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In memory of Enrico Jannelli

Abstract. We look for multiple solutions U : R3 → R3 to the curl-curl problem

∇×∇×U = h(x,U), x ∈ R
3,

with a nonlinear function h : R3 × R3 → R3 which has subcritical growth at infinity or is

critical in R3, i.e. h(x,U) = |U|4U. If h is radial in U, N = 3, K = 2 and a = 1 below,

then we show that the solutions to the problem above are in one to one correspondence

with the solutions to the following Schrödinger equation

−∆u+
a

r2
u = f(x, u), u : RN → R,

where x = (y, z) ∈ RK × RN−K , N > K ≥ 2, r = |y| and a > a0 ∈ (−∞, 0]. In

the subcritical case, applying a critical point theory to the Schrödinger equation above,

we find infinitely many bound states for both problems. In the critical case, however,

the multiplicity problem for the latter equation has been studied only in the autonomous

case a = 0 and the available methods seem to be insufficient for the problem involving

the singular potential, i.e. a 6= 0, due to the lack of conformal invariance. Therefore we

develop methods for the critical curl-curl problem and show the multiplicity of bound states

for both equations in the case N = 3, K = 2 and a = 1.

Introduction

We look for weak solutions u : RN → R to the problem

(1.1) −∆u+
a

r2
u = f(x, u) in R

N ,

where x = (y, z) ∈ RK × RN−K , N > K ≥ 2, r = |y| is the Euclidean norm in RK ,

a > a0 ∈ (−∞, 0]. Here f : RN × R → R is a nonlinear function with critical growth,

i.e. f(x, u) = |u|2∗−2u, or subcritical growth at infinity, see assumptions (F1)–(F5) below.

The problem appears in the study of stationary solutions to nonlinear Schrödinger or Klein-

Gordon equations [5]. On the other hand we are also interested in finding solutions U : R3 →
R

3 to the following curl-curl problem

(1.2) ∇×∇×U = h(x,U) in R
3
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with a nonlinear function h : R3 × R
3 → R

3, which arises in the study of the propaga-

tion of time-harmonic electromagnetic fields in a nonlinear medium by means of Maxwell’s

equations and the constitutive laws, see [1, 13, 17, 23] and the references therein.

Suppose that N = 3, K = 2, a = 1 and h(x, αw) = f(x, α)w for α ∈ R, w ∈ R3 such that

|w| = 1 and x ∈ R3. Then one can easily calculate that if u(x) = u(r, x3) with r = |(x1, x2)|
is a classical solution to (1.1), then

(1.3) U(x) =
u(x)√
x2
1 + x2

2

(
−x2
x1
0

)
, x = (x1, x2, x3) ∈ R

3 \ ({0} × {0} × R),

satisfies div (U) = 0 and ∇ × (∇ × U) = −∆U = h(x,U) for x ∈ R3 \ ({0} × {0} × R),

cf. [18, 24]. Our first aim is to show that solutions to (1.1) provide solutions to (1.2) of

the form (1.3); this generalization to nonclassical solutions is not immediate and will be

demonstrated in Theorem 2.1. In particular, the existence results for (1.1) provide new

results for the curl-curl problem. It is also possible to study (1.1) by means of (1.2), which

will be crucial for the critical nonlinearities.

Concerning the nonlinearity in (1.1), we collect some assumptions on f and F , where

F (x, u) :=
∫ u

0
f(x, t) dt and O(K), O(N) stand for the orthogonal group actions in RK , RN

respectively.

(F1) f : RN × R → R is a Carathéodory function (i.e. measurable in x ∈ RN for every

u ∈ R, continuous in u ∈ R for a.e. x ∈ RN). We assume that f is O invariant with

respect to O := O(K) × {IN−K} ⊂ O(N), i.e. f(gx, u) = f(x, u) for g ∈ O, for

a.e. x ∈ RN and for every u ∈ R. Moreover f is ZN−K-periodic in the last N −K

components of x, i.e. f(x, u) = f
(
x + (0, z′), u

)
for every u ∈ R, a.e. x ∈ RN and

a.e. z′ ∈ Z
N−K .

(F2) lim
|u|→0

f(x, u)

|u|2∗−1
= lim

|u|→∞

f(x, u)

|u|2∗−1
= 0 uniformly with respect to x ∈ RN , where 2∗ = 2N

N−2
.

(F3) lim
|u|→∞

F (x, u)

|u|2 = ∞ uniformly with respect to x ∈ R
N .

(F4) u 7→ f(x, u)

|u| is nondecreasing on (−∞, 0) and on (0,∞) for a.e. x ∈ RN .

Observe that the following functional

J (u) =
1

2

∫

RN

|∇u|2 + a

r2
|u|2 dx−

∫

RN

F (x, u) dx

is of class C1 in X ⊂ D1,2(RN), where D1,2(RN) is the completion of C∞
0 (RN) with respect

to the usual norm |∇u|2 and

X :=
{
u ∈ D1,2(RN) :

∫

RN

|u|2
r2

dx < ∞
}
,

is endowed with the norm ‖u‖ = (|∇u|22 + |u/r|22)1/2. Here and in the sequel | · |q denotes

the Lq-norm for q ∈ [1,∞]. Due to the singular term, we consider the group action O,

which acts isometrically on X, and let XO denote the subspace of X consisting of invariant
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functions with respect to O. Note that, if K > 2, then
∫

RN

|u|2
r2

dx ≤
(

2

K − 2

)2 ∫

RN

|∇u|2 dx

for every u ∈ D1,2(RN) (see [6]) and X and D1,2(RN) coincide. Note also that

J ′(u)(φ) =

∫

RN

〈∇u,∇φ〉+ a

r2
uφ dx−

∫

RN

f(x, u)φ dx

needs not be finite for K = 2, u ∈ X, φ ∈ C∞
0 (RN). Therefore, by a solution to (1.1) we

mean a critical point u ∈ X of J . By ground state solution to (1.1) in XO we mean a

nontrivial solution to (1.1) that minimizes {J (u) : u ∈ XO \ {0}, u is a solution to (1.1)}.
If K > 2, then C∞

0 (RN ) is dense in X and, by the Palais principle of symmetric criticality

[21], critical points of J |XO
correspond to critical points of J and are weak solutions in RN ,

i.e. J ′(u)(φ) = 0 for every φ ∈ C∞
0 (RN). If K = 2, then in view of [5, Proposition 5] any

nonnegative solution to (1.1) is a weak solution in R
N .

The first existence result reads as follows.

Theorem 1.1. Suppose that a > −
(
K−2
2

)2
and (F1)–(F4) hold. Then there exists a ground

state solution u to (1.1) in XO. If, in addition, f is odd in u ∈ R, then u is nonnegative

and (1.1) has infinitely many geometrically ZN−K-distinct solutions in XO.

Two solutions are called geometrically ZN−K-distinct if and only if one cannot be obtained

via a translation of the other in the last N −K variables by a vector in ZN−K .

The growth conditions (F1)–(F4) are provided in [19, Section 7] for the problem (1.1)

with a = 0, ZN -periodic f , O = {IN} and Theorem 1.1 is known in this particular case; see

[19, Theorem 7.1]. These assumptions imply that f(x, u)u ≥ 2F (x, u) ≥ 0. However, if F

does not depend on y, we may consider also sign-changing nonlinearities under the following

weaker variant of the Ambrosetti-Rabinowitz condition [2]:

(F5) There exists γ > 2 such that f(z, u)u ≥ γF (z, u) for every u ∈ R and a.e. z ∈ RN−K

and there exists u0 ∈ R such that essinfz∈RN−KF (z, u0) > 0.

Theorem 1.2. Suppose that a > −
(
K−2
2

)2
, (F1)–(F2) and (F5) hold and f does not depend

on y. Then there exists a nontrivial solution u to (1.1) in XO.

Notice that every solution u to (1.1) can be supposed to be nonnegative if f(z, u) ≥ 0 for

every u ≤ 0 and a.e. z ∈ RN−K because, in this case,

0 ≥ −‖u−‖2 =
∫

RN

〈∇u,∇u−〉+
uu−

r2
dx =

∫

RN

f(z, u)u− dx =

∫

RN

f(z,−u−)u− dx ≥ 0

(where u− := max{−u, 0} denotes the negative part of u), therefore u− = 0 and u ≥ 0.

Recall that if f(x, u) = f(u) does not depend on x and a = 1, then Badiale, Benci and

Rolando [5] found a nontrivial and nonnegative solution to (1.1) under more restrictive

assumptions than in Therorem 1.2, in particular (cf. assumption (f1) there) they assumed

the double-power like behaviour |f(u)| ≤ Cmin{|u|p−1, |u|q−1} for u ∈ R, some constant



4 M. GACZKOWSKI, J. MEDERSKI, AND J. SCHINO

C > 0 and 2 < p < 2∗ < q. For instance, the result of [5] does not allow nonlinearities such

as

f(u) :=





|u|p−2u ln(1 + |u|) for |u| ≥ 1

ln(2) |u|2
∗
−2u

1−ln(|u|)
for 0 < |u| < 1

0 for u = 0,

where 2 ≤ p < 2∗, not even if considering fχ[0,∞), where χ[0,∞) is the characteristic function

of [0,∞). Observe that f(x, u) = Γ(x)f(u) satisfies (F1)–(F4), where Γ ∈ L∞(RN) is O-

invariant, ZN−K-periodic in the last N −K components, positive and bounded away from

0. (F5) is satisfied if and only if p > 2 and Γ does not depend on y.

In general, if f satisfies (F1), (F2), (F5) and does not depend on y as in Theorem 1.2,

then fχ[0,∞) satisfies the same assumptions, but clearly (F3) does not hold.

We show that the problem in Theorem 1.2 has the mountain pass geometry, however

the presence of the singular potential and the nonlinearity of general type cause difficulties

in the concentration-compactness analysis. In [5], dealing with an autonomous double-

power like nonlinearity, the authors provided a technical analysis involving translations and

rescaling in D1,2(RN) [5, Section 4]. We show, however, that this rather involved argument

can be replaced by a Lions-type lemma for functions in XO, where we only make use of

translations, see Lemma 3.1 for the precise statement. In order to obtain a ground state

solution and infinitely many solutions to (1.1), instead, we apply the critical point theory

from [19, Section 3].

In view of Theorems 1.1, 1.2 and taking into account Theorem 2.1 below, we obtain the

existence of solutions of the form (1.3) to the curl-curl problem (1.2). By a solution to (1.2)

we mean a critical point U ∈ D1,2(R3,R3) of E , where the functional E : D1,2(R3,R3) → R

is defined as

(1.4) E(U) =
1

2

∫

R3

|∇ ×U|2 dx−
∫

R3

H(x,U) dx,

H(x,U) :=
∫ 1

0
〈h(x, tU),U〉 dt and D1,2(R3,R3) is the completion of C∞

0 (R3,R3) with respect

to the norm |∇U|2. Clearly every solution to (1.2) is a weak solution in R3, i.e. E ′(U)(φ) = 0

for every φ ∈ C∞
0 (R3,R3). Moreover we define DF as the subspace of D1,2(R3,R3) consisting

of vector fields of the form (1.3), which will be defined rigorously in Section 2.

Observe that the kernel of ∇× (·) is of infinite dimension since ∇× (∇φ) = 0 for all φ of

class C2 and E is strongly indefinite, i.e. it is unbounded from above and from below, even

on subspaces of finite codimension. In order to avoid the indefiniteness we use Theorem 2.1

which states that U ∈ DF is a solution to (1.2) if and only if u ∈ XO is a solution to (1.1)

with a = 1, N = 3 and K = 2.

The curl-curl problem (1.2) in a bounded domain or in R3 has been recently studied

e.g. in [3, 7–9, 15, 17, 19] under different hypotheses on h assuming h is subcritical, i.e.

h(x,U)/|U|5 → 0 as |U| → ∞. A multiplicity result in R3 has been recently obtained in

[19]. Below we provide the multiplicity result inferred by Theorem 1.2 under more general

growth assumption, although we have to assume the radial symmetry of h as follows.
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Corollary 1.3. Suppose that h(x, αw) = f(x, α)w for α ∈ R, w ∈ R
3 such that |w| = 1

and a.e. x ∈ R3.

(a) If (F1)–(F4) hold, then (1.2) has a nontrivial solution U ∈ DF minimizing {E(V) :

V ∈ DF \ {0}, V is a solution to (1.2)}.
(b) If (F1)–(F4) hold and h is odd in u ∈ R, then (1.2) has infinitely many ZN−K-

distinct solutions in DF .

(c) If (F1)–(F2), (F5) hold and h does not depend on y, then (1.2) has a nontrivial

solution U ∈ DF .

Note that the condition h(x, αw) = f(x, α)w for α ∈ R and w ∈ R3 such that |w| = 1

means that h is O(3)-equivariant (radial) with respect to U, i.e. h(x, gU) = gh(x,U) for

g ∈ O(3), U ∈ R3 and a.e. x ∈ R3; however, in general, we cannot expect that solutions

obtained in Corollary 1.3 preserve this symmetry. Indeed, it follows from [7, Theorem 1.1]

that any O(3)-equivariant solution to (1.2) is trivial provided that f(x, u) 6= 0 for u 6= 0

and a.e. x ∈ R3.

Observe that in Corollary 1.3 we obtain weak solutions to (1.2) by critical points of J
from Therorem 1.1, although we do not know, in general, whether they are weak solutions

to (1.1) in R
3.

Next we investigate the problems with the critical nonlinearities in dimension N = 3:

from now on we assume that

f(x, u) = |u|4u and h(x,U) = |U|4U for u ∈ R,U ∈ R
3.

We point out that in [4] Badiale, Guida and Rolando found a ground state solution in XO

to (1.1) for a > 0. Again, an immediate consequence of Theorem 2.1 is the existence of

a solution to (1.2) of the form (1.3) that minimizes the energy functional E among all the

nontrivial solutions of the same form, although it is not clear whether it is a ground state

solution in the general sense, i.e. minimizing E among all the nontrivial solutions (not

necessarily of the form (1.3)). We would like to mention that the existence of a ground

state solution in this general sense has been recently obtained by the second author and

Szulkin [20], however the problem of the existence of multiple solutions to the critical curl-

curl problem remained open and will be investigated below. Moreover, up to our knowledge

the multiplicity result for (1.1) in the critical case is not known unless a = 0.

If a = 0, then the most prominent result is due to Ding [14], which establishes the existence

of infinitely many sign-changing solutions (un) invariant under the conformal action of

Γ := O(2) × O(2) on R3, shortly Γ-invariant, induced by the stereographic projection of

the unit sphere S3 ⊂ R4

π : S3 → R
3 ∪ {∞},

i.e. for each γ ∈ Γ we set γ̃(x) := (π ◦ γ−1 ◦ π−1)(x) and γu(x) := |detγ̃′(x)|1/6u(γ̃(x)) for

all γ ∈ Γ and a.e. x ∈ RN . Such group action restores compactness, e.g. similarly as in

Clapp and Pistoia [12], i.e. the subspace of Γ-invariant functions in D1,2(R3) is compactly

embedded into L6(R3). If a 6= 0, then one easily checks that J is not Γ-invariant due to the

term u/r2 and the lack of the conformal invariance, hence this approach no longer applies.
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In order to solve (1.1) in N = 3 and with a = 1, we find infinitely many solutions to

(1.2), which does not involve a singular term, and use the relation (1.3) in the opposite

way. In the vector-valued problem we introduce the following O(2)×O(2)-group action on

D1,2(R3,R3).

Definition 1.4. For g1, g2 ∈ O(2) we denote g =
(
g1 0
0 g2

)
≡ (g1, g2) ∈ O(2)×O(2). We say

that U ∈ D1,2(R3,R3) is O(2)×O(2)-symmetric if and only if

U

(
π
(
gπ−1(x)

))

ϕ
(
π
(
gπ−1(x)

)) =
g̃1U(x)

ϕ(x)

for every g1, g2 ∈ O(2) and a.e. x ∈ R3, where ϕ(x) =
√

2
1+|x|2

and g̃1 =
(
g1 0
0 1

)
.

The subspace of O(2) × O(2)-symmetric vector fields is denoted by DO(2)×O(2) and the

main result concerning (1.2) in the critical case reads as follows.

Theorem 1.5. There exists a sequence (Un) ⊂ DO(2)×O(2) of solutions to

(1.5) ∇×∇×U = |U|4U in R
3

such that E(Un) → ∞ as n → ∞. Each Un is of the form (1.3).

In order to overcome the difficulties owing to such indefiniteness we consider again vector

fields U of the form (1.3), but instead of focusing on the corresponding scalar fields u (like

for the noncritical case) we exploit the property that such vector fields are divergence-free

in the distributional sense (cf. Lemma 2.4). Similarly as in [3], this allows to reduce the

curl-curl operator to the vector Laplacian by means of the appropriate group action and

the Palais principle of symmetric criticality, see Section 2 for details. Of course we need to

work with vector fields of the form (1.3) that are additionally O(2)× O(2)-symmetric (cf.

Lemma 4.4). Inspired by [12,14], we show that such symmetric vector fields are compactly

embedded into L6(R3,R3).

In view of Theorem 1.5 we obtain the following result.

Corollary 1.6. There exists a sequence (un) ⊂ XO of solutions to

−∆u +
u

r2
= |u|4u in R

3

such that J (un) → ∞ as n → ∞. Moreover each |un| is Γ-invariant.

It remains an open question whether there are infinitely many solutions to (1.1) with

a 6= 0, 1 and the critical nonlinearity. Concerning the higher dimensional case, it is not

straightforward and is postponed after further investigation. If N > K > 2, then we would

like to mention the existence of a ground state solution for −
(
K−2
2

)2
< a < 0 and the

nonexistence of ground states solution for a > 0, see [11, Theorem 1.2].

The paper is structured as follows. In Section 2 we build the functional setting for (1.1)

and (1.2) and prove that solutions to (1.1) in XO are in one-to-one correspondence to

solutions to (1.2) in DF . In Section 3 we study the noncritical problems, while in Section 4

we study the critical ones in dimension N = 3.
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2. An equivalence result

In this section we deal with the case N = 3 and, consequently, K = 2. In particular

2∗ = 6 and r = rx =
√

x2
1 + x2

2 for x = (x1, x2, x3) ∈ R3. For g ∈ O(2) we denote

g̃ =
(
g 0
0 1

)
∈ O = O(2) × {1}. We say that B : R3 → R3 is O-equivariant if and only if

gB = B(g·) for every g ∈ O.

Let

F :=
{
U : R3 → R

3 : U(x1, x2, x3) =
b(x)

r

(
−x2
x1
0

)
for some O-invariant b : R3 → R)

}
.

Then DF := D1,2(R3,R3)∩F is a closed subspace of D1,2(R3,R3) and note that every U ∈ F
is O-equivariant.

The main result of this section is the following.

Theorem 2.1. Let f satisfy (F1) and |f(x, u)| ≤ C|u|5 for a.e. x ∈ R3, every u ∈ R and

some constant C > 0. Let h : R3 × R3 → R3 be such that h(x, αw) = f(x, α)w for a.e.

x ∈ R3, for every α ∈ R and for every w ∈ R3 with |w| = 1. Suppose that U and u satisfy

(1.3) for a.e. x ∈ R3. Then U ∈ DF if and only if u ∈ XO and, in such a case, div (U) = 0

and J (u) = E(U). Moreover u ∈ XO is a solution to (1.1) with a = 1 if and only if U ∈ DF

is a solution to (1.2).

Lemma 2.2. If U ∈ D1,2(R3,R3) is O-equivariant, then there exists (Un) ⊂ C∞
0 (R3,R3)

such that Un is O-equivariant and |∇Un −∇U|2 → 0 as n → ∞.

Proof. Since U ∈ D1,2(R3,R3), there exists (Vn) ⊂ C∞
0 (R3,R3) such that |∇Vn−∇U|2 → 0

as n → ∞. Let

Un(x) :=

∫

O

g−1
Vn(gx) dµ(g) =

∫

O

gTVn(gx) dµ(g),

where µ is the Haar measure of O (note that O is compact).

For every e ∈ O we have

Un(ex) =

∫

O

gTVn(gex) dµ(g) = e

∫

O

g′TVn(g
′x) dµ(g′) = eUn(x),

i.e. Un is O-equivariant. Moreover Un ∈ C∞
0 (R3,R3) because so does Vn.

First we prove that |Un −U|6 → 0. From Jensen’s inequality there holds

|Un −U|66 =
∫

R3

∣∣∣∣
∫

O

gTVn(gx)−U(x) dµ(g)

∣∣∣∣
6

dx ≤
∫

O

∫

R3

∣∣gTVn(gx)−U(x)
∣∣6 dx dµ(g)

=

∫

O

∫

R3

∣∣gTVn(gx)− gTU(gx)
∣∣6 dx dµ(g) =

∫

O

∫

R3

|Vn(gx)−U(gx)|6 dx dµ(g)

=

∫

O

|Vn −U|66 dµ(g) = |Vn −U|66 → 0

as n → ∞.

Finally (Un) is a Cauchy sequence in D1,2(R3,R3) because

|∇Un −∇Um|2 ≤ |∇Vn −∇Vm|2 → 0
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as n,m → ∞ and we conclude. �

Proposition 2.3. Let

H :=
{
U : R3 → R

3 : |U(x)| ≤ C|(x1, x2)| for some C > 0

uniformly with respect to x3 as (x1, x2) → 0
}
,

and set R3
∗ := R3 \ ({0} × {0} × R). Then

DF = C0(R3,R3) ∩ C∞(R3
∗,R

3) ∩ H ∩DF ,

where the closure is taken in D1,2(R3,R3).

Proof. The inclusion ‘⊃’ is obvious since DF is closed. Now let U ∈ DF . Since U

is O-equivariant, in view of Lemma 2.2 there exists an O-equivariant sequence (Un) ⊂
C∞
0 (R3,R3) such that Un = (U1

n,U
2
n,U

3
n) → U in D1,2(R3,R3).

As in [3, Lemma 1], for every n there exist O-equivariant Uρ,n, Uτ,n, Uζ,n ∈ D1,2(R3,R3)

such that for every x ∈ R
3
∗

• Uρ,n(x) is the projection of Un(x) onto span{(x1, x2, 0)},
• Uτ,n(x) is the projection of Un(x) onto span{(−x2, x1, 0)},
• Uζ,n(x) =

(
0, 0,U3

n(x)
)

is the projection of Un(x) onto span{(0, 0, 1)}.
In particular Uρ,n,Uτ,n,Uζ,n ∈ C∞(R3

∗,R
3), they vanish outside a sufficiently large ball in

R3 (in fact Uζ,n ∈ C∞
0 (R3,R3)) and Un(x) = Uρ,n(x) +Uτ,n(x) +Uζ,n(x) for every x ∈ R3

∗.

Moreover ∇Uρ,n(x), ∇Uτ,n(x), ∇Uζ,n(x) are orthogonal in R9 for every x ∈ R3
∗.

Then we infer that Uτ,n → U in D1,2(R3,R3) so we just need to prove that Uτ,n ∈
C0(R3,R3) ∩H for every n.

Since Un is O-equivariant, for every g ∈ O and every x3 ∈ R we have

gUn(0, 0, x3) = Un

(
g(0, 0, x3)

)
= Un(0, 0, x3),

which implies U
1
n(0, 0, x3) = U

2
n(0, 0, x3) = 0, so that U1

n = U
2
n ≡ 0 on {0} × {0} × R.

Observe that for every x ∈ R3
∗ we have

Uρ,n(x) =
〈Un, (x1, x2, 0)〉

|(x1, x2)|2
(

x1
x2
0

)
and Uτ,n(x) =

〈Un, (−x2, x1, 0)〉
|(x1, x2)|2

(
−x2
x1
0

)

and it follows from the uniform continuity of Un that for every x3 ∈ R

lim
(x1,x2)→0

Uρ,n(x) = lim
(x1,x2)→0

Uτ,n(x) = 0

uniformly with respect to x3. Hence we can extend Uρ,n and Uτ,n to R3 by setting them

equal to 0 on {0} × {0} × R and get that Uρ,n, Uτ,n ∈ C0(R3,R3) and Un(x) = Uρ,n(x) +

Uτ,n(x) +Uζ,n(x) for every x ∈ R3.

To prove that Uρ,n +Uτ,n ∈ H, first we notice that
(
Un −Uζ,n

)
∈ C∞

0 (R3,R3) and
(
Uρ,n +Uτ,n

)
(x) =

(
Un −Uζ,n

)
(x) =

(
Un −Uζ,n

)
(0, 0, x3)

+∇
(
Un −Uζ,n

)
(0, 0, x3)(x1, x2, 0)

T + o(|(x1, x2)|)
= ∇

(
Un −Uζ,n

)
(0, 0, x3)(x1, x2, 0)

T + o(|(x1, x2)|)
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as (x1, x2) → 0, hence Uρ,n + Uτ,n ∈ H. Finally note that |Uτ,n| ≤ |Uρ,n + Uτ,n| and we

conclude. �

From now on we assume that U and u satisfy (1.3) for a.e. x ∈ R3.

Lemma 2.4. U ∈ DF if and only if u ∈ XO. In such a case, div (U) = 0 and J (u) = E(U),

where f and h satisfy the assumptions of Theorem 2.1.

Proof. Suppose that u ∈ XO and let U be of the form (1.3). We show that the pointwise a.e

gradient of U in R3 is also the distributional gradient of U in R3. Indeed, for the derivative

along x1 of the first component of U we have
∫

R3

u(x)
−x2√
x2
1 + x2

2

∂x1φ(x) dx =

∫

R3

(
∂x1u(x)

x2√
x2
1 + x2

2

φ(x)− u(x)
x1x2

(x2
1 + x2

2)
3
2

φ(x)

)
dx

= −
∫

R3

∂x1

(
u(x)

−x2√
x2
1 + x2

2

)
φ(x) dx < ∞

for every φ ∈ C∞
0 (R3), since

∫

R3

u(x)
x1x2

(x2
1 + x2

2)
3
2

φ(x) dx < ∞ for u ∈ X. For the derivative

along x1 of the second component of U similarly we get
∫

R3

u(x)
x1√

x2
1 + x2

2

∂x1φ(x) dx

= −
∫

R3

(
∂x1u(x)

x1√
x2
1 + x2

2

+ u(x)

(
1√

x2
1 + x2

2

− x2
1

(x2
1 + x2

2)
3
2

))
φ dx

= −
∫

R3

∂x1

(
u(x)

x1√
x2
1 + x2

2

)
φ(x) dx < ∞

for every φ ∈ C∞
0 (R3). The remaining cases are similar.

Now observe that U = (U1,U2,U3) ∈ L6(R3,R3) ∩ F . Moreover

∂x1U1(x) = ∂x1u(x)
x2√

x2
1 + x2

2

− u(x)
x1x2

(x2
1 + x2

2)
3
2

∈ L2(R)

and

∂x1U2(x) = −∂x1u(x)
x1√

x2
1 + x2

2

− u(x)

(
1√

x2
1 + x2

2

− x2
1

(x2
1 + x2

2)
3
2

)
∈ L2(R),

since u ∈ X. Again, the remaining cases are similar and we infer that U ∈ DF

Now suppose that U ∈ DF and, due to Proposition 2.3, let (Bn) ⊂ C0(R3,R3) ∩
C∞(R3

∗,R
3) ∩ H ∩ DF such that limn |∇Bn − ∇U|2 = 0 and let (bn) be O-invariant such

that Bn and bn satisfy formula (1.3).

We prove that bn ∈ XO. Since |Bn| = |bn|, of course bn ∈ C0(R3) ∩ C∞(R3
∗) ⊂ L6(R3) and

|bn(x)| ≤ C|(x1, x2)| for some C > 0 uniformly with respect to x3 as (x1, x2) → 0, therefore
∫

R3

b2n
r2

dx < ∞.
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Moreover

L2(R3,R3×3) ∋ ∇Bn(x) =
1√

x2
1 + x2

2

(
−x2
x1
0

)
∇bn(x)

T +
bn(x)

(x2
1 + x2

2)
3
2



x1x2 −x2

1 0

x2
2 −x1x2 0

0 0 0




and the second summand is square-summable because

∣∣∣∣∣
1

(x2
1 + x2

2)
3
2



x1x2 −x2

1 0

x2
2 −x1x2 0

0 0 0



∣∣∣∣∣
R3×3

=
1

(x2
1 + x2

2)
3
2

∣∣∣∣∣



x1

x2

0


(x2 −x1 0

)
∣∣∣∣∣
R3×3

=
1√

x2
1 + x2

2

,

where | · |R3×3 stands for the matrix norm in R3×3. It follows that ∇bn ∈ L2(R3,R3), thus

bn ∈ XO.

Since limn |bn − u|6 = limn |Bn − U|6 = 0, it is enough to prove that (bn) is a Cauchy

sequence in X, therefore we compute

‖bn − bm‖2 =
∫

R3

〈∇(bn − bm),∇(bn − bm)〉+
(bn − bm)(bn − bm)

r2
dx

=

∫

R3

〈∇(Bn −Bm),∇(Bn −Bm)〉 dx = |∇(Bn −Bm)|22 → 0

as n,m → ∞.

Finally, observe that div (Bn(x)) = 0 for every x ∈ R3
∗. It follows that, up to a subse-

quence, div (U(x)) = limn div (Bn(x)) = 0 for a.e. x ∈ R3 and recall that the pointwise a.e.

divergence of U is also the distributional divergence of U.

Finally, observe that if u ∈ XO and U ∈ DF satisfy (1.3) a.e. on R3, then ‖u‖2 = |∇U |22 =
|∇ ×U|22 and F (x, u(x)) = H(x,U(x)) for a.e. x ∈ R

3. �

Proof of Theorem 2.1. The first part follows directly from Lemma 2.4. Recall (cf. [3, Section

2]) that if U ∈ D1,2(R3,R3) is O-equivariant, then U ∈ DF if and only if U is invariant

with respect to the action

S(U) = S(Uρ +Uτ +Uζ) := −Uρ +Uτ −Uζ.

Recall also that the functional E defined in (1.4) is invariant under this action.

Let V ∈ DF and v ∈ XO satisfy (1.3) and note that, arguing as in Lemma 2.4,
∫

R3

〈∇ ×U,∇×V〉 dx =

∫

R3

〈∇U,∇V〉 dx =

∫

R3

〈∇u,∇v〉+ uv

r2
dx

and
∫

R3

〈h
(
x,U(x)

)
,V(x)〉 dx =

∫

R3

〈
h

(
x,

u

r

(
−x2
x1
0

))
,
v(x)

r

(
−x2
x1
0

)〉
dx

=

∫

R3

〈
f
(
x, u(x)

)1
r

(
−x2
x1
0

)
,
v(x)

r

(
−x2
x1
0

)〉
dx

=

∫

R3

f
(
x, u(x)

)
v(x) dx. �



CYLINDRICALLY SYMMETRIC CURL-CURL AND SCHRÖDINGER EQUATIONS 11

3. The noncritical case

In this section we prove Theorems 1.1 and 1.2. Throughout this section we assume f

satisfies (F1) and (F2). The following lemma is proved in [16, Proposition A.2].

Lemma 3.1. Suppose that (un) ⊂ D1,2(RN) is bounded and O-invariant and for all R > 0

(3.1) lim
n→∞

sup
z∈RN−K

∫

B((0,z),R)

|un|2 dx = 0.

Then ∫

RN

Φ(un) dx → 0 as n → ∞

for any continuous function Φ: R → [0,∞) such that

(3.2) lim
s→0

Φ(s)

|s|2∗ = lim
|s|→∞

Φ(s)

|s|2∗ = 0.

We need the following results as well.

Lemma 3.2. Let 1 ≤ p ≤ 2∗ ≤ q < ∞. If u ∈ L2∗(RN), then

|uχ{|u|≤1}|qq, |uχ{|u|>1}|pp, |{|u| > 1}| ≤ |u|2∗2∗,
where χ denotes the characteristic function and | · | stands for the Lebesgue measure.

Proof. Clearly ∫

RN

|u|qχ{|u|≤1} dx ≤
∫

RN

|u|2∗χ{|u|≤1} dx ≤ |u|2∗2∗ .

Moreover, we have that

|{|u| > 1}| =
∫

{|u|>1}

1 dx ≤
∫

{|u|>1}

|u|2∗ dx ≤ |u|2∗2∗

and so ∫

RN

|u|pχ{|u|>1} dx ≤ |u|p2∗|{|u| > 1}| 2
∗
−p

2∗ ≤ |u|p2∗|u|2
∗−p

2∗ = |u|2∗2∗.

�

Lemma 3.3. Suppose that (un), (vn) ⊂ D1,2(RN ) are bounded and O-invariant and (un)

satisfies (3.1) for all R > 0. Then
∫

RN

|f(x, vn)un| dx → 0

as n → ∞.

Proof. Let 1 < p < 2∗ < q < ∞ and define Φ(t) :=
∫ |t|

0
min{sp−1, sq−1} ds. Note that Φ

satisfies (3.2). (F2) implies that for every ε > 0 there exists Cε > 0 such that for every

t ∈ R and a.e. x ∈ R
N we have |f(x, t)| ≤ ε|t|2∗−1 + Cε|Φ′(t)|. Moreover

∫

RN

|Φ′(vn)un| dx =

∫

RN

|Φ′(vn)un|χ{|un|>1} dx+

∫

RN

|Φ′(vn)un|χ{|un|≤1} dx =: An +Bn.
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Concerning the first integral An, Lemmas 3.1 and 3.2 imply that, for some C1, C2 > 0,

An =

∫

RN

|vn|p−1χ{|vn|>1}|un|χ{|un|>1} dx+

∫

RN

|vn|q−1χ{|vn|≤1}|un|χ{|un|>1} dx

≤
(
|vnχ{|vn|>1}|p−1

p + ||vn|q−1χ{|vn|≤1}| p−1
p

)
|unχ{|un|>1}|p

≤ C1

(
|vnχ{|vn|>1}|p−1

p + |vnχ{|vn|≤1}|
q(p−1)

p
q

)(∫

RN

Φ(un) dx

) 1
p

≤ C2 sup
k

‖vk‖
2∗(p−1)

p

(∫

RN

Φ(un) dx

) 1
p

→ 0

because
(
|vn|q−1

) p

p−1χ{|vn|≤1} ≤ |vn|qχ{|vn|≤1}.

Finally, similar computations hold for the second integral Bn. �

In order to prove Theorem 1.1 we aim to use the abstract critical point theory from

[19, Section 3], in particular Theorems 3.3 and 3.5(b) therein. We need to prove that

assumptions (I1)–(I8), (G) and (M)β0 for every β > 0, which in our setting read as follows,

are satisfied. For simplicity, we set

I(u) :=
∫

RN

F (x, u) dx for u ∈ XO

and

N :=
{
u ∈ XO \ {0} : J ′(u)u = 0

}

stands for the Nehari constraint, which needs not be a manifold of class C1; see [19]. We

enlist the required conditions:

(I1) I ∈ C1(XO,R) and I(u) ≥ I(0) = 0 for every u ∈ XO.

(I2) I is sequentially lower semicontinuous.

(I3) If un → u and I(un) → I(u), then un → u.

(I4) ‖u‖+ I(u) → ∞ as ‖u‖ → ∞.

(I6) There exists r > 0 such that inf
u∈XO,‖u‖=r

J (u) > 0.

(I7)
I(un)

t2n
→ ∞ if tn → ∞ and un → u0 6= 0 as n → ∞.

(I8)
t2 − 1

2
I ′(u)u+ I(u)− I(tu) ≤ 0 for every u ∈ N and every t ≥ 0.

(G) ZN−K is a group that acts on XO by isometries and such that for every u ∈ XO,

(ZN−K ∗ u) \ {u} is bounded away from u.

The ZN−K-action is given as follows: z ∗ u(x) := u(x+ (0, z)) for z ∈ ZN−K and u ∈ XO.

ZN−K ∗u is called the orbit of u and if, in addition, u is a critical point of J , then ZN−K ∗u
is a critical orbit.

Note that (I1)–(I4) and (G) are obviously satisfied and (I6) follows easily from (F2) and

the embedding of XO into L2∗(RN ). We have skipped (I5) from [19, Section 5], since it is

an empty condition. (I7), (I8) and the following variant of Cerami condition will be verified

in the next lemmas.
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(M)β0 (a) There exists Mβ > 0 such that lim supn ‖un‖ ≤ Mβ for every (un) ⊂ XO such

that 0 ≤ lim infnJ (un) ≤ lim supn J (un) ≤ β and limn(1 + ‖un‖)J ′(un) = 0.

(b) If J has finitely many critical orbits, then there exists mβ > 0 such that, if

(un), (vn) ∈ XO are as above and ‖un−vn‖ < mβ for n large, then lim infn ‖un−
vn‖ = 0.

Lemma 3.4. (a) Suppose f satisfies (F3). If tn → ∞ and un → u0 ∈ XO \ {0} as n → ∞,

then

lim
n

1

t2n

∫

RN

F (x, tnun) dx = ∞.

(b) Suppose f satisfies (F4). For every u ∈ XO and every t ≥ 0

t2 − 1

2

∫

RN

f(x, u)u dx+

∫

RN

F (x, u) dx−
∫

RN

F (x, tu) dx ≤ 0.

Proof. (a) Since XO is locally compactly into L2(RN ), up to a subsequence un → u0 6= 0

a.e. in R
N . Moreover, there exists ε > 0 such that lim supn |Ωn| > 0, where Ωn := {x ∈

RN : |un(x)| ≥ ε}, for otherwise un → 0 in measure and consequently, up to a subsequence,

a.e. in RN . It follows from (F3) that

1

t2n

∫

RN

F (x, tnun) dx =

∫

RN

F (x, tnun)

t2n|un|2
|un|2 dx ≥ ε2

∫

Ωn

F (x, tnun)

t2n|un|2
dx → ∞

as n → ∞.

(b) For fixed x ∈ RN and u ∈ R we prove that φ(t) ≤ 0 for every t ≥ 0, where

φ(t) :=
t2 − 1

2
f(x, u)u+ F (x, u)− F (x, tu).

This is trivial for u = 0, so suppose u 6= 0. Note that φ(1) = 0, so it is enough to prove that

φ is nondecreasing on [0, 1] and nonincreasing on [1,∞). This is the case in view of (F4)

and because

φ′(t) = tf(x, u)u− f(x, tu)u = t|u|u
(
f(x, u)

|u| − f(x, tu)

|tu|

)

for t > 0, therefore φ(t) ≤ 0 for every t ≥ 0 as φ ∈ C1([0,∞)). �

The following lemma shows that (M)β0 holds for every β > 0.

Lemma 3.5. Suppose f satisfies (F3) and (F4).

(a) For every β > 0 there exists Mβ > 0 such that lim supn ||un|| ≤ Mβ for every (un) ⊂ XO

such that J (un) ≤ β for n large and limn(1 + ‖un‖)J ′(un) = 0.

(b) If the number of critical orbits of J is finite, then there exists κ > 0 such that, if

(un), (vn) ⊂ XO are as above for some β > 0 and ‖un−vn‖ < κ for n large, then limn ‖un−
vn‖ = 0.

Proof. (a) Let (un) ⊂ XO as in the assumptions, suppose that (un) is unbounded and define

ūn := un/‖un‖. Passing to a subsequence we may assume that ‖un‖ → ∞ as n → ∞.
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Similarly as in the proof of Lemma 3.3, for any ε > 0 we find Cε > 0 such that
∫

RN

F (x, ūn) dx ≤ ε|ūn|2
∗

2∗ + CεΦ(ūn)

for every n, where Φ is defined therein. If (ūn) satisfies (3.1) for every R > 0, hence the

same holds for (sūn) with s ≥ 0, then in view of Lemma 3.1

lim sup
n

∫

RN

F (x, sūn) dx ≤ εs2 lim sup
n

|ūn|2
∗

2∗

for every ε > 0, hence limn

∫
RN F (x, sūn) dx = 0. Then applying Lemma 3.4(b) with u = un

and t = s/‖un‖ we obtain, up to a subsequence, that for every s ≥ 0

β ≥ lim sup
n

J (un) ≥ lim sup
n

J (sūn)− lim
n

t2n − 1

2
J ′(un)un

= lim sup
n

J (sūn) ≥ Cs2 − lim
n

∫

RN

F (x, sūn) dx = Cs2

for some C > 0, a contradiction. Hence, up to a subsequence, limn

∫
B((0,zn),R)

|ūn|2 dx > 0

for some R >
√
N −K and (zn) ⊂ ZN−K , where zn maximizes z 7→

∫
B((0,z),R)

|un|2 dx.

Exploiting the ZN−K-invariance, we can assume that
∫

B(0,R)

|ūn|2 dx ≥ c

for n large and some c > 0.

It follows that there exists ū ∈ XO \ {0} such that, up to a subsequence, ūn ⇀ ū in X

and ūn → ū in L2
loc
(RN) and a.e. in RN .

From (F4), 2J (un) − J ′(un)un =
∫
RN f(x, un)un − 2F (x, un) dx ≥ 0, thus

(
J (un)

)
is

bounded and due to (F3) we obtain

o(1) =
J (un)

‖un‖2
≤ C −

∫

RN

F (x, un)

|un|2
|ūn|2 dx → −∞

for some C > 0, which is a contradiction. This shows that (un) is indeed bounded. If by

contradiction there exists no upper bound Mβ, then for every k ∈ N there exists (uk
n) ⊂ XO

as in the statement such that lim supn ‖uk
n‖ > k and it is easy to build a subsequence (uk

nk
)

that is unbounded, again a contradiction.

(b) Assume that there are finitely many critical orbits of J . From (G) we easily see that

κ :=
1

2
inf
{
‖u− v‖ : u 6= v and J ′(u) = J ′(v) = 0

}
> 0.

Let (un), (vn) be as in the assumptions of (b). In view of (a) they are bounded.

If
∫
RN f(x, un)(un − vn) dx or

∫
RN f(x, vn)(un − vn) dx do not converge to 0, then in view

of Lemma 3.3 and the ZN−K-invariance there exist R >
√
N −K and ε > 0 such that

∫

B(0,R)

|un − vn|2 dx ≥ ε.
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We can assume that un ⇀ u, vn ⇀ v in X, and u 6= v. Hence J ′(u) = J ′(v) = 0 and

consequently

lim inf
n

‖un − vn‖ ≥ ‖u− v‖ ≥ 2κ,

in contrast with the assumptions.

Therefore it follows that limn

∫
RN f(x, un)(un−vn) dx = limn

∫
RN f(x, vn)(un−vn) dx = 0

and, finally,

‖un − vn‖2 = J ′(un)(un − vn)− J ′(vn)(un − vn) +

∫

RN

(
f(x, un)− f(x, vn)

)
(un − vn) dx

= o(1) +

∫

RN

f(x, un)(un − vn) dx−
∫

RN

f(x, vn)(un − vn) dx → 0. �

Proof of Theorem 1.1. Note that N contains all the nontrivial critical points of J . Applying

[19, Theorem 3.3] we obtain a Cerami sequence (un) ⊂ XO at level c := infN J > 0.

Lemma 3.5(a) implies that there exists u ∈ XO such that un ⇀ u up to a subsequence, thus

J ′(u) = 0.

If by contradiction
∫
RN f(x, un)un dx → 0, then similarly to the proof of Lemma 3.5(b)

we infer that un → 0, in contrast with J (un) → c. Hence, again similarly to the proof of

Lemma 3.5(b), u 6= 0.

Fatou’s Lemma and (F4) imply

c = lim
n

J (un) = lim
n

J (un)−
1

2
J ′(un)un = lim

n

∫

RN

1

2
f(x, un)un − F (x, un) dx

≥
∫

RN

1

2
f(x, u)u− F (x, u) dx = J (u)− 1

2
J ′(u)u = J (u) ≥ c

and we conclude J (u) = c.

Now assume f is odd in u, which implies that J is even. The existence of infinitely many

ZN−K-distinct critical points of J follows directly from [19, Theorem 3.5(b)]. As for the fact

that the ground state solution is nonnegative, since J (u) = J (|u|) and J ′(u)u = J ′(|u|)|u|
for u ∈ XO, we can replace (un) with (|un|) and still we obtain a weak limit point, which is

a nonnegative ground state solution. �

Lemma 3.6. Suppose that f does not depend on y and satisfies (F5). Then there exists

w ∈ XO such that
∫
RN F (z, w) dx > 1

2

∫
RN |∇zw|2.

Proof. Similarly as in [10, page 325], for any R ≥ 3 we define an even and continuous

function φR : RN → R such that φR(t) = 0 for |t| < 1 and for |t| > R + 1, φR(t) = u0

for 2 ≤ |t| ≤ R and φR is affine for 1 ≤ |t| ≤ 2 and for R ≤ |t| ≤ R + 1. Then let

wR(x) := φR(|y|)φR(|z|). Observe that wR ∈ XO and there are constants C1, C2, C3 > 0

such that∫

RN

F (z, wR) dx ≥ C1R
Nessinfz∈RN−KF (z, u0)− C2R

N−1 sup
R≤|u|≤R+1

esssupz∈RN−KF (z, u)

−C3 sup
1≤|u|≤2

esssupz∈RN−KF (z, u).
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Moreover
1

2

∫

RN

|∇zw|2 ≤ C4R
N−1

for some constant C4 > 0. Then for sufficiently large R > 0 we conclude. �

Proof of Theorem 1.2. First we prove that J has the mountain pass geometry [2, 22]. Let

w ∈ XO as in Lemma 3.6. Due to (F2) and the embedding of XO into L2∗(RN), there exists

0 < ρ < ‖w‖ such that inf{J (u) : u ∈ XO and ‖u‖ = ρ} > 0. Moreover, for every λ > 0 we

have

J
(
w(λ·, ·)

)
=

1

2λK−2

∫

RN

|∇yw|2+
a

r2
|w|2 dx+ 1

λK

(1
2

∫

RN

|∇zw|2−
∫

RN

F (z, w) dx
)
→ −∞

as λ → 0+. The existence of a Palais-Smale sequence (un) ⊂ X for J |XO
at the mountain

pass level c > 0 follows. Such sequence is bounded because (F5) holds.

Now, suppose by contradiction that (3.1) holds for every R > 0. Fix R >
√
N −K such

that (3.1) holds with the supremum being taken over ZN−K . Since F and (z, u) 7→ f(z, u)u

satisfy (3.2) uniformly with respect to z ∈ RN−K , arguing as in Lemma 3.3, Lemma 3.1 we

obtain

c = lim
n

J (un)−
1

2
J ′(un)un = lim

n

∫

RN

1

2
f(z, un)un − F (z, un) dx = 0,

which is a contradiction. It follows that there exist R >
√
N −K and ε > 0 such that

(3.3)

∫

B((0,zn),R)

|un|2 dx ≥ ε

up to a subsequence, where zn ∈ ZN−K maximizes z 7→
∫
B((0,z),R)

|un|2 dx. Since J is

invariant with respect to ZN−K translations, up to replacing un with un(· − zn) we can

suppose that zn = 0. Since (un) is bounded, there exists u ∈ XO such that un ⇀ u in X,

which in turn implies that J ′(u) = 0 and that un → u in L2
(
B(0, R)

)
and a.e. in RN ; in

particular u 6= 0 because (3.3) holds. �

Proof of Corollary 1.3. The proof follows from Theorems 1.1, 1.2 and 2.1. �

4. The critical case

In this section we prove Theorem 1.5. Recall that in this context N = 3 (hence K = 2),

E(U) =
1

2

∫

R3

|∇ ×U|2 dx− 1

6

∫

R3

|U|6 dx,

J (u) =
1

2

∫

R3

|∇u|2 + 1

r2
|u|2 dx− 1

6

∫

R3

|u|6 dx.

Let π : S3 \ {Q} → R
3 be the stereographic projection, where Q = (0, 0, 0, 1) is the north

pole, and let

ϕ : x ∈ R
3 7→

√
2

|x|2 + 1
∈ R.
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Explicitly,

π(ξ) =
1

1− ξ4
(ξ1, ξ2, ξ3), ξ = (ξ1, ξ2, ξ3, ξ4),

and

π−1(x) =
1

|x|2 + 1
(2x1, 2x2, 2x3, |x|2 − 1), x = (x1, x2, x3).

Recall that g̃ =
(
g 0
0 1

)
for g ∈ O(2), O = {g̃ : g ∈ O(2)} and DO(2)×O(2) is the subspace of

D1,2(R3,R3) of O(2)×O(2)-symmetric vector fields according to Definition 1.4.

Lemma 4.1. If U ∈ D1,2(R3,R3) is O(2)×O(2)-symmetric, then U is O-equivariant.

Proof. Let g1 ∈ O(2) and define g := (g1, I2) ∈ O(2)×O(2), where I2 ∈ O(2) is the identity

matrix. Note that

gπ−1(x) = π−1(g̃1x)

for every x ∈ R3, therefore

g̃1U(x) =
ϕ(x)

ϕ
(
π
(
gπ−1(x)

))U
(
π
(
gπ−1(x)

))

=
ϕ(x)

ϕ(g̃1x)
U(g̃1x) = U(g̃1x). �

Lemma 4.2. The embedding DO(2)×O(2) ⊂ L6(R3,R3) is compact.

Proof. For every U ∈ DO(2)×O(2) define V(ξ) := U(π(ξ))
ϕ(π(ξ))

for ξ ∈ S3 \ {Q}. We note that

V ∈ H1(S3,R3) and similarly as in [12, Lemma 3.1] |∇U|2 = ‖V‖H1(S3,R3) and |U|6 = |V|6,
where

‖V‖2H1(S3,R3) =

∫

S3

|∇gV|2 + 3

4
|V|2 dVg

is the norm in H1(S3,R3) and ∇g is the gradient on S3. Therefore U 7→ V is a linear

isometric isomorphism between D1,2(R3,R3) and H1(S3,R3) and between L6(R3,R3) and

L6(S3,R3). Note that, since U is O(2) × O(2)-symmetric, then V(gξ) = g̃1V(ξ) for every

g = (g1, g2) ∈ O(2)×O(2) and, consequently, |V| is O(2)×O(2)-invariant.

Let (Un) ∈ DO(2)×O(2) such that Un ⇀ 0 in DO(2)×O(2). Then Vn ⇀ 0 in H1(S3,R3) and,

up to a subsequence, V → 0 a.e. in S3; this implies that |Vn| ⇀ 0 in H1(S3) and so, in

view of [14, Lemma 5], |Vn| → 0 in L6(S3). Hence Vn → 0 in L6(S3,R3) and so Un → 0 in

L6(R3,R3). �

For U ∈ D1,2(R3,R3) recall from the proof of Proposition 2.3 the definition of Uρ, Uτ

and Uζ .

Lemma 4.3. If U ∈ DO(2)×O(2), then Uρ,Uτ ,Uζ ∈ DO(2)×O(2).

Proof. We begin proving that Uτ ∈ DO(2)×O(2). For every matrix A, let AT denote its

transpose.
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Let αi ∈ R, gi =
(
cosαi ∓ sinαi

sinαi ± cosαi

)
∈ O(2), i = 1, 2, and set g =

(
g1 0
0 g2

)
. We want to prove

that

(4.1)
ϕ(x)

ϕ
(
π
(
gπ−1(x)

))Uτ

(
π
(
gπ−1(x)

))
= g̃1Uτ (x)

provided
ϕ(x)

ϕ
(
π
(
gπ−1(x)

))U
(
π
(
gπ−1(x)

))
= g̃1U(x).

We compute the two sides of (4.1) separately. We use the convention that R3 = R3×1

and treat the scalar product in R3 as matrix multiplication.

As for the right-hand side we have

g̃1Uτ (x) =
g̃1

(
−x2
x1
0

)
U

T (x)
(

−x2
x1
0

)

(x2
1 + x2

2)
=

(
−x2 cosα1∓x1 sinα1
−x2 sinα1±x1 cosα1

0

)
U

T (x)
(

−x2
x1
0

)

(x2
1 + x2

2)

=
−x2U1(x) + x1U2(x)

x2
1 + x2

2

(
−x2 cosα1∓x1 sinα1
−x2 sinα1±x1 cosα1

0

)
.

Let us write π =
(

π1
π2
π3

)
. As for the left-hand side we have

ϕ(x)

ϕ
(
π
(
gπ−1(x)

))Uτ

(
π
(
gπ−1(x)

))

=
ϕ(x)

ϕ
(
π
(
gπ−1(x)

))

(
−π2(gπ−1(x))

π1(gπ−1(x))
0

)
U

T
(
π
(
gπ−1(x)

))( −π2(gπ−1(x))

π1(gπ−1(x))
0

)

π2
1

(
gπ−1(x)

)
+ π2

2

(
gπ−1(x)

)

=

(
−π2(gπ−1(x))

π1(gπ−1(x))
0

)
U

T (x)g̃1
T

(
−π2(gπ−1(x))

π1(gπ−1(x))
0

)

π2
1

(
gπ−1(x)

)
+ π2

2

(
gπ−1(x)

) .

Let us compute

gπ−1(x) =
1

|x|2 + 1

(
2x1 cosα1∓2x2 sinα1
2x1 sinα1±2x2 cosα1

2x3 cosα2∓(|x|2−1) sinα2

2x3 sinα2±(|x|2−1) cosα2

)
,

π
(
gπ−1(x)

)
=

1

|x|2 + 1− 2x3 sinα2 ∓ (|x|2 − 1) cosα2

(
2x1 cosα1∓2x2 sinα1
2x1 sinα1±2x2 cosα1

2x3 cosα2∓(|x|2−1) sinα2

)
,

U
T (x)g̃1

T =

(
U1(x) cosα1∓U2(x) sinα1

U1(x) sinα1±U2(x) cosα1

U3(x)

)T

,

U
T (x)g̃1

T

(
−π2(gπ−1(x))

π1(gπ−1(x))
0

)
=

2
(
∓x2U1(x)± x1U2(x)

)

|x|2 + 1− 2x3 sinα2 ∓ (|x|2 − 1) cosα2

and

π2
1

(
gπ−1(x)

)
+ π2

2

(
gπ−1(x)

)
=

4x2
1 + 4x2

2(
|x|2 + 1− 2x3 sinα2 ∓ (|x|2 + 1) cosα2

)2
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so for the left-hand side we have(
−π2(gπ−1(x))

π1(gπ−1(x))
0

)
U

T (x)g̃1
T

(
−π2(gπ−1(x))

π1(gπ−1(x))
0

)

π2
1

(
gπ−1(x)

)
+ π2

2

(
gπ−1(x)

) =
−x2U1(x) + x1U2(x)

x2
1 + x2

2

(
−x2 cosα1∓x1 sinα1
−x2 sinα1±x1 cosα1

0

)

and (4.1) holds.

Similar computations hold for Uρ. Finally, Uζ = U−Uρ −Uτ ∈ DO(2)×O(2). �

Note that E|DF
= L|DF

in view of Lemma 2.4, where L : D1,2(R3,R3) → R is defined as

L(U) :=
1

2

∫

R3

|∇U|2 dx− 1

6

∫

R3

|U|6 dx.

We set Y := DO(2)×O(2) ∩ F .

Lemma 4.4. Y is infinite dimensional.

Proof. Let e =
(
0 −1
1 0

)
∈ O(2) and

X :=
{
U ∈ DO(2)×O(2) : U(x1, x2, x3) =

u(x)

r

(
x1
x2
0

)
for some O-invariant u : R3 → R

}
,

Z :=
{
U ∈ DO(2)×O(2) : U(x1, x2, x3) = u(x)

(
0
0
1

)
for some O-invariant u : R3 → R

}
.

In order to prove that Y is infinite dimensional, we build an isomorphism between X and

Y and an isomorphism between X and Z. The conclusion will follow from the fact that

DO(2)×O(2) is infinite dimensional and that, in view of Lemma 4.3, we get the following

decomposition DO(2)×O(2) = X ⊕ Y ⊕Z.

Indeed, for every U ∈ X define Ũ(x) := U(ẽx). It is clear that Ũ ∈ Y and that U 7→ Ũ

is an isomorphism.

Now consider U ∈ X and let u : R3 → R be O-invariant such that U(x) = u(x)
r

(
x1
x2
0

)
.

Define U(x) := u(x)
(

0
0
1

)
. By similar arguments to those used in the proof of Lemma 2.4

it is easy to check that U ∈ D1,2(R3,R3). Finally, explicit computations show that U is

O(2)×O(2)-symmetric (hence U ∈ Z) and of course U 7→ U is an isomorphism. �

Proof of Theorem 1.5. Lemma 4.1 implies that Y ⊂ DF ; moreover Y is closed in D1,2(R3,R3)

and infinite dimensional by Lemma 4.4. Since U 7→ U

ϕ
◦ π is a linear isometry between

D1,2(R3,R3) and H1(S3,R3) and between L6(R3,R3) and L6(S3,R3), one easily checks that

E|DF
is invariant under the action of O(2)×O(2). Hence every U ∈ Y is a solution to (1.5)

if and only if it is a critical point of E|Y .

It is easy to see that there exists ρ > 0 such that inf{E(U) : U ∈ Y and |∇U|2 = ρ} > 0

and, in view of Lemma 4.2, that E|Y satisfies the Palais-Smale condition at every positive

level. Let E ⊂ Y be a finite dimensional subspace. Then the norms |∇(·)|2 and | · |6 are

equivalent in E. This implies that there exists R = R(E) > 0 such that E(U) ≤ 0 for every

U ∈ E with |U|6 ≥ R. Hence the conclusion follows from [22, Theorem 9.12] and by the

Palais principle of symmetric criticality [21]. �

Proof of Corollary 1.6. The proof follows from Theorems 1.5 and 2.1. �
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