
FLUX: Progressive State Estimation Based on
Zakai-type Distributed Ordinary Differential Equations

Uwe D. Hanebeck

Intelligent Sensor-Actuator-Systems Laboratory (ISAS)
Institute for Anthropomatics and Robotics

Karlsruhe Institute of Technology (KIT), Germany

Abstract
We propose a homotopy continuation method called FLUX for approximating complicated probability
density functions. It is based on progressive processing for smoothly morphing a given density into
the desired one. Distributed ordinary differential equations (DODEs) with an artificial time γ ∈ [0, 1]
are derived for describing the evolution from the initial density to the desired final density. For a
finite-dimensional parametrization, the DODEs are converted to a system of ordinary differential
equations (SODEs), which are solved for γ ∈ [0, 1] and return the desired result for γ = 1. This
includes parametric representations such as Gaussians or Gaussian mixtures and nonparametric setups
such as sample sets. In the latter case, we obtain a particle flow between the two densities along the
artificial time.

FLUX is applied to state estimation in stochastic nonlinear dynamic systems by gradual inclusion
of measurement information. The proposed approximation method (1) is fast, (2) can be applied
to arbitrary nonlinear systems and is not limited to additive noise, (3) allows for target densities
that are only known at certain points, (4) does not require optimization, (5) does not require the
solution of partial differential equations, and (6) works with standard procedures for solving SODEs.
This manuscript is limited to the one-dimensional case and a fixed number of parameters during the
progression. Future extensions will include consideration of higher dimensions and on the fly adaption
of the number of parameters.

1. Introduction

We consider the approximation of complicated probability density functions (pdfs) by densities
with convenient finite-dimensional representations. This includes parametric density approximation
such as Gaussian densities or Gaussian mixture densities and nonparametric representations such as
sample sets. Three problem classes are investigated: (1) The fundamental problem of approximating
a given probability density function that may only be given at certain points. (2) The problem of
approximating posterior densities in estimating a hidden state based on prior densities and given
measurements. (3) The problem of propagating a state estimate through a discrete-time stochastic
nonlinear dynamic system.

Optimal approximation of complicated probability density functions is a hard problem and
typically involves the minimization of a suitable distance measure between the original density and its
approximation. The minimization problem is in general nonlinear and nonconvex, which precludes
efficient solution procedures and calls for iterative optimization methods. Depending on the selected
starting points, the run time varies and one might end up in local minima.

In this manuscript, our goal is to find a flow between a simple density with a given approximation
and the target density. This flow is then used to move the parameters of the approximating density in
such a way that they finally approximate the target density.

Email address: Uwe.Hanebeck@kit.edu (Uwe D. Hanebeck)

ar
X

iv
:1

80
8.

02
82

5v
1

 [
cs

.S
Y

]
 8

 A
ug

 2
01

8

1.1. State of the Art
1.1.1. Overview of Relevant Literature

When using a particle representation for the posterior probability density functions in a Bayesian
update step, it is well known that a narrow likelihood function corresponding to a precise measurement
typically leads to particle degeneration [1]. This means that due to the downweighting with the
likelihood function, only a few particles maintain nonzero weights so that all the other particles are
wasted as they do not contribute to the density approximation.

Particle degeneration can be mitigated with a discrete set of so-called bridging densities that
allow a gradual introduction of the measurement by employing them successively with intermediate
resampling as opposed to the direct multiplication of a particle set with the original likelihood [2].
This strategy is used by annealed sampling methods [3, 4, 5]. They use a form of MCMC or sample
movement to cope with the particle degeneracy. Particle-flow filters work in a fundamentally different
fashion as they do not employ particle weighting at all.

The Daum-Huang filters [6, 7, 8] use a homotopy between the logarithms of the unnormalized
prior and posterior densities, which is used to calculate a particle flow. Different versions have been
proposed, see [9, 10, 11]. The flow moves particles towards regions of a high posterior probability. Its
calculation entails the solution of a partial differential equation, which is computationally complex.
Two types of Daum-Huang filters are compared with standard filter approaches in [12]. To cope with
the high computational complexity of particle flows, an approximate Gaussian flow is introduced in
[13]. Here, the particles are not used directly for representing the posterior density. Instead, they are
used as an input to an importance sampler.

Related to particle-flow filters are the so-called feedback particle filters [14] that apply a feedback
mechanism in order to move the particles. According to [15], these filters are a generalization of
linear-regression filters such as the UKF [16] or the smart-sampling Kalman filter first proposed in
[17], refined in [18], and optimized by enforcing symmetric samples in [19]. The feedback gains of the
feedback particle filters are obtained by minimizing a cost function based on the Kullback-Leibler
divergence. An evaluation of feedback particle filters is given in [20].

1.1.2. Own Prior Work
A novel estimation method based on progressively introducing measurement information in order

to perform morphing between a given density and a desired density, in this case, the posterior resulting
from a Bayesian update step, is introduced in [21, 22]. A generalization to multi-dimensional states is
given in [23]. In [24], this method was generalized to different distance measures. Further applications
of progressive processing methods besides state estimation are in moment calculation [25] and Gaussian
mixture reduction [26].

A progressive Bayesian procedure for Gaussian-assumed density filtering, where the measurement
information is gradually included into the given prior estimate is proposed in [27, 28]. The solution is
a special case of the framework proposed in this manuscript. A flow for the parameters of the posterior
Gaussian density is derived and compared with the state of the art.

A different approach based on a discrete set of bridging densities is pursued in [29, 30]. Here, the
likelihood function is decomposed into a product of wider likelihoods that are applied sequentially. After
each application and a resulting slight reweighting of the particles, the particles are reapproximated
with an equally weighted set. This translates the successive reweighting into a particle motion. For
re-approximation, a special type of distance, a so-called permutation-invariant set-distance is employed
[31] for comparing two particle sets.

As the online minimization of the distance measure is rather costly, a simplified progression method
is used in [32] in the context of Gaussian filters. It is called the Progressive Gaussian Filter (PGF).
Here, the re-approximation of weighted particles is performed by replacing them with a pre-calculated
set of equally weighted particles corresponding to the same underlying Gaussian density. The original
PGF directly works with the measurement equation, no likelihood is required. A more efficient variant
for the case that the likelihood function is explicitly available is given in [33]. A semi-analytic variant

2

of the PGF for measurement equations with a conditionally linear part is derived in [34]. The PGF
can easily be parallelized, which is exploited for a GPU-based implementation in [35].

1.2. Contributions
The contributions of this manuscript is a homotopy continuation method called FLUX for approx-

imating complicated probability density functions. FLUX is based on a progressive mechanism for
smoothly morphing a given density f0 into a target density f1. An approximation for f0 is already
known. The goal is to find an approximation of f1. The evolution of the densities from f0 to f1 is de-
scribed by distributed ordinary differential equations (DODEs) with an artificial time γ ∈ [0, 1]. These
DODEs are expressed in terms of infinite-dimensional density representations that are impractical for
computer implementation and can only be solved in special cases. In the case of a finite-dimensional
parametrization, the DODEs can be converted to a system of ordinary differential equations (SODEs),
which are solved for γ ∈ [0, 1] and return the desired result for γ = 1. This includes parametric
representations such as Gaussians or Gaussian mixtures and nonparametric setups such as sample
sets. In the latter case, we obtain a particle flow between the two densities along the artificial time.

FLUX is applied to various density approximation methods. This includes approximating the
posterior densities in the measurement update step for state estimation in stochastic nonlinear dynamic
systems by gradual inclusion of measurement information. The proposed particle flow method

• is fast,

• can be applied to arbitrary nonlinear systems and is not limited to additive noise,

• allows for target densities that are only known at certain points,

• does not require optimization,

• does not require the solution of partial differential equations, and

• works with standard procedures for solving SODEs.

1.3. Structure of the Paper
This manuscript is structured as follows. In Sec. 2, a rigorous formulation of the pursued ap-

proximation problem is given, which includes the most fundamental setup of morphing between two
arbitrary densities and also its application to state estimation in stochastic nonlinear dynamic systems.
The corresponding distributed ordinary differential equations (DODEs) for describing the evolution
of the densities in the infinite-dimensional case are derived in Sec. 3. Exact solutions for special
cases are given in Sec. 4. Finite-dimensional approximate solutions are derived for parametric density
representations in Sec. 5 and for nonparametric density representations in Sec. 6. Conclusion are given
in Sec. 7 followed by an outlook to future work.

2. Problem Formulation

The most fundamental problem we will consider is the approximation of a density f1(x) by some
parametrized density f1(x, η1) with parameter vector η1. We assume that a somehow related density
f0(x) exists that is already approximated by a density f0(x, η0). Our goal is to find a way to transfer
the given approximation f0(x, η0) of f0(x) to f1(x) in order to find η1.

In the following, we will consider special cases of related densities f0(x) and f1(x) by estimating
posterior densities in the context of stochastic nonlinear dynamic systems. We start with the measure-
ment update or filter step that uses measurements to update the state estimate in Subsec. 2.1. In
Subsec. 2.2, we consider the time update or prediction step, where the state estimate is propagated
through a nonlinear function and corrupted by noise.

3

2.1. Measurement Update
We consider a discrete-time system with a hidden state xk at time step k that is observed via a

measurement equation
y
k

= hk(xk, vk) (1)

with measurement noise vk and a nonlinear measurement function hk(., .). We assume that a proba-
bilistic description of the measurement equation is given in form of a likelihood function fLk (y

k
|xk).

We are given a prior density
fpk (xk) = f(xk | y1:k−1)

that summarizes our knowledge about the state based on all past measurements

y1:k−1 =
[
y1, y2, . . . , yk−2, yk−1

]>
up to the previous time step. We are interested in the posterior density at time step k, which is defined
as the density of the state xk

fek(xk) = f(xk | y1:k)

conditioned on all measurements up to the current time step

y1:k =
[
y1, y2, . . . , yk−1, yk

]>
.

Via Bayes’ law, the desired posterior can be expressed as the normalized product of the prior density
before the measurement update and the likelihood describing the measurement equation as

fek(xk) = ck f
L
k (y

k
|xk)f

p
k (xk) , (2)

where ck is a normalization constant.

2.1.1. Additive Noise
For additive measurement noise, the measurement equation can be written as

y
k

= hk(xk) + vk . (3)

The measurement noise vk is assumed to be zero mean Gaussian with covariance matrix Cv
k or

standard deviation σvk in the scalar case. For the scalar case, the likelihood function is then given as

fLk (yk |xk) = exp
(
−1

2
(yk − hk(xk))2

(σvk)2

)

and in general as

fLk (y
k
|xk) = exp

(
−1

2
(
y
k
− hk(xk)

)>(Cv
k

)−1(
y
k
− hk(xk)

))
,

where all multiplicative constants are omitted.

2.1.2. Non-additive Noise
In general, the structure of the measurement equation is not as simple as in the previous subsection.

Typically, the noise does not enter additively. We will take a look at two examples: Purely multiplicative
noise in Example 2.1 and combined multiplicative and additive noise in Example 2.2.

4

Example 2.1 (Multiplicative Noise). As an example, we first consider the case of multiplicative noise
for scalar states, i.e., the measurement equation is given by

yk = xk vk ,

with vk ∼ fvk (vk). The conditional density of the measurement yk given the state xk and the noise vk
is given by

f(yk |xk, vk) = δ(yk − xk vk) .

The conditional density f(yk, vk |xk) is given by

f(yk, vk |xk) = δ(yk − xk vk)fvk (vk) ,

so that we obtain
f(yk |xk) =

∫
R

δ(yk − xk vk)fvk (v) dvk ,

which is equivalent to
f(yk |xk) =

∫
R

1
|xk|

δ

(
vk −

yk
xk

)
fvk (vk) dv .

We finally obtain
f(yk |xk) = 1

|xk|
fvk

(
yk
xk

)
, (4)

which is the likelihood function fLk (xk) for a given yk. JExampleI

We will take a look at a second example that generalizes the one on multiplicative noise. The
insights will be used when deriving a progressive update for the multiplicative noise case.

Example 2.2 (Multiplicative and Additive Noise). We now consider the case of a measurement
corrupted by multiplicative and additive noise as

yk = xk vk + wk ,

with vk, wk ∼ fvwk (vk, wk). The conditional density of the measurement yk given the state xk and the
noise terms vk and wk is given by

f(yk |xk, vk, wk) = δ(yk − xk vk − wk) .

The conditional density f(yk, vk, wk |xk) is given by

f(yk, vk, wk |xk) = δ(yk − xk vk − wk)fvwk (vk, wk) .

Marginalization gives

f(yk |xk) =
∫
R

∫
R

f(yk, vk, wk |xk) dvk dwk

=
∫
R

∫
R

δ(yk − xk vk − wk)fvwk (vk, wk) dvk dwk

=
∫
R

fvwk (vk, yk − xk vk) dvk .

For vk and wk independent, i.e., fvwk (vk, wk) = fvk (vk) fwk (wk), we obtain

f(yk |xk) =
∫
R

fvk (vk) fwk (yk − xk vk) dvk .

5

For fvk (vk) and fwk (wk) Gaussian densities fvk (vk) ∼ N (vk,mv
k, σ

v
k) and fwk (wk) ∼ N (wk,mw

k , σ
w
k), the

integral can be evaluated in closed-form as

f(yk |xk) = 1
√

2π
√(

σvk
)2
x2
k +

(
σwk
)2 exp

{
−1

2

(
yk −mv

k xk −mw
k

)2(
σvk
)2
x2
k +

(
σwk
)2

}
.

For mv
k = 0 and mw

k = 0 this gives

f(yk |xk) = 1
√

2π
√(

σvk
)2
x2
k +

(
σwk
)2 exp

{
−1

2
y2
k(

σvk
)2
x2
k +

(
σwk
)2
}

.

When the additive noise wk goes to zero, we obtain

f(yk |xk) = 1
√

2π
(
σvk
)2 |xk| exp

{
−1

2
y2
k(

σvk
)2
v x2

k

}
,

which is equivalent to (4) in Example 2.1 for Gaussian noise fvk (.). When the multiplicative noise
vanishes, which can be expressed as fvk (vk) = δ(vk − 1) or mv

k = 1 and σvk → 0, we obtain

f(yk |xk) = 1√
2πσwk

exp
{
−1

2
(yk − xk)2(

σwk
)2

}
,

which is the result that is also directly obtained for the purely additive case. JExampleI

2.2. Time Update
So far, we looked at a single measurement update, where a given measurement is used to update a

prior estimate of the system state. Now we consider the propagation of a given state estimate through
a discrete-time nonlinear stochastic system

xk+1 = ak(xk, wk)

with time step k, state xk, system noise wk, and nonlinear system function ak(., .). In analogy to
the likelihood function as a probabilistic description of the measurement equation, we will use a
probabilistic representation of the system equation. This so-called transition density is given by

f(xk+1 |xk) .

It is calculated based on the system equation in a similar way as the likelihood function is determined
based on the measurement equation.

3. Zakai-type Distributed Ordinary Differential Equations in Artificial Time

In this section, we will derive distributed ordinary differential equations (DODEs) that smoothly
morph one density into another. Here, we will focus on infinite-dimensional representations, i.e., function
spaces, with corresponding solutions derived in Sec. 4 for some special cases. Finite-dimensional spaces
will be considered in Sec. 5 and Sec. 6. Parametric solutions are derived in Sec. 5, while Sec. 6 covers
non-parametric solutions.

In the following, we omit the time index k for simplicity.

6

3.1. Key Idea
The most general setup is as follows. We are given two densities f0(x) and f1(x). The first density

f0(x) is not necessarily known, but an approximation f0(x, η0) is given, where η0 is a parameter vector.
The second density, the target, may only be implicitly known or only be given at certain points. Our
goal is to find an approximation f1(x, η1). Finding the parameter vector η1 typically is a complicated
optimization problem.

The key idea for efficiently obtaining η1 is to first find a smooth progression for morphing f0(x)
into f1(x) depending on an artificial time parameter γ ∈ [0, 1], i.e.,

fγ(x) =


f0(x) γ = 0
nice interpolation γ ∈ (0, 1)
f1(x) γ = 1

.

Second, this progression is expressed as a DODE

ḟγ(x) = ∂ fγ(x)
∂ γ

= aγ(x) fγ(x) + bγ(x)

depending on the artificial time γ ∈ [0, 1] and the state x. aγ(x) and bγ(x) are suitable functions, that
will be derived in the following for specific problems. The initial condition is fγ=0(x) = f0(x) and
for γ = 1, we obtain the desired density f1(x). Third, this DODE is transferred to the approximate
parametrized densities f0(x, η0) and f1(x, η1).

Remark 3.1. It is important to note the following two properties of the DODE:

• The derived evolution equation is not a partial differential equation, but rather an ordinary
differential equation for all values of the state x. Hence, it is called a distributed ordinary
differential equation (DODE).

• We consider the evolution of unnormalized densities. This is the reason, why we call them
Zakai-type DODEs.

These two properties make the solution for fγ(x), γ ∈ [0, 1] much simpler compared to state of the art
approaches. JRemarkI

Fourth, by averaging the DODE resulting from inserting the approximate densities over the domain
x, we finally obtain a system of ordinary differential equations for the parameter vector

η̇
γ

= M(η
γ
) η

γ

with

η
γ

=
{
η0 γ = 0
η1 γ = 1

.

M(η
γ
) is a matrix depending on the functions aγ(x) and bγ(x) and the selected approximate

representation fγ(x, η
γ
).

3.2. DODE for Morphing from One Density to Another Density
The simplest progression to move from f0 to f1 is given by

fγ(x) =
(
1− gγ

)
f0(x) + gγ f1(x) = f0(x) + gγ

(
f1(x)− f0(x)

)
,

with gγ ∈ [0, 1], i.e., g0 = 0 and g1 = 1, gγ continuous, and gγ strictly increasing. Taking the derivative
with respect to γ gives

ḟγ(x) = ġγ
(
f1(x)− f0(x)

)
7

or with
f1(x)− f0(x) = 1

gγ

(
fγ(x)− f0(x)

)
the DODE

ḟγ(x) = ġγ
gγ

(
fγ(x)− f0(x)

)
,

where we have to take care of the singularity due to gγ when γ = 0.

Remark 3.2. The function gγ determines the rate of change in the densities when γ varies from 0 to
1. Of course, we could use gγ = γ when the expected change is relatively homogeneous over γ anyway.
However, when foreseeable variations in the rate of change occur, an appropriate selection of gγ can
simplify the life of the DODE solver. JRemarkI

3.3. DODE for Measurement Update
In the case of a measurement update according to (2), we set f0(x) = fp(x) and f1(x) = fe(x).

Omitting the normalization constant in (2), the relation between the two densities is given by

fe(x) = fL(x) fp(x) .

We now introduce a progressive likelihood function fL(x, γ) with the property

fL(x, γ) =
{

1 γ = 0
fL(x) γ = 1

and we obtain
fe(x, γ) = fL(x, γ) fp(x) .

Taking the derivative with respect to γ gives

ḟe(x, γ) = ḟL(x, γ) fp(x)

or
ḟe(x, γ) = ḟL(x, γ)

fL(x, γ) fe(x, γ) ,

which is the desired DODE.
A straightforward progression is

fL(x, γ) = [fL(x)]g(γ) .

Its derivative is
ḟL(x, γ) = ∂

∂ γ

{[
exp

(
log

(
fL(x)

))]g(γ)}

= ∂

∂ γ

{
exp

(
g(γ) log

(
fL(x)

))}
= log

(
fL(x)

)
ġ(γ) fL(x) .

The DODE for this progression is then

ḟe(x, γ) = log
(
fL(x, γ)

)
ġ(γ) fe(x, γ) .

For exponential families, we obtain simpler expressions due to the logarithm taken above. For the
special case of additive Gaussian measurement noise according to Subsec. 2.1.1 and g(γ) = γ, the
likelihood function is

fL(x, γ) = exp
(
− γ 1

2
(
y − h(x)

)>C−1
v

(
y − h(x)

))
,

8

and in the scalar case
fL(x, γ) = exp

(
− γ 1

2
(y − h(x))2

σ2
v

)
.

The corresponding DODE is

ḟe(x, γ) = −1
2
(
y − h(x)

)>C−1
v

(
y − h(x)

)
fe(x, γ)

and in the scalar case
ḟe(x, γ) = −1

2
[y − h(x)]2

σ2
v

fe(x, γ) . (5)

4. Zakai Equation: Exact Solution

The distributed ordinary differential equation (DODE) in (5) can be solved exactly in a few simple
(but interesting) cases. In general, however, approximate solution methods have to be employed. For
the special case of a linear measurement equation, the solution procedure is shown in the next example.
Of course, we obtain the expected result for the posterior density that in this case could have been
easily obtained by directly solving (2).

Example 4.1. We consider a prior zero-mean Gaussian density

fe(x, γ = 0) = fp(x) = N (x, 0, σ2
p) = 1√

2πσ2
p

exp
(
−1

2
x2

σ2
p

)

with standard deviation σp. The measurement equation is assumed to be simply

y = x+ v ,

with measurement y and measurement noise v ∼ N (v, 0, σv), which corresponds to the likelihood
function

fL(x) = exp
(
−1

2
(y − x)2

σ2
v

)
,

where we set y = 0 for simplicity. According to (5), the DODE is given by

ḟe(x, γ) = −1
2
x2

σ2
v

fe(x, γ) . (6)

For the solution of the DODE, we use the ansatz

f̄e(x, γ) = k1 exp(k2 γ x
2)

with derivative with respect to γ given by

˙̄fe(x, γ) = k1 k2 x
2 exp(k2 γ x

2) = k2 x
2 fe(x, γ) .

Inserting f̄e(x, γ) and ˙̄fe(x, γ) into the DODE gives

k2 x
2 fe(x, γ) = −1

2
x2

σ2
v

fe(x, γ)

and it follows that
k2 = −1

2
1
σ2
v

.

9

Using the initial condition

˙̄fe(x, γ = 0) = k1 = fe(x, γ = 0) = 1√
2πσ2

p

exp
(
−1

2
x2

σ2
p

)

gives

f̄e(x, γ) = 1√
2πσ2

p

exp
(
−1

2
x2

σ2
p

)
exp

(
−γ 1

2
x2

σ2
v

)

= 1√
2πσ2

p

exp
(
−1

2

(
x2

σ2
p

+ γ
x2

σ2
v

))
.

This can be written as
f̄e(x, γ) = 1√

2πσ2
p

exp
(
−1

2
x2

σ2
e

)
(7)

with
σ2
e = 1

1
σ2

p
+ γ 1

σ2
v

.

Obviously, we get the same result as solving (2) directly for this special case of a linear system. Please
note that the posterior density in (7) is unnormalized (in this case, normalized with respect to the
prior density) as the DODE in (6) describes the evolution of the unnormalized density starting at the
(in this case) normalized prior. JExampleI

5. Parametric Solution of Zakai Equation

For simplifying the exposition, we begin with the scalar DODE (5) repeated here for convenience

ḟe(x, γ) = −1
2

[y − h(x)]2

σ2
v

fe(x, γ) .

For solving this DODE, we plug in a parametric representation fe(x, γ) = fe(x, ηe(γ)) with
parameter vector η

e
(γ), which gives

ḟe
(
x, η

e
(γ)
)

= −1
2

[y − h(x)]2

σ2
v

fe
(
x, η

e
(γ)
)
. (8)

In order to calculate the desired parameter vector η
e
(γ) for γ = 1, the DODE has to be solved for

γ ∈ [0, 1] and for all states x simultaneously. However, for a given parametric representation, the
DODE typically cannot be exactly solved over all states x. Hence, we have to find a parameter vector
η
e
(γ) in such a way that some average distance between the left-hand side and the right-hand side

of (8) is minimized for all γ. We will pursue two options for minimizing an average distance: (1) a
continuous version based on the squared integral distance and (2) a discrete version based on distances
at collocation points. Both options will be used for different parametric representations.

5.1. Parametric Solution of Zakai Equation: Gaussian Posteriors
As a specific parametric representation of the posterior density, we assume that the state pdf can

be represented by an (unnormalized) posterior Gaussian density, i.e.,

fe
(
x, η

e
(γ)
)

= ke(γ) exp
(
−1

2
[x−me(γ)]2

σ2
e(γ)

)
, (9)

with
η
e
(γ) =

[
ke(γ) me(γ) σe(γ)

]>
depending on the artificial time γ.

10

Remark 5.1. The factor ke(γ) is not used for normalizing fe
(
x, η

e
(γ)
)
. For the start of the progression,

i.e., γ = 0, it can be initialized with any convenient value such as 1 or the normalization constant of
the prior density. During the progression, it is then used to take care of the change in probability mass
due to the multiplication with the likelihood function. When the progression reaches γ = 1, ke(γ) is
generally discarded and the density fe

(
x, η

e
(γ)
)

properly normalized. JRemarkI

The derivative of fe
(
x, η

e
(γ)
)

with respect to γ is given by

ḟe
(
x, η

e
(γ)
)

=
(

1
ke(γ) k̇e(γ) + x−me(γ)

σ2
e(γ) ṁe(γ) + [x−me(γ)]2

σ3
e(γ) σ̇e(γ)

)
fe
(
x, η

e
(γ)
)
. (10)

Plugging (10) into (8) results in a parametric DODE(
1

ke(γ) k̇e(γ) + x−me(γ)
σ2
e(γ) ṁe(γ) + [x−me(γ)]2

σ3
e(γ) σ̇e(γ)

)
fe
(
x, η

e
(γ)
)

= −1
2

[y − h(x)]2

σ2
v

fe
(
x, η

e
(γ)
)
.

(11)
Our goal is to solve the parametric DODE (11) for γ ∈ [0, 1] in order to obtain the values of ke(γ),
me(γ), and σe(γ) for γ = 1.

5.1.1. Squared Integral Solution
For solving the parametric DODE (11), we first employ a squared integral distance measure

D =
∫
R

(
1

ke(γ) k̇e(γ) + x−me(γ)
σ2
e(γ) ṁe(γ) + [x−me(γ)]2

σ3
e(γ) σ̇e(γ) + 1

2
[y − h(x)]2

σ2
v︸ ︷︷ ︸

∆(x,γ)

)2

f2
e

(
x, η

e
(γ)
)

dx .

(12)
Taking the derivative of D with respect to k̇e(γ), ṁe(γ), and σ̇e(γ) gives

Dk = ∂D

∂k̇e(γ)
= 2

∫
R

∆(x, γ) 1
ke(γ) f

2
e

(
x, η

e
(γ)
)

dx ,

Dm = ∂D

∂ṁe(γ) = 2
∫
R

∆(x, γ) x−me(γ)
σ2
e(γ) f2

e

(
x, η

e
(γ)
)

dx ,

Dσ = ∂D

∂σ̇e(γ) = 2
∫
R

∆(x, γ) (x−me(γ))2

σ3
e(γ) f2

e

(
x, η

e
(γ)
)

dx .

The parameters ke(γ), me(γ), and σe(γ) corresponding to the minimum of D in (12) for all γ is
obtained by setting Dk, Dm, and Dσ to zero, which gives

P
(
η
e
(γ)
)
· η̇

e
(γ) = q

(
η
e
(γ)
)

(13)

with
η̇
e
(γ) =

[
k̇e(γ), ṁe(γ), σ̇e(γ)

]>
and

P
(
η
e
(γ)
)

=



I
(

1
k2

e(γ)

)
I
(

1
ke(γ)

x−me(γ)
σ2

e(γ)

)
I
(

1
ke(γ)

(x−me(γ))2

σ3
e(γ)

)

I
(

1
ke(γ)

x−m(γ)
σ2

e(γ)

)
I
(

(x−me(γ))2

σ4
e(γ)

)
I
(

(x−me(γ))3

σ5
e(γ)

)

I
(

1
ke(γ)

(x−me(γ))2

σ3
e(γ)

)
I
(

(x−me(γ))3

σ5
e(γ)

)
I
(

(x−me(γ))4

σ6
e(γ)

)


, (14)

11

n = 0 : I
((
x−me(γ)

)0) =
∫
R

f2
e (x, γ) =

√
π k2

e(γ)σe(γ) ,

n = 1 : I
((
x−me(γ)

)1) =
∫
R

(x−me(γ)) f2
e

(
x, η

e
(γ)
)

= 0 ,

n = 2 : I
((
x−me(γ)

)2) =
∫
R

(x−me(γ))2 f2
e

(
x, η

e
(γ)
)

= 1
2
√
π k2

e(γ)σ3(γ) ,

n = 3 : I
((
x−me(γ)

)3) =
∫
R

(x−me(γ))3 f2
e

(
x, η

e
(γ)
)

= 0 ,

n = 4 : I
((
x−me(γ)

)4) =
∫
R

(x−me(γ))4 f2
e

(
x, η

e
(γ)
)

= 3
4
√
π k2

e(γ)σ5
e(γ) .

Figure 1: Special cases n = 0, . . . , 4 for the integral I
((
x−me(γ)

)n) in (16).

where I (.) is defined as
I (g(x)) =

∫
R

g(x) f2
e

(
x, η

e
(γ)
)

dx .

The right-hand side of (13) is given by

q
(
η
e
(γ)
)

= −1
2



∫
R

[y − h(x)]2

σ2
v

1
ke(γ) f

2
e

(
x, η

e
(γ)
)

dx

∫
R

[y − h(x)]2

σ2
v

x−me(γ)
σ2
e(γ) f2

e

(
x, η

e
(γ)
)

dx

∫
R

[y − h(x)]2

σ2
v

(x−me(γ))2

σ3
e(γ) f2

e

(
x, η

e
(γ)
)

dx


. (15)

For solving the integral expressions in (14), we use the following moment expressions

I
((
x−me(γ)

)n) =
∫
R

(
x−me(γ)

)n
f2
e

(
x, η

e
(γ)
)

dx =
{√

π k2
e(γ) (n−1)(n−3)···1

2n/2 σn+1(γ) for n even
0 for n odd

.

(16)
For the cases n = 0, . . . , 4, expressions are given in Fig. 1. As a result, we obtain

P
(
η
e
(γ)
)

=
√
π


σe(γ) 0 1

2 ke(γ)

0 1
2
k2

e(γ)
σe(γ) 0

1
2 ke(γ) 0 3

4
k2

e(γ)
σe(γ)

 .

Analytic Solution for q
(
η
e
(γ)

)
in (15): In many interesting cases, an analytic solution for q

(
η
e
(γ)
)

can be found. The following example gives the solution for the case of a linear system. This serves as
a sanity check, as in this case, the exact solution is known.

12

Example 5.1. We consider a scalar linear measurement equation, i.e., h(x) in (3) is now given as
h(x) = H x. In this case, we obtain

q
(
η
e
(γ)
)

=
√
π

2σ2
v


−1

2ke(γ)σe(γ)
{
H2σ2

e(γ) + 2
(
y −Hme(γ)

)2}
H k2

e(γ)σe(γ)
(
y −Hme(γ)

)
−1

4k
2
e(γ)

{
3H2σ2

e(γ) + 2
(
y −Hme(γ)

)2}


as the right-hand side of (13). JExampleI

For solving the ODE (13), we use a standard ODE solver. We avoid the explicit inversion of the
matrix P

(
η(γ)

)
by interpreting (13) as a linear equation that is solved for η̇(γ). The ODE solver is

accelerated by using the Jacobian matrix of q
(
η
e
(γ)
)

given by

J
(
η
e
(γ)
)

=
∂q>

(
η
e
(γ)
)

∂η
e
(γ) .

There are other interesting nonlinear functions h(x), where the analytic solution for q
(
η
e
(γ)
)

in
(15) is possible. This includes polynomials, trigonometric functions, and exponential functions.

Numeric Solution for q
(
η
e
(γ)

)
in (15): When an analytic solution is not possible, (15) has to be

evaluated numerically. An elegant quadrature rule is obtained by replacing f2
e

(
x, η

e
(γ)
)

by its Dirac
mixture approximation given by

f2
e (x, γ) ≈

N∑
i=0

wi(γ) δ
(
x− xi(γ)

)
.

Inserting this approximation into (15) gives

q
(
η(γ)

)
≈ −1

2

N∑
i=0

wi(γ)
[
y − h

(
xi(γ)

)]2
σ2
v



1
ke(γ)

xi(γ)−me(γ)
σ2

e(γ)

(xi(γ)−me(γ))2

σ3
e(γ)


.

Remark 5.2. Of course, we could now ask ourselves why this numerical procedure is simpler than just
performing a numeric integration of the basic update equation (2) for calculating the desired posterior
moments. First, the square of the progressive posterior f2

e (x, η
e
(γ)) is always narrower than the prior

fp(x) even for γ = 0 and gets narrower with increasing γ. Hence, we have to integrate over a smaller
region. Second, we do not have to integrate over the likelihood as in (2), we only have to calculate
(nonlinear) moments of f2

e (x, η
e
(γ)). Third, this procedure also works for Gaussian Mixture (GM)

posteriors, not only for Gaussian posteriors. For GM posteriors, moments of (2) would not be helpful
for obtaining the posterior mixture parameters. JRemarkI

5.1.2. Solution at Collocation Points
In Subsec. 5.1.1, the distributed ordinary differential equation (11) was solved “on average” over the

state domain by minimizing a squared integral distance between its left-hand side and its right-hand
side for calculating η̇

e
(γ). Here, we will solve the DODE (11) at selected discrete points only. There are

several ways of selecting these points. The natural solution is to use a Dirac mixture approximation of
fe
(
x, η

e
(γ)
)

fe
(
x, η

e
(γ)
)
≈

C∑
i=0

wi(γ) δ
(
x− xi(γ)

)
,

13

with xi(γ) the collocation points for i = 1, . . . , C. The weights wi(γ) are typically selected to be equal.
This automatically places more points where the density is large, putting a higher priority to large
density regions.

By plugging these collocation points into (11), we obtain

1
ke(γ) k̇e(γ) + xi(γ)−me(γ)

σ2
e(γ) ṁe(γ) + [xi(γ)−me(γ)]2

σ3
e(γ) σ̇e(γ) = −1

2
[y − h(xi(γ))]2

σ2
v

for i = 1, . . . , C. In vector-matrix-form, in analogy to (13), this gives

P
(
η
e
(γ)
)
· η̇

e
(γ) = q

(
η
e
(γ)
)

with

P
(
η
e
(γ)
)

=



1
ke(γ)

x1(γ)−me(γ)
σ2

e(γ)
[x1(γ)−me(γ)]2

σ3
e(γ)

1
ke(γ)

x2(γ)−me(γ)
σ2

e(γ)
[x2(γ)−me(γ)]2

σ3
e(γ)

...
...

...
1

ke(γ)
xi(γ)−me(γ)

σ2
e(γ)

[xi(γ)−me(γ)]2
σ3

e(γ)
...

...
...

1
ke(γ)

xC(γ)−me(γ)
σ2

e(γ)
[xC(γ)−me(γ)]2

σ3
e(γ)


and

q
(
η
e
(γ)
)

= −1
2

1
σ2
v



[y − h(x1(γ))]2

[y − h(x2(γ))]2
...

[y − h(xi(γ))]2
...

[y − h(xC(γ))]2


.

6. Nonparametric Solution of Zakai Equation

Here, we extend the previous ideas to the case of nonparametric solutions. By “nonparametric” we
mean that we directly use a set of samples that is updated during the measurement step. No fitting of
these samples to a parametric density is performed.

We are given a set of Lp prior sample vectors xp,i, i = 1, . . . , Lp arranged in a matrix according to

Xp =
[
xp,1, xp,2, . . . , xp,i, . . . , xp,Lp

]
.

Our goal is to find a posterior set of Le sample vectors xe,i(γ), i = 1, . . . , Le with

Xe(γ) =
[
x1(γ), x2(γ), . . . , xi(γ), . . . , xLe

(γ)
]
.

For simplicity, we start with the case of equally weighted samples in the prior and the posterior set
Xp and Xe(γ). We also assume that the number of components does not change during the update,
so L = Lp = Le. Furthermore, we assume a scalar state domain.

The key idea is to reconstruct the values of the density underlying the given samples at the sample
locations. A simple density-spacings estimator is used for that purpose. An estimate of the density
underlying the sample set Xe(γ) is given by

fe(xi, γ) = 1
2

wi
|xi(γ)− xj(γ)| ,

where wi = 1/L and j is the index of the nearest neighbor sample to sample i. We write j = NN(i).

14

Remark 6.1. Considering the density only at the given L sample locations would directly give us L
ODEs for the desired posterior locations. However, even in the one-dimensional case we need L+ 1
equations as we have to propagate the L locations plus some factor that takes care of the fact that we
consider unnormalized densities.

Of course, in higher-dimensional state spaces, say in D dimensions, L ·D parameters are required
for representing L samples plus one parameter for the factor. As in the scalar case, considering density
values at the component locations still only gives us L equations for, now, L ·D + 1 parameters.

In order to obtain more equations than unknowns, we perform first a continuous interpolation
between the density values leading to a DODE that is continuous over the state space X . Second, this
continuous DODE is evaluated at N carefully selected collocation points with N > L ·D + 1. resulting
in a system of N ordinary differential equations. JRemarkI

For interpolation, we use a simple Gaussian kernel

fe,i(x, γ) = fe(xi, γ) exp
(
−1

2

(
x− xi(γ)

)2
σ2
i (γ)

)
,

where σi(γ) is chosen in such a way that the integral over fe,i(x, γ) is equal to one, which gives

σ2
i (γ) = 2

π

(
xi(γ)− xj(γ)

)2
.

Finally, for a single sample, we obtain

fe,i(x, γ) = 1
2

wi
|xi(γ)− xj(γ)|︸ ︷︷ ︸

density value at sample

exp
(
−π4

(
x− xi(γ)

)2(
xi(γ)− xj(γ)

)2
)

︸ ︷︷ ︸
interpolation between samples

. (17)

For all samples, we have

fe(x, γ) = k(γ)
L∑
i=1

fe,i(x, γ) ,

where k(γ) is the factor that takes care of the fact that we calculate an unnormalized solution of the
DODE (11).

6.1. Derivation of DODE for Sample Locations
We will now derive a distributed ordinary differential equation (DODE) that describes the evolution

of the sample locations for the measurement update step along the artificial time γ ∈ [0, 1]. The
derivative of fe(x, γ) with respect to γ is

ḟe(x, γ) = k̇(γ)
L∑
i=1

fe,i(x, γ) + k(γ)
L∑
i=1

ḟe,i(x, γ)

= fe(x, γ)
k(γ) k̇(γ) + k(γ)

L∑
i=1

ḟe,i(x, γ) .

(18)

The derivatives of fe,i(x, γ) in (17) with respect to γ are given by

ḟe,i(x, γ) = ∂ fe,i(x, γ)
∂ γ

=


π x2−2x2

i (γ)−xj(γ)
(
π x+2xj(γ)

)
+xi(γ)

(
(4+π)xj(γ)−π x

)
2
(
xi(γ)−xj(γ)

)3

−π x2−2π xxi(γ)+π x2
i (γ)−2

(
xi(γ)−xj(γ)

)2

2
(
xi(γ)−xj(γ)

)3


>

fe,i(x, γ)

︸ ︷︷ ︸
b>

i (x,γ)

[
ẋi(γ)
ẋj(γ)

]

15

for i = 1, . . . , L. We note that ḟe,i(x, γ) only depends on the location xi(γ) with index i (and its
derivative ẋi(γ))) and on the location xj(γ) with index j, the nearest neighbor, (and its derivative
ẋj(γ)). The components of the vector bi(x, γ) will be named as follows for the subsequent derivations

b>i (x, γ) =
[
Ri(x, γ) Si(x, γ)

]
.

It can be rewritten as
b>i (x, γ) =

[
1 x x2

]
Ai(γ) fe,i(x, γ)

with

Ai(γ) = 1
2
(
xi(γ)− xj(γ)

)3


(4 + π)xi(γ)xj(γ)− 2
(
x2

i (γ) + x2
j (γ)

)
2
(
xi(γ)− xj(γ)

)2 − π x2
i (γ)

−π
(
xi(γ) + xj(γ)

)
2π xi(γ)

π −π

 .

The derivative of ḟe(x, γ) in (18) can now be expressed as

ḟe(x, γ) = fe(x, γ)
k(γ) k̇(γ) + k(γ)

L∑
i=1

[
Ri(x, γ) Si(x, γ)

] [ẋi(γ)
ẋj(γ)

]
.

which is equivalent to

ḟe(x, γ) = fe(x, γ)
k(γ) k̇(γ) + k(γ)

L∑
i=1

[
0, 0, . . . , 0, Ri(x, γ)︸ ︷︷ ︸

position i

, 0, . . . , 0, 0
]

ẋ1(γ)
ẋ2(γ)

...
ẋL(γ)



+ k(γ)
L∑
i=1

[
0, . . . , 0, 0, Si(x, γ)︸ ︷︷ ︸

position j

, 0, 0, . . . , 0
]

ẋ1(γ)
ẋ2(γ)

...
ẋL(γ)


.

The summations can be simplified to

ḟe(x, γ) = fe(x, γ)
k(γ) k̇(γ) + k(γ)

[
R1(x, γ), R2(x, γ), . . . , RL(x, γ)

]

ẋ1(γ)
ẋ2(γ)

...
ẋL(γ)



+ k(γ)
[
T1(x, γ), T2(x, γ), . . . , TL(x, γ)

]

ẋ1(γ)
ẋ2(γ)

...
ẋL(γ)


with

Tj(γ) =
L∑
i=1

j=NN(i)

Si(γ)

for j = 1, . . . , L, which leads to
ḟe(x, γ) = p>(x, γ) η̇(γ) (19)

16

with

p(x, γ) =



fe(x,γ)
k(γ)

k(γ)
(
R1(x, γ) + T1(x, γ)

)
k(γ)

(
R2(x, γ) + T2(x, γ)

)
...

k(γ)
(
RL(x, γ) + TL(x, γ)

)


, η̇(γ) =



k̇(γ)

ẋ1(γ)

ẋ2(γ)
...

ẋL(γ)


.

The DODE for the sample locations is now obtained by equating (19) with the left-hand side given
in Sec. 3.

6.2. Solution of DODE for Sample Locations based on Collocation Points
Solving this DODE is again performed by solving over a discrete set of points. Here, we focus on

employing collocation points for an average solution over the state domain. This leads to a system of
coupled ordinary differential equations for the desired sample locations. The collocation points are
selected as follows. For each sample point xe,i(γ), a Dirac mixture approximation of the corresponding
interpolation density fe,i

(
x, η(γ)

)
is performed. These points xn for n = 1, . . . , C are plugged into

(19), which gives
q
(
η(γ)

)
= P

(
η(γ)

)
· η̇(γ) ,

with

P
(
η(γ)

)
=



p>(x1, γ)

p>(x2, γ)
...

p>(xC , γ)


.

7. Conclusions

The proposed new density approximation method generates a set of ordinary differential equations
for the evolution of a parameter vector over an artificial time γ ∈ [0, 1] that starts with an approximation
for the prior density for γ = 0 and results in the desired approximation of the posterior for γ = 1. It
provides some unique features compared with the current state of the art that make it well suited for
practical applications:

• The derivations are easy to understand.

• Implementation is straightforward and can be done based on standard ODE solvers.

• It is applicable to a wide variety of density approximation problems, where the approximated
density does not even have to be known explicitly. This includes approximating the posterior
densities in the Bayesian filter step in stochastic nonlinear dynamic systems.

• Solving for the desired posterior density parameters such as particle locations is inherently fast
as neither an optimization nor solving a partial differential equation is required.

Future work includes higher dimensions, varying the length of the parameter vector during the
progression, and real-time implementations:

• The derivations in this manuscript are limited on the scalar case for the sake of simplicity. The
next step is the generalization to a higher number of dimensions.

17

• The generated flow modifies the values of a parameter vector of fixed length in such a way that
the posterior density is well approximated. However, for both parametric and nonparametric
representations, an adaptation of the number of parameters might be required. For a particle
representation, this means adding or removing particles depending on the local approximation
quality.

• So far, the algorithms are implemented in Matlab. For real-time operation, we envision to
auto-generate C++ code that can be compiled for different platforms.

References
[1] F. Daum and J. Huang, “Particle Degeneracy: Root Cause and Solution,” in Proc. SPIE, Signal Processing, Sensor

Fusion, and Target Recognition XX, vol. 8050, 2011.
[2] N. Oudjane and C. Musso, “Progressive Correction for Regularized Particle Filters,” in Proceedings of the Third

International Conference on Information Fusion (Fusion 2000), vol. 2, Jul. 2000, pp. 10 – 17.
[3] R. M. Neal, “Annealed Importance Sampling,” Statistics and Computing, vol. 11, no. 2, pp. 125–139, Apr. 2001.
[4] P. Del Moral, A. Doucet, and A. Jasra, “Sequential Monte Carlo Samplers,” Journal of the Royal Statistical Society:

Series B (Statistical Methodology), vol. 68, no. 3, pp. 411–436, Jun. 2006.
[5] J. Gall, J. Potthoff, C. Schnörr, B. Rosenhahn, and H.-P. Seidel, “Interacting and Annealing Particle Filters:

Mathematics and a Recipe for Applications,” Journal of Mathematical Imaging and Vision, vol. 28, no. 1, pp. 1–18,
May 2007.

[6] F. Daum and J. Huang, “Nonlinear Filters with Log-Homotopy,” in Proc. SPIE, Signal and Data Processing of
Small Targets, vol. 6699, 2007.

[7] ——, “Nonlinear Filters with Particle Flow,” in Proc. SPIE, Signal and Data Processing of Small Targets, vol. 7445,
2009.

[8] ——, “Nonlinear Filters with Particle Flow Induced by Log-Homotopy,” in Proc. SPIE, Signal Processing, Sensor
Fusion, and Target Recognition XVIII, vol. 7336, 2009.

[9] F. Daum, J. Huang, and A. Noushin, “Exact Particle Flow for Nonlinear Filters,” in Proc. SPIE, Signal Processing,
Sensor Fusion, and Target Recognition XIX, vol. 7697, 2010.

[10] ——, “Numerical Experiments for Coulomb’s Law Particle Flow for Nonlinear Filters,” vol. 8137, 2011.
[11] F. Daum and J. Huang, “Particle Flow Inspired by Knothe-Rosenblatt Transport for Nonlinear Filters,” in Proc.

SPIE, Signal Processing, Sensor Fusion, and Target Recognition XXII, vol. 8745, 2013.
[12] M. Khan and M. Ulmke, “Non-Linear and Non-Gaussian State Estimation Using Log-Homotopy Based Particle

Flow Filters,” in Sensor Data Fusion: Trends, Solutions, Applications (SDF), 2014, Oct. 2014, pp. 1–6.
[13] P. Bunch and S. Godsill, “Approximations of the Optimal Importance Density Using Gaussian Particle Flow

Importance Sampling,” arXiv:1406.3183 [stat], Jun. 2014.
[14] T. Yang, P. G. Mehta, and S. P. Meyn, “Feedback Particle Filter,” arXiv:1302.6563, Feb. 2013.
[15] K. Berntorp and P. Grover, “Feedback Particle Filter with Data-Driven Gain-Function Approximation,” IEEE

Transactions on Aerospace and Electronic Systems, pp. 1–1, 2018.
[16] S. Julier, J. Uhlmann, and H. F. Durrant-Whyte, “A New Method for the Nonlinear Transformation of Means and

Covariances in Filters and Estimators,” IEEE Transactions on Automatic Control, vol. 45, no. 3, pp. 477–482, Mar.
2000.

[17] J. Steinbring and U. D. Hanebeck, “S2KF: The Smart Sampling Kalman Filter,” in Proceedings of the 16th
International Conference on Information Fusion (Fusion 2013), Istanbul, Turkey, Jul. 2013.

[18] ——, “LRKF Revisited: The Smart Sampling Kalman Filter (S2KF),” Journal of Advances in Information Fusion,
vol. 9, no. 2, pp. 106–123, Dec. 2014.

[19] J. Steinbring, M. Pander, and U. D. Hanebeck, “The Smart Sampling Kalman Filter with Symmetric Samples,”
Journal of Advances in Information Fusion, vol. 11, no. 1, pp. 71–90, Jun. 2016.

[20] K. Berntorp, “Feedback Particle Filter: Application and Evaluation,” in Proceedings of the 18th International
Conference on Information Fusion (Fusion 2015), Jul. 2015, pp. 1633–1640.

[21] U. D. Hanebeck, K. Briechle, and A. Rauh, “Progressive Bayes: A New Framework for Nonlinear State Estimation,”
in Proceedings of SPIE, AeroSense Symposium, vol. 5099, Orlando, Florida, USA, May 2003, pp. 256 – 267.

[22] U. D. Hanebeck, “Progressive Bayesian Estimation for Nonlinear Discrete-Time Systems: The Measurement Step,”
in Proceedings of the 2003 IEEE Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI
2003), Tokyo, Japan, Jul. 2003, pp. 173–178.

[23] U. D. Hanebeck and O. Feiermann, “Progressive Bayesian Estimation for Nonlinear Discrete-Time Systems: The
Filter Step for Scalar Measurements and Multidimensional States,” in Proceedings of the 2003 IEEE Conference on
Decision and Control (CDC 2003), Maui, Hawaii, USA, Dec. 2003, pp. 5366–5371.

[24] J. Hagmar, M. Jirstrand, L. Svensson, and M. Morelande, “Optimal Parameterization of Posterior Densities Using
Homotopy,” in Proceedings of the 14th International Conference on Information Fusion (Fusion 2011). IEEE, Jul.
2011, pp. 1–8.

18

[25] A. Rauh and U. D. Hanebeck, “Calculating Moments of Exponential Densities Using Differential Algebraic Equations,”
IEEE Signal Processing Letters, vol. 10, no. 5, pp. 144–147, May 2003.

[26] M. F. Huber and U. D. Hanebeck, “Progressive Gaussian Mixture Reduction,” in Proceedings of the 11th International
Conference on Information Fusion (Fusion 2008), Cologne, Germany, Jul. 2008, pp. 1–8.

[27] U. D. Hanebeck and J. Steinbring, “Progressive Gaussian Filtering,” arXiv preprint: Systems and Control (cs.SY),
Mar. 2012. [Online]. Available: http://arxiv.org/abs/1204.0133

[28] ——, “Progressive Gaussian Filtering Based on Dirac Mixture Approximations,” in Proceedings of the 15th
International Conference on Information Fusion (Fusion 2012), Singapore, Jul. 2012.

[29] P. Ruoff, P. Krauthausen, and U. D. Hanebeck, “Progressive Correction for Deterministic Dirac Mixture Approx-
imations,” in Proceedings of the 14th International Conference on Information Fusion (Fusion 2011), Chicago,
Illinois, USA, Jul. 2011.

[30] U. D. Hanebeck and M. Pander, “Progressive Bayesian Estimation with Deterministic Particles,” in Proceedings of
the 19th International Conference on Information Fusion (Fusion 2016), Heidelberg, Germany, Jul. 2016.

[31] U. D. Hanebeck, “Optimal Reduction of Multivariate Dirac Mixture Densities,” at - Automatisierungstechnik,
Oldenbourg Verlag, vol. 63, no. 4, pp. 265–278, Apr. 2015. [Online]. Available: http://dx.doi.org/10.1515/
auto-2015-0005

[32] ——, “PGF 42: Progressive Gaussian Filtering with a Twist,” in Proceedings of the 16th International Conference
on Information Fusion (Fusion 2013), Istanbul, Turkey, Jul. 2013.

[33] J. Steinbring and U. D. Hanebeck, “Progressive Gaussian Filtering Using Explicit Likelihoods,” in Proceedings of
the 17th International Conference on Information Fusion (Fusion 2014), Salamanca, Spain, Jul. 2014.

[34] J. Steinbring, A. Zea, and U. D. Hanebeck, “Semi-Analytic Progressive Gaussian Filtering,” in Proceedings of the
2016 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI 2016),
Baden-Baden, Germany, Sep. 2016.

[35] J. Steinbring and U. D. Hanebeck, “GPU-Accelerated Progressive Gaussian Filtering with Applications to Extended
Object Tracking,” in Proceedings of the 18th International Conference on Information Fusion (Fusion 2015),
Washington D. C., USA, Jul. 2015.

19

http://arxiv.org/abs/1204.0133
http://dx.doi.org/10.1515/auto-2015-0005
http://dx.doi.org/10.1515/auto-2015-0005

	1 Introduction
	1.1 State of the Art
	1.1.1 Overview of Relevant Literature
	1.1.2 Own Prior Work

	1.2 Contributions
	1.3 Structure of the Paper

	2 Problem Formulation
	2.1 Measurement Update
	2.1.1 Additive Noise
	2.1.2 Non-additive Noise

	2.2 Time Update

	3 Zakai-type Distributed Ordinary Differential Equations in Artificial Time
	3.1 Key Idea
	3.2 DODE for Morphing from One Density to Another Density
	3.3 DODE for Measurement Update

	4 Zakai Equation: Exact Solution
	5 Parametric Solution of Zakai Equation
	5.1 Parametric Solution of Zakai Equation: Gaussian Posteriors
	5.1.1 Squared Integral Solution
	5.1.2 Solution at Collocation Points

	6 Nonparametric Solution of Zakai Equation
	6.1 Derivation of DODE for Sample Locations
	6.2 Solution of DODE for Sample Locations based on Collocation Points

	7 Conclusions

