Hyperspherical Deterministic Sampling
Based on Riemannian Geometry for
Improved Nonlinear Bingham Filtering

Kailai Li, Florian Pfaff, and Uwe D. Hanebeck
Intelligent Sensor-Actuator-Systems Laboratory (ISAS)
Institute for Anthropomatics and Robotics
Karlsruhe Institute of Technology (KIT), Germany
kailai.li@kit.edu, florian.pfaff@kit.edu, uwe.hanebeck @ieee.org

Abstract—We present a novel geometry-driven scheme for
generating equally weighted deterministic samples of Bingham
distributions in arbitrary dimensions. Unlike existing approaches,
our method provides flexibility in the sampling size with samples
satisfying requirements of the unscented transform while ap-
proximating higher-order moments of the Bingham distribution.
This is done by first using Dirac mixture approximation as a
sampling scheme on the tangent plane at the mode with respect to
the Bingham density via gnomonic projection. Subsequently, the
tangent sigma points are retracted backwards to the hypersphere,
after which an on-manifold moment correction is performed
via Riemannian optimization. The proposed approach is further
applied to quaternion Bingham filtering for recursive orientation
estimations. Evaluation results show that the geometry-adaptive
sampling scheme gives better tracking accuracy and robustness
for nonlinear orientation estimations.

I. INTRODUCTION

Recursive orientation estimation plays a crucial rule in
various applications such as robotic pose estimation [1]-[3],
localization and mapping [4] as well as multilateration [5], etc.
However, due to the inherently periodic and nonlinear structure
of the special orthogonal group SO(3), robust and accurate
orientation estimations are nontrivial. Moreover, various options
for parameterizing orientations exist. The Euler angles, for
instance, enable minimal representations. However, they suffer
from ambiguity caused by gimbal lock. The well-known
3 x 3 rotation matrices eliminate the ambiguity via over-
parameterization, but introduce a high degree of redundancy
(9 elements used for representing 3 DoF), potentially causing
numerical instabilities. In contrast, unit quaternions parame-
terize the spatial orientation without ambiguity and with only
one degree of redundancy. Thus, they have been employed for
pose representation in various robotic tracking tasks [6], [7].

As unit quaternions are located on the hypersphere S3,
conventional quaternion filters for orientation estimations rely
on local linearizations of the nonlinear manifold (e.g., via Lie
algebra) [7]. However, this is based on the assumption of local
perturbations and might be error-prone for fast rotations under
large uncertainty and nonlinearity. By utilizing distributions
from directional statistics [8], recent efforts were dedicated
to model the uncertainty of unit quaternions directly on

the hypersphere without local linearization. For instance, the
Bingham distribution on S? inherently enables the on-manifold
modeling and filtering of unit quaternions for orientation
estimations [9]-[11].

However, filtering approaches using the Bingham distribution
usually rely on sampling-approximation schemes, in which
the approximation is based on the second-order moment
matching [9], [12]. Compared to random sampling schemes,
deterministic approaches guarantee reproducible results and are
in general more efficient [13]. Taking the idea of the unscented
transform (UT) [14], the conventional unscented quaternion fil-
ter uses sigma points that approximate the Bingham distribution
up to the second order. However, the fixed and limited sample
size! might pose risks for performing filtering under large
uncertainty and nonlinearity due to the sample degeneration
issue [12]. Therefore, we need more samples drawn adaptively
according to the information geometry of the underlying density
while satisfying requirements of the UT for moment matching.
Moreover, samples with uniform weights are preferred as they
can equally contribute during the nonlinear filtering.

In order to flexibly generate a given numbers of samples
in the sense of information geometry [15] for nonlinear
filtering, efforts were first devoted to Gaussian distributions
in the Euclidean space through Dirac mixture approximation
(DMA) [16]-[18]. The basic methodology here is to minimize
a certain distance measure between the Dirac mixture density
described by the samples and the underlying density under
the constraint of second-order moment. The sampling scheme
is then formulated as a constrained optimization problem
and solved by using standard optimizers (e.g., quasi-Newton
method). In [18], samples were drawn in the principal axes for
DMA by minimizing the Cramér—von Mises distance. In [19], a
modified Cramér—von Mises distance adapted to the localized
cumulative distribution (LCD) was proposed for the DMA
of multivariate Gaussian distributions. Here, the deterministic
samples are not restricted to the principal axes but can be
drawn in the entire domain.

'In the context of unscented orientation filtering, 3 and 5 samples are drawn
on S' (planar case) and S® (spatial case), respectively.



Driven by hyperspherical geometry, the first geometry-
adaptive sampling scheme for the Bingham distribution was
proposed in [20]. Though improved accuracy and robustness
have been shown for nonlinear orientation filtering, the samples
are still drawn in the principal directions. In this paper, we
propose a novel hyperspherical sampling scheme to better
approximate higher-order moments of the Bingham distribution.
Here, we apply the LCD-based Dirac mixture approximation
as a sampling scheme on the tangent plane at the mode with
respect to the underlying Bingham density via the gnomonic
projection. The tangent sigma points are then retracted to the
manifold followed by a moment correction of the second order
to satisfy requirements of the UT. The moment correction is
formulated as a manifold optimization problem and solved
by the Riemannian steepest descent algorithm [21]. More
specifically, we summarize our main contributions as follows:

o A generic deterministic sampling scheme is proposed for
Bingham distributions in arbitrary dimensions with equally
weighted samples of flexible size.

e The samples drawn on the hypersphere (not only in
principal directions) satisfy requirements of the unscented
transform and give approximation to higher-order mo-
ments of the Bingham distribution.

o By using the proposed sampling scheme, better accuracy
and robustness are shown in nonlinear Bingham filtering
for orientation estimations.

The remainder of the paper is structured as follows. In Sec. II,
preliminaries about quaternion-based orientation representation
and the Bingham distribution as well as the LCD-based DMA
are introduced. In Sec. III, we propose the novel deterministic
sampling approach for the Bingham distribution based on
Riemannian geometry. The proposed sampling scheme is further
evaluated for nonlinear Bingham filtering in Sec. IV. The work
is finally concluded in Sec. V.

II. PRELIMINARIES
A. Unit Quaternion Parameterization for Spatial Orientations

By convention, orientation states belonging to the special
orthogonal group SO(3) can be represented by the unit
quaternion as follows

x = [cos(6/2), u sm(9/2)] (1)

with the unit vector u being the rotation axis and 6 the rotation
angle. Any vector v € R? can be rotated around axis u of
degree 6 by (1) according to

V=xQux",
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with ® denoting the Hamilton product and x* the conjugate
of x [5], [22], namely? x* = diag(1,—1,—1,—1)x. Unit
quaternions are thus naturally located on the hypersphere
S3® ¢ R* because of the unit norm constraint. Furthermore,
two antipodal quaternions on the hypersphere, i.e., x and
—x, denote the same rotation as shown in (2). Therefore, a

2diag(-) maps each entry to the diagonal element of the diagonal matrix.

density f for stochastically modeling uncertain unit quaternions
should be antipodally symmetric on the hypersphere, such that

fx) = f(=x).

B. Bingham Distribution

Intuitively, the Bingham distribution on S™ can be derived
by constraining a zero-mean Gaussian distribution of R**! on
the hypersphere followed by a re-normalization. Traditionally,
it is defined as follows

f8(x;Z,M) = exp (XTM ZMTX) ,xes", (3

1
N(Z)
with the diagonal matrix Z determining the concentration
as well as the normalization constant N(Z), and the real
orthogonal matrix M controlling the orientation of the dis-
tribution on the hypersphere S C R™*!. The parameters Z
and M can be derived via eigendecomposition of a negative
semidefinite matrix Cg € R("+1)x(n+1) - Afterwards, elements
of Z are by convention adjusted in ascending order, namely
Z = diag(z1,...,2n,20), With 21 < ... < 2z, < 20 < 0,
followed by a reordering of the column vectors in M accord-
ingly. The mode of the Bingham distribution is thus denoted
by the last column of M as it corresponds to the largest
eigenvalue in the space R™*!. Furthermore, the Bingham
distribution is inherently antipodally symmetric on S™ since
fs(x) = fs(—x). For orientation estimations using unit
quaternions, the Bingham distribution on S® and S' can
therefore be employed for stochastic modeling uncertain spatial
and planar orientations, respectively.

C. Dirac Mixture Approximation for Multivariate Gaussian
Distribution Based on the Localized Cumulative Distribution

In [19], [23], multivariate Gaussian distributions were
approximated with the following Dirac mixture

(x) = > wi - o

with 6(-) being the Dirac delta function. Here, x; denotes
the location of each Dirac component and w; € [0,1] the
weighting factor of each sample (for uniformly weighted
samples w; = 1/m). For an arbitrarily given probability density
function g : R™ — R, its localized cumulative distribution
(LCD) is defined as follows

F(r,b) = /n g9(x) - k(x —r,b)dx

with k(x — r,b) denoting a suitable kernel (symmetric and
integrable) that locally measures the density at m in a range
of b. In [19], [24], axis-wise separable kernels were used, i.e.,

HK 7"’“ l I

with each kernel suggested to be of Gaussian type with isotropic
dispersion (b can be written as a scalar value), thus
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Fig. 1: Illustration of the proposed deterministic sampling approach on unit circle S*. Here, a Bingham distribution with Cs = —diag(1,5)
is used and m = 10 samples are drawn with the following procedure: (a) On-tangent-plane deterministic sampling using the LCD-based
DMA to the approximated projected density (Alg. 1, line 5), (b) gnomonic retraction of the tangent sigma points after rescaling (Alg. 1, line
7-8), and (c) on-manifold second-order moment correction (Alg. 1, line 10). The proposed RSS approach can therefore guarantee the first two
moments while approximating higher-order moments of the Bingham distribution.

Based on the LCD defined in (5), a modified Cramér—von
Mises distance is proposed to measure the distance between
the Dirac mixture f(x) given in (4) and the underlying
Gaussian distribution f(x). This distance measure is given
in the following form

D= | w) / (ﬁ(r,b) - f(r,b)) drdb,

with F(m, b) and F(m, b) being the LCD of the underlying
Gaussian distribution and the Dirac mixture, respectively. Here,
w(b) is a weighting function determined by the range factor
for the kernel and is given by

{ b b e [0, by |

(6)

w(b) =
0, elsewhere
As proposed in [19], the Dirac mixture approximation to a
multivariate Gaussian distribution can thus be formulated as a
constrained optimization problem, where the distance measure
in (6) is minimized and the second-order moment constraint
should be satisfied.

The aforementioned LCD-based DMA for multivariate
Gaussian distribution can be efficiently done with closed-
form gradient and error term in either an online or offline
manner [19]. In this way, deterministic samples of arbitrary
size that satisfy the second-order moment constraint and
approximate the higher-order moments can be generated. For
nonlinear recursive estimation in the Euclidean space, the LCD-
based adaptive sampling scheme has facilitated the development
of trackers with better accuracy and higher robustness [25].

III. RIEMANNIAN SPHERICAL SAMPLING (RSS)

For the DMA-based sampling approach, a proper kernel
function should be defined on the domain of the distribution,
based on which a certain error metric between the Dirac
mixture and the underlying density can be formulated and
minimized [17], [19]. However, this scheme cannot be trivially
applied on manifolds. The kernel function used to evaluate
the density in the Euclidean space is normally an isotropic

Gaussian. On the hypersphere, the Gaussian kernel should
be modified according to the geometric structure of the
nonlinear domain. A Bingham or von Mises—Fisher kernel
can be employed for this purpose. However, the subsequent
error metric formulation normally refers to an integral on
the nonlinear domain. For Bingham distributions, this boils
down to an integral over the hypersphere, which leads to a
similar or even larger computational cost than calculating the
normalization constant [26]. This is, obviously, against the
spirit of pursuing good efficiency via deterministic sampling
for recursive estimations.

In order to alleviate the computational burden, we exploit
hyperspherical geometry to enable the LCD-based DMA on
the tangent plane at the Bingham mode. As pointed out in [20],
projections or the logarithm map can be employed to derive
the on-tangent-plane density from the underlying hypersphere.
We hereby apply the gnomonic projection [27], as it results in
unbounded domain of the projected Bingham density on the
tangent plane. This is coherent to the definition of the LCD
and paves the way to retract tangent sigma points back to the
hypersphere.

A. Gnomonic Projection

As the parameter matrix M of the Bingham distribution in
(3) is orthogonal, the first n columns of matrix M provide
an orthonormal basis of the tangent plane at the mode of the
Bingham distribution, namely

TmS™ = span{my, ..., m,},
with M = [my,...,m,,m] € R®+Dx("+D and m being
the mode. For better readability, we denote the tangent local
basis as E = [my,...,m,] € RO*+D*" guch that M =

[E,m]. For any x, € T,,,S™ C R", its coordinate expressed

in the local basis E is thus
il = ETXt .

)

For any x € S™, it can be mapped from the hypersphere to
the point x; on the tangent plane via the gnomonic projection
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(a) Bingham dlstrlbutlon on St (left) with Ci = diag(1,5) and on S? (right) w1th Cp = diag(1, 5 5).

E=24x10"1
m =50
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=30
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(b) Bingham dlstrlbutlon on S! (left) with Cz = diag(1,10) and on S? (right) with Cz =

=

E=57x10"12
m = 50

£ =5. 8 x 10712
=30
(c) Bingham distribution on St (left) with Cg = diag(1, 30) and on S? (right) with Cp = diag(1, 5, 40).

Fig. 2: Deterministic sampling results given by the proposed approach for different parameter configurations.

E=5.7x10"13
m =10

Pm : S™ — Ti,S™ [20]. Its inverse operation is essentially a
retraction that project x; from the tangent plane back to the
hypersphere, namely Ry, : TmS™ — S™, according to

X + m
Rm(Xt) = —/— . 8
(x0) e ®)

B. On-Tangent-Plane Approximation to On-Manifold Density

In order to perform LCD-based DMA on the tangent plane
at the mode, we use the gnomonic projection to map the

density from the hypersphere to the tangent space at the mode.

We therefore substitute x in (3) by its projected point via
the gnomonic retraction given in (8), such that the projected
Bingham can be derived as follows

f(x) = fB(Rm(x))

(x¢+m) " MZMT (x, +m)
{ 1+ [Jx|? }
XIMZMTXt}

L[]

- N<1Z> eXp{

As the last column of M is orthogonal to the tangent plane
Tp,S™ and the last diagonal element of Z is set to be zero,
we can reformulate the Bingham density under gnomonic

E=28x%x10"12 £=46x10"" £=21x10"1
m =50 m = 200 m = 500

diag(1,5,10) .

E=19x1071 £=32x10"" £=42x10"
m = 50 m = 200 m = 500

projection with respect to the local coordinate on T,,S™ into
the following form

N 1 % Z % } _

X)) = —€expy ———5 ¢, With

f&) =3 {1+letll2 ©)
%, =E'x eR", Z =diag(z1,...,2,) € R™*".

Here, 3 = N(Z) denotes the Bingham normalization constant.
The function in (9) provides the density value at X; according
to the underlying Bingham on the hypersphere via the gnomonic
projection. However, to perform deterministic sampling using
the LCD-based DMA approach introduced in Sec. II-C, the
density should be converted to or approximated by a Gaussian
distribution. Essentially, the denominator in (9) denotes the
squared cosine of the angle induced by the projection line,
namely cos(a)? = 1/(1+ ||%]|)?, with & = x"m. By apply-
ing Taylor expansion to «, the density can be approximated
by f(%) ~ gexp{X Z%}. This density can be further
converted into an isotropic zero-mean Gaussian by imposing
the normalization constant /3 to be equal to the covariance

BZ/n
2m

such that 8 = (/det(27€2). We can therefore perform the
LCD-based sampling approach introduced in Sec. II-C to

o="_1, (10)
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Fig. 3: Samples (red dots) given by the proposed approach for the
Bingham distribution on S with Cp = diag(1,5,5,5). We draw
random samples (blue dots) to illustrate the density. For the purpose of
visualization, both the deterministic and random samples are mapped
to the tangent plane T, S® via the spherical logarithm map [28].

generate sigma points o, from A(0, ) through the following

substitution
/ 2/n
u = — B Zt it .
™

C. On-Manifold Moment Correction

To obtain deterministic samples on the hypersphere S™, the
sigma points {0’; J—y generated with respect to the local basis
on T,,S™ should be first converted to global coordinates and
then undergo the gnomonic retraction

Ea}—l—m

(1)

oj=Rm(Eo}) = (12)

L+ [lol”

However, these raw retracted points do not necessarily satisfy
the requirements of the unscented transform. Here, the first
moment (zero) can be easily maintained by mirroring the
samples to the opposite hemi-hypersphere. The second-order
moment, however, should be explicitly corrected. In [25], [29],
the moment correction was done by applying a Cholesky
decomposition to the covariance. This correction method works
efficiently for the Euclidean space but cannot be trivially
applied to nonlinear domains. In the case of Bingham sampling,
the samples should always be located on the hypersphere S™
before and after the correction. The transformation given by
the Cholesky decomposition, however, cannot guarantee the
additional constraints imposed by the curved manifold structure.
We therefore propose to formulate the moment correction as
the following optimization problem

2

{0}/, = arg min

{‘7.7’}?:1

)

F (13)

1

-
—0o;0; —covg
m 7Y

st. o;€S",j=1,...,m,

where the distance between the covariance of the sigma points
and the Bingham second-order moment is minimized in the
sense of least Frobenius norm.

The objective function in (13) is non-convex and normally
has multiple global minima especially for large sample sizes.
Applying standard solvers for constrained optimization prob-
lems (e.g., with a Lagrange multiplier) usually shows non-ideal
convergence behavior. We therefore employ the Riemannian
optimization approach [21], in which the manifold structure

Algorithm 1 Riemannian Spherical Sampling

procedure RSS (fp,m)

1: n + getHypersphereDimension ( fg) ;

2: B «+ getNormalizatonConstant (f5) ;

3: E « getLocalCoord (f5) ;

4 Qe 201 ) see (10)

5: {u;}7, < LCD-DMA (N (0,9),m);
6: for j =1 to m do

7 L tuys M see (11)
8 o= Rm(EO';-); /] see (12)

9: end for

10: {0}, < momentCorrection ({o7;}2;);
11: return {o;}7",

t —
0'j<—

/l see (13)

end procedure

is explicitly considered in each iteration. As Riemannian
optimizers are geometry-aware, a better convergence speed
and robustness can be expected [21].

Moreover, to let the samples after moment correction
maintain the higher-order shape information given by the LCD-
based DMA as much as possible, the location change of each
sample due to the correction should also be restricted. We
thus recommend to use the Riemannian steepest descent (RSD)
algorithm with raw retracted sigma points as the initialization.
Another solution to overcome convergence to a global minimum
of large distortion is to add a penalty term to (13), such that

2 m

n 1
(o)) = | ove)

F =1
The second term in the equation above denotes a scaled (by \)
average location change on the hypersphere compared with the
initialization. For this penalty term, the distance metric from
von Mises-Fisher distribution is used?. Fig. 5 further illustrates
the effect given by different combinations of objective function
formulations and Riemannian optimizers. Here, the Bingham
distribution is parameterized by Cp = —diag(1,8,70) and
m = 150 samples are first drawn on the tangent plane T,,S?
using the LCD-based DMA introduced in (III-B). All the
combinations converge to numerically global minima defined
in (13). When using the Riemannian trust region approach for
on-manifold moment correction, a penalty term is needed in
the objective function. However, this is not necessary when
applying the RSD, as samples are updated with limited location
changes in each iteration, where only the nearest local minimum
is to be reached given the gradient descent direction.

D. Implementation

The proposed sampling scheme is summarized in Alg. 1 and
illustrated in Fig. 1 with an example on the unit circle S*. We
employ The Nonlinear Estimation Toolbox [30] for efficient on-
tangent-plane deterministic sampling via the LCD-based DMA

30bviously, other metrics (e.g., Euclidean distance) can be also employed.
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Fig. 5: Illustration of moment correction approaches using different
combinations of objective functions and Riemannian optimizers: (a)
trust region method without penalty, (b) trust region method for

penalized objective function, and (c) steepest descent without penalty.

The residual value £ after correction is defined in (13).

introduced in Sec. II-C. The on-manifold moment correction
is performed by employing the manifold optimization toolbox
Manopt [31], where the RSD algorithm is used with retracted
tangent sigma points as the initialization. In this way, the
optimization-based correction can quickly converge to a global

minimum that leads to little distortion of higher-order moments.

We use the following example to show the performance of
the proposed Riemannian spherical sampling (RSS) approach
under different configurations.

Example III.1 We apply the RSS for Bingham distributions
of different dimensions with various parameter matrices Cg
introduced in Sec. II-B and sample size m as follows.
o St: parameter Cz = —diag(1,a) with a = 5,10, 30 and
sample size m = 10, 30, 50.
o S2: parameter Cp = —diag(1,5,a) with a = 5,10,30
and sample size m = 50,200, 500.
o S3: parameter Cz = —diag(1,5,5,5) and sample size
m = 50,200, 500.
Fig. 2 shows the sampling results given by the proposed
approach on S' and S? and results for S® are shown in Fig. 3.
For varying dimensionality and parameter configurations,
the proposed sampling approach can generate deterministic
samples maintaining the second-order moment (denoted by
&) while being adaptive to the higher-order moments of the
Bingham distribution.

IV. EVALUATION

We integrate the proposed deterministic sampling approach

into the nonlinear Bingham filter for orientation estimation.

Here, the system model is set up as

Xp = Xp—1 @ Ugp_1 @ Wg_1, (14)

with x;,, uy, wy € S® denoting system state, input and noise
represented by unit quaternions, respectively. The system
noise is assumed to be Bingham-distributed with a mode at
[1,0,0,0] . The measurement model is given as

2y = Xk @ ng @ Xy, + Uy, 15)

== = ground truth

........

Fig. 6: A representative result of the orientation estimation given by
Bingham filters using the sampling approach of the RSS and the one
only satisfying the requirement of UT [12]. Here, 100 deterministic
samples are drawn by the RSS, whereas the UT-based sampling
approach has a fixed sample size of 7. The estimates are visualized
as trajectories on the unit sphere S2.

which is the orientation z,, rotated from the initialization ny,.
We assume the noise v, € R3 to be additive and follow a
zero-mean Gaussian distribution, i.e., v, ~ N(0, €,).

As proposed in [5], [12], for quaternion Bingham filtering,
the prediction step can be performed via the composition of
Bingham distributions. For the non-identity measurement model
in (15), the posterior is normally approximated from the prior
samples that are reweighted according to the likelihoods

fzrlxe) = fo, (2x — Xk @1 @ X},) .

It can therefore be risky to rely on a small number of samples
for performing the update step. For instance, the UT-based
approach from [12] can only generate seven samples, which
can easily degenerate after the reweighting. A typical method
to overcome the sample degeneration issue is to apply the
progressive update step [5], [33], which gradually fuse the
measurement with the prior. However, the existing progressive
Bingham filter [5] still relies on the UT-based deterministic
sampling approach, leading to an ineffective progression step
as the non-mode samples can also easily degenerate. For the
following evaluation cases, we apply the proposed Riemannian
spherical sampling (RSS) approach in a simple sampling-
approximation Bingham filtering scheme (without progressive
update) for spatial orientation estimation. For each of the cases,
we perform 100 Monte Carlo runs of 50 time steps.

First, we evaluate the proposed RSS-based Bingham filtering
in comparison with the unscented Bingham filter (UBF)
from [12] and the progressive UBF from [5]. Here, the system
noise w is Bingham-distributed with the parameter Cp =
—diag(1, 10, 10, 10) . The additive measurement noise follows
zero-mean Gaussian distributions with different uncertainty
levels of 2, = a x diag(1, 10,10) , where a = 107! ,1072 and
10~*. We use m = 100 deterministic samples for the RSS-
based filter. As shown in Fig. 7, for all levels of measurement
uncertainties the proposed approach shows better tracking
accuracy than the other two existing approaches. Specifically,
for low measurement noise, where samples are prone to
degenerate due to the peaky likelihood function, the UT-based
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Fig. 8: Evaluation of Bingham filtering for orientation estimation using the proposed deterministic sampling approach with different sample
sizes (shown by box plot of MATLAB). The proposed RSS shows improved tracking accuracy and higher runtime with increasing sample
size. Compared with the Bingham particle filter [32] (using 2000 random samples, shown as Rnd-2000), the proposed RSS enables good

combination of tracking accuracy and efficiency.

approach almost totally failed with several outliers showing
large error. However, the Bingham filter based on the proposed
sampling approach works robustly and most accurately. Fig. 6
further shows an example of the visualized tracking result given
by Bingham filters based on different sampling approaches.

Second, we evaluate the proposed RSS-based Bingham
filtering with different sample sizes of m = 20,50,100
under medium measurement noise. Additionally, we employ
a naively implemented particle filter based on 2000 random
samples [32] as a reference. Fig. 8 shows that the RSS-based
Bingham filter improves tracking accuracy with larger size of
deterministic samples. Due to the online optimization-based
sampling scheme, the RSS-based Bingham filter shows worse
efficiency with larger sample size. Compared to the Bingham
particle filter with 2000 samples, the RSS-based Bingham filter
with 100 deterministic samples gives accurate enough results
with much less runtime.

V. CONCLUSION

In this paper, we introduced a novel deterministic sampling
approach that can be applied to Bingham distributions in
arbitrary dimensions for any given sample size. Unlike existing
sampling schemes, the proposed approach satisfies requirements
of the unscented transform (preserve the first two moments)

and approximates the higher-order moments of the Bingham
distribution with samples drawn on the hypersphere. Therefore,
our novel approach enables improved nonlinear Bingham
filtering for quaternion-based orientation estimations.

However, there is still much potential to exploit for the
presented work. The proposed sampling scheme gives DMA
to an on-tangent-plane Gaussian distribution, which is an
approximation of the true projected Bingham density. It is
thus valuable to further investigate the difference between
drawing samples from the approximated density and the true
one. Moreover, by applying the proposed sampling approach
to the Bingham-based pose filtering frameworks [4], [6], [34]-
[36], a better performance regarding the tracking accuracy,
efficiency, and robustness can be expected.
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