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Abstract—Within the European Processor Initiative (EPI) an
objective is build an embedded High-Performance processing
platform for future automotive applications such as autonomous
driving. An embedded Field-Programmable-Gate-Array (eF-
PGA) enables the platform to be extended for future needs and
requirements by various stakeholders. In this paper we give an
overview about the project and our contributions to define the
architecture of the eFPGA, which is suitable for the automotive
market.

Therefore, we describe our concept to explore the eFPGA
architecture. It is motivated by a sound use case that deals with
face recognition based on current neural networks. During the
scope of the work we describe how the application is carefully
mapped on the different domains of the EPI platform to make
it more safe and secure as well as performant. As a result, we
will find an apt eFPGA configuration, which can host common
but also future neural network applications and a mapping of
common image processing tasks.

Index Terms—EPI, eFPGA, neural networks, image processing,
face recognition, CNN accelerator, automotive safety and security

I. INTRODUCTION

Recent developments and publications indicate a clear trend
towards more application specific processors. Very prominent
examples are machine learning and data processing applica-
tions. In the past, those applications were executed on High
Performance Computers (HPC) located in data centers or on
warehouse computers. To reduce the energy consumption and
to accelerate the computation of those algorithms developers
have started to deploy them on more and more powerful
Graphic Processing Unit (GPUs) in which the parallel data
processing structures can be exploited in an efficient way.
Therefore, GPUs found their way into HPC data centers.
Highly parallel algorithms are very common in the domains
of artificial intelligence, like recent deep neuronal networks
(DNNs), and computer vision. This trend empowered the
development of novel heterogeneous compute architectures,
which are also installed in HPC datacenters. For instance,
Field Programmable Gate Arrays (FPGAs) and specified Al-
Accelerators are deployed to increase the overall performance.
Due to Moore’s law, more and more functionality and IP can
be integrated into a single chip. This leads to a monolithic
integration of CPUs, GPUs, accelerators and even FPGAs on
a single die or in a single package. For instance, Xilinx’s
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Zynq tightly couples ARM cores and a FPGA for user logic.
Moreover, they recently released the adaptive compute acceler-
ation platform (ACAP), which introduces dedicated hardware
accelerators for DNNs.

The European Processor Initiative (EPI) aims to develop a
heterogeneous multi-core processor consisting of ARM CPUs,
hardware accelerators and an embedded FPGA. The processor
and platform provided by the EPI consortium will target a
wide range of applications, form high performance exascale
computing to embedded platforms for autonomous driving.

Autonomous driving tasks are a good example for a compu-
tationally high demanding use case. Path planning, decision-
making and perception require a huge amount of sensor data
to be processed. As of today, they exceed the computational
power of currently available automotive processors, like In-
fineon AURIX TC3xx or Renesas H-Series. Therefore, EPI
targets to develop an embedded High Performance Computer
(eHPC) suitable for autonomous driving.

Future autonomous driving sub-tasks are very likely to be
realizes as a service-oriented computing architecture. Accord-
ingly, the authors in [1] define different levels of service-
oriented architectures. The lowest level is referred to as a
Software-as-a-service (SaaS), which is defined by functionality
and information on-demand. In this paper, we will show how
to exploit the eFPGA on the EPI chip for such a software-
as-a-service based on an automotive use case. Therefore, the
paper is structured in the following way: First, we will give a
short background about the project and context. Afterwards
we describe the current issues that have to be solved. In
the next section, we propose a convolutional neural network
(CNN) accelerator architecture, which addresses compute-
intense parts of future automotive applications. In the end,
we give a short conclusion and summarize our findings.

In addition to the software as a service, our use case
follows another purpose. While the function of the eFPGA
is reconfigurable at run-time, the actual chip layout has to
be defined in advance. In particular, we have to define the
organization and the amount of look-up tables, Flip-Flops and
macro blocks, like digital signal processors (DSP) or multiply
accumulate units (MAC). Moreover, the overall area of the
eFPGA in the chip is constrained and has to be utilized in the
best way possible. The sound use case helps us to define an



eFPGA chip layout, which is suitable for common and future
automotive needs.
In summary our contributions are threefold:

o« We present our concept which enables us to achieve a
manifold eFPGA configuration for the future needs and
requirements.

o We show a scalable architecture design for the eFPGA
for architecture exploration, which implements a convo-
lutional neural network (CNN).

e« We describe a face recognition use case, which backs
our architecture and can be used as scenario for further
evaluation.

II. BACKGROUND
A. A quick introduction to CNNs

A CNN is a sub-type of a DNN [2]. In the same way it
consists of layers, but adds convolutional layers. They are
sequentially connected with each other, followed by a little
number of fully connected layers to classify the features
generated by the convolution layers. Each convolutional layer
takes the features from the previous layer or from the input
and applies a number of convolution kernels in the spatial
dimensions by basically being moved around on the input
data. The values of the convolution kernels are also called
weights, which are determined during the training phase. The
way in which spatial information are taken into account,
benefits image processing tasks widely, which makes CNNs
very popular when images or videos have to be processed.

Similar to other neural networks a non-linear activation
function is applied to the feature map after each layer. More-
over, convolution layers are followed by pooling layers. The
idea is to reduce the size of the output feature map by keeping
the maximum value of a certain spatial area and removing the
other values. A 2x2 pooling for instance reduces the feature
map by 4.

B. The EPI Platform

The overall EPI chip will be available as general purpose
processor (GPP) for data center applications and an embedded
version, also called embedded High-Performance Chip (eHPC)
[3]]. The GPP is organized in four domains: At the heart of the
chip are ARM general-purpose processors with scalable vector
extensions. High-performance applications are supported by
the EPI-accelerator cores based on the popular RISC-V ISA
with extensions for vector calculations and deep learning. In
addition, the GPP platform offers an MPPA tile by Kalray
in order to support highly distributed tasks. To support future
applications and customization the GPP is equipped with an
embedded FPGA (eFPGA) provided by Menta. It allows for
dedicated accelerators based on the customers’ needs. Each tile
is connected via a high-bandwidth network-on-chip (NoC).

The eHPC chip extends a GPP with a safety processor,
which is based on the most-recent AURIX series provided
by Infineon. It acts as a safety island and sits between the
GPP and the peripherals. This additional certified processor
can guard and supervise in- and out-going signals, which

makes the eHPC chip suitable for the future automotive needs
like autonomous driving from the signal processing, decision
planning to control of the actuators.

III. RELATED WORK

Hardware accelerators for neural networks are not an en-
tirely new topic. First attempts on FPGAs were already made
in the 90s [4]]. With the rise of more complex and cheaper
ASICs, the development of architectures tailored for CNN
gained pace very quickly. The first powerful architectures came
up in the early 2010s [5].

As of today most architectures in both production and
research are based on systolic arrays consisting of small MAC
units. A well-known architecture is the 2017 presented Tensor
Processing Unit (TPU) by Google [6]]. However, many other
accelerators came up in the same period. Each addresses
different yet unsolved bottlenecks, like memory bandwidth or
a lack of computation power in different ways. The Eyeriss ar-
chitecture by Chen et al. [7] features a reconfigurable systolic
array that supports multi-cast to many processing elements
as well as a very efficient input data pruning strategy, which
skips zero values on the fly. Another interesting approach is
presented by Lee et al. [8]]. They offer a fully configurable
number precision from 1 to 16 bit. Moreover, they try to
address the memory bottlenecks with a cache-like Aligned
Feature Loader (AFL).

In contrast to the systolic arrays, Qiu et al. [9] presented an
approach in which they do not rely on a hardware structure
for matrix multiplications, but on rather small accelerators for
a single convolutional operation, consisting of 3x3 multipliers
and an adder tree. The advantage of the architecture is a low
latency on single input data, as data can be processed in a
single shot without grouping multiple input as batches. More-
over, they found and proved the fact that convolution layers
in neural network are in general compute-centric and fully
connected layers memory-centric. This means that convolution
layers are accountable for the largest share in computation time
and rather less memory content has to be exchanged during
execution. On the other side, fully connected layers require
much more memory bandwidth in order to run in an efficient
way.

Face detection algorithms date back to the early 90s when
Turk et al. presented their EigenFaces algorithm [[10]. While
this holistic approach extracts facial features from the input
images in a pixel-wise fashion, recent work in this area is
mainly based on deep neural networks. This trend started
with DeepFaces by Taigman et al. [11]. They showed in 2014
based on the Labeled Faces in the Wild dataset, a comparable
accuracy (97.35%) to humans (97.53%) [12]. As shown in a
survey [13] of face recognition current successful approaches
split the algorithm in three parts. First faces have to be detected
in order to be aligned and centered. In the second step a
face pre-processing tries to reduce the impact to different
illumination or perspective angle. Only the third step deals
with the extraction of facial features, which can be used to
match the faces to the according person.



Fig. 1. Exemplary face detection

IV. USE CASE

The process to find a well-fitting eFPGA architecture pre-
sented in our work is backed by a current application in
accordance with the automotive stakeholders. Face detection
gained popularity in many areas in the recent years. Famous
examples are for instance smartphone unlocking or clustering
of photographs. In Figure [I] you see a first approach to detect
an exemplary face, marked with a blue square for visualization
purposes. Our use case moves the eFPGA technology to
the automotive sector and is separated into two development
scenarios.

The first scenario is recording the outside environment of
the car. Our use case is to unlock the car as soon as an
authorized person approaches the car. It is also conceivable to
lock functions within the car, like avoid starting the engine, if a
non-eligible person takes place on the driver seat. An example
use case might be that your child is able to unlock the car and
take place inside; however, you want to prevent him or her
from starting the engine. For this achievement, the cameras
to create a surround-view of the car are used. Typically, this
vehicle functionality is used to facilitate the parking of the
car and prevent damages by visualizing the full environment
around the vehicle for the driver and alerting close obstacles.

The second scenario takes camera input from the inside
of the car, in particular the driver’s seat. Our use case is to
detect gestures and mimic of the driver and to estimate his
mood based on this information. An example use case might
be that in case of bad mood, different kinds of comforting
light impressions or calming scents are used to enable stress-
less driving. If the driver has to focus on a difficult driving
maneuver, the car removes distracting environmental sounds or
unnecessary visual signals. For this application, in-car cameras
are used to detect drowsiness and gestures. Typically, these
vehicle functionalities are already common features within the
car and given hardware can be reused.

V. CONCEPTUALIZATION

As described before, our use case for the eFPGA copes
with camera-based face recognition. A broad overview of the
concept is given in Figure [2] Our approach comprises an end-
to-end solution on the EPI chip. Input data from multiple
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Fig. 2. Overview of the face recognition use case

cameras around the vehicle and inside of it is passed into
platform. This data is evaluated in different domains of the
chip and in the end a signal is generated which unlocks the
car or starts the engine.

The upstream data-decompression and the actual face de-
tection happens in the eFPGA. A hardware implementation
of the face detection allows for a more efficient computation.
However, this structure has to be fixed during the chip design.
The main advantage of the eFPGA is the ability to reconfigure
the circuit during run-time and thus combines both advantages.
With this concept it is conceivable that the face detection
algorithm gets configured as soon as the car stops and the
eFPGA resources can be freed when the car is in driving mode
to host other applications.

The overall processing chain is split into two parts. The
face detection algorithm, which runs on the eFPGA and the
evaluation of the results on the safety island. This separation
allows us to run the face detection in a faster way, while the
interpretation of detected faces and the resulting unlock can
be handled in a safe fashion. This means on the one hand
the evaluation has a higher availability through lock-stepped
cores thus it is protected against random glitches and failure.
On the other the isolated piece of software can be designed
in a secure way in order to protect the system from external
threads. However, the reliability and confidence of the face
detection algorithm has an impact on the overall security of the
system. To address this issue, we pursue common approaches
to this. For instance, the evaluation of different images from
different angles increases the confidence when the face do not
differ. In addition, a depth or time-of-flight camera allows to
detect simple images of authorized persons.

A. Face Recognition Algorithm

The face recognition algorithm is based on state-of-the-
art convolutional neural networks, which are very suitable
for image processing tasks. Our neural network topology is
based on the deep CNN FaceNet by Schroff et al. [14]. The
architecture of this network is broadly inspired by the popular
Inception-ResNet V1 network by Szegedy et al. [[15]. The
network is trained using the and VGGFace2 data-set [16],
which features about 3.3M faces of ~9000 different people.
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Fig. 3. Steps of the face detection algorithm

However, as described before the actual face recognition
algorithm does not work well on raw camera input. As
described in [[14] faces have to be centered and aligned as
well as dewarped in advance. The steps of the algorithm
are depicted in Figure [3] Out of this reason, an upstream
face detection algorithm gives the bounding boxes of faces
available in the image. In a next step the input image can be
cropped and aligned to comply to the expected input of the
recognition network. The detection algorithm is also based on
CNNs, this makes it again easy to map the algorithm on our
accelerator architecture. The network topology is inspired by
a work by Zhang et al. [[17]. In particular, their work addresses
multiple task at the same time: face classification, a bounding
box detection and the localization of facial landmarks, like
eyes, mouth. In our application we focus on the bounding box
to crop and align the input data.

B. Neural network topology

As described before we have to use two adjacent neural
networks. A face detection network aligns the input data to
make the face recognition network faster and more efficient.
Since we focus not on the algorithm itself but on an efficient
and fast hardware implementation of the network, it is crucial
in the beginning to have a close look at the network topology.

The face detection network consists of 12 layers with
mostly 3x3 and some 2x2 convolution operations. The face
recognition algorithm takes resized and aligned 224x224 RGB
images as input. The network is based on the Incepcetion-
ResNet V1 and builds mostly on 3x3 convolutions as well.
Moreover, some smaller kernels like 1x3 or 1x1 and also
slightly bigger such as 1x7 or 7x1 can be found. ReLUs
form the non-linear activation functions in both networks. In
addition, concatenate layers, poolings and normalizations have
to be handled.

VI. EFPGA ARCHITECTURE OVERVIEW

As mentioned in the concept chapter the images from the
camera have to be processed in order to unlock the car or start
the engine using face recognition. At the heart of this chain
sits a convolutional neural network.
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Fig. 4. Overview of our architecture

A. Basics of the architecture concept

2D-convolution operations move multiple kernels across the
spatial dimensions of the input data. In each step a weighted
sum of the input elements is calculated. The weights are
represented in the convolution kernel. From a computational
point of view, the 2D-convolution can take advantage from a
high data-reuse, since some input values remain as the kernel
is moved across the input data. However, the operation requires
a large amount of computation effort as a multiply-accumulate
(MAC) has to be derived for each input value.

To build a full CNN also other operations such as pooling
and activation are necessary. However, they do not introduce
a huge computational overhead, since they scale in a linear
way. Especially the used ReLU activation function can be
implemented using a very simple logic, which checks for the
sign bit.

Many popular hardware architectures in the area of neural
networks implement systolic arrays with MAC-cells, which are
able to solve matrix multiplications in a very efficient way. In
general, convolutions can be mapped to matrix multiplications
through an unrolling process, called im2col [18]]. However,
it requires data duplication and thereby introduces latency.
Moreover, the array size has to be picked very carefully to
reduce the data movement and to increase the utilization.
These disadvantages have less impact, when multiple input
data or batches are processed at once. This happens for
instance during training or in data-center applications.

With respect to our application, small accelerators for single
convolutions look very promising, since we are also dealing
with single input data. In addition to that, this architecture
concept can be easily scaled up, by instantiating more small
accelerators. This allows us to highly utilize the eFPGA
structure and get a maximum performance out of the limited
chip area.

B. Scaleable CNN accelerator

Based on this concept we came up with an architecture,
which is depicted in Figure 4] The building blocks of the ar-
chitecture and their implementation are described hereinafter.
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The architecture processes the neural network one layer
after another. In the beginning the kernel weights are loaded
into the unified kernel storage. This module supplies the
kernel units with the weight operands. Since most convolution
operations in our neural networks use 3x3 kernels, we decided
for a general 3x3 kernel size (see section [V-B). However,
we are still able to compute larger or smaller kernel without
architecture customization.

Similar to the approach by Qiu et al. incoming data is first
stored into a data buffer, which functions as a line buffer.
Depending on the kernel size, this structure can store up
to kernel, — 1 lines of the input data. This is required to
realign the data, since the input image is passed line-wise into
our architecture and the convolution operation needs a tiled
window of the input image. The data buffer outputs input data
required for the kernel each time new data arrives.

A controller block between the data buffer and the kernel,
distributes the data to the available kernel units. Since images
in our use case have a high correlation among each other, a
small result cache is attached to the controller block. With
the cached results it can decide whether the computation of
a convolution operation can be skipped to save processing
power. The result cache is implemented in a directly mapped
way. The index is computed in the data buffer based on the
nine input values. The depth of the cache is an important
parameter in the design exploration step.

The computation kernels themselves have a straightforward
implementation. More insights on the kernel structure are
given in Figure [5] For simplicity reasons only the data flow
is shown, weights are loaded into each multiplier from the
unified kernel storage and are only changed when all input
data is processed. Each kernel unit features nine multiply units
and an adder tree, which allows us to compute one convolution
each cycle. Their overall number can easily be scaled up. If
more kernels have to be computed than hardware resources are
available, the same image has to be processed multiple times
with different weights. Although this introduces overhead we
can save local memory in the unified kernel storage. Weights
for the next pass-through might be prepared in background
while the current kernels are processed. In addition, we added
the ability to link the computation kernels as shown in Figure
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Fig. 7. Example of smaller 3x1 ker-
nels. In this case three convolutions
can be computed at once.

Fig. 6. Example of a larger 5x5 ker-
nel. The computation requires three
iterations.

The link allows us to compute deep convolution kernels in
a simple way. For example, if the input data to the layer has
a depth of 32 and 64x3x3 kernels have to be computed we
can link 32 computation kernels and accumulate the result in
a single step.

While the picked neural network topologies mainly use 3x3
convolution operations, they are not limited to this, but have
also kernel sizes of 5x5, 1x1 or 3x1. For layers in which larger
kernels are used, we split up the kernel into sub-kernels, since
each calculation can be done independently from each other.
The splitting of a 5x5 kernel is shown in Figure [6] in different
colors for each sub-kernel. It has to be noted that we can
compute a nine elements in the first batch and after that only
eight elements, because we have to keep the accumulation in
mind. The accumulated value replaces the values in memory
and the weight of the accumulator is set to 1. If the kernel
is smaller than the computation unit, we can group multiple
kernels to achieve a higher utilization. An example of 3x1
kernels is depicted in Figure [7]

Apart from the convolution, operations such as activation
functions, poolings and concats should not be neglected. Guo
et al. describe in their survey paper [19] the distribution of
operations in common CNNs. They found that only about
0.2% of the computational power is spend on these operations.
Out of this reason we can map them on the ARM GPPs.

C. Further optimizations and considerations

As stated before, the objective is to have a highly efficient
and low-latency execution of the face recognition algorithm.
In the area of hardware accelerated neural network some
optimization strategies have been established in academia and
research.

Data and weight quantization is one of the most commonly
applied technique. This means, that the precision of both
weights and input data is reduced from 32-bit float during the
training process to for instance 8-bit integers in the inference
phase. It was already found in the beginning of 2010 that this
has a very small impact on the overall accuracy [20]. Since
integer operations can be implemented in a much simplified
way and less bits require fewer resources, in addition, we can
save up 20 times area and about twice the energy.

In neural network accelerators the bandwidth between the
large but cheap offchip-DRAM and expensive but local SRAM



is crucial, since the according weights and input data have to
be available when they are required to prevent the hardware
accelerators from data starvation. An optimizing strategy,
which is often applied in this context is weight and data
compression. The decompression happens as close to the
computation devices as possible.

To comply with our area and performance constraints, our
architecture concept relies on 8-bit wide weights and input
data. Moreover, compression of the input data is applied.

VII. CONCLUSION

In this paper, we proposed an architecture to compute
convolutional neural networks under the constraints of a very
limited area on an eFPGA in EPI chip. Our architecture is
motivated by an at the moment very demanding automotive
use-case, dealing with face recognition. Therefore, we first
explored this application and its requirements to a hardware
architecture. The objective of our work is to define the eFPGA
layout based on the use-case. Once the eFPGA structure is
build on the final chip, the basic structure is frozen but its
reconfigurability remains.

During the scope of our work we present a scaleable CNN
accelerator structure, which can be deployed on different
eFPGA and of-the-shelf FPGA architectures. It supports state-
of-the-art online optimization strategies, which makes it both
powerful and efficient. Our architecture is configurable in a
very flexible way, allowing tuning different design parameters
ranging from the amount of kernels to the cache memory
depth. With this we can determine an optimal eFPGA structure
for our application, though a design space exploration.

In addition, we kept the safety aspect of our solution in
mind, which is crucial to our use case but also to automotive
applications in general. We selected the available partitions on
the EPI platform to make the face database and comparison
logic both safe and secure. The face recognition algorithm
is made secure through common techniques such as multiple
input image from different perspectives or an additional depth
channel.
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