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Abstract— In this paper, we consider state estimation in
Networked Control Systems where both control inputs and
measurements are transmitted via networks which are lossy
and introduce random transmission delays. In contrast to the
common notion of TCP-like communication, where successful
transmissions are acknowledged instantaneously and without
losses, we focus on the case where the acknowledgment packets
provided by the actuator upon reception of applicable control
inputs are also subject to delays and losses. Consequently,
the estimator has only partial and belated knowledge on the
actually applied control inputs, which results in additional
uncertainty. We derive an estimator for the considered setup by
generalizing an existing approach for UDP-like communication
which integrates estimates of the applied control inputs into the
overall state estimation. The presented estimator is assessed in
terms of Monte Carlo simulations.

I. INTRODUCTION

Networked Control Systems (NCSs) constitute a special
class of control loops where the individual components,
i.e., plant, sensor, and controller, use digital, packet-based,
and often general-purpose networks such as Ethernet or
WiFi for communication instead of dedicated point-to-point
connections. Compared to traditional control loops, such
systems usually benefit from enhanced flexibility and relia-
bility as well as lesser costs for maintenance and installation
due to, e.g., reduced wiring [1]. On the downside, they
have to handle network-induced effects and constraints like
random packet losses and delays and limited bandwidth
which impact the overall performance and stability [2]–
[4]. As communication and control should not be addressed
independently from each other [5], several control methods
have been proposed in recent years that explicitly factor in
network effects. Among these, the approach of sequence-
based control has gained much attention [6]–[10]. Here the
underlying principle is to compute control inputs for the next,
say N , time steps in addition to the one for the current time
instant. By transmitting this sequence of control inputs in
a single data packet which is buffered at the actuator upon
reception, the problem of delayed or missing control inputs
can be alleviated. Such controllers, often called predictive
controllers, are usually adapted from nominal controllers
which disregard the network [11], [12], or based on model
predictive control approaches [7], [8]. Also, sequence-based

This work is supported by the German Science Foundation (DFG) within
the Priority Programme 1914 “Cyber-Physical Networking”.

The authors are with the Intelligent Sensor-Actuator-Systems
Laboratory (ISAS), Institute for Anthropomatics and Robotics,
Karlsruhe Institute of Technology (KIT), Germany. Email:
florian.rosenthal@kit.edu, noack@kit.edu,
uwe.hanebeck@ieee.org

controllers which minimize a quadratic cost function have
been proposed [9], [10]. Since most of the derived control
algorithms explicitly demand a state estimate or assume a
perfectly known state or noise-free plants and measurements,
state estimation is generally required in an NCS. Developing
an estimator, based on the minimum mean squared error
(MMSE) criterion, for a given predictive controller in an
NCS scenario, where both the network connecting controller
and actuator and the network between sensor and estimator
are subject to random packet delays and losses, is the aim of
this paper. Due to the presence of the networks, the estimator
is confronted with the problem that measurements as well as
control inputs can get lost or are subject to a delay so that
out-of-sequence and burst arrivals are probable. In particular,
the resulting uncertainty about the actual applied control
inputs poses a major challenge.

Estimators which can cope with missing or delayed mea-
surements have been proposed, for instance, in [13], [14],
whereas the problem of estimation subject to missing control
inputs due to a lossy network has been considered in [5],
[15]. In [16], a filter for Networked Control Systems was
presented which can handle both delayed and missing control
inputs and measurements. Yet, here the probabilities of the
applicable control inputs are assumed to be time-invariant
and have to be known beforehand. As opposed to this, the
filter developed in [17], where a setup similar to ours was
considered, utilizes an estimate of the currently buffered se-
quence of control inputs for the state estimation. We consider
the case where the actuator is able to acknowledge data pack-
ets which were successfully transmitted from the controller,
which is in contrast to [17] where such acknowledgments
are not provided. Additionally, we take into account that the
acknowledgments sent from the actuator to the controller
also suffer from random delays and losses. Consequently, the
setup in [17] can be seen as a special case of the scenario
we consider in that acknowledgments are provided by the
actuator but always get lost.

Remark 1 We want to mention that in the NCS litera-
ture the notion of UDP-like networks is used to describe
transmissions where acknowledgments are not supplied by
the receiver while the term TCP-like refers to idealized
transmission schemes in which successful transmissions are
acknowledged instantaneously and without losses [5]. A
more realistic modeling of the TCP protocol, however, should
factor in that acknowledgment packets also suffer from
delays and losses. In particular in wireless environments
these effects are inevitable due to channel contention or



interference [18]. In this regard, the setup we consider can
be seen as a more realistic treatment of real networks using
the TCP protocol.

Outline: The remainder of this paper is structured as
follows. First, in Section II we give a detailed description
of the considered scenario. Then, in Section III we design
an estimator based on a formal model of the considered
problem. The performance of the proposed estimator is then
assessed in Section IV. Finally, Section V concludes this
work.

Notation: Throughout this paper, vectors will be indi-
cated by underlined letters (x) while random vectors will
be underlined and in bold (x). To denote matrices, we
will employ boldface capital letters, e.g., A. 0 and I are
used to denote zero and identity matrix, respectively, and a
subscript k indicates the time step. Finally, δi,j stands for
the Kronecker delta, i.e., δi,j = 1 if i = j and 0 otherwise.

II. PROBLEM FORMULATION

Consider an NCS where both plant and sensor are linear
and described by

xk+1 = Akxk +Bkuk +wk , (1)
y
k
= Ckxk + vk , (2)

where xk ∈ Rn, uk ∈ Rl, and y
k
∈ Rm denote state,

control input, and measurement, respectively. The control
input is provided by a given controller. The zero mean, white
noise sequences wk and vk are Gaussian and independent of
each other with covariance matrices Cw

k and Cv
k. The initial

plant state x0 is Gaussian with mean x̂0 and covariance
matrix C0 and is independent of wk and vk. Furthermore,
we assume that all components are synchronized and that the
involved networks assign time stamps to data packets upon
transmission.

Controller and actuator, which is collocated with the plant,
are connected via a lossy network (CA-network) which
means that each transmitted data packet can experience a (po-
tentially unbounded) delay or even get lost. By interpreting
losses as infinite delays, we can model the delay of a packet
that is sent from the controller to the actuator at time instant
k by the random variable τCA

k ∈ N0. We additionally assume
that the τCA

k are independent and identically distributed
(i.i.d.) for all k with known probability mass function (PMF)
fCA. In order to account for these network-induced effects,
the controller does not only transmit the current control input
uk at time k but also predicted control inputs for the next N
time steps. Consequently, the data packet sent to the actuator
consists of the control sequence

Uk =
[
uTk|k u

T
k+1|k . . . uTk+N |k

]T
,

with uk+i|k, i = 0, . . . , N denoting the control input
computed at time k and to be applied at time k + i. The
buffer located at the actuator side employs the so called
past packets rejection logic [1]: From the set of all received
control sequences, only the most recent one, that is, the
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Fig. 1: Considered NCS Setup.

sequence with the largest time index, is maintained while
all others are discarded. The control inputs provided by this
sequence are then applied at the corresponding time steps
until a newer sequence arrives at the actuator. However, in
case of subsequent packet losses or large delays it may occur
that the next control sequence arrives too late so that the
control inputs from the buffered sequence are not applicable
anymore. In such a case, the default input udfk = 0 is applied.

Remark 2 Applying the default control input udfk = 0
is known as zero-input strategy in the literature. Another
common alternative is to apply the previous control input,
i.e., udfk = uk−1, which is known as the hold-input strategy.
While the first one is mathematically more convenient, it has
been shown in [19] that even for scalar systems and when
when only packet dropouts are considered neither strategy
can be deemed superior.

Finally, each time the stored control sequence is replaced by
a more recent one, an acknowledgment packet (ACK) is sent
back to the controller to indicate a successful transmission
of the corresponding sequence. ACKs can also be subject to
delays and losses (infinite delays) which are modeled by the
i.i.d. random variables τAC

k with PMF fAC . Hence, at each
time step, the controller can receive none, one or multiple
ACKs, meaning that none, one or multiple applied control
inputs can be inferred.

Remark 3 With the PMFs as defined above, it is possible to
explicitly account for the additional delays caused by (unnec-
essary) retransmissions issued by real TCP implementations
in case of delayed or missing acknowledgments and which
often constitute a severe problem especially for relatively
short transfers [18], [20]. On the other hand, this trading
of packet losses for large delays is typically not desired in
Networked Control Systems [3].

At each time step, a sensor takes a noisy measurement of the
state according to (2) which is sent to an estimator attached
to the controller over another, yet UDP-like, network (SC-
network). In this network, delays and losses also may happen
according to the i.i.d. random variables τSC

k with given PMF
fSC , so that at each time instant multiple measurements (or
none) can arrive at the estimator. Note that in contrast to the
CA-network, i) delayed packets do provide useful informa-
tion about past states and hence should be incorporated by



the estimator and ii) this network appears deterministic for
the estimator because delays of the individual data packets
are known due to the assigned time stamps [17]. However,
as the estimator’s buffer is finite, only up to M ∈ N
measurements can be stored at the same time. As will be
discussed in Section III, an appropriate approach to deal
with burst and out-of-sequence arrivals of measurements is
to maintain a fixed measurement history. Hence, we from
now on assume that measurements with a delay larger than
M − 1 are discarded upon reception. The complete setup is
depicted in Fig. 1.

Remark 4 It is worth to mention that the above assump-
tion results in a suboptimal estimator unless τSC

k ∈
{0, . . . ,M − 1,∞} holds, that is, unless a measurement
either gets lost or is at most M − 1 time steps delayed [14].

Our aim is now to design a state estimator which, at each
time step k, supplies the given controller with an estimate
x̂ek of the plant state based on the MMSE criterion and
is able to cope with missing, delayed and out-of-sequence
measurements as well as with burst arrivals. We do so
by extending the filter proposed in [17] for an UDP-like
connection between controller and actuator.

III. ESTIMATOR DESIGN

In order to design an estimator for the considered setup,
it is essential to formulate a stochastic model to describe
the CA-network and the actuator as a dynamical system.
Chief ingredients of this model are a vector η

k
∈ RlN(N + 1)/2

which encompasses all control inputs from the sequences
Uk−N , . . . , Uk−1 that are still applicable at time k or later,
and a scalar random variable θk ∈ {0, 1, . . . , N+1} denoting
the state of a Markov chain. In the following we briefly
summarize the resulting model, more detailed derivations can
be found in [9], [17].

Formally, η
k

is given by

η
k
=



[
uTk|k−1 u

T
k+1|k−1 . . . uTk+N−1|k−1

]T[
uTk|k−2 u

T
k+1|k−2 . . . uTk+N−2|k−2

]T
...[

uTk|k−N+1 u
T
k+1|k−N+1

]T
uk|k−N


,

which is illustrated in Fig. 2 for the case N = 2.
The dynamics of η

k
can then be expressed by

η
k+1

= Fη
k
+GUk , (3)

with

F =


0 0 0 0 . . . 0 0
0 I 0 0 . . . 0 0
0 0 0 I . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . I 0

 , G =

[
0 I
0 0

]
.
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Fig. 2: Visualization of η
k

(red rectangle) for N = 2. Applicable control
inputs for the same time step are shown one below another.

By defining
θk = min(k − t,N + 1) ,

where U t, t ≤ k, is the control sequence currently buffered
by the actuator and recognizing that when θk = N+1 holds
the default input udfk = 0 is applied, we get for the actual
control input

uk = Hkηk + JkUk , (4)

with

Hk =
[
δθk,1I 0 δθk,2I 0 . . . δθk,NI

]
,

Jk =
[
δθk,0I 0

]
.

We want to remark that i) uk is a random variable due to
the stochasticity of Hk and Jk and ii) the transition matrix
governing the Markov chain can be computed from the given
PMF fCA. Finally, combining (1), (3) and (4) yields the
dynamics

ξ
k+1

=

[
Ak BkHk

0 F

]
ξ
k
+

[
BkJk

G

]
Uk +

[
wk

0

]
, (5)

of the augmented system with state ξ
k

= [xT
k ηT

k
]T.

Eq. (5) represents a non-homogeneous Markov jump linear
system (MJLS) [21] with parameter θk, which is usually
referred to as the mode of the system. For this class of
systems, it is well-known that the MMSE estimator is given
by a time-varying Kalman filter in case the complete mode
history, i.e., all mode realizations θ0, θ1, . . . , θk up to time k,
is available [21]. In the given setup, however, only a subset
Ik of the mode realizations will be available to the estimator.
Before we propose an estimator for this case, we first discuss
the case of completely unknown mode history, that is, the
special case Ik = ∅, in the following Sections III-A and III-
B.

A. Perfect Connection between Sensor and Estimator

In case of a perfect connection between sensor and es-
timator, i.e., measurements are received by the estimator
immediately, it is well-known for a long time that the optimal
estimator for system (5) in the MMSE sense is not only
nonlinear but also intractable as its computational complexity
grows exponentially in time [22], [23]. This is mainly due to
the fact that an exponentially increasing number of possible
mode realizations has to be tracked. Hence, a variety of
approximations to the optimal solution have been proposed,
ranging from LMMSE estimators [24]–[26] to approaches
which at each time instant maintain only a fixed number



of hypotheses about the mode history by applying some
hypothesis reduction strategy [27]. Among these approaches,
the Interacting Multiple Model (IMM) filter [22] is frequently
applied since it exhibits a good trade-off between estimation
quality and complexity. In particular, the IMM filter consists
of a bank of Kalman filters, one for each mode, which are
individually reinitialized at each time step by mixing all
mode-conditioned estimates from the previous time step [27].
For the system given by (5) the IMM filter is hence composed
of N + 2 Kalman filters.

B. Missing, Delayed, and Out-of-Sequence Measurements

In [28], [29] estimators were presented for applications
where measurements from a linear plant are transmitted
to the estimator through communications channels which
can be described by Markov chains so that the resulting
combined systems can be modeled as MJLS. However, the
used channel models do not account for packet delays and
out-of-sequence arrivals but only for transmission errors
which are considered as packet losses. Also, the proposed
filters were derived with respect to H2 and H∞ criteria,
respectively, while we strive for an approximation of the
MMSE filter. An MMSE estimator for MJLS which copes
with delayed measurements has been derived in [30]. Here,
a fixed delay is assumed for all measurements, so that losses
and burst and out-of-sequence arrivals cannot be integrated.
For the same reason, the LMMSE estimator proposed in [31]
for randomly delayed measurements cannot be adapted to
our scenario. Since MJLS are widely used in (multi-)target
tracking scenarios where measurement delays and losses
and out-of-sequence arrivals are common, work has been
conducted in this community to handle these issues, yielding
IMM filters where retrodiction techniques are used to incor-
porate delayed and out-of-sequence measurements [32]. Yet,
applying retrodiction in our setup necessitates that the system
matrix Ak in (1) is invertible which is not always given. The
approach from [33] to maintain a history of past estimates
and measurements which is recalculated upon the reception
of a delayed measurement has been adapted to IMM filters
for Networked Control Systems in [17]. Besides its simplic-
ity, this approach has the advantage that is inherently suited
for dealing with burst arrivals of measurements which are,
for instance, processed one by one. On the downside, the
computational complexity increases with the buffer length.

Finally, based on the observation that the Markov chain
described by θk possesses a stationary distribution [17], the
Kalman filter approach from [16] can also be used for the
given system (5). However, using this stationary distribution
is clearly an approximation and it has been shown in [17]
that for NCS scenarios this approach is inferior to an
IMM-based approach with state and measurement history.
Consequently, as indicated earlier, we will build upon this
approach from [17] and equip it with the additional capability
to handle delayed and out-of-sequence mode observations.
This is detailed in the following section.

C. Delayed and Out-of-Sequence Mode Observations

At each time step, the IMM filter maintains the state
estimate in terms of a mixture distribution which for the
given setup consists of N + 2 individual Gaussians, and
each component is weighted according to the estimated mode
probability distribution πk.1 Hence, if at time k the estimator
can infer a mode realization θt = L, t ≤ k, L ∈ {0, . . . , N},
due to a received acknowledgment packet, the probability
distribution of the mode θt reduces to

πt = eL+1 , (6)

where eL+1 is the (N + 2)-dimensional unit vector with
one at position L + 1 and zero elsewhere. Please note that
the mode realization θt = N + 1 will never be available
to the filter since this indicates that at time t the default
input was applied. In such a case, no applicable control
sequence would have been received in time by the actuator,
and hence no ACK would have been sent back. By making
use of the history kept by the filter and recognizing that θt
only affects the prediction step at t+1, integrating a delayed
mode observation at time k consists of updating πt according
to (6) and then recomputing the estimates from t + 1 to k.
This procedure can also be utilized to handle burst arrivals
of ACKs, which means that multiple mode realizations can
be inferred at once. Then, starting with the oldest one, they
are integrated into the recomputation of the history one after
another.

Additionally, since we assumed that measurements with
a delay larger than M − 1 are discarded by the estimator,
it is reasonable to keep a history of estimates that com-
prises the current estimate and the previous M ones so
that a measurement with maximum delay M − 1 can be
processed belatedly. Hence, we discard all acknowledgment
packets with a delay larger than M time steps. In total,
the history kept by the estimator comprises the current and
past M states xk−M , . . . ,xk, computed control sequences
Uk−M , . . . , Uk and mode observations θk−M , . . . , θk, and
the last M measurements y

k−M+1
, . . . , y

k
.

IV. EVALUATION

In this section we assess the performance of the proposed
estimator in an NCS scenario similar to the one used in [17],
namely controlling an inverted pendulum on a cart which
operates in a transient state. We compare the proposed
estimation scheme with the original approach from [17]
which does not have access to the partial mode history Ik.
Our aim is to evaluate whether the information advantage of
the proposed filter results in improved estimates.

To that end, consider the state of the pendulum given by
xk =

[
sk ṡk φk φ̇k

]T
, where sk denotes the position of the

1The point estimate x̂ek for the controller is then simply the mean of the
mixture.



Mass of the cart 0.5 kg
Mass of the pendulum 0.5 kg
Coefficient of friction for the cart 0.1N s/m
Length to pendulum center of mass 0.3m
Moment of inertia of the pendulum 0.006 kgm2

Gravitational acceleration 9.81m/s2

TABLE I: Parameters of the inverted pendulum used in the simulation.

cart (in m) and φk is the deviation (in rad) of the pendulum
from the upward equilibrium, and the model (1) and (2) with

Ak =


1 0.0099911 0.0003871 0.0000013
0 0.9982114 0.0774447 0.0003872
0 −0.0000263 1.0025820 0.0100086
0 −0.0052630 0.5165563 1.0025820

 ,

Bk =


0.0000894
0.0178855
0.0002631
0.0526298

 , Ck =

[
1 0 0 0
0 0 1 0

]
.

The model has been obtained by linearizing the nonlin-
ear pendulum equations (cf., for instance, [34]) with pa-
rameters according to Table I around the upward equilib-
rium and a subsequent discretization with sampling time
tA = 0.01 s. The covariances of wk and vk are Cw

k = 0.01I
and Cv

k = 0.2I. As in [17], we employ a nominal predictive
state feedback linear quadratic regulator [34] which com-
putes the control inputs uk based on the true state of the
plant. State and input weighting matrix for the computation
of the regulator gain L are given by

Q =


5000 0 0 0
0 0 0 0
0 0 100 0
0 0 0 0

 , R = 100 .

Overall, we carried out two Monte Carlo simulations with
2000 runs each where each run comprised 250 time steps.
In each run, the initial plant state was randomly drawn from
a Gaussian distribution with mean and covariance matrix

x̂0 =
[
0 0.2 0.2 0

]T
, C0 = 0.5I .

The probability mass functions of the links between con-
troller and actuator (fCA), actuator and controller (fAC) and
sensor and controller (fSC) are depicted in Fig. 3. We chose
to set the length of the measurement history to M = 6,
that is, ACKs with a delay larger than six time steps and
measurements with a delay larger than five time steps were
discarded. For the SC-link shown in Fig. 3a the measurement
loss rate was thus 4.99%. Since ACKs are usually much
smaller than regular data packets, the probabilities for large
delays and losses are commonly considerably smaller as
well [35]. Consequently, we decided to utilize a distribution
for the AC-link (cf. Fig. 3b) where delays larger than three
time steps were very unlikely. As mentioned above, the plant
operates in a transient state, i.e., set point changes occur.
Thus, in each simulation run, the initial set point of the
pendulum was [2 0 0 0]T which changed to [−2 0 0 0]T

after 100 time steps and then changed back after another 100

time steps. The length of the control sequences computed
by the controller was N + 1 = 7, resulting in an MJLS
with 8 modes. In each run, the mode-conditioned Kalman
filters of both estimators were initialized with x̂e0 = x̂0 and
Ce

0 = C0. The initial mode distribution was π0 = e8 ∈ R8.
Note that neither estimator had impact on the computation
of the control sequences.

In the first simulation, the true PMF fCA was used to
compute the transition matrix of the Markov chain θk,
while in the second simulation we assumed that the filters
were completely unaware of the behavior of the CA-link.
Hence, we employed a uniform PMF instead of fCA for
the computation of the transition matrix. This decision was
motivated by the time-varying nature of real networks, due to
which model mismatches are likely in practical applications.

The simulation results in terms of the root mean squared
error (RMSE) are shown in Fig. 4 for the directly accessible
states sk and φk and in Fig. 5 for the non-accessible states
ṡk and φ̇k. We can directly see from the results that the
performance of both filters does not differ much most of
the time. In particular with respect to the directly accessible
states sk and φk, the information advantage of the proposed
filter only pays off at a single time step (k = 190) in both
simulation scenarios. At that time step, the estimation error
of the filter from [17] increases drastically while it remains
at the same level for the proposed filter. An additional
interesting observation is that the estimation quality of both
filters is not affected by the model mismatch introduced in
the second simulation.

On the contrary, the RMSE curves of the non-accessible
states ṡk and φ̇k exhibit that the overall estimation quality
of both filters is corrupted by the wrong PMF assumed for
τCA
k . However, although both filters achieve almost equal

performance most of the time, the proposed approach can
yield significantly lower estimation errors compared to the
approach from [17] even in case of a model mismatch.
In particular for the angular velocity component of the
state (φ̇k), the original approach is not able to improve its
estimates at times where the proposed approach achieves
considerable improvements.

Overall, we can conclude that the additional available
information in terms of the partial mode history Ik can
result in an enhanced estimation quality and help increase
the filter’s robustness towards modeling errors with respect to
the nature of the networks. Finally, it is worth to remark that
the set point changes do not result in an increased estimation
error, in contrast to what was reported in [17].

V. CONCLUSIONS

In this work, we investigated the issue of state estimation
in Networked Control Systems, where, in contrast to the
notion of TCP-like communication used in the literature,
acknowledgment packets are also subject to random delays
and dropouts which is a more realistic treatment of the real
TCP protocol. We presented a state estimator based on an
existing IMM approach which is able to incorporate the
information on applied past control inputs retroactively into
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Fig. 3: PMFs of the packet delays. Delays larger than five time steps in the SC-link are treated as packet losses (infinite delay) by the estimators.
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Fig. 4: Results of the proposed estimator and the original approach from [17]: Comparison of the RMSE for the directly accessible states sk and φk .
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Fig. 5: Results of the proposed estimator and the original approach from [17]: Comparison of the RMSE for the non-accessible states ṡk and φ̇k .



the current state estimate. We pointed out that UDP-like
communication schemes are a special case of the considered
problem and hence subsumed by the proposed approach. The
evaluation results indicated that the integration of this belated
information can be an appropriate means to make the filter
more robust towards imperfect knowledge of the network
characteristics, in particular for components of the state that
are not directly accessible.

Future work in this context should examine the interde-
pendence of control sequence length, nature of the network,
and the size of the utilized history as well as their impact on
the estimation quality in more detail. Moreover, it is worth
to examine whether an additional, similar state augmenta-
tion which explicitly takes the network between sensor and
estimator into account, can serve as a starting point for the
derivation of an estimator for the given setup.
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