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Abstract

We generalize the honeycomb scheme, dualize it and combine both the primal
and the dual scheme into self-dual subdivision schemes for convex polyhedra
which generate C1 surfaces without line segments different from the honeycomb
scheme, which generates C1 surfaces having line and even planar segments.

1. Introduction

Corner cutting refers to a special class of curve or surface generating (geometric)
subdivision schemes, where in the curve case, a polygon P is replaced iteratively
by an interpolating polygon, i. e., by a polygon whose vertices lie on (the edges
of) P meaning that we cut and replace parts of P by new edges. Chaikin’s [7] or
the more general de Rham scheme [19] and de Casteljau’s algorithm or its more
general projective version by Haase [12, 3] are such corner cutting schemes.

It is well-known that polygons generated by corner cutting converge to continu-
ous curves [4] and for local corner cutting, where every cut raises the number of
vertices, we even have a simple characterization of all schemes that generate C1
curves [5, 16]. However, similar results have not yet been published for surfaces
generated by corner cutting except partly for [6] and the fact that some authors
use the term corner cutting in a loose sense for any iterative replacement (of the
vertices) of control meshes by (the vertices of) finer meshes with not necessarily
planar faces.

Generalizing [4, 5, 10, 16] and following [6], we use the term corner cutting only
in its strict sense, where it means for (solid) polyhedra that we chop of parts by
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planar cuts, i. e., corner cutting means to iteratively intersect more and more
half spaces to generate a convex body.

Interestingly, no corner cutting scheme for polyhedra has been published so far
except for the algorithms in [20, 13] and one that only if dualized could be
interpreted as a corner cutting scheme. It is the honeycomb scheme by Dyn,
Levin and Liu [9] which is an interpolating convexity preserving refinement
scheme for convex polyhedra generating C1 surfaces in the limit. Thus there are
tangent planes for all vertices and these could be used to define local cuts of
the tangent polyhedra with specified contact points [6]. The iterative insertion
of contact elements, i. e., tangent planes with contact points, is what is called
a fill-in-scheme in [16] and fill-in-schemes are dual (in the sense of projective
geometry) to fill-in-schemes.

Honeycomb surfaces have a dense set of planar segments, which makes them in-
teresting mathematical objects but less desirable in, e. g., class A surface design
and for stability reasons as planar metal sheets tend to bend back and forth.

These facts: (1) that honeycomb surfaces have interesting special shape char-
acteristics or artefacts, (2) that the primal honeycomb algorithm has been the
only interpolatory convexity preserving C1 scheme for closed surfaces, and (3)
that the dual honeycomb algorithm has been the only candidate for a surface
corner cutting scheme inspired us to investigate the honeycomb algorithm (1)
to develop tools that could help to (better) understand corner cutting for sur-
faces, (2) to modify the honeycomb algorithm so as to get rid of the planar and
line segments, and (3) to come up with first genuine corner cutting schemes for
polyhedra.

In fact, we found a way to modify the honeycomb algorithm into a self-dual
scheme generating convex C1 surfaces without line (or planar) segments and
present the results in this paper. Furthermore, our investigations helped us to
finally understand corner cutting for surfaces and sparked first corner cutting
algorithms [17].

Before we present our modification of the honeycomb scheme, we recall the
honeycomb scheme, compare it to other honeycomb schemes and show why it
generates surfaces with planar segments.

1.1. The standard honeycomb scheme

Given a closed, strictly convex polyhedron P0, the standard honeycomb scheme
generates a sequence of polyhedra Pi in the following way:

For each face F of Pi, we build one face of Pi+1, called an f -face, and for each
edge of Pi, we build one face of Pi+1 called an e-face. These two kinds of faces
are shown in Figure 1 and are formed as follows.
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Figure 1: A step of the honeycomb scheme applied to a cube (shown in red) gives a polyhedron
with 6 quadrilateral f -faces (white) and 12 hexagonal e-faces (hatched).

To each edge of Pi, we assign the exterior bisecting plane of the two adjacent
faces. Each face F of Pi and all the bisecting planes corresponding to its edges
form a closed polyhedron4F outside Pi. The f -face F ′ of Pi+1 associated to F
is the intersection of the polyhedron 4F with the midplane between F and the
nearest vertex vF of 4F , that is not on F . Note that the midplane is parallel
to F .

The polyhedron4F trimmed by F ′ has 4-sided faces besides the faces F and F ′.
Each bisecting plane has two such 4-sided faces. Together they form a hexagonal
face, which is the e-face of Pi+1 assigned to the edge common to both 4-sided
faces.

We remark that associated f -faces have the same valence while all e-faces are
hexagonal. Thus all polyhedra Pi have equally many non-valence-6 faces and
roughly four times as many hexagonal faces as their predecessors Pi−1. This
is a typical property shared by other subdivision algorithms as, e. g., the half
box spline subdivision algorithm [18] and its extension [2]. Topologically, they
generate the same edge graphs. We note that hexagonal meshes can also be
subdivided in a way that is dual topologically to the

√
3-refinement of triangular

meshes [14]. Three such algorithms are the algorithms in [1, 8, 22] which are
all stationary subdivision algorithms and no genuine corner cutting algorithms
in the strict sense. A genuine corner cutting algorithm with a

√
3-refinement

topology is presented in [17, 20].

1.2. The (general) honeycomb scheme H

As observed in [9], we can generalize the standard honeycomb scheme in the
following way: Instead of bisecting planes, we take any planes dividing the
exterior angles such that the ratios are in some interval (%, %−1) where % =
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ε : (1 − ε) > 0 with ε ∈ (0, 1/2] is the honeycomb tolerance and instead
of offsetting faces F halfway towards the next vertex vF , we offset them to
any position between F and vF . In this paper, this generalization is called
just the honeycomb scheme. The honeycomb scheme and the operation that
transforms a polyhedron Pi into the next polyhedron Pi+1 are denoted by the
same letter H.

We call a sequence (Pi)i∈IN generated by H a honeycomb or H sequence.
Figure 2 shows honeycomb surfaces generated from a cuboid and an icosahe-
dron with % = 1/2 and different face offsetting percentages τ defining to which
percentage faces are moved towards their extreme positions. For all surfaces
shown in this paper, we used fixed ratios and offsetting distances. However
without convincing results, we also tried to choose the ratios and offsetting dis-
tances for each edge and face independently of each other so as to obtain more
uniform edge lengths and face areas. In Section 3, we show that the honeycomb
surfaces are continuously differentiable for any random choice of all ratios, the
honeycomb tolerance ρ and all offsetting distances.

In general, the honeycomb scheme generates surfaces with planar segments as
we see from the following example.

1.3. An Example

First we consider a polyhedron with a regular hexagonal face having equal angles
with its 6 neighbors. Hence the six bisectors (of the hexagon and its neighbors)
intersect at a common point above the center of the hexagon. Thus for the
standard honeycomb scheme, the new f -face parallel to the hexagon is a regular
hexagon of half the size and if we continue subdividing, we obtain a sequence
of parallel f -faces which are scaled versions of the initial hexagon, where the
scaling factor is always 1/2 as can be seen in Figure 3(a).

Next we stretch every second edge of the hexagon by, e. g., doubling their length
which we call l while we keep the same angles. Then we obtain the situation
shown in Figure 3(b). The short edges of the parallel f -faces are as long as
before while all long edges are longer by the same additive constant l.

In the i-th subdivision step, the bisectors of a short edge and its two long
neighbors intersect in a point. There are three such points, which we call ai,
bi, ci, such that all ai (or bi or ci) have the same orthogonal projection a (or
b or c, respectively). Hence the limiting surface contains the triangle with edge
length 1 spanned by limi→∞ai, limi→∞bi and limi→∞ci.

1.4. Outline of this paper

Our goal is to modify the honeycomb scheme H so as to obtain C1 surfaces with-
out line segments in the limit. As we explain in Section 2, the dual honeycomb
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Figure 2: A cuboid and an icosahedron refined by 1, 2 and 7 iterations of the honeycomb
scheme with offsetting percentages 20, 50 and 90 from top to bottom.
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Figure 3: The honeycomb scheme applied to two hexagons with equal exterior angles at their
edges.

scheme called the pushing scheme P generates limiting surfaces without line
segments. However, these surfaces can contain corners. Therefore our idea is
to combine the primal and the dual honeycomb scheme by applying alternately
certain numbers of primal and dual honeycomb steps. In Section 5, we will show
that such a mixed or MHP scheme generates C1 surfaces without line segments.

As a guide for our paper, Figure 4 shows how the theorems and other facts
depend on each other where an asterisk indicates dualization.

2. Basics

We call a point p in IR3 \ {o} and the plane p∗ given by the equation ptx = 1
dual to each other. (In the projective extension of IR3, we can also dualize the
origin o. It is dual to the ideal plane.) Dualizing the points of a closed bounded
convex surface S enclosing the origin, we obtain the supporting planes of the
dual surface S∗ which is also closed, bounded, convex and encloses the origin.

In particular, a point p of S and a supporting plane through p are dual to a
supporting plane with a contact point on S∗. Thus, a planar segment or a face
of S is dual to a corner of S∗ with a 2-parameter family of supporting planes.
Further, a line segment of S is dual to a point of S∗ with a 1-parameter family
of supporting planes. It is called a pinch point, see Figure 5. Note that S can
be a polyhedron and that the faces of a polyhedron are dual to the vertices of
the dual polyhedron.

2.1 Assumption (Polyhedra contain the origin). In this paper, a polyhedron is
considered to be a non-degenerate finite convex body in IR3 containing the origin
as an interior point. Further we assume that the boundary of a polyhedron
consists of planar faces that are pair-wise non-coplanar. Hence, its vertices are
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2.1 Assuming non-degenerate polyhedra.

2.4 Honeycomb sequences are bounded.

2.5 H keeps vertex angles below some α < 180◦.

2.6 Edges are boundedly longer than their dual angles.

3.1 H flattens the maximum vertex angle geometrically.

3.4 H surfaces are C1.

3.6 H flattens the maximum face p-angle geometrically.

4.1 P-surfaces have no line segment.

4.2 P does not increase face angles.

5.1 MHP surfaces enclose open balls.

5.2 MHP sequences are bounded.

5.3 MHP keeps vertex angles below some α < 180◦.

5.4 MHP flattens the maximum face angle geometrically.

5.5 MHP shrinks the maximum edge length geometrically.

5.6 MHP sequences converge.

5.9 MHP patch normals are controlled by face 6-rings.

5.10 MHP surfaces are C1 and have no line segments.

Figure 4: The proof stucture where asterisks denote dualization.
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Figure 5: Dualizing surfaces with a corner or pinch point.

the intersections of three or more faces. They are the extreme points of the
convex body.

2.2 Definition (The Gaussian image of a polyhedron). Let P be a polyhe-
dron. The normals of its supporting planes containing an edge of P determine
a spherical edge, i. e., a segment of a great circle of the unit sphere S2 and all
these spherical edges form a mesh, which we call the Gaussian image of P
and denote it by P◦. Note that the exterior angle of any edge in P equals the
length of its associated or dual edge in P◦.

2.3 Definition (Vertex, edge and face angles). For every vertex v of a polyhe-
dron P, we define the vertex angle αv as the maximum angle of two supporting
planes going through v, for every edge E of P, we call the exterior angle of the
two adjacent faces the edge angle αE and for every face F of P, we define
the face angle αF as the maximum angle of two supporting planes of P going
through two vertices of F . Note that αv is the spherical diameter of the face in
P◦corresponding to v and that αF is the spherical diameter of the vertex 1-ring
of P◦around the normal vector n of F , which consists of all faces in P◦with ver-
tex n. We denote the spherical diameter of any subset U of the unit sphere
S2 by

s-diam U := max{spherical distance(p,q)|p,q ∈ U}.

2.4 Lemma. Any honeycomb sequence (Pi)i∈IN is bounded.

Proof in a nutshell. The angles at parallel edges shrink geometrically as i→∞
and bound the honeycomb construction.

Proof. Consider any face F of P1 and its associated f -faces Fi on the Pi. The
edge angles of these faces Fi shrink at least by the factor (1 − ε) = 1/(1 + %)
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where % is the honeycomb tolerance as we increase i by one. Thus for sufficiently
large i all edge angles of all Fi, where F is any face of P1, are less than 90◦.
Hence, the polyhedra 4Fi

introduced in Section 1.1 are bounded and contain
all Fj , j ≥ i. Thus, the polyhedra Qj that are parallel to P1 and whose faces
contain the Fj form a bounded sequence converging to a bounded polyhedron

Q∞ which contains all Pi.

2.5 Remark (A bound for the vertex angles of an H sequence). Let (Pi)i∈IN be
a honeycomb sequence and let αi be the maximum vertex angle of Pi. Because
of Assumption 2.1 and since any face of P◦i+1 is contained in a face of Pi, we
see that π > α1 ≥ α2 ≥ α3 ≥ · · · .

2.6 Remark (Bounding dual lengths). Under dualization, angles between ad-
jacent faces become lengths of edges, where the length depends continuously on
the faces and changes if we move the faces. All sequences of polyhedra consid-
ered in this paper are bounded with faces bounded away from the origin. Hence
the quotient of angles between adjacent faces and their dual length lies in some
bounded interval [σ, σ−1] ⊂ (0,∞).

3. Honeycomb surfaces are smooth

In [9] it is shown that the angles around every vertex shrink to zero under the
honeycomb scheme. Here, we show that they shrink uniformly and geometri-
cally.

3.1 Theorem (H flattens the maximum vertex angle). Let (Pi) be a honeycomb
sequence and let µi be the maximum vertex angle of Pi. Then there are constants
c > 0 and ν ∈ (0, 1) such that

(3.2) µi ≤ cνi.

Proof in a nutshell. The Gaussian images P◦i are generated by a dual honeycomb
scheme on S2 where any face G of P◦i+k lies in some face F of P◦i for k > 0.
Using a central projection π, we project F and G into a suitable plane and
observe for k > valence F that diam πG ≤ (1 − δ)kdiam πF where δ ∈ (0, 1)
is the number for the projected dual scheme corresponding to the honeycomb
constant ε. Taking into account the stretching of ratios by the central projection,
we arrive at the theorem.

Proof. The spherical polyhedra P◦i are generated by a spherical dual honeycomb
scheme where all edges lie on great circles of S2. Under this scheme every edge
is split in a ratio ∈ [%, %−1] and any face determined by the normals of Pi at
some vertex p of valence v is subdivided into v triangles and a face of the same
valence determined by the normals of Pi+1 at p as illustrated in Figure 6.
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Figure 6: The spherical dual honeycomb scheme applied to a face F .

We project every face F of P◦i by a central projection π from the origin into
the tangent plane of S2 at some point c of F . Under any such projection π,
the ratios defining the new faces with respect to the old ones change. Because
of Remark 2.5, a continuity argument shows that they stay in some interval
[%̄, %̄−1] ⊂ (0,∞).

For the projected faces, we will show that the face diameters shrink geometri-
cally. This implies that they shrink similarly on the sphere since the projection
stretches lengths within a face F by a bounded factor. So let p̄0, ..., p̄k be the
vertices of a planar polygon F̄ of valence υ = k + 1. We subdivide it k = υ − 1
times by the planar version of the dual honeycomb scheme with subdivision ra-
tios in the interval [%̄, %̄−1]. Any triangle T̄ generated within F̄ lies in a triangle
formed by two adjacent edges of F̄ scaled by 1− ε̄ = %̄/(1 + %̄). For example in
Figure 6, triangle T lies in triangle p0p1p2.

Hence

(3.3) diam T̄ ≤ (1− ε̄)diam F̄ .

For the non-triangular faces within F̄ , we consider the face Ḡ obtained after
k subdivision steps and denote its vertices by q̄0, ..., q̄k. The q̄i are convex
combinations of the p̄j and depend on all of them, i. e.,

q̄i =

k∑
j=0

p̄jωj = p̄0 +

k∑
j=1

(p̄j − p0)ωj

where, e. g., ω0 = 1−
∑k

j=1 ωj ≥ ε̄k. Hence Ḡ lies in a scaled version of F̄ and

diam Ḡ ≤ (1− ε̄k) diam F̄ , which concludes the proof.

Theorem 3.1 and Lemma 2.4 are slightly stronger than Proposition 4 and Propo-
sition 5 in [9]. Therefore and since all other proofs in [9] are also valid in the
general case, we obtain the following theorem:
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3.4 Theorem (Honeycomb surfaces are smooth). The limiting surfaces gener-
ated by the general honeycomb scheme are C1 surfaces.

In Section 5, we need the stronger version of Theorem 3.1 below which we
prepare by the following definition of p-angles:

Let (P◦i )i∈IN be the Gaussian image of a honeycomb sequence and let α be its
largest vertex angle. From Remark 2.5, we recall that α < π. Further we note
that any vertex 1-ring, say R, of P◦i , i ∈ IN, lies in some vertex 1-ring, say Rj ,
of P◦j for j = 1, · · · , i.

We call the intersection of S2 with a halfplane a cap and define its diameter to
be the length of any great circle segment splitting it symmetrically. For example,
semispheres are caps with diameter π. An extreme example not relevant for this
paper is S2 itself, which is a cap with diameter 2π.

If R lies in a closed spherical cap of diameter α, we define Q to be the largest
Rj still contained in such a cap, project R into the plane that goes through the
cap’s boundary relative to S2, which is a circle on S2, and denote the projection
by R̄. With F being the face of Pi dual to the central vertex of R, we define

p-angle F := p-diam R := diam R̄.

If R does not lie in a cap of diameter α, we define its p-diameter as its spherical
diameter, i. e.,

p-angle F := p-diam R := s-diam R = face angle αF .

Similarly we define the p-diameters for the vertex 1-rings if (Pi)i∈IN is not a
honeycomb sequence but still has the property that any vertex 1-ring of the P◦i
is contained in some 1-ring of P◦1 .

3.5 Remark. Under the projection above, any distance d in a spherical cap
with diameter α changes by a factor in some interval [σ, σ−1] ⊂ (0,∞). Hence

σ · αF = σ · s-diam R ≤ p-diam R ≤ σ−1 · s-diam R = σ−1 · αF ,

where we note that a diameter is not projected into a diameter in general.

3.6 Theorem (H shrinks p-angles). Let (Pi) be a honeycomb sequence and let
µi be the largest p-angle of Pi. Then there is a constant γ ∈ (0, 1) such that

(3.7) µi+k ≤ γµi

for all i ∈ IN, where 2k − 1 or 2k − 2 is the maximum vertex valence of P1.

Note that the maximum vertex valence is the same for all Pi and that it equals
the maximum face valence of all P◦i .
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Proof in a nutshell. The vertex 1-rings R of the Gaussian images P◦i are con-
tained in the interior of a vertex 1-ring Q of P◦i−2 or P◦i−k as shown in Figures
7 and 8, and since s-diam R < s-diam Q, the quotient (s-diam R)/(s-diam Q)
stays below some constant less than 1 over the compact set of all 1-rings with
an s-diameter ≥ α. For diameters ∈ (0, α], we project the 1-rings as above into
a plane in which the quotient of diameters does not depend on the scale and
where it suffices to consider the 1-rings with, e. g., diameter α/2. These form a

compact set which implies again Equation 3.7.

Proof. We note that a honeycomb operation H does not increase the p-diameters
of the vertex 1-rings in the Gaussian images P◦i , which are generated by a
spherical dual honeycomb scheme where every edge is split in some ratio in
[%, %−1] with % being the honeycomb tolerance.

To show that these diameters shrink as claimed in Equation 3.7, we distinguish
two cases:

Case 1. First, we consider the vertex 1-rings R2 of P◦i+2 that consist only of
triangles and are contained in a vertex 1-ring R of P◦i : There are four types
of these ”triangle vertex 1-rings” as illustrated in Figure 7 where we marked a
1-ring of every type.

a

b

c

d

Figure 7: Vertex 1-rings of P◦
i+2 projected into a plane that are contained in a vertex 1-ring

of P◦
i .

Similarly to the estimate in Equation 3.3 of Theorem 3.1, we observe that
s-diam R2 < s-diam R for any of these 1-rings R2 as long as diam R > 0
and note that the reduction depends continuously on R. Note that this is also
true if some vertices of R coalesce. Hence for all possible R not contained in
an open spherical cap with spherical diameter α = maximum vertex angle of
P1, the reduction factor stays below some γ < 1 since a continuous function
has a maximum over a compact set. Thus Equation (3.7) follows for all trian-
gle vertex 1-rings of the set T of all triangle vertex 1-rings not contained in a
closed spherical cap with diameter α. If R does not lie in T , we consider its
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central projection, denoted by R̄, into a plane as described above. Under this
projection all ratios γ ∈ [%, %−1] on spherical line segments are projected into
ratios in some interval [σ, σ−1] ⊂ (0,∞) with σ = ε/(1− ε) ∈ (0, 1).

Using the notation of Figure 7, we observe that the following holds for the four
1-ring types in the plane where we pick a as the origin:

• The new 1-ring around a is contained in ε−2R̄.

• The new 1-rings around b and c are contained in ε−2R̄.

• The new 1-ring around d is contained in ε−1R̄.

Consequently, the p-diameters shrink by at least the factor ε−1, which concludes
the proof for Case 1.

Case 2. Second, we consider a vertex 1-ring Rk containing a non-triangular face
Fk of P◦i+k. Such a 1-ring lies in a face F of P◦i and is surrounded by triangles,
see Figure 8. Its vertices are generated at three different refinement steps. The
vertices of F are said to be of generation 0 and the vertices generated from
vertices of generation j are referred to as vertices of generation j + 1. Because
of Remark 2.5, s-diam F ≤ maximum vertex angle < π. Hence p-diam Rk =
diam R̄k, where R̄k (and F̄ ) denote the image(s) under the central projection
introduced above.

Figure 8: A non-triangular 1-ring (in red) with vertices of generation 2, 3, 4 inside an (2k−2)-
gon of generation 0.

To show that p-diam Rk < p-diam F , we assume for a proof by contradiction
that we had two points p and q in R̄k with dist (p,q) = diam R̄k = diam F̄
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for diam F > 0. The points p and q are of some generations p and q, i. e.,
they are determined by two groups Gp and Gq of p+ 1 and q+ 1 vertices of F̄ ,
respectively.

Since we are assuming dist(p,q) = diam F̄ > 0, both points lie on the boundary
of F̄ which implies that Gp and Gq consist of p + 1 or q + 1 equal vertices,
respectively, and since diam F̄ > 0, that they are disjoint. Hence F had at least
p+ q+ 2 ≥ k+ 1 +k− 1 = 2k vertices which contradicts the prerequisites of the
theorem. (Although by definition, polyhedra do not have coalescing vertices, we
obtain coalescing vertices in the limit for sequences of faces with diameter 1 in
this proof below. Further note that if, e. g., p did not consist of equal vertices,
p can lie on the boundary of F̄ only if Gp spanned a non-degenerate edge. If in
this case Gq and Gp were not disjoint, their union would span either an edge
or a triangle depending on whether Gq spans a point or an edge. However p
could not be a vertex of this edge or triangle meaning that dist(p, q) 6= diamF̄ .
Hence Gp and Gq each do not span more than just a point.)

Consequently,

q =
diam R̄

diam F̄
< 1

for all possible R and F with diam F > 0 .

Under the projection of the spherical dual honeycomb scheme restricted to F ,
the ratios in [%, %−1] are transformed into ratios in some interval [σ, σ−1] ⊂
(0,∞). Therefore we consider the quotient q above for any dual honeycomb
construction applied to F̄ with ratios in [σ, σ−1]. Since q does not change if
we scale F̄ while keeping the construction ratios fixed, it suffices to restrict the
quotient to the faces F̄ with diameter 1. As a continuous function attains a
maximum over compact sets, q is bounded by some constant limi→∞aibelow

1.

4. The corner pushing scheme

We dualize the honeycomb scheme and call the dual scheme the corner pushing
scheme or just the pushing scheme and denote it by P. Under a pushing
scheme, a polyhedron P is refined as follows: On each edge a point is chosen
dividing the edge such that the ratio lies between % and %−1, where % = ε :
(1 − ε) > 0, ε ∈ (0, 1/2], is the pushing tolerance. The new vertices on any
two adjacent edges are connected by f -edges that split every face of valence
v into v triangles and a smaller face of valence v surrounded by the triangles.
Finally, the triangles are rotated around their f -edges into the old polyhedron
by moving the old vertices towards the origin to any positions where convexity
of the thus transformed polyhedron is still preserved as shown in Figure 9.
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Figure 9: The pushing scheme applied to a cube.

Figure 10 shows pushing surfaces generated from a cuboid and an icosahedron
with % = 1/2 and different pushing percentages τ defining to which percentage
vertices are moved towards their extreme positions.

The points picked on the edges correspond to the planes chosen in the honey-
comb scheme on every edge. The origin is dual to the ideal plane and moving a
point to the origin means in the primal space to translate the dual plane away
from the origin. Dualizing Theorem 3.4, we obtain

4.1 Theorem (No line segments by P). The limiting surfaces generated by the
pushing scheme have no line segments.

Dualizing the example in Section 1.3 shows that the pushing scheme generates
surfaces with corners in general. However, we can easily prove that it does not
increase the 1-rings in the Gaussian images:

4.2 Theorem (No larger face angles under P). Let (Pi)i∈IN be a pushing se-
quence. Let µi be the maximum face angle of Pi, then µi ≥ µi+1 for all i.

Proof. The Gaussian images P◦i have the same connectivity as some polyhedra
generated by the honeycomb scheme and any vertex 1-ring of P◦i+1 is contained

in some vertex 1-ring of P◦i as illustrated in Figure 11.

4.3 Remark. The pushing scheme resembles Tóth’s construction of the kernel,
see [21, 11]. There Pn+1 is the convex hull of the edge midpoints of Pn.

5. Mixed honeycomb pushing refinement

Our goal is to combine the corner pushing with the honeycomb scheme so as
to obtain a self-dual class of schemes generating C1 surfaces without line seg-
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Figure 10: The cuboid and icosahedron shown in Figure 2 refined by 1, 2 and 7 iterations of
the pushing scheme with offsetting percentages 20, 50 and 90 from top to bottom.
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(a) (b)

Figure 11: Vertex 1-rings generated by a honeycomb step.

ments. Therefore we define mixed honeycomb pushing refinement or MHP-
schemes as the schemes where we repeatedly apply h honeycomb steps followed
or preceeded by p pushing steps to a polyhedron P1. Hence, an MHP scheme
is dual to an MHP scheme. We call a sequence of polyhedra (Pi)i∈IN generated
by an MHP scheme an MHP sequence and accesible if in addition

maximum vertex valence < 2h

and
maximum face valence < 2p.

We note that both pushing and the honeycomb scheme preserve vertex valences
and create new vertices with valence 3. Hence an MHP scheme preserves vertex
valences and generates vertices of valence 3 and 6. Dually, an MHP scheme also
preserves face valences and generates faces of valence 6 and 3. Hence for any
MHP sequence (Pi)i∈IN, no Pi has greater vertex and face valences than the first
Pj generated by applying at least one honeycomb and one pushing operation.

Honeycomb sequences are bounded and the same holds for MHP sequences.
Here we prove the dual statement:

5.1 Theorem (Non-empty interior of MHP-limits). Every MHP sequence (Pi)i∈IN
has a non-empty interior, i. e., there is a ball around the origin o contained in
all polyhedra Pi.

Proof. We call a vertex v of Pi old if it equals or if it is obtained by pushing a
vertex u of Pi−1. Calling such vertices u and v of Pi−1 and Pi associated, let
(vi)i∈IN be a sequence of associated vertices where vi is a vertex of Pi. Further
let Ci be the convex hull of the new, i. e., not old vertices in Pi. Let Bi be the
union of the faces of Ci whose vertices are all neighbors of vi with respect to
Pi. Hence if we cut Pi along all Bi, we obtain Ci, i. e., the cones with bases Bi
and vertices vi are what we cut off from Pi to obtain Ci. In direction vi then,
Bi+1 lies completely behind Bi.

17



Hence, for any vertex v of P1, the line segment [IR3v ∩ B1, IR3v ∩ B2] lies in
all Pi. Since the vertices of P1 span IR3 by Assumption 2.1, we see that the
convex hull of the line segments above has a non-empty interior which proves

the theorem.

Since any MHP sequence is dual to an MHP sequence and since a polyhedron
with o in its interior is dual to a bounded polyhedron, Theorem 5.1 dualizes to

5.2 Theorem. Any MHP sequence (Pi)i∈IN is bounded.

5.3 Corollary (A bound for the vertex angles of an MHP sequence). All vertex
angles of an MHP sequence (Pi)i∈IN are smaller than some α < 180◦.

Proof. According to Theorems 5.1 and 5.2, we can find concentric balls Br and
Bd of radius r and d such that Br ⊂ Pi ⊂ Bd for all i . Hence all vertex angles
ϕ of Pi satisfy

ϕ ≤ α := 2 arccos
r

d
< 180◦,

see Figure 12.

d

r

Br
α α/2

Figure 12: Estimating the angles.

Corollary 5.3 can be used to replace Remark 2.5 in the proof of Theorem 3.6.
Hence using Remark 3.5 we can combine Theorems 3.6 and 4.2 to arrive at

5.4 Theorem (MHP flattens all face angles). Let (Pi)i∈IN be an accessible MHP
sequence. Let µi be the maximum face angle of Pi, then there are constants c > 0
and γ ∈ (0, 1) such that µi < c · γi.

Dualizing Theorem 5.4, we get in view of Remark 2.6

5.5 Theorem (MHP shrinks edges geometrically). Let (Pi)i∈IN be an accessible
MHP sequence and let µi be the maximum 1-ring diameter of Pi, then there are
constants c > 0 and γ ∈ (0, 1) such that µi < c · γi.

5.6 Theorem. Any MHP sequence (Pi)i∈IN converges to a (convex) polyhedron
L.
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Proof in a nutshell. Any vertex is pushed towards the origin and converges to
a limiting vertex. The limiting vertices belonging to the vertices of Pi span
a polyhedron Li lying inside Pi and Li+1. Due to Theorem 5.2, the nested
sequence (Li)i∈IN is bounded and thus converges. Since the pushing distances
are bounded by twice the maximum edge length which shrinks geometrically
because of Theorem 5.5, dist(Pi,Li)→ 0, which concludes the proof.

Proof. The honeycomb scheme preserves the vertices and the pushing scheme
pushes the vertices inwards. Hence any vertex p of any Pi is pushed to or equals
a vertex pj in Pj for all j ≥ i. First we prove that a sequence (pj)

∞
j=i converges

geometrically. From Theorem 5.5, we know that the maximum edge length in
Pi is bounded by some cγi, where γ ∈ (0, 1) and c are constants.

If pi 6= pi+1, i. e., if pi+1 is generated by the pushing scheme, then pi+1 is
connected to pi via an edge in Pi+1 and a part of an edge in Pi, see Figure 13.
Hence

‖pi − pi+1‖ < cγi + cγi+1 ≤ 2cγi.

This means that the pi converge to some point p∞, where

(5.7) ‖pi − p∞‖ ≤
∞∑
j=i

2cγj =
2c

1− γ
γi .

pi

pi+1

Figure 13: A step of the pushing scheme illustrated for two associated 1-rings.

The limiting points p∞ for all vertices p of Pi form the vertices of some con-
vex polyhedron Li, which is the limiting polyhedron of the polyhedra Kj :=
convex hull {pj |p a vertex of Pi}, j ≥ i. To see that Li is convex, note that
the vertices of Kj are also vertices of Pj and that the pj move towards the origin.

Hence the Kj are convex and nested, i. e., Kj ⊃ Kj+1. Thus Li =
∞
∩
j=i
Kj is con-

vex as it is the intersection of convex sets, see Figure 14 for a two-dimensional
illustration.
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pi

pi+1

Ki+1
Li

Pi+1

Ki = Pi

Figure 14: The polyhedra Pi, Pi+1, Ki+1 and Li illustrated schematically by planar polygons.

Further note that the vertices of Li are also vertices of any Lj , j ≥ i. Hence
the sequence (Lj)

∞
j=0 is monotonously increasing. Because of Theorem 5.2, it

is also bounded and we conclude that the Lj converge to a limiting polyhedron
L containing all vertices of every Li. Showing that L is also the limit of the
sequence (Pi) will finish the proof: The polyhedra Pi and Li are topologically
equivalent and if v denotes a vertex of Pi, we denote its corresponding vertex
in Li by v′. Any point p on Pi lies in a face of Pi and is a convex combination
of its vertices v1,. . . ,vk, i. e.,

p =

k∑
r=1

vrνr, where

k∑
r=1

νr = 1 and νr ≥ 0.

We compare p with the point

p′ =

k∑
r=1

v′rνr

in Li and obtain

‖p′ − p‖ = ‖
∑

(v′r − vr)νr‖

≤
∑
‖v′r − vr‖νr

=
(5.7)

∑ 2c

1− γ
γiνr

=
2c

1− γ
γi.

Thus

dist(Pi,Li) ≤
2c

1− γ
γi,

which implies that the Pi converge to L.

20



Finally, we show that the limit P∞ of any MHP sequence (Pi)
∞
i=0 is a C1 surface,

which means to show that P∞ has a continuous normal field:

First we consider the normals of P∞ at the limiting points p∞ introduced in
the proof of Theorem 5.6, see Equation (5.7). These points form the limiting
vertex set V := {p∞|p is a vertex of Pi, i ∈ IN} which is dense in P∞ because
of Theorem 5.5. Any point p∞ is the limit of a sequence (pj)j>i and the
Gaussian images of the 1-rings around the pj form a nested sequence of spherical
polygons shrinking to a unit vector np which is a normal vector of Pj at pj for
all j ≥ i.

Because of Theorem 5.4, the discrete normal field np, p ∈ V, is dense in S2.
Due to Theorem 5.5, this then rules out corners with a 2-parameter family of
tangent planes on P∞ but does not prohibit pinch points, i. e., point with a
1- but not a 2-parameter family of tangent planes. For the latter, we need
to show that points in any infinitesimally small neighborbood have the same
normal, i. e., we need to show that the discrete normal field can be extended
to a continuous normal field of P∞. Therefore we partition P∞ into patches
forming neighborhoods on P∞ controlled by face 6-rings of the Pi.

5.8 Definition. Let π be the central projection R3 \ {o} → P∞ with the pro-
jection center o. Then for all faces F of any Pi, we call πF an i-th genera-
tion patch of P∞.

5.9 Lemma. Let F be a face of any Pi. Then the patch πF and the normals
over V ∩ πF are determined by the 6-ring R6F of faces around F . Moreover,
πR6F ⊃ πF and (R6F )◦ ⊃ {np|p ∈ V ∩ πF}, where here (R6F )◦, different
from Definition 2.2, is not just a mesh but also contains all points of S2 lying
in a face of this mesh.

Proof in a nutshell. Similarly to other refinement schemes, H and P generate
more faces while they shrink an open meshM with a boundary. Analyzing how
large we have to chooseM to balance the gains and losses along the boundary,
we obtain the lemma.

Proof. Let M and N be submeshes of Pi and Pj , respectively. Denote the
mesh N without its r outmost layers of faces by WrN and denote the relation
πM⊃ πN simply by M A N . Let HM and PM be the meshes obtained from
M by the honeycomb or pushing scheme, respectively.

Since πpj = p∞ for all vertices p of any Pi and all j ≥ i, we obtain – leaving
the verification to the reader – for all q, r, k ∈ IN

HqM AW2M,

PrM AW1M,
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and for S = HqPr or S = PrHq

SM AW3M

as well as

W2kSM AW3+kM.

This implies

W6SM AW6M

and

W6S
kM AW6S

k−1M A · · · AW6M,

which shows that M = R6F determines πF and its normals over V ∩ πF .

Lemma 5.9 in conjunction with Theorems 5.4 and 5.5 shows that every point
q on P∞ has neighborhoods Ui consisting of a vertex 1-ring of i-th generation
patches with arbitrarily small Gaussian images. Although we do not need it, we
note that the Ui become arbitrarily small, i. e., Ui → {q}, due to Theorem 5.5.
Moreover, Theorem 5.4 shows that the normal vectors np,p ∈ V ∩Ui, converge
uniformly for all q to a single vector nq. Together with Theorem 5.6, this then
proves the main theorem:

5.10 Theorem (MHP surfaces are smooth). Any accessible MHP sequence
converges to a C1 surface without line segments.

Proof in a nutshell. Due to Theorems 5.5 and 5.4, the limiting vertex set V is
dense on P∞ and has a unique normal field. Because of Lemma 5.9 this normal
field can be extended continuously to all of P∞ which shows the theorem.

6. Test examples

We tested the MHP scheme with different offsetting and pushing parameters
and show some results in Figure 15 for a cuboid and an icosahedron as initial
polyhedra, where we alternatingly apply 4 honeycomb and 4 pushing steps to
polyhedra with valences ≤ 6. The results resemble much the surfaces that we
get by the pure honeycomb or pushing scheme depending on the first iteration
steps of the MHP scheme, see Figures 2 and 10.

In an attempt to obtain rounder surfaces, we also alternatingly applied single
or double honeycomb and pushing steps as shown in Figure 16. However, in
all our experiments on these and other polyhedra, the limiting surfaces always
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Figure 15: Polyhedra generated by H4P4 and P4H4 from a cuboid and an icosahedron with
pushing and honeycomb offsetting percentages 20/20, 50/50, 80/80, 20/80, 80/20 from top to
bottom.
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Figure 16: Polyhedra generated by (HP)4, (PH)4, (H2P2)2 and (P2H2)2 from a cuboid and
icosahedron with pushing and honeycomb offsetting percentages 20/20, 50/50, 80/80, 20/80,
80/20 from top to bottom.
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take on a somewhat rounded polyhedral form. This is due to the different local
convergence rates that depend on the vertex and face valences.

Most convex surfaces are not in C2, see [11] and references cited in it. In par-
ticular, honeycomb surfaces are not C2 as they tend to have planar segments
almost everywhere. Pushing surfaces are even not C1 as they have corners al-
most everywhere. Therefore, we cannot expect MHP surfaces to be very smooth
either. Still we tried to compare the quality of the surfaces generated by the
different schemes using reflection lines and discrete mean curvature visualiza-
tion in Figure 17. Although the shaded images of the surfaces generated by
applying the honeycomb scheme seven and eight times are not distinguishable,
their curvature plots are quite different revealing a high sensitivity of the dis-
crete curvature plots obtained by MeshLab with respect to corners, edges and
the triangulation of the planar mostly hexagonal faces.

7. Conclusion

As we have shown, it is possible to modify the honeycomb scheme so as to
get rid of the line segments in the limiting surfaces. However, practical tests
show that the limiting surfaces suffer from a non-uniform convergence behavior
due to different face and vertex valencies. Different from subdivision schemes
with a finite number of extraordinary faces and vertices, MHP-schemes generate
infinitely many faces and vertices both of valence 3 and 6 which are either
extraordinary for the honeycomb or pushing steps. Nevertheless, the theoretical
work has been beneficial as it helped to understand corner cutting for surfaces
and to develop corner cutting schemes such as the 4-8,

√
3 and the honeycomb

cutting schemes which generate much better surfaces and can also generate
spheres, see [3].
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