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Abstract—While estimation problems on periodic manifolds
are inherently nonlinear, filters can benefit from the boundedness
of the domain. In this paper, we describe how densities on the
unit circle are represented in four recently proposed filters that
take advantage of the finite size of the domain. Specifically,
we address representations based on trigonometric polynomials,
piece-wise constant functions, and probability mass functions.
Further, we propose a novel filter based on function values on
a grid. To provide a continuous density function, we propose
two interpolations. The first involves a trigonometric polynomial
with the function values at the grid points. The second ensures a
nonnegative approximation of the density by interpolating the
square roots and then squaring the interpolation. Prediction
and update steps are provided for the filter, both of which are
independent of the interpolation employed. In an evaluation of the
accuracy of the resulting probability density, the newly proposed
filter outperforms the filter based on piece-wise constant functions
and achieves results comparable to those of the previously
proposed filters based on trigonometric polynomials.

Index Terms—Directional estimation, Fourier series, grid filter

I. INTRODUCTION

Recursive Bayesian estimation is a wide field covering
estimation problems of various degrees of difficulty. While the
general nonlinear estimation problem remains a great challenge,
an increasing number of estimation problems in real-world
applications can be handled with success. One class of problems
involves the estimation of periodic quantities, in particular
angles. Such estimation problems have the underlying topology
of the unit circle and arise, e.g., in speaker tracking [1], phase
estimation [2], and when tracking the orientation of objects on
a conveyor belt [3, Ch. 7].

Due to the periodic nature of the estimation problem, a
simple Kalman filter should not be used. For example, consider
an update step in which a prior density is fused with a likelihood
function that is equal to the prior density shifted by π. In this
case, the information of the prior density and the likelihood is
contradictory, and thus, a uniform distribution on the circle is
the correct solution. In contrast, a Kalman filter would yield a
unimodal density whose probability mass is more concentrated
around its mode than that of the prior density and the likelihood.
During the last decade, filters based on densities on the unit
circle that properly account for the specifics of the underlying
domain have been introduced [1], [4]. Even nonlinear variants
that involve deterministic sampling schemes in their prediction
and update steps have been proposed [5]. However, such filters

are always limited by the range of possible densities that can
be accurately represented. For example, two commonly used
densities—the von Mises density and the wrapped normal
density—are unimodal and symmetric around the mode.

In order to allow for more accurate estimation results, some
filters have recently been proposed that are not limited to
specific parametric densities and instead use the boundedness of
the domain to their advantage. Two such filters are the Fourier
filters [6], [7], in which the densities (or their square roots) are
represented by trigonometric polynomials, i.e., Fourier series
with finite numbers of nonzero coefficients. Approximating
the square roots allows for obtaining approximations of the
densities with only nonnegative function values. This desirable
feature comes at the expense of a more complicated prediction
step. Besides the Fourier filters, grid-based approaches were
proposed [8]. More details on these approaches are provided
in Sec. II.

In this paper, we provide an amalgamation of the grid-based
approaches and the Fourier filters. Our aim is not to provide a
filter that outperforms the Fourier filters but rather to provide
a novel grid filter that integrates the ideas of the Fourier filters
to yield results comparable to those of the Fourier filters with
comparable run times. The newly proposed filter is based on
function values on a grid. To evaluate the density, the function
values are interpolated using trigonometric functions up to
a certain degree. As we show in Sec. III, the interpolation
can be easily changed to ensure the nonnegativity of the
approximation. Unlike for the Fourier filters, no changes to the
prediction and update steps are required to obtain nonnegative
approximations. The quality of the density approximations is
evaluated in Sec. IV and a conclusion and an outlook are
provided in Sec. V.

II. FOURIER AND GRID FILTERS

In this section, we briefly describe how densities are
represented in specific filters for the unit circle. In our papers,
each point on the unit circle is described by a value in the half-
open interval [0, 2π). For all filters considered, we illustrate
approximations of the wrapped normal density

fWN(x;µ, σ) =
∑
j∈Z
N
(
x+ 2πj;µ, σ

)
(1)

with µ = π
2 and σ = 1 as an example in Fig. 1.



In [6], [7], we introduced two filters using trigonometric
polynomials. In the Fourier identity filter (IFF), the density is
directly represented using a trigonometric polynomial. Based
on a complex trigonometric polynomial with coefficients from
−kmax to kmax, we obtain the formula

fIFF(x; cid) =

kmax∑
k=−kmax

cid
k eikx (2)

for the probability density function (pdf), in which i denotes
the imaginary unit. The approximation is parameterized by
a Fourier coefficient vector cid that can either be obtained
via explicit formulae as presented in [6] or by applying
a transformation to the function values on a grid with
L = 2kmax + 1 equidistant grid points. A fast transformation
from function values to Fourier coefficients can be realized in
O(L logL) using algorithms such as the one proposed in [9].
This algorithm and related algorithms have since become
popular for calculating the closely related discrete Fourier
transform [10, Ch. 7] as the fast Fourier transform (FFT) [10,
Ch. 8]. In our papers, we say the FFT directly yields the desired
Fourier coefficient vector.

Irrespective of how the coefficients are determined, the
approximation can have negative function values, which is
undesirable for approximations of densities. An example of
an approximation with negative function values is depicted in
Fig. 1a. As shown in Fig. 1b, a nonnegative approximation of
the considered wrapped normal density is attained using five
coefficients. However, large numbers of coefficients may be
required for other densities with regions closer to zero.

The Fourier square root filter (SqFF) is based on approx-
imating the square root of the density using a trigonometric
polynomial with coefficient vector csqrt. The values of the
approximation of the pdf are obtained via

fSqFF(x; csqrt) =

(
kmax∑

k=−kmax

csqrt
k eikx

)2

. (3)

It is always ensured that csqrt describes a real-valued function,
and thus, the square of the trigonometric polynomial yields
only nonnegative values even for small numbers of coefficients.
Thus, the negative function values observed in Fig. 1a can be
prevented in the approximation of the SqFF shown in Fig. 1c.
As can be seen when comparing these two figures and the
Figs. 1b and 1d, approximating the square root of the density
does not necessarily lead to worse approximations. Based
on our experience with the Fourier filters, the convergence
speeds of the approximations of the IFF and SqFF to the true
density are often comparable. However, in the prediction step
described in [6], [11], transformations in the form of an inverse
FFT and an FFT are required in each step. These additional
operations increase the theoretical complexity and run time of
the algorithm.

Two representations based on discretization were proposed
in [8]. The first is based on piece-wise constant (PWC) densities,
which are illustrated in Figs. 1e and 1f. In this representation,

the [0, 2π) domain is subdivided into L equal-sized grid cells.
The probability density of the approximation stays constant
within each grid cell. Filters using such approximations of the
densities are also referred to as histogram filters [12, Sec. 4.1]
because the plot of a one-dimensional density resembles a
histogram if the edges of the grid cells are shown using vertical
lines. The L intervals describing the grid cells are defined as

Ij =

[
(j − 1)

2π

L
, j

2π

L

)
for j ∈ {1, . . . , L}

in the circular case. The density is then parameterized by the
vector γ that describes the function values of the approximation
in all intervals. Using 1x∈Ij as the indicator function that
returns 1 if x ∈ Ij and 0 otherwise, the corresponding density
function can be written as

fPWC(x; γ) =

L∑
j=1

γj1x∈Ij .

Because modulo arithmetic can be employed to determine the
interval in which x is contained, the evaluation of the pdf is
always in O(1). As the integral over each interval Ij of size
2π/L is γj2π/L, the density can be normalized to integrate
to one by ensuring that

∑L
j=1 γj = L

2π holds.
The second grid-based representation explained in [8] is the

one used by the so-called discrete filter. For the discrete filter,
the continuous probability density function is converted into a
discrete probability mass function (pmf) that is only defined
on the grid points. The underlying domain is thus no longer
continuous but only contains L points in the interval [0, 2π).
In [8], the grid points are placed at the centers of the intervals
used by the PWC distribution, i.e.,

βj =

(
j − 1

2

)
2π

L
for j ∈ {1, . . . , L} . (4)

The corresponding pmf is

p(x; γ) =

L∑
j=1

γj1x=βj .

Since the pmf directly provides the probability at the grid
points, the probability mass can be easily normalized to one
by ensuring that the sum of the vector γ is 1.

Although the pmf does not describe a density, there is a
relationship between the pmf and the pdf that is approximated
using the pmf. To illustrate this in Figs. 1g and 1h, we have
chosen the right y-axis such that the circles showing the pmf
values coincide with the function values of the original density
at the respective points. Further, a continuous density in the
form of a PWC density could be obtained from the pmf by
evenly distributing the probability mass at the grid points in
the intervals used for PWC densities.

In the next section, we describe a filter that is based on a
grid similar to that of the discrete filter. Instead of using a
pmf on the grid points, we keep track of approximate function
values on the grid and provide ways to interpolate them to
provide a continuous pdf.



(a) Approximation used by the IFF with
3 coefficients.

(c) Approximation used by the SqFF
with 3 coefficients.

(e) Approximation used by the PWC
filter with 3 intervals.

(g) Approximation used by the discrete
filter with 3 grid points.

(b) Approximation used by the IFF with
5 coefficients.

(d) Approximation used by the SqFF
with 5 coefficients.

(f) Approximation used by the PWC
filter with 21 intervals.

(h) Approximation used by the discrete
filter with 21 grid points.

Fig. 1. Approximations used in the Fourier filters, the piece-wise constant filter, and the discrete filter for two different numbers of parameters.

III. FOURIER-INTERPRETED GRID FILTER

In our novel filter, the continuous pdf is represented using
the function values γ on the grid points α. The grid points are
spaced equidistantly with the first point stored at 0, i.e.,

αj = j
2π

L
for j ∈ J , J = {0, . . . , L− 1} . (5)

The grid is slightly different from the one used in (4), which
differs by a shift of half of the length of the grid cells. For the
FIGF, we start indexing the grid points with zero to simplify
the formulae in the course of this paper.

While evaluating the approximation of the pdf is not required
for the predict–update cycles of our estimator, being able to
provide a continuous pdf is valuable to describe the current
knowledge about the state. In the first subsection of this section,
we address how to obtain a continuous pdf by interpolating the
function values at the grid points. Two different approaches are
considered—one that does not ensure that all function values
are nonnegative and one that ensures their nonnegativity. The
interpolations employed are reminiscent of the Fourier filters
and involve determining Fourier coefficients. Therefore, we
call our novel filter Fourier-interpreted grid filter (FIGF). The
way the density is interpolated is only relevant to evaluate the
pdf. While the IFF and SqFF differ in how the prediction and
update steps are performed, the operations of the FIGF are
independent of the interpolation used.

To approximate a density for the FIGF, the first step is
to evaluate the density at all grid points in α and store the
function values in γ. At least one of the values has to be
strictly positive to obtain a valid approximation. Interpolating

the function values may not yield a normalized density as the
interpolation may not be equal to the original density. Thus, an
additional normalization, as explained in the first subsection of
this section, may be required. As we will see, the normalization
constant is strictly positive for valid approximations. Since
all function values are nonnegative, the values in γ are all
nonnegative.

In the second and third subsection, we describe a simple
prediction step and an update step. Both steps preserve the
nonnegativity of the values in γ. In the FIGF, we perform
the prediction and update steps using operations that are the
analogues of (or at least related to) those performed on the
Fourier coefficient vectors in the IFF. Therefore, we explain the
filter side-by-side with the IFF. The prediction and update steps
of the FIGF are closely related to the alternative prediction
and update steps of the Fourier filters described in [3, App. C].

A. Obtaining Normalized Density Values

In this subsection, we explain two ways to interpolate the
function values on the grid to obtain a continuous pdf and
ensure its normalization. For the interpolation, we convert the
grid representation into one of the Fourier-based representations.
In this paper, we limit ourselves to odd numbers of grid points.
While it is also possible to interpolate the function values
for an even number of grid points, we can only obtain the
real part of the highest and lowest order complex coefficient
(corresponding to the cosine part in a real Fourier series [13,
Volume I, Section I.4]) from the grid values. Thus, special
treatment of this coefficient would be required.



a) Interpolation Based on Trigonometric Polynomials:
For the first interpolation, which permits negative function
values, the Fourier coefficients are directly calculated from the
function values. For L grid points, the Fourier coefficients cid

k

with k ∈ K, K = {−(L−1)/2,−(L−1)/2+1, . . . , (L−1)/2}
can be calculated according to [10, Ch. 7]

cid
k =

1

L

L−1∑
j=0

γje
2πikj/L . (6)

All higher order coefficients, i.e., those with indices |k| >
(L − 1)/2 are assumed to be zero. If the full Fourier series
expansion of the function includes nonzero values for terms
of higher order, these evidently influence the sampled values.
However, in the L function values we have, the effects of terms
with order higher than (L− 1)/2 are indistinguishable from
those of lower order terms. In the context of analog–digital
conversion of signals, this phenomenon is known as aliasing [10,
Ch. 1]. Due to such effects, the approximation is generally not
equivalent to the original density.

As discussed in the context of the IFF in Sec. II, the FFT
can be used to efficiently determine Fourier coefficients from
function values on a grid. The interpolation of the FIGF
allowing negative function values (FIGFAN) can thus be given
as

fFIGFAN(x; γ) =
∑
k∈K

cid
k eikx with cid = FFT(γ) . (7)

As all L coefficients of the resulting Fourier series have to be
considered for the evaluation of the function, evaluating the
approximation of the density at n points is in O(L logL+nL).
If the function should be evaluated at all points on an equidistant
grid starting at 0, lower run times may be achieved by padding
the coefficient vector cid with zeros to the next multiple of the
number of desired function values and then using an inverse
FFT to obtain the actual values.

As we prove in App. A, the integral of (7) over [0, 2π) is
2π multiplied by the average of all function values in γ, which
we denote by avg(γ). Thus, the interpolation is normalized
if avg(γ) = 1

2π . In this paper, we use γ̆ to denote a vector
that describes a potentially unnormalized density. To obtain
a vector γ describing a normalized density from a vector γ̆
describing an unnormalized one, we can use

γ =
1

2πavg(γ̆)
γ̆ .

The second interpolation that only allows nonnegative
function values uses the nonnegativity of the values in γ, which
is ensured by the initial approximation and the formulae for
the prediction and update steps. Due to the nonnegativity, we
can first calculate the square roots of all the values in γ and
then apply an FFT to √γ to obtain a coefficient vector csqrt.
The trigonometric polynomial with Fourier coefficient vector
csqrt attains precisely √γj at αj for all j ∈ J . To obtain an
approximation that passes through the actual values in γ, the

value of the trigonometric polynomial is squared. Thus, we
obtain

fFIGFDN(x; γ) =

(∑
k∈K

csqrt
k eikx

)2

with csqrt = FFT(
√
γ) (8)

as the formula for the density of the FIGF disallowing
negative function values (FIGFDN). Because all values in
γ are nonnegative, the square roots are real numbers. Thus,
the Fourier series with coefficient vector csqrt describes a real
function. Further, the square thereof yields only nonnegative
values. The integral over the interpolation is likewise 2πavg(γ),
which is proven in App. B. Hence, the same vector γ can be
used for both interpolations.

Remark 1. In the Fourier filters, the Fourier coefficients are
approximated based on the function values on a grid (or the
square roots thereof) if no closed-form or at least analytic
formula for the coefficients is available. Hence, if we initially
transform a density for which no such formula is available,
the density described by the Fourier coefficients of the IFF
is identical to the FIGFAN interpolation of the function
values. Likewise, the FIGFDN interpolation is equal to the
approximation used by the SqFF. However, if a closed-form
formula is used for the Fourier filters, the approximations
generally differ. In this case, the lower order coefficients are
calculated precisely (although they may be scaled afterward
due to the normalization) and the higher order coefficients are
disregarded. Thus, the approximation used by the IFF is not
affected by aliasing and corresponds to a (normalized) low-pass
filtered version of the original density.

b) Interpolation Using Cardinal Series: An interpolation
can also be provided based on a cardinal series [14], which
involves writing the function as a sum of cardinal sines
sinc(x) = sin(πx)

πx . If we define γ[j] = γj for improved
readability and assume the original density fOrig is 2π-periodic
on R, we can write the pdf using a cardinal series (CS)
according to

fCS(x; γ) =

∞∑
j=−∞

fOrig

(2πj

L

)
sinc

(
xL

2π
− j
)

=

∞∑
j=−∞

γ[j mod L] sinc

(
xL

2π
− j
)
.

It is also possible to ensure that the interpolation is nonnegative
by evaluating the cardinal series based on √γ and squaring
the obtained function values. However, for both interpolations,
the infinite sum cannot be truncated without changing the
values of the interpolation because the cardinal sine never
vanishes completely. Nonetheless, since the cardinal sine is
asymptotically decreasing, reasonably close values can be
obtained for x ∈ [0, 2π) if a finite but sufficiently large number
of terms is used. However, as the range to consider would be
an additional parameter of the filter, we do not use this formula
in our implementation.



Hadamard product
and multiplication

with      

t
id,ec

+1t
id,pc

t
id,wc

π2

(a) Operations performed by the IFF [3,
Fig. 6.5].

Cyclic discrete
convolution

t
eγ

t
wγ

+1t
pγ

(b) Operations performed by the
FIGF.

Fig. 2. Prediction step of the IFF and FIGF for the topology-aware identity
model with additive noise.

B. Prediction Step for the Identity Model with Additive Noise

For the prediction step, we limit ourselves to the topology-
aware identity model with additive noise. Based on the random
variable xt describing the state at time step t and the additive
system noise term wt, the state of the system at time step t+1
can be written as

xt+1 = xt + wt mod 2π .

The posterior density of xt that includes the information of
all measurements ẑ obtained up to time step t shall be written
as f e

t(xt|ẑ1, . . . , ẑt). The prior density f p
t+1(xt+1|ẑ1, . . . , ẑt)

of xt+1 based on the same measurements can be derived
using the Chapman–Kolmogorov equation. For the identity
model with additive noise, the Chapman–Kolmogorov equation
involving an integral over the entire sample space [0, 2π) can
be simplified to [5]

f p
t+1(xt+1|ẑ1, . . . , ẑt) =

∫ 2π

0

fwt (xt+1 − xt)f e
t(xt|ẑ1, . . . , ẑt)dxt,

which is a continuous cyclic convolution of the posterior density
f e
t and the density of the additive noise term fwt .

Before considering the FIGF, we regard the prediction
step of the IFF. In the IFF, the cyclic convolution can be
realized efficiently via a Hadamard (entry-wise) product of the
coefficient vectors ce,id

t and cw,idt and a multiplication with 2π
(see Fig. 2a). Assuming that the coefficient vector ce,id

t was
obtained as the result of the previous update step, only cw,idt

has to be determined via analytic formulae (if available) or an
FFT applied to function values on a grid. For time-invariant
systems, cw,idt can be determined once and reused in future
time steps. If ce,id

t is unknown but the function f e
t is given, a

transformation can likewise be performed via an FFT.
Aside from errors stemming from previous time steps and the

error resulting from the use of a finite number of coefficients
to represent fwt , the prediction step realized via the Hadamard
product yields the precise predicted density without introducing
an additional error. As the convolution of the square roots of
two functions is not equal to the square root of the convolution,
transformations that introduce additional errors are required
for the SqFF [6].

For the FIGF, we perform operations that are the analogues
of the operations performed on the Fourier coefficients for
the IFF. We assume the vector γe

t
of function values of the

prior density on the grid is given. Then, fwt is evaluated at the

same grid points. Similar as in the IFF, the vector γw
t

can be
stored and reused for time-invariant noise terms. As illustrated
in Fig. 2b, the prediction step of the FIGF is realized via a
discrete cyclic convolution of the vectors γe

t
and γw

t
, i.e.,

γp
t+1[k] =

L−1∑
j=0

γe
t [j]γ

w
t [k − j mod L] . (9)

If ce,id
t = FFT(γe

t
) and cw,idt = FFT(γw

t
) then cp,id

t+1 =
FFT(γp

t+1
), and thus, there is a direct correspondence between

this prediction step and that of the IFF1. However, there is
no direct correspondence between the predictions steps of the
FIGF and the SqFF.

For the FIGF, the nonnegativity of the resulting values
in γp

t+1
is ensured as (9) only involves multiplications and

summations, which yield nonnegative values if the original
values are nonnegative. The prediction step is in O(L logL)
for the FIGF due to the discrete cyclic convolution involved
and in O(L) for the IFF (assuming kmax = (L− 1)/2).

C. Update Step

For the update step, we require a likelihood function
fL
t (zt|xt) that describes the probability that a measurement
zt is obtained for a state xt. For a fixed measurement ẑt,
the likelihood fL

t (ẑt|xt) is only a function of xt ∈ [0, 2π),
and thus, approximations based on grid points and Fourier
coefficients are possible even when the measurement space is,
e.g., a multidimensional Euclidean space.

Based on the prior density f p
t (xt|ẑ1, . . . , ẑt−1) and the

likelihood fL
t (ẑt|xt), the posterior density can be written

according to Bayes’ rule as

f e
t (xt|ẑ1, . . . , ẑt) =

fL
t (ẑt|xt)f p

t (xt|ẑ1, . . . , ẑt−1)∫ 2π

0
fL
t (ẑt|xt)f p

t (xt|ẑ1, . . . , ẑt−1) dxt

∝ fL
t (ẑt|xt)f p

t (xt|ẑ1, . . . , ẑt−1) .

Thus, the posterior density can be obtained via a multiplication
of the prior density and the likelihood with a subsequent
normalization.

The update step of the IFF is illustrated in Fig. 3a. The
multiplication of the two functions can be realized as a (non-
cyclic) discrete convolution of the Fourier coefficient vectors.
When convolving two coefficient vectors comprising nonzero
coefficients from −kmax to kmax, the full convolution result
c̊e,id
t may have nonzero coefficients for indices from −2kmax to

2kmax. If cp,id
t and cL,id

t perfectly describe the prior density and
likelihood, c̊e,id

t describes the error-free multiplication result.
To avoid an ever-increasing size of the coefficient vector,

all coefficients with indices k > |kmax| are discarded in the
IFF. Discarding the higher order coefficients corresponds to
low-pass filtering the result, which introduces an approximation
error. As the integral of a Fourier series over [0, 2π) is 2πcid

0

(see App. A), the normalization can be realized by dividing

1In fact, the cyclic convolution is often realized by transforming the values
to Fourier coefficients via an FFT, calculating a Hadamard product, and finally
transforming the result back via an inverse FFT. This is done, for example, in
the cconv function of Matlab 2019a.
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Fig. 3. Update step of the IFF and FIGF.

all coefficients by 2πcid
0 . Because the multiplication of the

square roots of two functions is equal to the square root of
the multiplication of the original functions, the update step
can be realized similarly (albeit with a different normalization
constant) for the SqFF.

For the FIGF, we determine the function values of the
multiplication result of f p

t and fL
t on the grid. As depicted

in Fig. 3b, the vector containing the function values of the
unnormalized multiplication result can be obtained via a
Hadamard product of the vectors γp

t
and γL

t
. The normalization

is performed as described in Sec. III-A. The values in γe
t

are
proportional to the actual function values of f e

t on the grid.
However, the interpolation of γe

t
does generally not correspond

to the normalized multiplication of the interpolations of γp
t

and γL
t
. As discussed for the IFF, the multiplication of two

functions can introduce higher order terms. Thus, even if f p
t

and fL
t can be perfectly interpolated based on the L function

values, L values may not suffice to describe f e
t precisely. We

thus only have L function values of a function that may require
2L− 1 function values on a grid to interpolate precisely. The
error is reminiscent of the error encountered due to aliasing
when approximating the density using too few grid points. Due
to the different characteristics of the approximation errors in
the IFF and the FIGF, ce,id

t 6= FFT(γe
t
) generally holds even

if cp,id
t = FFT(γp

t
) and cL,id

t = FFT(γL
t
).

The run time complexity is in O(L) as the Hadamard product
and the division are both in O(L). For the IFF, a discrete
convolution is required that is in O(L logL) when L = 2kmax +
1. The update step of the FIGF preserves the nonnegativity of
the function values on the grid. If two nonnegative numbers
are multiplied and the result is then multiplied by a strictly
positive normalization constant, the result is always nonnegative.
However, a problem that may arise for likelihoods with very
narrow support is that all values in γ̆e

t
may be zero. In this case,

the result is invalid and it may be viable to retry the update
step using a denser grid. The likelihood can usually simply be
evaluated for more inputs, and the function values of the prior
density on a denser grid can be obtained by performing an

Fig. 4. Evaluation results for the different approximations of the density.

FFT on γp
t
, padding the resulting coefficient vector with zeros,

and then transforming the result back via an inverse FFT.

IV. EVALUATION

We implemented the FIGF in Matlab, and the implementation
is publicly available as FIGFilter as part of libDirec-
tional [15]. In our evaluation, we compare the densities obtained
via the FIGF, the PWC filter, and the Fourier filters. The
discrete filter is not considered because it does not provide a
continuous pdf. For the FIGF, we regard both the FIGFAN and
the FIGFDN interpolation. Three evaluations are performed.
The first is concerned with the quality of the approximation of
a given density. Then, we show the approximation quality after
prediction and update steps in the second and third evaluation.
The quality is always measured by the L1 distance (i.e., the
integral over the absolute difference) between the true density
and the approximation.

In our first evaluation, we approximate a von Mises density

fVM(x;µ, κ) =
eκ cos(x−µ)

2πI0(κ)

with µ = 3 and κ = 100, which is a quite concentrated density
that requires many coefficients or grid points to approximate
accurately. For von Mises densities, closed-form formulae for
the Fourier coefficients are available (otherwise, as explained
in Rem. 1, the approximation of the IFF would match the
FIGFAN interpolation and the approximation of the SqFF
would match the FIGFDN interpolation). In the results in Fig. 4,
the FIGF and the Fourier filters show an at least exponential
convergence speed until they reach their numerically optimal
result. The convergence speed is in line with the convergence of
the coefficients as described in [6, Sec. IV.C]. The nonnegative
approximations outperform those also involving negative values.
Compared with the other approaches, the approximation of the
PWC filter converges slowly.

In the second evaluation, we evaluate the prediction step for
the identity model with additive noise for the wrapped normal
densities f e

t (x) = fWN(x; 1, 0.5) and fwt (x) = fWN(x; 0, 0.5).
As wrapped normal densities are closed under the topology-
aware convolution [16, Section 2.2.6], the filter results can
be efficiently compared with the ground truth. The evaluation



Fig. 5. Evaluation results for the prediction step with additive noise.

Fig. 6. Evaluation results for the update step.

results are shown in Fig. 5. In this evaluation, the FIGFAN and
IFF are superior to the FIGFDN and the SqFF. The convergence
speed of the PWC filter is the worst again.

In the third evaluation, we compare the filters’ results after an
update step. For the update step, we use a von Mises-distributed
prior density f p

t (x) = fVM(x; 1, 0.5) and likelihood function
fL
t (z|x) = fVM(z;x, 0.5). Von Mises densities were chosen

because they are closed under multiplication with a subsequent
normalization [4]. Because the update step is dependent on the
actual measurement, we do 10000 runs. In each run, the true
state is drawn from the prior density, and then, a measurement
is drawn according to the likelihood function. As depicted in
Fig. 6, the FIGFDN and SqFF achieve better results than the
FIFGAN and IFF. All approaches outperform the PWC filter
regarding the approximation quality.

V. CONCLUSION

In this paper, we have discussed very general estimation
approaches for filtering on the unit circle based on grids and
trigonometric polynomials. We considered previously proposed
grid-based approaches to estimation on the unit circle that
were not tailored to accurately approximating densities. The
discrete filter, which employs a pmf, does not provide a
continuous pdf, and the piece-wise constant filter achieves
far worse approximation quality than the Fourier filters. We
introduced the FIGF as a new grid-based approach that is
closely related to the Fourier filters. For the Fourier filters,
the variant ensuring the nonnegativity of the approximation

requires special prediction and update steps that lead to a higher
theoretical and computational complexity. For the FIGF, we
obtain a single grid-based filter that achieves results comparable
to those of the Fourier filters. No changes to the prediction
and update steps are required and only the interpolation of the
grid values has to be modified to ensure the nonnegativity.

While the IFF and FIGF are clearly related, the run time
complexities of the operations differ. For L parameters, the
prediction step of the IFF for time-invariant system noise terms
is in O(L) and the update step is in O(L logL), whereas the
prediction step of the FIGF is in O(L logL) and the update step
in O(L). If multiple consecutive prediction or update steps are
to be performed, an advantage in the run time may be achieved
by switching from one filter to the other, which is possible
in O(L logL) using the FFT or inverse FFT. Temporarily
switching from the FIGF to the IFF (without using closed-form
formulae for cw,idt ) for the prediction step does not introduce the
risk of obtaining negative values from the inverse FFT because
the prediction step based on the Fourier coefficients precisely
corresponds to the prediction step based on the function values
on the grid.

In future work, the FIGF could be generalized to higher
dimensions, analogous to the Fourier filters for multivariate
estimation problems [7]. Further, efficient procedures to ran-
domly sample densities in the representations of the FIGF or
the Fourier filters may allow for additional interesting insights.

APPENDIX
PROOF FOR THE NORMALIZATION FORMULA

For both the FIGFAN and the FIGFDN interpolation, the
integral of the interpolation over [0, 2π) is 2πavg(γ). First,
we prove this for the interpolation allowing negative values,
and then we provide a proof for the interpolation disallowing
negative function values.

A. Interpolation Allowing Negative Function Values

Theorem 1. The integral of the FIGFAN interpolation de-
scribed in (7) over [0, 2π) is 2πavg(γ).

Proof: Because the integral of eikx over [0, 2π) is zero
unless k = 0, we obtain∫ 2π

0

∑
k∈K

cid
k eikx = 2πcid

0 (10)

for the integral over the trigonometric polynomial. By using
the formula for the Fourier coefficients (6) for cid

0 , we obtain

cid
0 =

1

L

L−1∑
j=0

γje
0 = avg(γ) ,

which proves that the integral is 2πavg(γ).

B. Interpolation Disallowing Negative Function Values

Theorem 2. The integral of the FIGFDN interpolation, as
given by (8), over [0, 2π) is 2πavg(γ).

Proof: The interpolation involves squaring a trigonometric
polynomial with Fourier coefficient vector csqrt comprising



coefficients with indices from −(L − 1)/2 to (L − 1)/2.
By calculating a (non-cyclic) discrete convolution of csqrt

with itself, we can obtain a Fourier coefficient vector cconv

for the trigonometric polynomial that directly describes the
interpolation. As higher-order coefficients may become nonzero,
we obtain a trigonometric polynomial with potentially nonzero
coefficients from −(L− 1) to L− 1. The interpolation can be
described based on the Fourier coefficient vector cconv according
to

fFIGFDN(x; γ) =

L−1∑
k=−(L−1)

cconv
k eikx with cconv = csqrt ∗ csqrt .

As we know from App. A, only cconv
0 is required to determine

the integral of a trigonometric polynomial over [0, 2π). Using
the formula for the convolution, we obtain

cconv
0 =

(L−1)/2∑
j=−(L−1)/2

csqrt
j csqrt
−j

=

(L−1)/2∑
j=−(L−1)/2

((
1

L

L−1∑
n=0

√
γne2πijn/L

)

·
(

1

L

L−1∑
m=0

√
γme−2πijm/L

))
.

(11)

The complex exponential function is 2π-periodic. Due to the
additional factors in the exponents, the exponential functions
in (11) are L-periodic in j. As this holds for all terms in both
inner sums, we can change the range of the outer summation.
The value obtained for any negative j is equivalent to that
obtained for j +L. Thus, we can replace the terms for j from
−(L−1)/2 to −1 with the terms from (L−1)/2+1 to L−1.
Hence, (11) is equivalent to

cconv
0 =

L−1∑
j=0

(
1

L

L−1∑
n=0

√
γne2πijn/L

)(
1

L

L−1∑
m=0

√
γme−2πijm/L

)

=
1

L

L−1∑
n=0

L−1∑
m=0

√
γn
√
γm

1

L

L−1∑
j=0

e2πij(n−m)/L

︸ ︷︷ ︸
Λ(n−m)

.

The expression defined as Λ(n−m) is equal to the formula
for the Fourier coefficient (6) with index n−m when γj = 1
for all j. Thus, we obtain the Fourier coefficients of a function
that is constantly 1. It is important to note that the formula (6)
only yields the actual Fourier coefficient for indices in K. For
values of n−m that are not in K, a different Fourier coefficient
is returned. Due to the L-periodicity of Λ(n − m), L can
be added to or subtracted from the input argument without
changing the result. Thus, for example, we know that for
n = 0 and m = L− 1, the expression Λ(−L+ 1) corresponds
to the formula for the Fourier coefficient with index 1. For
all other (n − m) /∈ K, the terms are likewise equal to the
formula for the Fourier coefficient with index n −m + L if
(n−m) < −(L−1)/2 and n−m−L if (n−m) > (L−1)/2.

For a function that is constantly 1, the zeroth Fourier
coefficient is 1 and all other coefficients are 0. The zeroth

coefficient is only returned when n−m modulo L is zero. As
n and m are nonnegative and n−m is always an integer in
the range from −L+ 1 to L− 1, the zeroth coefficient is only
obtained for n = m. For all other values of n and m, a Fourier
coefficient that is 0 is obtained. Hence, Λ(n −m) = 1n=m.
Thus, we obtain

cconv
0 =

1

L

L−1∑
n=0

L−1∑
m=0

√
γn
√
γm1n=m

=
1

L

L−1∑
n=0

√
γn
√
γn = avg(γ) ,

which proves that the interpolated density integrates to
2πavg(γ).
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