/Fear 
(a), Frustration/Anger (a), 

Boredom/Fatigue (a) 

- X - X X X - 

[14] (Haarmann et al., 2009) Work - - X - X - - - - - - - - - - X - - X Arousal (a) X - - X - - X 

[15] (Bailey et al., 2006b) Work - - - - - - X - - - - - - - - X - - X Engagement (c) - X - X - - X 

[16] (Prinzel III et al., 2003) Work - - - - - - X - - - - - - - - X - - X Engagement (c) - X - X - - X 

[17] (Prinzel III et al., 2002) Work - - - - - - X - - - - - - - - X - - X Engagement (c) - X - X X X - 

[18] (Freeman et al., 2000) Work - - - - - - X - - - - - - - - X - - X Engagement (c) - X - X - - X 

[19] (Prinzel et al., 2000) Work - - - - - - X - - - - - - - - - - - X Engagement (c) - X - X - - X 

[20] (Saiwaki et al., 1996) Game - - X - X - X - - - - - - - - - - X - 

Concentration (c), Nervous-

ness (a), Comfort, Boredom 
(a) 

X - - X - - X 

[21] (Takahashi et al., 1994) Game - - X - X - - - - - - - - - - - - X - Mental workload (c) X - - X - - X 

[22] (Badesa et al., 2016) Health X X X - - - - - - X - - - - - X - - X Arousal / Valence (a) - X - X - - X 

[23] (Dorneich et al., 2005) Work - - - - X - X - - - - - - - - - - - X 
Mental workload (c) /  

Executive load (c) 
X - - X - X X 

[24] (Ting et al., 2007) Work - -   X X X X - - - - - - - - - - - X OFS (c) - X - X - - X 

[25] (Katmada et al., 2015) Game - X X - - - - - - X - - - - - - - X - Anxiety (a) - X - X X - - 

[26] (Korres et al., 2018) Health X - - - - - X - - - - - - - - - - X - Sleep stage (act) X - - X - - - 

[27] (Yannakakis, 2009) Game - - X - - - - - - X - X - - - - - X - Entertainment value (a) X - - X - - X 

[28] (Conn et al., 2008) Game - X X - X X - - - - - - - - - X - X - Liking (a) - X - X - - X 

[29] (Fairclough and Gilleade, 
2012) 

Game - - - - - - X - - - - - - - - X - - X 
Flow (c), Engagement (c), 
Overload(c), Boredom (c) 

X - - X - - X 

[30] (Serbedzija and Fair-
clough, 2012) 

Traffic - - - - X X - - - - - - - - - - - - - Emotional states (a) X - - X - X - 

[31] (Maior et al., 2018) Work - - - - - - - - X - - - - - - X - - X Mental workload (c) - X - X X - - 

[32] (Muñoz et al., 2018) Game - - - - - - - - - X - - - - - X - - X Enjoyment (a) X - - X - - X 

[33] (Salminen et al., 2018) Game - - - - - - X - - - - - - - - X - - X 
Empathy (affective interde-
pendence) (a) 

- X - X X - - 

[34] (Afergan et al., 2014) Work - - - - - - - - X - - - - - - X - X - Workload (c) X - - X - - X 

[35] (Nirjon et al., 2012) Other X - - - - - - X - - - - - - - X - X - Activity level (act) X - - X - - - 

[36] (Yu et al., 2017) Work - - - - - - - - - X - - - - - - - - X Stress (a) - X - X X - - 

[37] (Potts et al., 2019) Game - - - - - - X - - - - - - - - - - - 
X Relaxation, self-awareness 

(c) 
- X - X X - - 

[38] (Bailey et al., 2006a) Health - - - - - - X - - - - - - - - X - X - Anesthesia depth (c) X - - X - - - 

[39] (Lux et al., 2015) Work - - X - - - - - - - - - - - - - - - X Arousal (a) - X - X X - - 

[40] (Freeman et al., 1999) Work - - - - - - X - - - - - - - - X - - X Engagement (c) X - - X - - X 

[41] (Parnandi and Gutierrez-

Osuna, 2015) 
Game - - X - - - - - - - - - - - - - - - X Arousal (a) X - - X - - X 

[42] (Aricò et al., 2016) Work - - - - - - X - - - - - - X - - - X - Mental workload (c) X - - X - - X 

[43] (Zhang et al., 2017) Work - - - X X X X - - - - - - - - X - X - Cognitive Load (c) X - - X - - X 

[44] (Rodriguez-Guerrero et 

al., 2017) 
Game - X X - X - - - - - - - - - - X - - X Dominance, Arousal (a) X - - X - X - 

∑ 3 7 14 6 18 7 24 2 3 8 1 1 2 3 1 26 1 19 25 act:2, a: 17, c: 26 20 24 0 44 9 8 27 

M = Mechanical signals; T = Thermal signals; E = Electrical signals; A = Acoustic signals; O = Optical signals; ACC = Acceleration; TEMP = Temperature;  

EDA = Electrodermal activity; EOG = Electro oculography; EEG = Electroencephalography; EMG = Electromyography; HS = Heart sound;  

fNIRS = Functional near-infrared spectroscopy; BVP = Blood volume pulse; PCA = Principal component analysis; SFS = Sequential forward selection; FP = Fisher projection;  
LDA = Linear discriminant analysis; TH = Thresholding; BL = Baseline; BLF = Baseline as feature IND = Individual normalization procedure; ML = Machine learning algorithm;  

SD = State display; AO = Assistance offering; CA = Challenge adaptation; RB = Rule based; OFS = Operator functional state 

Table 2. Concept matrix for identified articles targeting physio-adaptive systems 
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4.2.2 Data collection 

Type of Signals. Overall reviewed articles an average of 2.09 signal types from the subcategories me-
chanical, thermal, electrical, acoustic, and optical signals were used per article. However, most of the 

articles (38 articles / 86%) used at least one signal from electrical signals. Within this category, 24 

articles relied on signals from EEG [1, 3, 5, 6, 7, 9, 10, 11, 12, 15, 16, 17, 18, 19, 20, 23, 24, 26, 29, 33, 

37, 38, 40, 42, 43], 18 articles used signals from ECG [1, 2, 3, 4, 7, 8, 11, 12, 13, 14, 20, 21, 22, 23, 24, 
25, 27, 28, 32, 36, 43, 44], 14 articles leveraged signals from EDA [2, 4, 11, 13, 14, 20, 21, 22, 25, 27, 

28, 39, 41, 44], whereas 7 articles utilized signals from EMG [2, 4, 5, 24, 28, 30, 43], and only 6 articles 

used the signals derived from EOG [1, 3, 10, 12, 24, 43]. It is worth noting that 13 articles exclusively 
relied on EEG signals within the electrical signals’ subcategory. Interestingly, 7 of the 13 articles that 

exclusively used EEG as data source classified the construct engagement.  

11 articles (25%) used features from optical signals. Most articles (8) [2, 4, 11, 22, 25, 27, 32, 36] relied 

on BVP signals, whereas only 3 articles [7, 31, 34] used the relatively new technique fNIRS for their 

investigations. 7 out of the 44 reviewed articles [2, 4, 13, 22, 25, 28, 44] collected thermic signals. Each 
approach used a sensor to collect skin temperature. However, none of the articles mentioned disposable 

capsules as a temperature sensor, although they can determine the body temperature more precisely than 

sensors in the periphery, which are sensitive to deviations due to outside temperature differences and 

peripheral vasoconstriction. For mechanical signals, a total of 3 articles [22, 26, 35] used an accelera-
tion sensor in their studies. For instance, [35] relied on an acceleration sensor to determine the speed 

and type of an activity. The articles [4] and [35] collected among others acoustic signals from their 

participants. Both articles evaluated the heart sound by equipping their users with a microphone close 
to the body. While [4] tried to integrate as many different features as possible for the state determination, 

[35] followed the approach to detect the heart rate via the heart sound, since no ECG or BVP sensor has 

been used in this article. 

Dimensionality Reduction. With regard to dimensionality reduction, only 7 articles (16%) mentioned 

the use of such procedures. Of these articles, only one [10] relied on several methods to reduce dimen-
sionality, namely a Principle Component Analysis (PCA) and a Linear Discriminant Analysis (LDA). 

The goal of the PCA is to reduce the number of features by identifying uncorrelated features that explain 

the highest variance in the data by calculating the covariance matrix and eigenvalues. While the PCA 
ignores the class labels, LDA considers the class labels and focuses on the separability of these classes. 

For this reason, the literature includes the PCA among the unsupervised and the LDA among the super-

vised dimensionality reduction algorithms. However, all other articles used only one procedure or did 

not apply a dimensionality reduction at all. Over all articles, the LDA was most frequently mentioned 
with 3 articles [6, 10, 42], followed by the Fisher Projection (FP) with 2 articles [1, 12], which is meth-

odologically related to the LDA. The PCA [10] and the Sequential Forward Selection (SFS) [27] – a 

greedy search algorithm that tries to find the optimal subset of features by selecting features iteratively 

based on the underlying classifier performance – were only applied once.  

Normalization. 26 articles (59%) described that a baseline survey has been carried out. Physiological 
data are complex, individual, and dependent on the individual’s daily form. For the identification of 

physiological patterns across individuals, it seems useful to cleanse the physiological data by a so-called 

baseline (Ewing et al., 2016; Picard et al., 2001). However, a total of 17 articles [1, 3, 5, 6, 19, 20, 21, 
23, 24, 25, 26, 27, 30, 36, 37, 39, 41, 42] did not describe a procedure for data normalization or explicitly 

refrained from baseline surveys. For instance, [41] decided to drop the baseline survey altogether due to 

technical problems in the simultaneous measurement of the EDA features skin conductance level and 

skin conductance responses. In contrast, [13] not only collected a physiological baseline at rest, but also 

used it explicitly as a feature for the corresponding ML algorithms that performed the normalization.  

4.2.3 State determination 

Algorithm. At the technical level, we were able to identify two basic types. 18 articles (41%) [1, 2, 4, 

6, 10, 12, 13, 20, 21, 25, 26, 27, 28, 34, 35, 38, 42, 43] applied ML algorithms for state recognition, 

while in slightly more than half of the articles (26 articles / 59%) [3, 5, 7, 8, 9, 11, 14, 15, 16, 17, 18, 
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19, 22, 24, 29, 30, 31, 32, 33, 36, 37, 39, 40, 41, 44] rule-based approaches were used. While ML 

algorithms are qualified to identify complex non-linear patters in the physiological data, rule-based ap-
proaches focus on specific thresholds and ranges. It is also worth mentioning that only 2 articles, namely 

[4, 13], relied on more than one ML algorithm. Such approach seems valuable because no ML algorithm 

has an inherent advantage over other ML algorithms for all problems. Thus, for a given problem, there 

is always a need to try many different ML algorithms. In particular, [4] showcased that Support Vector 
Machines (SVM) perform slightly better (88.9%) than regression trees (88.5%) to determine anxiety 

based on physiological data. Furthermore, the SVM was also considerably better than the K-Nearest 

Neighbor (80.4%) or Bayesian Networks (80.6%). 

Target State. More than half of the articles (26 articles / 59%) [1, 3, 5, 6, 7, 8, 9, 10, 12, 15, 16, 17, 18, 

19, 20, 21, 23, 24, 29, 31, 34, 37, 38, 40, 42, 43] targeted cognitive user states. Mental and cognitive 
workload (10 articles) [1, 7, 8, 9, 21, 23, 24, 31, 42, 43] are most often investigated, followed by en-

gagement (8 articles) [5, 15, 16, 17, 18, 19, 29, 40] and the operator functional state (2 articles) [3, 24]. 

One prominent case, for example, referred to [17], in which the participants received real-time feedback 
on their personal engagement level during an aviation task in order to keep their concentration high in a 

self-controlled manner. 

In turn, for affective states (17 articles / 39%), [2, 4, 11, 13, 14, 20, 22, 25, 27, 28, 30, 32, 33, 36, 39, 

41, 44] the states arousal (5 articles) [14, 22, 39, 41, 44], anxiety (3 articles) [2, 4, 25], and boredom (3 

articles) [13, 20, 29] were most frequently mentioned. For instance, one prominent case referred to [21] 
where the difficulty of a computer game was adaptively changed to keep the mental effort of the partic-

ipants within the target range. 

The activity category comprises a total of 2 articles (5%) [26, 35]. Hereby, the state of sleep [26] and 

the state of activity [35] are targeted, respectively. [35] showcased that the personal activity level can 

be estimated by the heart sound obtained from acoustic sensors and acceleration-related data. 

4.2.4 System adaptation 

Adaptive Delivery. Implicit adaptation was performed in a total of 20 of the 44 articles examined (43%) 

[1, 2, 3, 4, 9, 11, 21,23, 26, 27, 29, 32, 34, 35, 38, 40, 41, 42, 43, 44], while the explicit adaptation was 
investigated in 23 papers [5, 6, 7, 8, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 24, 25, 28, 31, 33, 36, 37, 

39]. In particular, implicit adaptation was realized by slight manipulations of the automation level in air 

traffic management tasks [42]. In contrast, explicit adaptations concentrated on a direct user feedback 

of the determined user state [10] or noticeable manipulations of the experimental task [17]. 

Adaptive Type. All 44 reviewed articles adapted reactively to the user state. [29] adapted the difficulty 
of a Tetris game to avoid participants getting overloaded or bored by the game. Others like [13] offered 

user state-related assistance to car drivers by considering their levels of stress, anger, or frustration. 

Adaptive Response. The largest number of articles were assigned to challenge adaptation (27 papers, 

61%) [1, 2, 4, 5, 6, 9, 11, 12, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 27, 28, 29, 32, 34, 40, 41, 42, 43], 

while the state display subcategory accounted for the second largest number of articles (9 papers, 20%) 
[10, 13, 17, 25, 31, 33, 36, 37, 39], followed by the assistance offering subcategory with only 8 articles 

(18%) [3, 7, 8, 13, 17, 23, 30, 44]. Most physio-adaptive systems (41) contained a single type of adaptive 

response. However, 3 of the articles integrated a total of two different adaptive responses. In [13, 17] a 
state display was given, and adaptive assistance was provided. For instance, [17] investigated whether 

a direct state feedback during an aviation task leads to better task performance than an automatic adap-

tation of the challenge. The relationship between physiological sensors and the type of adaptation ap-

pears interesting in the articles studied. With one exception, BVP sensors are exclusively used in articles 
with challenge adaptation. Only [25] used BVP for a state display. In contrast, according to the number 

of articles, ECG and EEG sensors are distributed widely among the respective system adaptation. Heart 

sound [4], movement [22], and EMG [2, 4, 5, 24, 28, 30, 43] were used exclusively in articles with 
challenge adaptation. Temperature is mentioned in 2 articles with state display [13, 25] and assistance 

offering [13, 44], as well as in 4 articles with challenge adaptation [2, 4, 22, 28]. In addition, EOG was 
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used more often for challenge adaptation [5, 12, 23, 36] than for state display [10] or assistance offering 

[6]. Lastly, fNIRS was only applied once in each adaptation type. 

5 Future work 

In this section, we present avenues for future research on physio-adaptive systems. In close accordance 
with our classification framework and based on findings from the meta-data of the articles examined, a 

total of 7 gaps are identified within this field of research. We believe that our classification framework 

represents a valuable baseline for further investigations as it provides a systematic overview about what 
has not been researched yet, facilitating avenues for future work. Thus, we would like to call the re-

searchers’ attention to the following gaps as a promising starting point: 

(1) Lack of field studies concerning physio-adaptive systems. Our analysis of the literature on 

physio-adaptive systems revealed that none of the articles found in the SLR tested a physio-adaptive 

system in the field. The relevance of laboratory studies is indisputable and especially appropriate to 
achieve high internal validity by keeping extraneous variables, such as noise, lighting, and temper-

ature constant (Mitchell and Jolley, 2013). Still, scholars like Fairclough (2009) point out that the 

conditions created in laboratory setups only partly correspond to the conditions of a real-world op-

erating environment of a physio-adaptive system. Thus, field studies seem particularly fitting to 
achieve high external validity, in other words, the degree to which the findings of the executed 

laboratory study can be generalized to the field (Mitchell and Jolley, 2013). Future research could 

therefore consider testing physio-adaptive systems in the field leading to valuable insights into prac-
tical problems and design principles that have not yet been considered during the development and 

implementation stage of these systems. 

(2) Proactive physio-adaptive systems not yet developed. None of the articles examined in our SLR 

has considered the development of proactive physio-adaptive systems. But proactive adaptation of-

fers great potentials. For instance, the avoidance of undesirable states, such as uncertainty, frustra-
tion, or anxiety could be prevented with these approaches even before their occurrence (Fairclough, 

2009). Also other use cases, for instance, in the area of adaptation to the operator’s functional state 

(Ting et al., 2007; Ting et al., 2010), appear particularly promising against the background of pro-
active avoidance of overstrain states. Thus, future work in the field of physio-adaptive systems could 

investigate the feasibility of proactive physio-adaptive systems in general and, if applicable, develop 

and evaluate first prototypes of these systems. 

(3) Lack of studies in the work context beyond aviation and military. Considering the context of 

the articles reviewed in this SLR, it became apparent that the majority of them are conducted in 
highly controlled working tasks, specifically designed for the domains of aviation or military. These 

contexts are relevant, but they share also domain-specific requirements, which limits the applicabil-

ity of the developed systems. Thus, investigating physio-adaptive systems in more unstructured 

working contexts seems promising as one could optimize desirable user states, such as engagement, 
attention, or flow, as they are supposed to improve employees’ working outcomes (e.g., Spurlin and 

Csikszentmihalyi, 2017). Due to the complex requirements in such contexts (e.g., structure and chal-

lenge of the activity), specifically the advances on NeuroIS suggest interesting avenues for support-

ive physio-adaptive systems in this regard (Adam et al., 2014).  

(4) Cognitive states beyond mental workload scarcely researched. Most physio-adaptive systems in 
our SLR that target cognitive states concentrated on mental workload (e.g., Wilson and Russell, 

2007), engagement (e.g., Pope et al., 1995), or cognitive load (Zhang et al., 2017). However, schol-

ars call for research to design and implement physio-adaptive systems for other cognitive states 
(Rissler et al., 2018). One prominent example refers to the cognitive state of flow (Fairclough and 

Gilleade, 2012). Flow refers to the experience in which people are fully focused on an activity 

(Csikszentmihalyi, 1990). It seems a desirable state to be integrated into a physio-adaptive system 

as it is supposed to improve human task performance and well-being (Rissler et al., 2018). Thus, 
maintaining or promoting cognitive states (beyond mental workload, engagement, or cognitive load) 

by means of physio-adaptive systems appears to be an interesting avenue for future research. 
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(5) Dimensionality reduction procedures rarely used. Only 16% of all investigated articles relied on 

dimensionality reduction to decrease the number of physiological data and features in order to rec-
ognize the user state. However, the selection of suitable features for state recognition is particularly 

important for ML, since a large space of features with low information content only increases the 

search space but does not contribute to more-effective pattern recognitions (Novak et al., 2012; 

Novak, 2014). Thus, future research should examine the use and influence of dimensionality reduc-

tion procedures on state recognition and consider their integration into physio-adaptive systems. 

(6) Multidimensional state adaptation scarcely explored. Only 8 articles tried to adapt more than 
one user state. For instance, Fairclough and Gilleade (2012) adapted the difficulty of a Tetris game 

along the states of flow, engagement, boredom, and overload. In particular, the difficulty remained 

stable during the states of engagement and flow, whereas increases (respectively decreases) were 
triggered in case of boredom (respectively overload). Although the complexity increases with the 

number of classified states, the integration and recognition of a broader set of user states can improve 

the psychological validity of a physio-adaptive system (Fairclough, 2009). However, there seems to 
be a trade-off looming. On the one hand, the amount of required data to train ML classifiers for 

higher dimensional problems has to be larger in order to achieve acceptable results. On the other 

hand, the validity and rigor of the classification is typically considerably higher by integrating and 

combining adjacent user states. Future research should therefore investigate the feasibility of mul-

tidimensional state adaptation for the development of physio-adaptive systems. 

(7) Lack of investigation of the suitability of decision trees for state determination. While consid-

ering the different approaches being used to determine the user state, various ML approaches could 

be identified (e.g., SVM - Liu et al., 2009, ANN - Wilson and Russell, 2007, KNN - Nasoz et al., 

2010). Still, one exception refers to classification trees as none of the articles was based on such ML 
approach. However, research has showcased that classification trees have been successfully applied 

within multiple domains, including physiological data (Chaudhuri et al., 2018; Wen et al., 2014). 

Furthermore, classification trees are able to successfully handle datasets with even small sample 
sizes and high feature spaces. Thus, future research should test this promising approach within 

physio-adaptive systems and evaluate its performance. 

6 Conclusion 

In our article, we offered a state-of-the-art overview of the field of physio-adaptive systems in the form 

of a SLR along the following contributions. First, by developing a classification framework, we per-
formed a step towards structuring the state-of-the-art of physio-adaptive systems research. Second, 

based on this overview, we derived seven research gaps as a grounding for future research to be well-

directed. Third, the integration of the state-of-the-art summarizes scattered research results in area of 
physio-adaptive systems. Still, we are aware that our article comes with limitations. Any bias in the 

search string might bias the reviewed articles. To reduce this possibility, we applied established meth-

odological recommendations (i.e., Kitchenham and Charters, 2007; Webster and Watson, 2007). More-
over, all decisions during the plan, conduct, and report stages are made explicit. We hope that this article 

can serve as a reference in the broader field of physio-adaptive systems and the (sub)categories that 

should be considered when designing related solutions.   
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