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Abstract
Beech (Fagus sylvatica) and silver fir (Abies alba) are often cultivated in mixed stands and, hence, compete for water and 
nutrients. Besides nitrogen (N), also phosphorus (P) is an important nutrient for growth and development. Beech trees in 
Central Europe grow on both P-poor and P-rich soils, thereby showing similar growth and low variation in foliar P. The central 
aim of the present study was to test the hypothesis that variations in foliar P contents of beech are driven by seasonal changes 
rather than by the competition with silver fir. It was further hypothesized that P contents in silver fir needles depend on needle 
age and forest site. To test these hypotheses, P contents and P fractions, i.e. organic-bound P (Porg) and inorganic phosphate 
P (Pi), were measured in the foliage of beech trees from pure beech and mixed beech/silver fir plots as well as in needles of 
silver fir of the mixed plots. The forest sites investigated are located in Central Europe in the Black Forest, Germany, and 
in Croatia near the south-eastern distribution limit of beech and are all poor in plant-available soil P. The analyses showed 
that the main driver of P contents and P fractions in beech leaves at all forest sites is the season and that competition with 
silver fir had no effect. Hence, the present results demonstrate the high plasticity of beech trees to adapt to both poor plant-
available soil P and competition with silver fir. Total P contents of silver fir needles were higher at the Croatian site compared 
to the Black Forest sites and originated from higher foliar Pi contents. One third of the P present in current-year needles in 
late summer was remobilized and exported until the needles reached the age of 1 year. The difference in P contents between 
current-year and 1-year-old needles can be seen as the amount of P resorbed from 1-year-old needles in summer during the 
generation of new needles to support the P demand of current-year needles for growth and development.
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Introduction

Beech (Fagus sylvatica L.) is the dominating broad leaf 
climax tree species of Central European forests (Distribu-
tion map of Beech (Fagus sylvatica) EUFORGEN 2009, 
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www.eufor​gen.org. http://www.eufor​gen.org/speci​es/fagus​
-sylva​tica/) and constitutes its potential natural vegetation 
(Ellenberg 1988). Its distribution is restricted by both, too 
much water availability in regions prone to flooding, and too 
low water availability in dry habitats. The latter determines 
the southern distribution limit of beech (Jump et al. 2006). 
Accompanying tree species of old-growth beech forests 
include the conifer tree species silver fir (Abies alba) and 
Picea abies as well the deciduous tree species Acer plata-
noides, Acer pseudoplatanus, Carpinus betulus, Fraxinus 
excelsior, Quercus petraea, Quercus robur and Tilia cordata 
(Brunet et al. 2010). At its southern distribution limit, beech 
is partially or completely replaced by more drought-tolerant 
oak species in Western Europe (Hanewinkel et al. 2013). 
In the south-eastern parts of Europe, beech is replaced by 
oriental beech (Fagus orientalis) (Houston et al. 2016) and 
by silver fir. This natural structure of beech forests in south-
eastern Europe is mostly preserved until today (Ivanković 
et al. 2011). However, while beech forests in Croatia have 
been naturally regenerated, nowadays the absence of regular 
mast crop is one of the biggest problems for assisted natu-
ral regeneration (Gavranović et al. 2018). A recent study 
showed that both, beech and silver fir, benefit from admix-
ture in radial growth (Schwarz and Bauhus 2019). This 
positive effect was, however, more pronounced in silver fir. 
Besides water, tree growth needs sufficient availability of 
nutrients such as nitrogen (N) that can restrict tree growth in 
the temperate zone, whereas phosphorus (P) is the limiting 
nutrient, for example, of tropical rainforests (Townsend et al. 
2007; Dalling et al. 2016). However, beech forests of the 
temperate growing zone in Central Europe are well adapted 
to N limitation (Rennenberg et al. 2009; Rennenberg and 
Schmidt 2010), but due to high anthropogenic N deposi-
tion, N limitation can turn into saturation, where, as a con-
sequence, P can become limiting for beech growth (Jonard 
et al. 2015; Talkner et al. 2015). In addition, nutrient com-
petition between tree species may determine species com-
position in forests depending on climate (Rennenberg 2014; 
González de Andrés 2019). Beech trees in a Central Euro-
pean mixed beech/silver fir forests did not seem to compete 
for nitrogen with A. alba trees (Magh et al. 2018a, b). Near 
the southern distribution limit of beech, total N contents of 
beech leaves were even slightly enhanced, when growing 
together with silver fir at sufficient water supply (Magh et al. 
2018b). Similar effects were observed for Picea sitchensis 
when grown together with Pinus contorta, Pinus sylvestris 
or Larix kaempferi (Rothe and Binkley 2001). Also, other 
studies revealed that—depending on the combination of 
tree species—foliar nutrient content of a distinct nutrient 
remained unaffected or increased in mixed compared to pure 
forest stands (reviewed in Rothe and Binkley 2001).

As constituents of amino acids, proteins, DNA and 
RNA, membrane lipids, and further metabolic, regulatory, 

and signalling compounds, nitrogen (N), sulphur (S), and 
phosphorus (P) are essential macronutrients for growth 
and development. Coniferous and deciduous trees of tem-
perate Central Europe, where soils are mostly limited in 
N availability (Rennenberg et al. 2009; Rennenberg and 
Schmidt 2010), have developed different strategies to 
meet their demand for growth and development. In this 
context, tree and ecosystem internal nutrient cycling dur-
ing the annual growth constitutes an important strategy 
to maintain nutrient contents in growing and developing 
tissues. Fagus sylvatica is a deciduous tree species with 
determinate leaf development, which stores and mobilizes 
N (Gessler et al. 1998), S (Herschbach and Rennenberg 
1995, 1996) and P (Netzer et al. 2017, 2018a) in and from 
branch bark and wood. The deciduous poplar with con-
tinuous leaf development stores and mobilizes S (Dürr 
et al. 2010; Malcheska et al. 2013) and N (Schneider et al. 
1994b; Wildhagen et al. 2010; Rennenberg et al. 2010), 
but not P (Netzer et al. 2018b; Watanabe et al. 2018) in 
and from these tissues. Instead, the P demand of poplar is 
fulfilled mostly by Pi uptake from the soil (Netzer et al. 
2018b; Plassard 2018). In contrast to deciduous trees, 
coniferous tree species are reported to store N and S in and 
subsequently mobilize them from older needle generations 
to supply current-year needles (Schupp and Rennenberg 
1988, 1992; Schupp et al. 1992; Schneider et al. 1994a; 
Blaschke et al. 1996; Näsholm 1994; Miesel 2012; Wyka 
et al. 2016). For P similar results have been reported for 
Pinus taeda and Pinus sylvestris (Zhang and Allen 1996; 
Helmisaari 1992), while Manghabati et al. (2019) ques-
tioned P storage in older needle generations.

Plant-available P in the soil has been found to affect leaf/
needle P content (Fäth et al. 2019). P contents in spruce 
needles and beech leaves also varied depending on soil pH 
with higher P contents in the foliage of trees grown in acidic 
soil compared to soil with neutral pH (Braun et al. 2010; 
Manghabati et al. 2018a). About one third of the potential 
beech forest area in Central Europe is located on calcareous 
soil (Dannenmann et al. 2016), exhibiting pH values higher 
than 6 (Prietzel et al. 2016). This might result in low foliage 
P contents due to diminished soil Pi availability and, hence, 
low Pi uptake (Manghabati et al. 2018a; Braun et al. 2010; 
Shen et al. 2011). As a consequence, the P content in foliage 
depends on the bedrock and the soil type developed from 
the bedrock that together with leaching during soil ageing 
determines P stocks of the soil (Hinsinger 2001; Vitousek 
et al. 2010) and, hence, foliar P contents (Lang et al. 2017; 
Zederer and Talkner 2018). Still, forest ecosystems devel-
oped strategies to produce equal amounts of biomass largely 
independent of plant-available P in the soil (Lang et al. 2016, 
2017). In beech, this seems to be achieved by tree internal 
processes of P storage and (re)mobilization (Netzer et al. 
2017, 2018a).

http://www.euforgen.org
http://www.euforgen.org/species/fagus-sylvatica/
http://www.euforgen.org/species/fagus-sylvatica/
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The objective of the present study was to address the fol-
lowing research questions: (A) Does the geographic forest 
location impact the foliar P nutrition of beech (Fagus syl-
vatica) and admixed silver fir (Abies alba)? (B) Is the foliar 
P nutrition of beech negatively affected by co-cultivation 
with silver fir? (C) Are 1-year-old silver fir needles storage 
organs for P? It was hypothesized that (1) plant-available soil 
Pi affects the P content of beech leaves in both pure beech 
and mixed beech/silver fir forest stands as well as of silver 
fir needles in the mixed forest stands; (2) beech and silver fir 
compete for soil P in the mixed forest stands thereby affect-
ing foliar P contents of beech leaves compared to the pure 
stands; (3) P is re-mobilized from older needle generations 
to fulfil the P demand of current-year needles of silver fir 
indicating P storage in fully developed needles.

Materials and methods

Field site description

Foliar P contents of European beech (Fagus sylvatica L.) 
and silver fir (Abies alba Mill.) were investigated at three 
European forest sites, previously described in detail (Magh 
et al. 2018a, b; Prietzel et al. 2016; see also Table 1). The 
Emmendingen (EMM) and the Conventwald (CON) sites are 
located at the foothills of the Black Forest (distance ~ 15 km 
from each other) in Germany near Freiburg, while the third 
forest site is located near the city of Gospic in Croatia (CRO) 
near the south-eastern distribution limit of European beech 
(Ellenberg and Leuschner 2010; Fang and Lechowicz 2006). 
At all sites, pure beech and mixed beech/silver fir stands 
were separated. The EMM mixed forest stand is composed 
of 70% beech, 15% silver fir and 15% larch. The CON forest 
was divided into two stands: with the “pure beech” stand 
consisting of beech (55%), silver fir (10%), and spruce 
(35%), while the “mixed beech” stand consists of beech 
(35%), silver fir (35%), spruce (5%), Douglas-fir (10%), 

Table 1   Characteristics of the “Emmendingen”, “Conventwald”, and “Croatia” forest sites

a Lang et  al. (2017), bPrietzel et  al. (2016), cDannenmann, M., Institute for Meteorology and Climate Research—Atmospheric Environmental 
Research, KIT, Germany, dLang, F., Soil Ecology, Albert-Ludwigs-University Freiburg, Germany. All other data were taken from eMagh et al. 
2018b. Soil P data are taken from composite samples in EMM and CON and from separate samples (n = 5) at CRO (see Methods)

Location Emmendingen (EMM) (Germany) Conventwald (CON) (Germany) Gospic (CRO) (Croatia)

Longitude/latitude 48° 08′52.4″ North 7° 54′ 20.2″ East 48° 01′ 15.11″ North 7°58′ 18.42″ 
East

Mixed: 44° 33′ 58.6″ 
North 15° 13′ 03.1″ East

Pure: 44° 32′ 26.2″ North 
15° 13′ 21.0″ East

Elevation asl. (m) 400e 700–840a,e 800–900e

Annual precipitation (mm) (period) 1100 (1987–2014)e 1777 (1971–2001)e 2230 (1987–2010)e

Mean annual air temperature (°C) 
(period)

9.6 (1987–2014)e 7.3 (1971–2001)e 7.5 (1987–2010)e

Stands age (years) 40–60e Pure/mixed
67–102/120e

Pure/mixed
30–40/70–90e

Tree height (average) (m) 24e 29e Pure/mixed
15/25e

Soil texture Sandy loame Loame Silty claye

Soil pH (H2O) Pure/mixed
Ah 3.9 (0–15 cm)c 3.6 (0–10 cm)b 5.4/6.4 (0–5 cm)c

Bv1 3.8 (15–40 cm)c 3.8 (10–45 cm)b 4.46/7.4 (5–25 cm)c

Bv2 3.8 (40–100 cm)c 4.0 (45–90 cm)b 5.0/7.4 (25–45 cm)c

Citrate extractable Pure/mixed Pure/mixed Pure/mixed
44/72 (0–5 cm)d 131–135/94–95 (0–5 cm)d 110 ± 39/53 ± 29 (0–5 cm)d

Ptot (mg kg−1 DW) 16/48 (5–10 cm)d 74–75/113–114 (5–10 cm)d 23 ± 22/20 ± 12 (5–10 cm)d

28/13 (10–25 cm)d

Citrate extractable Pure/mixed Pure/mixed Pure/mixed
14/35 (0–5 cm)d 48–51/28 (0–5 cm)d 98 ± 45/34 ± 26 (0–5 cm)d

Pi (mg P kg−1 DW) 3/7 (5–10 cm)d 13/26–30 (5–10 cm)d 14 ± 18/5 ± 5 (5–10 cm)d

5/3 (10–25 cm)d
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larch (5%), and other species (10%). The “mixed beech” 
stand of the CRO site is composed of beech (38%), silver 
fir (50%), and other tree species; the “pure beech” stand 
consists of beech (57%), silver fir (40%), and other species 
(3%) (Magh et al. 2018b). At all three forests sites trees 
were selected within one plot of roughly 100–200 m2 in the 
pure beech and the mixed beech/silver fir stands. In these 
plots, the composition of species was as follows: for the pure 
beech plots, there were solely beech trees present, while in 
the mixed beech plot beeches and silver firs were present in 
equal share (50:50).

Important soil characteristics and climate conditions of 
these forest sites are presented in Table 1. Basic information 
of the forest sites specified by longitude/latitude is taken 
from Magh et al. (2018a, b); these include elevation asl., 
annual precipitation, mean annual air temperature, stand 
age, tree height, and soil texture. Additional information on 
elevation for the CON forest was taken from Prietzel et al. 
(2016).

Harvest of beech leaves and silver fir needles

Leaves from beech trees similar in size as well as needles 
from silver firs were harvested in late spring 2016, when 
beech leaves were fully developed, 31st of May to 4th of 
June at EMM, 6th to 10th of June at CON and 5 days starting 
from 22nd of June at the CRO field site. Due to the higher 
elevation, bud break and full leaf development was later at 
the CRO compared to the EMM site. The second harvest was 
performed in late summer 2016, 24th of September to 7th 
of October at EMM, 26th of September to 30th of Septem-
ber at CON and 3rd to 12th of September at the CRO field 
site. Within one forest site, trees of similar age and height 
were selected, while between the field sites age ranged from 
50–70 (EMM), over 100–120 (CRO) to 140–180 (CON) 
years (Schwarz and Bauhus 2019). At each sampling cam-
paign, professional tree climbers collected branches in the 
upper sun crown of approx. 30–45 cm length from beech 
and silver fir trees. Branches were harvested between 10 am 
and 2 pm to limit diurnal metabolic variation and variation 
in light availability. From beech branches, three morphologi-
cally intact leaves were collected. Current- and previous-
year needles were excised from twigs of silver fir. Leaves 
and needles were immediately shock-frozen in liquid nitro-
gen in the field and stored at − 20 °C until further analyses.

Soil sampling

Soil samples from the EMM, CON and the CRO forest sites 
were collected during the dormancy period between Decem-
ber 2017 and April 2018. Soil samples from 0 to 5 cm, 5 to 
10 cm and 10 to 25 cm depth were taken randomly at three 
sampling spots of both the pure beech and the mixed beech/

silver fir plots using a 30 cm corer (5 cm in diameter). In 
Croatia, the soil type is a brown soil on limestone and dolo-
mite, horizon profile Amo-B(rz)-R. For each core, the soil 
below the organic layer was split into sections of 0–5 cm, 
5–10 cm, and 10–25 cm depth. At each plot, three samples 
per soil depth were taken at the EMM and the CON for-
est, whereas five core samples were taken and analysed for 
the CRO plots. Larger stones (> 2 cm), branches, and roots 
were removed. Air-dried soil samples were sieved (passed 
through 2 mm mesh width) and stored at room tempera-
ture until further analyses, i.e. pH and including analysis 
of citrate-extractable phosphate (Pi) and total P (Ptot) (see 
next chapter).

Determination of soil citrate‑extractable P

Citrate-extractable P was determined according to König 
et al. (2005) and Manghabati et al. (2018b). For this pur-
pose, an aliquot of 5 g dried mineral soil was extracted with 
100 ml 1% citric acid. The suspension was shaken for 16 h 
at room temperature and was filtered using P-free paper fil-
ter (Munktell 131, Munktell Filter AB, Sweden). Pi in the 
extracts was determined as described by Murphy and Riley 
(1962) using a continuous flow analyser (Skalar SAN++, 
Skalar Analytical B. V., The Netherlands). Total P in cit-
rate extracts was measured using ICP-OES (Spectro Ciros, 
SPECTRO Analytical Instruments GmbH, Kleve, Germany).

Analyses of foliar P fractions

Beech leaves and silver fir needles were ground to a homoge-
nous fine powder with a mortar and pestle in liquid nitrogen. 
Phosphate contents were determined in aqueous extracts as 
described by Netzer et al. (2016). Shortly, approx. 25 mg of 
frozen homogenized foliar powder was suspended in 1 ml 
ddH2O containing 100 mg purified PVPP (polyvinylpo-
lypyrrolidone) (Loomis and Battaile 1966). Samples were 
shaken in a cold room at 8 °C for 1 h. Afterwards, extracts 
were boiled in a water bath (96 °C) for 10 min. After cool-
ing down on ice (10 min), the extracts were centrifuged 
twice (21500 g, 4 °C, and 10 min) to obtain a clear super-
natant. Inorganic phosphate contents were determined by 
the molybdenum blue test of Murphy and Riley (1962) as 
previously described (Netzer et al. 2016). For dry weight 
mass determination, aliquots of powdered leaf and needle 
samples were oven-dried at 60 °C until weight constancy.

Total P (Ptot) in the foliage was extracted from dried 
powdered leaf/needle material using a modified method of 
Lambers et al. (2012) as reported by Netzer et al. (2017). For 
this purpose, approx. 20 mg of the homogeneous dry foliage 
powder was weighed into glass vials and digested in 1 ml of 
an acid mixture (HNO3: HClO4 = 3:1 v/v) at room tempera-
ture for 12 to 21 days. The remaining digests were diluted 
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1:10 (ddH2O). 500 µl of the diluted digests was adjusted to 
pH 1.5 by adding 560 µl NaOH (1 M). Phosphate contents 
were determined as described for Pi using the molybdenum 
blue test (Murphy and Riley 1962) adapted by Netzer et al. 
(2016) for the application to the multimode reader. The con-
tents of organic-bound P (Porg) were calculated by subtract-
ing inorganic phosphate P (Pi) from total P (Ptot).

Determination of total foliar N and C

Total N and total C contents were measured as previously 
described (Simon et al. 2010). Aliquots of 1.0–1.5 mg oven 
dried leaf and needle material were weighed into tin cap-
sules (IVA Analysentechnik, Meerbusch, Germany). Total 
N and C content was measured with an element analyser 
(NA2500, CE Instruments, Milan, Italy).

Statistics

Statistically significant differences were investigated 
between the three forest sites (EMM, CON, and CRO) for the 
leaves of beech trees of the pure and the mixed plots as well 
as for current (0yn) and 1-year-old (1yn) needles of silver fir 
at different seasons. In order to determine significant differ-
ences of each parameter between different sites (i.e. EMM, 
CON, CRO) within the same season, plot, and needle age, 
one-way ANOVA followed by the post hoc Tukey test was 
performed with SigmaPlot 12.0 software (Systat Software 
GmbH, Erkrath, Germany). The linear mixed model was 
applied on the data in order to analyse differences between 
stands (i.e. pure stand and mixed stand), between needle 
ages (i.e. current-year needles and 1-year-old needles), 
and between seasons (i.e. early summer and late summer) 
at each site (i.e. EMM, CON, CRO) as described in Magh 
et al. (2018b) using R (R core team 2017). A detailed list 
of all R packages used is given in Table S1. Needle age and 
season were treated as fixed factors, whereas the tree number 
served as random factor due to the repeated measurements 
on the same trees. Total C, total N, total P, Pi, Porg and the 
ratios of Pi/total P, N/P, C/P, N/Pi, C/Pi, C/N, and DW/FW 
(dry to fresh weight ratio) were the dependent variables of 
each model. Normal distribution and homoscedasticity were 
checked by the Shapiro–Wilk test and Levene’s test, respec-
tively. Raw data were transformed by either cube root or 
log10 transformation if these assumptions were not meet. 
Subsequently, transformed data were fitted again and the 
assumptions were checked as above. Significant differences 
were assessed by pairwise Tukey-adjusted comparisons of 
the means with “ls-means” in R. Supplemental Tables S2 
and S3 provide an overview on the number of replicates 
analysed for beech leaves and silver fir needles, respectively.

Results

Total citrate-extractable soil P as well as citrate-extract-
able Pi was in a similar range at all forest locations 
(Table 1). At the CRO site, total P and Pi tended to be 
higher in the pure compared to the mixed beech forest plot 
in consistency with higher soil pH in the pure compared to 
the mixed forest plot (Table 1).

P contents in beech leaves reveal a seasonal pattern

In leaves of beech trees from both plots, i.e. of the pure 
and mixed stand, total P (Ptot) contents were lower in late 
summer than in early summer (Fig. 1a) at all three for-
est sites (CON, EMM, and CRO). The decline in Ptot was 
caused by reductions in organic-bound P (Porg), but not by 
changes in phosphate (Pi) (Fig. 1b, c). Consequently, the Pi 
as a percentage of Ptot (Pi%) increased in late summer. This 
increase was significant at the EMM forest for beeches of 
the mixed plot only (Fig. 1d).

Seasonal differences in beech leaf P affect nutrient 
ratios

For both plots, i.e. the plot of the pure and mixed forest 
stand, total C contents were highest in beech leaves of the 
CON forest (approx. 480 mg g−1 DW) and lower in beech 
leaves of the EMM and CRO forests (approx. 460 mg g−1 
DW). Because total C contents in beech leaves did not 
change with the season in both, pure and mixed plots (Fig-
ure S1A), the C/P ratios of the leaves were affected by 
reductions in Ptot and, thus, were higher in late than in 
early summer (Fig. 2a). As Pi contents of beech leaves 
were not affected by the season, the C/Pi ratios remained 
mostly similar during the seasons (Figure S1B).

Total N contents in beech leaves were lowest at the 
CON mixed plot (approx. 21 mg g−1 DW), and higher 
but similar at the EMM and CRO mixed plots (approx. 
27 (EMM) and 25 (CRO) mg g−1 DW) (Figure S2A). As 
observed for the C/P ratios, the decline in Ptot in late sum-
mer resulted in higher N/P ratios in late compared to early 
summer (Fig. 2b). These findings were independent of the 
beech forest sites (CON, EMM, CRO) and stand composi-
tion (pure vs. mixed beech plot). Similar to the C/Pi ratios, 
the N/Pi ratios remained mostly unaffected by the season. 
At the EMM forest, the N/Pi ratios were higher compared 
to the CON and CRO forests, especially in the mixed plots 
in early summer (Figure S2B). Mean C/N ratios (over all 
stand plots and seasons) were highest for the leaves from 
CON beech trees (mean over all samples and season: 21.6) 
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because of the highest C and lowest N contents compared 
to both other forest sites (Fig. 2c).

P contents of silver fir needles are affected 
by geographic forest location, season and needle 
age

Effects of forest location

Higher total P contents in silver fir needles were observed 
at the CRO compared to the EMM and CON mixed plots 
with significantly higher Ptot contents in current-year nee-
dles in early summer and 1-year-old needles in late sum-
mer (Fig. 3a). The Pi content was higher in silver fir nee-
dles at the CRO (nearly doubled) compared to the EMM 
and CON mixed plots in current-year needles during late 
summer, and in the 1-year-old needles independent of 

season (Fig. 3b). The differences in Ptot did not result in 
consistent differences regarding the Pi as a percentage of 
Ptot (Pi%) (Fig. 3d). Organic-bound P in silver fir needles 
showed high variability (Fig. 3c).

Effects of season depend on the forest location

At the CON forest, the Ptot content of silver fir needles 
showed clear seasonal changes. Independent of needle 
age, Ptot was significantly lower in late compared to early 
summer (Fig. 3a). In contrast, at the CRO forest Ptot of 
1-year-old needles increased, although not significantly, 
from early to late summer. This increase in Ptot was caused 
by Porg, whereas Pi remained unchanged. The Pi as a per-
centage of Ptot (Pi%) significantly increased from early to 

Fig. 1   P contents and fractions of beech leaves of the three forest 
locations in dependency on season and forest site. Total P (a), phos-
phate (Pi) (b), organic-bound P (Porg) (c), and the Pi as a percentage 
of Ptot (Pi%) (d) of beech leaves are presented for the EMM, CON, 
and CRO forest site in dependency on the seasons, i.e. early sum-
mer (es) and late summer (ls) and the plots, i.e. mixed beech plots 
(Mixed) versus pure (Pure) beech plots. White bars: early summer 
pure beech plot; grey bars: late summer pure beech plot; white dot-
ted bars: early summer mixed beech forest plot; grey dotted bars: late 
summer mixed beech forest plot. Data are mean ± S.D. The number 
of replicates is given in Supplemental Table  S2. Different letters 

indicate significant differences between forest sites. Small letter for 
early summer in pure beech plots; capital symbols for late summer in 
pure beech plots; capital letters for early summer in mixed beech for-
est plots; small symbols for late summer in mixed beech forest plots. 
Significant differences between seasons are indicated by a line and 
stars (*p < 0.05; **p < 0.01; ***p < 0.001) for leaves of the pure and 
mixed plots of each forest site. Significant differences between pure 
and mixed plots at the respective season are indicated by box brackets 
subjected by stars (*p < 0.05; **p < 0.01; ***p < 0.001). The absence 
of the respective letter of a line or a box bracket indicates that statisti-
cally significant differences were not found
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late summer in 1-year-old needles of the CON mixed plot 
(Fig. 3d).

Differences in foliar P contents are related to needle age

Tendentially, the Ptot content of current-year needles was 
higher than in 1-year-old needles independent of the season 
(Fig. 3a). This behaviour was also identifiable for Pi in early 
summer although significant only for the EMM mixed plot. 
At the EMM mixed plot, as described, Ptot was lower in 
1-year-old compared to current-year needles, which origi-
nated from changes in Porg and is reflected by increasing Pi%.

The P contents of silver fir needles in relation 
to total C

Total C was similar in silver fir needles over all forest sites, 
seasons and needle ages (Fig. 4a). Consequently, the differ-
ences observed for the C/P and the C/Pi ratios were caused 
by changes in total P and Pi as already found for beech.

Effects of forest location

C/P ratios of silver fir needles at the CRO mixed plot (~ 820) 
were similar, independent of needle age, but on average 
lower compared to the EMM (~ 1094) and CON (~ 1195) 
mixed plots (Fig. 4b). In general, similar to the C/P ratios, 
the C/Pi ratios were lowest in needles of the CRO mixed 
plot. This effect was significant for 1-year-old needles inde-
pendent of season.

Effects of season

Independent of age, silver fir needles showed seasonal dif-
ferences with higher C/P ratios mediated by lower total P 
contents in late compared to early summer at the CON mixed 
plot (Fig. 4b). In current-year needles, the C/Pi ratio tended 
to be lower during early compared to late summer at each 
forest location caused by enhanced Pi contents; yet this effect 
was not significant (Fig. 4c).

Effects of needle age

Needle age-dependent differences were most obvious for 
both early and late summer. In late summer, the C/P was 
significantly higher for 1-year-old needles compared to 
current-year needles, significant for the EMM and the CON 
mixed plots. The C/Pi ratio was higher in 1-year-old than in 
current-year needles in early summer, significant, however, 
only for the EMM mixed plot.

Fig. 2   Nutrient ratios in beech leaves of the three forest locations in depend-
ency on season and forest site. C/P (a), N/P (b), and C/N (c) ratios of beech 
leaves are presented for the EMM, CON, and CRO forest site in dependency 
on the seasons, i.e. early summer (es) and late summer (ls) and the plots, i.e. 
mixed beech plots (Mixed) versus pure (Pure) beech plots. White bars: early 
summer pure beech plots; grey bars: late summer pure beech plots; white dot-
ted bars: early summer mixed beech forest plots; grey dotted bars: late sum-
mer mixed beech forest plots. Data are mean ± S.D. The number of replicates 
is given in Supplemental Table S2. Different letters indicate significant differ-
ences between forest sites. Small letter for early summer in pure beech plots; 
capital symbols for late summer in pure beech plots; capital letters for early 
summer in mixed beech forest plots; small symbols for late summer in mixed 
beech forest plots. Significant differences between seasons are indicated by a 
line and stars (*p < 0.05, **p < 0.01; ***p < 0.001) for leaves of the pure and 
mixed plots of each forest location. Significant differences between pure and 
mixed plots at the respective season are indicated by box brackets subjected by 
stars (*p < 0.05; **p < 0.01; ***p < 0.001). The absence of the respective letter 
of a line or a box bracket indicates that statistically significant differences were 
not found
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The P contents of silver fir needles in relation 
to total N

Total N contents were recalculated from Magh et al. (2018b) 
(Fig. 5a). Total N in needles of silver fir ranged between 11 
and 18 mg g−1 DW. In early summer, foliar N was greater in 
current-year needles than in 1-year-old needles for the EMM 
and CRO mixed plots. As total C was mostly unaffected, 
the C/N ratio behaviour was reverse to the pattern of total N 
(Figure S3). The N/P and N/Pi ratios were not consistently 
affected due to changes in both, P and N contents.

Effects of forest location

During early summer higher N contents were found at the 
EMM compared to the CON and CRO mixed plots in current 
and 1-year-old needles. Due to the higher Ptot contents in the 

silver fir needles from the CRO mixed plot, the N/P ratio 
in these needles ranged around 20. At the EMM and CON 
mixed plots, the needle N/P ratios showed high variability 
and strong P deficiency, especially in 1-year-old silver fir 
needles with N/P ratios higher than 40 (Fig. 5b). The N/Pi 
ratios showed a similar pattern. The significant lowest ratios 
were found at the CRO mixed plot. Highest N/Pi ratios in sil-
ver fir needles were found at the EMM mixed plot (Fig. 5c).

Effects of season

At all three forest sites, total N was higher in early than in 
late summer for current-year needles (Fig. 5a); this differ-
ence was significant for the EMM and the CRO mixed plots. 
One-year-old needles showed higher contents in late than 
in early summer; however, this effect was not significant. 

Fig. 3   P contents and fractions in silver fir needles of the three for-
est locations in dependency on needle age and forest site. Total P 
(a), phosphate (Pi) (b), organic-bound P (Porg) (c), and the Pi as 
a percentage of Ptot (Pi%) (d) of silver fir needles are presented for 
the EMM, CON, and CRO forest sites in dependency on the nee-
dle ages, i.e. early summer (es) and late summer (ls) and the needle 
age, i.e. current-year needles (0yn) versus 1-year-old needles (1yn). 
White bars: early summer current-year needles; grey bars: late sum-
mer current-year needles; white dotted bars: early summer 1-year-
old needles; grey dotted bars: late summer 1-year-old needles. Data 
are mean ± S.D. The number of replicates is given in Supplemental 
Table  S3. Different letters indicate significant differences between 

forest sites. Small letter for early summer of current-year needles; 
capital symbols for late summer of current-year needles; capital let-
ters for early summer of 1-year-old needles; small symbols for late 
summer of 1-year-old needles. Significant differences between 
seasons are indicated by a line and stars (*p < 0.05; **p < 0.01; 
***p < 0.001) for current and 1-year-old needles at each forest site. 
Significant differences between current and 1-year-old needles at the 
respective season are indicated by box brackets subjected by stars 
(*p < 0.05; **p < 0.01; ***p < 0.001). The absence of the respective 
letter of a line or a box bracket indicates that statistically significant 
differences were not found
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The N/P ratios did not show coherent changes because both 
total P and total N showed high variations. The N/P ratio of 
1-year-old needles increased from early to late summer at 
the EMM and the CON mixed plots. This increase was due 
to declining total P and Porg contents.

Differences in foliar N and P nutrition in relation to needle 
age

Total N contents in silver fir needles were higher in current 
than in 1-year-old needles during early summer (Fig. 5a). In 
contrast, during late summer total N in current-year needles 
tended to be lower than in 1-year-old needles. During early 
summer, the N/P ratios of current and 1-year-old needles 
were similar (Fig. 5b). In contrast, during late summer the 
N/P ratios were significantly higher in 1-year-old than in 
current-year silver fir needles for the EMM and the CON 
mixed plots. The N/Pi ratios in early and late summer were 
higher in the 1-year-old needles than in current-year needles 
at the EMM and CON mixed plots, but were similar over all 
ages and seasons at the CRO mixed plot (Fig. 5c).

Discussion

Seasonality drives P contents in Fagus sylvatica 
leaves

P contents of beech leaves were driven by the seasonal 
demand, as shown by the observation that soil characteristics 
including pH, soil P, and soil N availability and competition 
with silver fir did not significantly affect the foliar P content 
of beech. At all three forest sites of the present study, EMM, 
CON, and CRO, plant-available Pi showed high variability, 
but was comparably low on average (Table 1; see also Pri-
etzel et al. 2016; Lang et al. 2017). Citrate-extractable soil 
Ptot reached up to 800 mg kg−1 at the P-rich forest site Bad 
Brückenau, whereas it amounts to only approx. 180 mg kg−1 
at the CON forest (Prietzel et al. 2016). The latter is still 
higher than the citrate-extractable P found in the present 
study. Hence, the forest sites of the present study can all be 
classified as low P forest sites. The lower citrate-extractable 
soil Ptot and Pi at 0–5 cm depth of the mixed compared to the 
pure beech plot at the CRO site may have originated from 
less decalcification. Plant-available soil P depends on the 
pH and is affected depending on the soil type by different 
pH-mediated mechanisms: (i) due to increasing binding of 
Porg and Pi to Al and Fe hydroxides with decreasing pH, (ii) 
due to co-precipitation of free Al and Fe ions together with 
Pi at decreasing pH, and (iii) due to Ca2PO4 precipitation at 
increasing pH (Hinsinger 2001; Carreira and Lajtha 1997; 
Penn and Camberato 2019). Such differences, however, had 
no influence on foliar P contents of beech in the present 

Fig. 4   Total C, the C/P, and C/Pi ratios in silver fir needles of the three for-
est locations in dependency on needle age and forest site. Total C (a), C/P 
(b), and C/Pi (c) ratios of silver fir needles are presented for the EMM, CON, 
and CRO forest sites in dependency on the needle ages, i.e. early summer (es) 
and late summer (ls) and the needle age, i.e. current-year needles (0yn) ver-
sus 1-year-old needles (1yn). White bars: early summer current-year needles; 
grey bars: late summer current-year needles; white dotted bars: early summer 
1-year-old needles; grey dotted bars: late summer 1-year-old needles. Data 
are mean ± S.D. The number of replicates is given in Supplemental Table S3. 
Different letters indicate significant differences between forest sites. Small let-
ter for early summer of current-year needles; capital symbols for late summer 
of current-year needles; capital letters for early summer of 1-year-old nee-
dles; small symbols for late summer of 1-year-old needles. Significant differ-
ences between seasons are indicated by a line and stars (*p < 0.05; **p < 0.01; 
***p < 0.001) for current and 1-year-old needles at each forest site. Signifi-
cant differences between current and 1-year-old needles at the respective sea-
son are indicated by box brackets subjected by stars (*p < 0.05; **p < 0.01; 
***p < 0.001). The absence of the respective letter of a line or a box bracket 
indicates that statistically significant differences were not found
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study. P contents of beech leaves were similar at all forest 
sites and plots, but both, Ptot and Porg, decreased from early 
to late summer. It has previously been observed that Ptot was 
highest in buds and declined until early summer when leaves 
were fully expanded, but was not further declined by late 
summer (Netzer et al. 2017). The observed differences in 
Ptot at early summer between the present study and the study 
of Netzer et al. (2017) can be attributed to different harvest-
ing time points in early summer. While Netzer et al. (2017) 
harvested beech leaves at the end of June, beech leaves were 
harvested at the end of May/beginning of June in the present 
study. During leaf maturation between spring and early sum-
mer, the foliar metabolome shows drastic changes due to dif-
ferences in metabolic activities (Netzer et al. 2018a, Wata-
nabe et al. 2013). Under these conditions, the demand of P 
may decline as a consequence of lowered protein synthesis 
and growth. This view is supported in the present study by a 
decline in Porg and an unaffected Pi pool of beech leaves. The 
latter may represent an equally active P pool for metabolic 
processes in early and late summer (Veneklaas et al. 2012). 
Seasonal changes within the Porg pool of beech leaves were 
mostly related to the variation in storage compounds, which 
were higher during dormancy in beech buds, and revealed 
variations in sugar-Ps and phospholipids during summer 
(Netzer et al. 2018a). Upon P deficiency, phospholipids may 
be replaced by galactolipids, sulpholipids (Lambers et al. 
2012; Salter et al. 2018), and glucuronosyldiacylglycerol 
(GlcADG) (Okazaki et al. 2013, 2015). This replacement 
constitutes a strategy that keeps Pi sufficiently high for met-
abolic processes even at P-poor forests sites (Netzer et al. 
2018a) and can explain the declining Porg contents of beech 
leaves during late summer in the present study.

Foliar P contents of beech trees remained 
unaffected in mixed cultivation with A. alba

In forest soils microbes, fungi and plants compete for water 
and nutrients. Nutrient competition between beech and sil-
ver fir in mixed cultivation did not affect foliar C, N and P 
contents of beech. Beech leaves from all forest sites showed 
similar Ptot and Pi contents in early summer as well as in late 
summer. The differences between early and late summer can 
be ascribed to seasonal changes (Netzer et al. 2017). How-
ever, effects on Ptot and Pi caused by an admixture of A. alba 
were not observed. This outcome corresponds to the results 

Fig. 5   Total N, the N/P, and N/Pi ratios in silver fir needles of the 
three forest locations in dependency on needle age and forest site. 
Total N (a) (recalculated from Magh et al. 2018b), N/P (b), and N/Pi 
(c) ratios of silver fir needles are presented for the EMM, CON, and 
CRO forest sites in dependency on the needle ages, i.e. early sum-
mer (es) and late summer (ls) and the needle age, i.e. current-year 
needles (0yn) versus 1-year-old needles (1yn). White bars: early sum-
mer current-year needles; grey bars: late summer current-year nee-
dles; white dotted bars: early summer 1-year-old needles; grey dot-
ted bars: late summer 1-year-old needles. Data are mean ± S.D. The 
number of replicates is given in Supplemental Table  S3. Different 
letters provide significant differences between forest sites. Small let-
ter for early summer of current-year needles; capital symbols for late 
summer of current-year needles; capital letters for early summer of 
1-year-old needles; small symbols for late summer of 1-year-old nee-
dles. Significant differences between seasons are indicated by a line 
and stars (*p < 0.05; **p < 0.01; ***p < 0.001) for current and 1-year-
old needles at each forest site. Significant differences between current 
and 1-year-old needles at the respective season are indicated by box 
brackets subjected by stars (*p < 0.05; **p < 0.01; ***p < 0.001). The 
absence of the respective letter of a line or a box bracket indicates 
that statistically significant differences were not found

▸
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summarized in a review by Rothe and Binkley (2001) for 
Picea sp., where foliar nutrient contents were either higher, 
probably due to facilitation, or similar in mixed compared 
to pure forest stands. Apparently, beech trees in mixed cul-
tivation with silver fir trees have developed strategies to 
avoid competition for nutrients independent of soil P and/
or N availability. The difference in rooting depth between 
relatively shallow rooting beech and deep rooting silver fir 
(Köstler et al. 1968, Schmid and Kazda 2001) may at least 
partially explain this avoidance of competition. Avoidance 
strategies in N uptake have been described for beech trees 
between adults and their offspring in a pure beech forest 
(Simon et al. 2011). In the study of Simon et al. (2011), 
avoidance of competition for N uptake was achieved by sea-
sonal differences in preferential N uptake by the roots. In 
addition, intraspecific competition depending on tree den-
sity of beech could be of importance at the pure and mixed 
forest plots in the present study but does not seem to affect 
P contents of beech leaves, as observed for the conifer Cun-
ninghamia lanceolata (Dong et al. 2016; Fang et al. 2017).

The pH in the forest soil of the mixed beech forest plot at 
the CRO site was higher compared to the pure beech plot, 
accompanied by lower citrate-extractable P in the soil of 
the mixed stand at 0–5 cm depth (Table 1), although this 
did not reflect in the beech leaf P contents. In other stud-
ies, increasing soil pH mediated lower P contents in beech 
leaves (Braun et al. 2010, Manghabati et al. 2018a). It can 
be assumed that internal P recycling processes as observed 
for beech trees at the CON forest (Netzer et al. 2017, 2018a) 
kept foliar P contents similar in pure and mixed plots. Plant 
internal nutrient recycling strategies include nutrient stor-
age and mobilization in branch bark and wood (Netzer et al. 
2017; Herschbach et al. 2012; Rennenberg et al. 2010) and 
may contribute to avoid competition for nutrient uptake from 
the soil. By such P recycling strategies, P contents in beech 
leaves can be maintained at a similar level irrespective of co-
cultivation with silver fir. However, the significance of each 
of these strategies in mixed beech/silver fir forests needs to 
be investigated in future studies. Still, the present results 
clearly demonstrate the high plasticity of beech to adapt to 
both nutrient scarcity and nutrient competition with silver fir.

P nutrition of Abies alba needles

Although the Porg pool revealed high variation in silver fir 
needles, the overall P content was similar to beech leaves 
over all forest sites and seasons. The higher Ptot content 
of silver fir needles at the CRO mixed plot coincides with 
higher Pi contents. Sufficient or even surplus of P nutri-
tion is commonly indicated by increasing Pi contents (e.g. 
Veneklaas et al. 2012) and is supported by similar needle 
N/P ratios (approx. 20) of CRO silver fir needles. The later 
implies evenly balanced N and P or according to Güsewell 

(2004) co-limitation of N and P. In contrast, the higher N/P 
ratios of silver fir needles at the EMM (~ 33) and of 1-year-
old needles in late summer at the CON mixed plot (60 ± 22) 
strongly indicate P deficiency (Güsewell 2004). Balanced 
N and P nutrition is indicated by N/P ratios of 6–12 for 
Picea abies and of 7–14 for Pinus sylvestris (Mellert and 
Göttlein 2012). N/P ratios above these values are thought to 
indicate P deficiency, but this clearly depends on the species 
(Güsewell 2004). Hence, the N/P ratios of A. alba needles 
at the EMM and CON mixed plots indicate P deficiency, 
which was also observed for the beech leaves at these forests, 
while the N/P ratios of silver fir needles of the CRO mixed 
plot indicate balanced N/P nutrition. For beech trees, foliar 
N/P ratios above 20 are thought to indicate P deficiency 
(Güsewell 2004, Mellert and Göttlein 2012), which were 
already observed in early summer but were strengthened 
in late summer and strongly supported the assumption of P 
deficiency for beech at all forest sites.

Nevertheless, silver fir needles at the CRO mixed plot 
exhibited higher Pi contents compared to the EMM and CON 
mixed plots although plant-available Pi in the soil was in the 
same range at all three forests sites. At the CRO forest site, 
silver fir but not beech dominates the mixed forest stand 
by size and growth (Schwarz and Bauhus 2019). In order 
to explain this observation, various factors are conceivable, 
but remain speculative and need to be proved in further 
studies. (1) In mixed beech forests of the “Abieti-Fagetum” 
(Ellenberg 1988), co-existence of beech and silver fir is sup-
posed to result from more efficient water use by both species 
due to different rooting depths (Köstler et al. 1968; Schmid 
and Kazda 2001). Nevertheless, a clear trend between sites 
regarding precipitation and/or temperature was not observed, 
except that the CRO site showed low precipitation during 
the vegetation period (Magh et al. 2018b). Further factors 
such as (2) intraspecific competition between silver fir trees 
(Dong et al. 2016, Fang et al. 2017), (3) nitrogen nutrition, 
(4) soil texture and soil pH (Sardans and Peñuelas 2004), 
and/or (5) mycorrhizal community composition may also 
significantly influence foliar P nutrition of silver firs at the 
CRO mixed forest plots. Yet another potential driver of the 
higher foliar P in silver fir needles of the CRO stand may 
be (6) the length of the vegetation period that is affected 
either by altitudes (EMM vs. CON) or by a more south-
erly location of the CRO forest site with shorter day length 
(21st of June: 17:03 h at the CON and 15:30 h at the CRO 
forest site (https​://www.sunri​se-and-sunse​t.com)). In addi-
tion, (7) the significant warming trend from 1990 to 2010 is 
accompanied by a decline in beech growth, whereas silver 
fir growth increased (Bosela et al. 2018). As at the CRO 
forest complementation of basal area index of silver fir by 
beech was positive (around 40%), that of beech by silver fir 
was negative (approx. − 30%) (Schwarz and Bauhus 2019). 
This observation might also be connected to the higher Ptot 

https://www.sunrise-and-sunset.com
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and Pi contents of silver fir needles at the CRO compared 
to the CON and EMM forests observed in the present study. 
However, also this possible explanation needs further inves-
tigations. Moreover, multifactorial responses to climate, 
site characteristics, and/or competition could also result in 
higher Pi contents of silver fir needles at the CRO compared 
to EMM and CON forest stand.

Different effects of needles age on P and N contents

As found for Ptot in silver fir needles in the present study, 
declining nutrient contents with increasing needle age were 
found for Abies concolor and Picea mariana (Greenway 
et al. 1992; Hom and Oechel 1983; Miesel 2012) and indi-
cate P remobilization from 1-year-old silver fir needles for 
the P supply to the growing current-year needles. Other 
studies with Norway spruce explained the decline of nutri-
ent contents with needle age by nutrient dilution because 
of increasing needle mass (Chapin and Kedrowski 1983; 
Manghabati et al. 2019). The lower dry weight of current-
year silver fir needles in early spring (Supplemental Figure 
S4) together with the declining P content is consistent with 
this assumption. However, when current-year needles were 
mature in late summer, the dry-to-fresh weight ratio reached 
the same amount as in 1-year-old needles (Supplemental Fig. 
S4). Hence, a P dilution effect between current and 1-year-
old needles in late summer can be excluded, and a loss in 
P seems a more reasonable explanation for the reduction 
in total P between current and 1-year-old silver fir needles. 
At the EMM and the CON mixed plots, the decline in Ptot 
between current and 1-year-old needles was 35% and 37%, 
respectively. This proportion of P can be seen as the amount 
of P resorbed from the needles during ageing, i.e. until nee-
dles reach the age of 1-year. The resorbed P might be sup-
plied to the next needle generation to fulfill the demand for 
growth and development as previously observed for sulphur 
(Schupp and Rennenberg 1988, 1992; Schupp et al. 1992; 
Schneider et al. 1994a; Blaschke et al. 1996). Different to the 
EMM and CON mixed plots, 1-year-old needles of the CRO 
mixed plot did not reveal any decline in total P. This lack of 
P mobilization coincidences with the generally higher total 
foliar P content of silver firs at this forest site. P resorption 
prior to needle abscission is a process keeping P and other 
nutrients within the tree (Aerts 1996; Melvin et al. 2015; 
Sohrt et al. 2018). The resorption efficiency seems to decline 
with increasing nutrition (Sohrt et al. 2018). It may thus 
be speculated that P resorption is not needed to fulfill the 
P demand of current-year needles of silver fir at the CRO 
mixed forest plot and that Pi uptake from the soil is sufficient 
to meet this demand. A similar conclusion was drawn for 
poplar that did not reveal P storage and mobilization in and 
from branch tissues (Netzer et al. 2018b; Plassard 2018). 
However, the P acquiring strategy of Populus x canescens 

seems due to an adaptation to high soil P availability in the 
natural habit of this tree species. Obviously under certain 
nutrient conditions and depending on the tree species, P 
resorption may be of less importance.

Although nutrient resorption has been described for 
other nutrients including N for conifers and deciduous trees 
(Helmisaari 1992; Aerts 1996), a study with Abies pinsapo 
(Blanes et al. 2013) revealed differences for N and P resorp-
tion depending on the forest site similar to the present study. 
Whereas in the present study the P content was lower in 
1-year-old needles than in current-year needles in late sum-
mer, the opposite was seen for N. The N content seems to 
be higher in 1-year-old than in current-year silver fir nee-
dles at all three forest sites (EMM 117%, CON 137%, CRO 
111%) and may indicate N storage. Similar results were 
found for Abies pinsapo at one of three forest sites (Blanes 
et al. 2013). In the study with Abies pinsapo, the N contents 
of the soil horizon analysed (though not specified) ranged 
from 7.6 to 32.7 µg g−1 and correlated with needle N (Blanes 
et al. 2013). In the present study, total N and inorganic N of 
leaf litter was similar (approx. 11 to 26 mg kg−1), and the 
inorganic N content of the Ah horizon ranged from 4.1 to 
6.8 mg kg−1, but no clear correlation between foliar N and 
soil N was observed (Magh et al. 2018b). The foliar N/P 
ratio increased when the N content in needles of Abies pin-
sapo increased with needle age (Blanes et al. 2013), but did 
not exceed ~ 17 indicating balanced N and P nutrition. At the 
CRO forest site with the highest soil N in the Ah horizon, 
the silver fir needle N/P ratios were around 20 independent 
of needle age and season, but amounted to > 40 in 1-year-
old needles of the EMM and the CON forest site strongly 
indicating P deficiency. Hence, balanced P and N nutrition 
at the CRO mixed plot might prevent accumulation of N in 
and remobilization of P from 1-year-old silver fir needles.

Conclusion

The EMM site has the highest mean annual air temperature 
and the lowest annual precipitation, and while the CON and 
CRO sites reveal similar mean air temperatures as well as 
amounts of rainfall, only approx. ¼ of it falls during the veg-
etation period at the CRO site (Magh et al. 2018b). Despite 
these differences in climate conditions, P contents and frac-
tions in the foliage of beech were only affected by the sea-
son and neither by the forest site nor by co-cultivation with 
silver fir. It may therefore be concluded that high plasticity 
of beech trees leads to similar foliar P contents and fractions 
at all investigated forest sites. The underlying process could 
be internal P (re)cycling (Netzer et al. 2017, 2018a), which 
is supported by growth data of trees that showed increas-
ing growth rate—measured as basal area increment—at 
the EMM forest, but slightly declining growth rates at the 
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CRO and CON forests between 2000 and 2016 (Schwarz 
and Bauhus 2019).

Although beech trees showed similar foliar P fractions 
and contents in the pure and mixed CRO plots, growth of 
silver fir exceeds that of beech (Schwarz and Bauhus 2019). 
This might relate, amongst other reasons, to drier conditions 
during the vegetation period, and to limited water and nutri-
ent uptakes of beech during that time. At the CRO mixed 
plot, silver fir needles showed balanced N/P nutrition, as 
indicated by higher Pi contents and proportion of Ptot. Inter-
nal Pi mobilization from 1-year-old silver fir needles for the 
P supply of current-year needles seems not be relevant for 
silver fir at the CRO forest. Whether this may be an indica-
tion of a sufficient and balanced P nutrition of silver fir at 
the southern distribution limit of beech needs to be ques-
tioned in further studies and could relate the findings of the 
present study to ecological aspects. These might be related 
to the out-competition of beech by silver fir co-cultivation 
because of the acquisition strategy for P for growth of silver 
fir or due to higher summer drought resistance of silver fir 
compared to beech.
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