Deterministic Sampling of Multivariate Densities
based on Projected Cumulative Distributions

Uwe D. Hanebeck
Intelligent Sensor-Actuator-Systems Laboratory (ISAS)
Institute for Anthropomatics and Robotics
Karlsruhe Institute of Technology (KIT), Germany
Uwe.Hanebeck@kit.edu

Abstract—We approximate general multivariate
probability density functions by deterministic sample
sets. For optimal sampling, the closeness to the given
continuous density has to be assessed. This is a difficult
challenge in multivariate settings. Simple solutions are
restricted to the one-dimensional case. In this paper, we
propose to employ one-dimensional density projections.
These are the Radon transforms of the densities. For
every projection, we compute their cumulative distri-
bution function. These Projected Cumulative Distribu-
tions (PCDs) are compared for all possible projections
(or a discrete set thereof). This leads to a tractable
distance measure in multivariate space. The proposed
approximation method is efficient as calculating the dis-
tance measure mainly entails sorting in one dimension.
It is also surprisingly simple to implement.

Index Terms—Multivariate probability density func-
tions, density (re)approximation, Cramér-von Mises
distance, Radon transform, deterministic sampling,
Dirac mixtures, recursive Bayesian filtering.

I. INTRODUCTION

Approximating a given probability density function by
another one is a ubiquitous problem. It arises when the
given density is too complex for further processing. This
could be caused by an undesired and complicated functional
representation. Even if the representation is of a desired
form, the number of parameters could be unnecessarily
large, e.g., Gaussian mixtures. Hence, the given density
representation has to be replaced by a more convenient
representation or one with less parameters.

Recursive Bayesian filtering is an important use case for
density approximation. For nonlinear system models, the
prediction step is usually infeasible for continuous prior
densities. Hence, an approximation of the prior by a set
of samples is often used instead. The filtering step entails
the product of the prior and a likelihood function. In some
cases, e.g., Gaussian mixture densities, this product leads
to an undesired exponential increase in parameters and
calls for regular reapproximation.

The given density and its approximation can both be
either continuous or discrete (over continuous domains).
This paper is on approximating a given continuous density
by a deterministic discrete density, see Fig. 1. The discrete
density is represented by a weighted set of Dirac delta
functions at specific locations. The deterministic sampling
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Fig. 1: Turquoise: Gaussian mixture with two components.
Orange: Dirac mixture approximation.

procedure includes the calculation of appropriate locations
and, if desired, also appropriate weights. In this paper, we
focus on equally weighted samples or a least on samples
with prescribed weights.

II. PROBLEM FORMULATION

The problem we solve in this paper is the systematic ap-
proximation of a given multivariate, non-Gaussian density

f(z) by a Dirac mixture density f(z), i.e., by a set of L
deterministic samples, given by

with given weights w; > 0, 25:1 w; = 1, and desired
locations #; € RY. N is the number of dimensions.

A

The locations are collected in an N x L matrix X =
(21, 8,...,2].

As we insist on a systematic approximation, we require
a rigorous distance measure between the given density f(z)
and its approximation f(x) to be minimized. As this entails
a comparison between a continuous and a discrete density,
finding an appropriate and feasible distance measure is a
major challenge. An overview of the current literature is
given in the next section.



III. STATE OF THE ART

We will now give an overview of the current state of the
literature on approximating given continuous probability
density functions by a set of samples. Most results are
available for Gaussian densities. Although we focus on the
non-Gaussian case, we will also review some literature for
Gaussians. We will focus on deterministic approximations.

Generating samples for a given probability density
function is usually performed by random sampling. This
is the simplest and fastest method and well-established
algorithms are available for that purpose. However, with
random sampling, samples are produced independently. As
a result, convergence of its statistics, such as the moments,

to the true values is slow so that many samples are required.

The independent generation of samples also leads to a
non-homogeneous coverage of the given density.

A. Deterministic Sampling: Moment-based Approaches

As an alternative to random sampling, deterministic
sampling methods have been proposed. Moment-based
approximations of Gaussian densities are the basis for
Linear Regression Kalman Filters (LRKFs) [1]. Examples
are the Unscented Kalman Filter (UKF) [2], its scaled
version [3], and its higher-order generalization [4]. These
methods are limited to a fixed number of samples per
dimension. An arbitrary number of deterministic samples
of a Gaussian density is provided by the spherical-radial
rule [5] for the so called cubature filter.

B. Deterministic Sampling: Distance-based Approaches

Instead of relying on moment relations that quickly
become intractable, distance-based approaches minimize an
appropriate distance measure between the given continuous
density and its discrete approximation. Distance-based
approaches have several distinct advantages: (1) Arbitrary

number of samples. (2) Homogeneous allocation of samples.

(3) Prioritization of density regions especially important
for further processing.

1) One-dimensional Densities: For one-dimensional (1D)
densities, the vast literature on 1D statistical tests can
be exploited. These are used for testing the hypothesis
that a set of samples have a certain density. Inverting

theses tests can be used to fit samples to a given density.

We will focus on one-sample tests that compare the
cumulative distribution function (CDF) of the continuous
density with the empirical distribution function (EDF) of
the samples. The Kolmogorov-Smirnov test [6] uses the
maximum between the CDF and the EDF, which is difficult
to optimize. Integral squared distances between CDF and
EDF were first considered by Cramér [7] and von Mises
leading to the Cramér-von Mises test. Several tests have
been developed on that basis, differing only in the weighting
function for the squared difference. One notable test is the
Anderson-Darling test [8].

Dirac mixture approximation (with equally weighted
samples) of continuous densities based on the Cramér-von

Mises criterion for the univariate case is proposed in [9)].
Optimizing both weights and locations is considered in [10].
Sequentially increasing the number of samples is the focus
of [11] and is applied to recursive nonlinear prediction in
[12].

2) Multivariate Densities: For N-dimensional (ND) den-
sities with N > 1, systematic approximations are much
harder to achieve. Cumulative distribution functions in
higher dimensions are difficult to calculate. In addition,
they are not unique [13]. This is in contrast to the univariate
case, where there are only two directions of integration for
obtaining the cumulative distribution function from the
density. The results of the two directions are dependent,
i.e., sum up to one. In higher dimensions, the number of
orderings of possible integration directions increases expo-
nentially with 2, where N is the number of dimensions.
2N — 1 of these distributions are independent [14, p. 617].
Selecting an arbitrary distribution from these possibilities
for density approximation typically results in a bias of the
estimated parameters [13].

In order to cope with the non-uniqueness, it has been
proposed in the context of multivariate statistical tests,
to consider all possible orderings [14, p. 617]. This can
easily be done in two or three dimensions [15]. For higher-
dimensional spaces, considering all ordering is impractical.

Instead of using the standard cumulative distribution
with its non-uniqueness issues, an alternative cumulative
transformation is introduced in [13]. Tt is called Localized
Cumulative Distribution (LCD). A distance measure is
then defined based on the LCDs of the two densities
to be compared. The LCD-based approach is used for
systematically approximating arbitrary multi-dimensional
Gaussian densities [16]. An improved method with better
numerical stability that exploits the symmetry of the
Gaussian density with symmetric samples is proposed in
[17]. For multivariate standard normal distributions, a more
computationally efficient scheme is presented that relies on
a subsequent transformation [18]. The LCD-based approach
provides very good approximations. However, for the case
of approximating continuous densities with Dirac mixtures,
closed-form solutions for the distance measure are only
available in special cases.

Comparing cumulative distribution functions is, of
course, not the only way to compare discrete densities
or continuous and discrete densities. Alternatives include
comparing characteristic functions [19] and using kernel
estimates. Kernel estimates of a discrete density are
exceptionally simple in the considered case of finding the
best-fitting discrete density for a given continuous density.
In that case, we use the fact that the density at a certain
sample location should be equal to the corresponding value
of the continuous density [20]. So called repulsion kernels
are employed at the sample locations. The induced kernel
density is then compared to the given continuous density
by means of, e.g., an integral squared distance [21]. For
given Gaussian densities that are approximated by Dirac



mixtures, a closed-form expression for the distance measure
is derived in [22]. A randomized optimization method is
then used for finding the optimal locations instead of a
quasi-Newton method in [21].

We have seen that the univariate case is significantly
simpler than the multivariate one. So it comes as no
surprise that many attempts have been made to reduce
the multivariate case to the univariate one:

o Approximation on Principal Azes: The first idea that
immediately springs to mind is to use 1D approxima-
tions on the principal axes of the given continuous
density. This is, of course, limited to densities where
principal axes can naturally be defined. This includes
Gaussian densities [23] in RY and the Bingham
distribution [24] defined on SV¥~1 c RY.

o Cartesian Products: For random vectors with indepen-
dent components, e.g., axis-aligned Gaussian densi-
ties, the N marginal densities can be approximated
independently. The N-dimensional Dirac mixture
approximation can then be obtained by a Cartesian
product of the individual marginal approximations.
An obvious disadvantage is that the total number of
samples is the product of the individual numbers of
samples, i.e., scales exponentially with the number of
dimensions N.

o One-dimensional Projections: General densities cannot
be represented by their marginals. This only holds for
densities that can be factorized. However, instead of
limiting projections to the coordinate axes as done
for the marginals, more projections onto different axes
can be considered. For representing arbitrary densities,
all possible one-dimensional projections have to be
considered. This is called the Radon transform of
the given density [25], [26], and [27] for the higher-
dimensional case. In [28], a multivariate Wasserstein
distance is constructed from Wasserstein distance
between 1D projections (called slices therein).

IV. RADON DENSITY TRANSFORM

In this section, we will represent /N-dimensional proba-
bility density functions via the set of all one-dimensional
projections, i.e., the Radon Transform [25], [26].

We consider the linear projection » = u' & of a random
vector & € RN to a scalar random variable 7 € R onto
the line described by unit vector u € SV~1. Given the
probability density function f(z) of the random vector x,
the density f,(r|u) of r is given by

fr(r|u) = . f)s(r—u"t)de .

fr(r|u) is the Radon transform of f(z) for all u € SN—1
see Fig. 2. For the Dirac mixture approximation in (1), the
Radon transform is given by

L
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Fig. 2: Visualization of Radon transform.

where 7;(u) = QT@Z-, i = ., L are the projected
Dirac locations. We collect_l_these locations in a vector
P= [ (), Po(u),. .., r(u)]

For Gaussian densities f(z) with mean vector Z and
covariance matrix C,, the density f,.(r|u) resulting from
the projection is also Gaussian. Its mean is given by #(u) =
u'2 and its standard deviation by o, (u) = \/u' C,u. For
an N-dimensional Gaussian mixture density f(z) with M
components, means £;, and covariance matrices C; ;

1
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the density f,.(r,u) is also a Gaussian mixture. Due to the
linearity of the projection operator, it is given by

_1(7'—7%(2))2
Zwlmomue"p 2 07w )

Vu'Cpiu,i=1,..., M.

V. UNIVARIATE DIRAC MIXTURE APPROXIMATION

frlr]u) =

with 7;(u) = u' 2, and ori(u) =

In this section, we consider one-dimensional Dirac mix-
ture approximation. The one-dimensional approximation
then serves as the basis for the N-dimensional approxima-
tion in the next section.

A. Distance Measure

The approximating density is given by the 1D Dirac
mixture approximation

E w; 0(x — &)

with weights w; > 0 that sum up to one and loca-
tions z; € R. The locations are collected in a vector
z = [i:l,a?;g,...,:%L]T. For rating the goodness of fit of
f(z| ) to the given continuous density f(x) we compare
their cumulative distribution functions rather than their
densities. For the Dirac mixture approximation f(x|z),
the cumulative distribution function is given by
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F(z|z)=



where H(.) is the Heaviside function given by

z 0 =<0
:/ dt)ydt=<3 =0
o 1 >0

As a distance measure, we use the integral squared distance
between the cumulative distribution function F(z) of the
standard normal distribution and the cumulative distribu-
tion function F(z |Z) of its Dirac mixture approximation

B. Minimizing the Distance Measure

The gradient of the distance measure D(Z) is given by

. . 0D(Z

G(2)=VD(z) = a; )
_ [aD@ oD (@) aD@)}T
82&1 ? 8922 ) ? alfL
with
D(7 ~
0 @ = zw,»/ [F(t)— F(t|2)] 6(t — 2;)dt

0t R

= 2w; [F (&) — F(&; | )]

The empirical cumulative distribution function evaluated
at location Z; is given by

F(z;|2) =

The Hesse matrix is given by

02 A A2 /A 29/ A
H(@:diag([d D(2) daf%é@,...,@ag%ﬁ)}) ,

)
oy

where
D)

072

D(& ) is obtained iteratively using New-

The minimum of
ton’s method

Az =-H'(2)G(2)

&>

starting with an initial location vector. When the location
vector Z is sorted, i.e., 1 < T3 < ... < I, the expression
H(#; — ;) in (2) gives

0 i<j
H(@ —2) =L i=j
1 0>

As a result, F'(&;) can be written as

—|—Zw] .

For equally weighted samples, i.e., w; = 1/L, the expression
can be simplified to

F(#;]12) =

1 1

21 —1
+(i— l)L .

F@il2) = op 2L

VI. MULTIVARIATE DIRAC MIXTURE APPROXIMATION

We are now given the three main ingredients: (1) We can
represent a multivariate probability density function by its
one-dimensional projections, see Sec. IV. (2) We have a
mechanism for calculating a distance measure between a
one-dimensional continuous density and its Dirac mixture
approximation, see Subsec. V-A. (3) We can minimize
this distance measure with a Newton-like method, see
Subsec. V-B.

Based on these three ingredients, we will now assemble
a multivariate distance measure between two continuous
and/or discrete probability density functions. This entails
the following seven steps.

Step 1 (1D Projections via Radon Transform): The
given density f(z) and its approximation f(z) are repre-
sented by their Radon transforms f(r|u) and f(r|u), i.c.,
by their 1D projections onto unit vectors u € SV—1.

Step 2 (1D Cumulative Distributions): Based on the
Radon transform f(r |u), we calculate the one-dimensional
cumulative distributions of the projected densities as

F(r@:[ Ft|w)dt

For a Dirac mixture approximation, the cumulative
distribution function of its Radon transform is given by

-y

Step 8 (1D Distance): For comparing the one-
dimensional projections, we compare their cumulative
distributions F(r|w) and F(r|#,u) for all u € SN, As a
distance measure we use the integral squared distance

r—7i(u )) .

Dy (i) =/R[F(T|u)—F(T|f,u)]2 dr .

This gives us the distance between the projected densities
in the direction of the unit vector w for all u.

Step 4 (1D Newton Step): The Newton step from
Subsec. V-B can now be written as

A7(7,u) = ~H (2, u) G(P, u)
with
A dDi(#,u)  OD(,u) oDy (#,u)]"
G e
(,u) o, or 0 of
and
OD\EY) _ g, (B (s ) — F(f |710)]

or;
The Hessian H(#,u) is given by

H(#, u) = 2diag ([wif(F1 |w), waf(f2|w), ..., wrf(ir|w)])



and the resulting Newton step is
[ E(1 [w)=F (i1 |7w) |
fP1|w)
F(f2 |w)—F(f2 ] 7,u)
(P2 | w)

AP (P u) = —

F(ir |w)—F(fr | #u)

GARD)

Step 5 (Backprojection to ND Space): For a specific pro-
jection vector u, we obtain a Newton update A7 (#,u). By
means of a backprojection into the original N-dimensional
space, this update can be used to modify the original Dirac
locations in the direction along the vector u. For every
location vector Z; we obtain

Az;(u) = A (r;,u) - u .

Step 6 (Assemble Multivariate Distance): The indi-
vidual 1D distances D1 (#,u) can be assembled to form a
multivariate distance measure by integrating over all 1D
distances depending on unit vector u

1
Ax

Ap is the surface area of the (hyper)sphere SV ~! embedded
in RY. Plugging in D;(r,u) from (3) gives

AN/§,N / (rlu) -

which is a generalized Cramér-von Mises distance.

Step 7 (Perform Full Newton Update): A full Newton
update can now be performed by integrating over all partial
updates along projection vectors u

. 1
AZ; = i
In a practical implementation, the space containing
the unit vectors u has to be discretized. Two options
are available for performing the discretization: (1) Deter-
ministic discretization, e.g., by calculating a grid or (2)
random discretization by drawing uniform samples from
the hypersphere. In both cases, we consider K samples 4,
and the integration reduces to a summation

Dn(X) = Dy (7, u)du .

SN-1

Dn(X F(r|#,u)]® drdu

AZ;i(u) du

SN—-1

SN—l

K
1
Az, =~ }ZA@@@) fori=1,2,...,L .
i=1
Given initial locations for the sample locations, full Newton
updates are performed until the maximum change over all
location vectors falls below a given threshold.

VII. NUMERICAL RESULTS

We focus on 2D examples for visualization purposes. The
Dirac mixture approximation with L = 50 components
of a Gaussian mixture with two components with equal
weights, different means, and identity covariance matrices
is shown in Fig. 3. The results for zero means and different
covariance matrices are shown in Fig. 4.
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Fig. 3: Dirac mixture approximation with L = 50 components
of Gaussian mixture with two components.
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Fig. 4: Dirac mixture approximation with L = 50 components
of Gaussian mixture with two components.



VIII. CONCLUSIONS

This paper proposes a new integral transformation
of probability density functions (PDF). The so-called
Projected Cumulative Distribution (PCD) is used for char-
acterizing both continuous and discrete random variables.
It is a convenient alternative to the standard cumulative
distribution function (CDF). In multivariate settings, the
CDF is non-unique, difficult to calculate, and asymmetric.
This leads to various problems when used in density
comparisons. The PCD does not suffer from these problems,
can be efficiently calculated, and is simple to implement.

For comparing two densities, a generalized Cramér-
von Mises distance between their two PCDs is derived.
For a given continuous density f (z), its Dirac mixture
approximation f(z) is then obtained by minimizing the
distance measure with respect to its Dirac locations.
Minimization is performed by combining Newton updates
from all (discrete) projections.

The proposed density approximation is parallelizable.
The combined Newton step can be performed in parallel
for each projection.
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