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Abstract

The comprehension of mechanical fatigue in metals is crucial for the design of
reliable and secure engineering components. The physical origin of fatigue crack
initiation is mainly related to irreversible dislocation behavior. For the purpose of
understanding the underlying physical mechanisms during fatigue, three-dimensional
discrete dislocation dynamics simulations are performed during cyclic loading for
fcc- and bcc metals.

In fcc surface grains, the grain geometry as well as crystallographic orientation are
shown to play a major role in determining the nature and degree of microstructural
irreversibility. Slip system activity is found to be determined by the Schmid-factor
and the orientation of the crystal with respect to the free surface. In multislip
loading conditions, pattern formation is shown to be controlled by sessile Lomer
junctions that ensure the stability of the structure.
Upon decreasing the loading amplitude one order of magnitude below the persistent
slip band threshold, a qualitatively distinct dislocation microstructure is observed
though geometrical properties of dislocation dipoles and prismatic loops stay the
same.

Bcc metals with a non-metallic inclusion are examined to determine the influence
of different inclusion properties on the fatigue behavior. The effect of individual
properties shows that the stress field due to the misfitting inclusion plays an important
role in stabilizing the structure and involving all possible glide planes of a Burgers
vector. The stress field due to the difference in elastic properties between the matrix
and inclusion determines cross-slip and structure formation. When both properties
are combined, then the relative magnitude of these stress fields locally controls the
dislocation behavior.
Simulations of polycrystals reveal the effect of coarse-graining on dislocation density
evolution and increase in irreversibility during cycling.
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Kurzfassung

Für die Konstruktion von zuverlässigen und sicheren technischen Komponenten
ist das Verständnis der mechanischen Ermüdung von Metallen von entscheiden-
der Bedeutung. Der physikalische Ursprung der Ermüdungsrissinitiierung hängt
hauptsächlich mit irreversiblem Versetzungsverhalten zusammen. Um die fundamen-
talen physikalischen Ermüdungsmechanismen zu verstehen, werden dreidimensionale
diskrete Versetzungsdynamiksimulationen für kfz- und krz-Metalle unter zyklischer
Belastung durchgeführt.

Bei der Bestimmung der Art und des Grades der mikrostrukturellen Irreversibilität
spielen sowohl die Korngeometrie, als auch die kristallographische Orientierung der
kfz-Oberflächenkörner eine wichtige Rolle. Es zeigt sich, dass die Aktivität des
Gleitsystems durch den Schmid-Faktor und die Orientierung des Kristalls bezüglich
der freien Oberfläche bestimmt wird. Bei hochsymmetrischen Belastungsbedingun-
gen fällt auf, dass die Strukturbildung durch sesshafte Lomer-Reaktionen, die die
Stabilität der Struktur gewährleisten, kontrolliert wird.
Nach Senkung der Belastungsamplitude um eine Größenordnung unter die Schwelle
für die Bildung von persistenten Gleitbändern, wird eine qualitativ unterschiedlich
ausgeprägte Versetzungsmikrostruktur beobachtet. Die geometrischen Eigenschaften
von Versetzungsdipolen und prismatischen Versetzungsringen bleiben jedoch gleich.

Bei krz-Metallen mit einem nichtmetallischen Einschluss wird der Einfluss ver-
schiedener Einschlusseigenschaften auf das Ermüdungsverhalten untersucht. Die
Analysen zeigen, dass das Spannungsfeld aufgrund der Fehlpassung des Einschlusses
eine wichtige Rolle bei der Stabilisierung der Struktur und der Einbeziehung aller
möglichen Gleitebenen eines Burgersvektors spielt. Das Spannungsfeld aufgrund
der unterschiedlichen elastischen Eigenschaften zwischen Matrix und Einschluss bes-
timmt das Quergleitverhalten und die Strukturbildung. Wenn beide Eigenschaften
kombiniert werden, steuert die relative Größe dieser Spannungsfelder lokal das Ver-
setzungsverhalten.
Simulationen von Polykristallen zeigen den Einfluss der Grobkörnung auf die En-
twicklung der Versetzungsdichte und die Zunahme der Irreversibilität.
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Symbols and Abbreviations

The following notation for vector quantities will be used: a vector 𝑣 is defined as
𝑣 = 𝑣𝑒𝑣, where 𝑣 is the norm of the vector and 𝑒𝑣 is the unit direction vector. The
only exceptions are normal vectors 𝑛 which are normalized unit vectors.

Abbreviations

bcc Body centered cubic

BVP Boundary value problem

DDD Discrete Dislocation Dynamics

EBSD Electron backscatter diffraction

EGM Essmann-Gösele-Mughrabi Model

fcc Face centered cubic

FGA Fine Granular Area

FR Frank-Read

HCF High Cycle Fatigue

LCF Low Cycle Fatigue

MD Molecular Dynamics

MEMS Microelectromechanical systems

PSB Persistent slip band

RMS Root Mean Square

TEM Transmission Electron Microscope

VHCF Very High Cycle Fatigue
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Symbols and Abbreviations

Symbols

𝑄 Point cloud matrix of a component

𝐴 Empirical parameter used for cell size

𝐴enclosed Enclosed area of prismatic loop

𝐴shell Area of shells used for correlation function

𝐴swept Swept area of a dislocation

𝛼cs Angle to determine if a segment is of screw type while testing for
cross-slip

𝛼𝑀 Parameter in
√

𝑎𝑟𝑒𝑎 fatigue life prediction formula

𝛼 Average position of point cloud

𝑏𝑞 Fatigue strength exponent

𝐾𝑝 Bulk modulus of the precipitate

𝑏 Burgers vector

𝑐 Fatigue ductility exponent

𝑐1 Fitting coefficient in exponential distribution

𝑐2 Fitting coefficient in exponential distribution

𝐶M1 Parameter in
√

𝑎𝑟𝑒𝑎 fatigue life prediction formula

𝐶M2 Parameter in maximum stress intensity factor

𝑥centroid Grain centroid position

𝜒𝑐 Closed component of graph

𝜒 Graph component

𝑅 Correlation matrix

𝑔2𝑑 Two-point correlaction function

𝐿𝐴𝐵 Coupling matrix

𝐶 Covariance matrix

𝑑centroid𝑖 Distance from grain boundary 𝑖 to grain centroid
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Symbols and Abbreviations

𝑑gbs Minimum safe distance from grain boundary

𝑑grain Grain diameter

𝑑out Projection distance along 𝑡 out of the precipitate

𝑑sph Minimum safe distance from precipitate

𝑢 Displacement vector

𝐷 Drag coefficient

𝑒* Misfit strain

𝑒*
𝐶 Eshelby misfit strain

𝜖 Very small number that is negligible compared to unity

𝜀pl,cum Cumulative plastic strain

𝜀pl,irre Irreversible plastic strain

Δ𝜀pl,loc/2 Local axial plastic strain amplitude

𝜀pl Plastic strain

Δ𝜀pl/2 Plastic strain amplitude

𝜀pl,vM Von Mises plastic strain

𝜀′
𝑓 Fatigue ductility coefficient

𝑓pk Peach-Köhler force

𝑓𝑔
pk Glide component of the Peach-Köhler force

𝑓tot Sum of nodal forces of a segment

𝛾pl,loc Resolved shear strain amplitude

𝑛gp Glide plane normal vector

𝐺 Graph

𝑈 Edge in graph

𝑉 Node in graph

ℎ Dislocation dipole height

ℎcrit Critical height to destabilize a dislocation dipole
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Symbols and Abbreviations

ℎ̃ Distance along which surface roughness is measured

𝐻 Heaviside function

𝑅𝐻 Hole radius

𝐾max Maximum stress intensity factor

𝐾th Threshold stress intensity factor

𝐿min Minimum length of a dislocation dipole

𝐿min,cs Minimum length of cross-slip sector

𝑙min,seg Minimum segment length

𝐿sector Length of the screw sector used for cross-slip

𝑙segment Segment length

𝜆 Parameter of a straight line equation

𝜆𝑠 Linear intercept cell size

𝑡 dislocation line vector

𝑚0 Mass per unit length of a dislocation

𝑀𝐴𝐵 Mass matrix

𝜎el Modulus-induced stress field

𝑁 Number of elements in a list

𝑁𝐴 Number of total discretization nodes

𝑁𝐵 Number of neighboring nodes

𝑁cycles Number of cycles

𝑁𝑓 Number of load cycles to failure

𝑁inter Number of intersection points of cuts used for correlation function

𝑁𝐿 Number of Lomer junctions

𝑉 Nodal velocity

𝑃 ′ Intersection point of lines

𝑝 Irreversibility factor
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𝑃 Intersection point of grain boundaries

𝑝shape Shape factor of prismatic loop

𝑇 Period

𝑥𝑛 Position vector at time step 𝑛

𝑥𝑛+1 Position vector at time step 𝑛 + 1
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𝑅𝜎 Stress ratio
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𝑀 Sachs factor

𝑆 Schmid factor
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𝒩 Shape function
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𝜎ana Analytical stress field

𝜎* Misfit stress
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𝜎𝑠 Saturation stress

�̃� Analytical stress field of a dislocation in an infinite medium
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𝑡 Time
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1. Fatigue of metals: A brief introduc-
tion

Numerous engineering components present in everyday applications such as auto-
mobiles, aircraft, conveyor systems, microelectromechanical systems (MEMS), etc.
are subjected to alternating load on quotidian basis. Depending on the area of
application, they are required to reliably perform over time scales of several days or
even hundreds of years. If the loads experienced during operating exceed foreseen
thresholds, then the material may ‘tire’ and suffer so-called fatigue failure. Although
the number of fatigue failures relative to successfully operating components is very
small, the associated material cost is immense (Stephens et al., 2000). Indeed, fa-
tigue failures are the most frequent of all mechanical failures (at least 50%) and
occur mainly unexpectedly (Stephens et al., 2000).

Unfortunately, incentives to understand fatigue failure have been mainly driven
throughout history by tragic events. For instance, one of the earliest accidents in
1842 was a front axle failure of a locomotive near Versailles, France leading to many
fatalities (Suresh, 1998). Even after almost one hundred years, several fatigue-related,
catastrophic failures occurred in Comet passenger airplanes due to rivet holes (stress
concentration) in the cabins, which were frequently pressurized and depressurized
upon operation (Suresh, 1998).

Therefore, the comprehension of physical mechanisms responsible for fatigue failure
is crucial for the reliability of components and the safety of mankind. The following
two sections describe the development of the fatigue research field1.

1.1 Low- and High Cycle Fatigue

Experimental findings The fatigue research field has been an active area of scientific
and engineering investigation for over 150 years, albeit mostly experimental. The

1 For a broader overview, the following literature is recommended Suresh (1998), Mughrabi (2009)
and Hong und Sun (2017).
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1. Fatigue of metals: A brief introduction

first systematic work was conducted by Wöhler (1870) who recognized that fatigue
strength is lower than static strength and also introduced the concept of an endurance
limit. The latter concept refers to a stress amplitude for a number of cycles,
traditionally 107, below which a material can have infinite lifetime. Accordingly,
the most frequently used diagram in fatigue analysis is the S-N- or Wöhler curve,
which represents the number of cycles to failure 𝑁𝑓 versus the stress amplitude. It
is divided into two regimes: Low Cycle Fatigue (LCF) for 𝑁𝑓 < 104 and High Cycle
Fatigue (HCF) for 104 < 𝑁𝑓 < 107.

Not until Ewing und Rosenhain (1900) and Ewing und Humfrey (1903), fatigue
cracks were firstly associated with slip bands along active slip planes. It became
clear that fatigue damage at the surface is a consequence of irreversible plastic
strain. Basquin (1910) showed that in a log-log S-N curve a linear relationship
between the stress amplitude and number of cycles to fail exists. A similar approach,
however for the plastic strain, was proposed by Manson (1954) and Coffin Jr (1954)
who developed an empirical relationship between the plastic strain amplitude and
the number of load reversals to failure. The importance of plastic strain was,
hence, recognized. Morrow (1965) demonstrated that the total fatigue lifetime is a
combination of the Manson-Coffin law in LCF and Basquin relationship in HCF:
The total strain amplitude Δ𝜀tot/2 in a total strain controlled test is the sum of
elastic- and plastic strain amplitudes Δ𝜀el/2 and Δ𝜀pl/2 respectively,

Δ𝜀tot
2 = Δ𝜀el

2 + Δ𝜀pl
2 (1.1)

=
𝜎′

𝑓

𝐸
(2𝑁𝑓 )𝑏𝑞⏟  ⏞  

Basquin

+ 𝜀′
𝑓 (2𝑁𝑓 )𝑐⏟  ⏞  

Manson-Coffin

where 𝑏𝑞 and 𝜎′
𝑓 are the fatigue strength exponent and coefficient respectively, 𝑐

and 𝜀′
𝑓 are the fatigue ductility exponent and coefficient respectively and 2𝑁𝑓 the

number of load reversals to failure. The idea is that the total fatigue life is controlled
by ductility in the LCF regime (Manson-Coffin) and rupture strength in the HCF
regime (Basquin). The transition life (2𝑁𝑓 )𝑡 = (𝜀′

𝑓 𝐸/𝜎′
𝑓 )1/(𝑏𝑞−𝑐) is the intersection

of both parts. The above models are simple, nevertheless still fundamental to design
reliable components.

With the invention of electron microscopy, investigations of microstructural evolution,
especially for well-annealed face centered cubic (fcc) single crystals (most extensively
copper), during cycling loading became common practice. Thompson et al. (1956)

2



1.1. Low- and High Cycle Fatigue

introduced the term ‘persistent slip bands’ (PSBs) after showing that slip bands
reappeared at the same position even after material removal. Figure 1.1(a) is a
schematic cyclic saturation stress-strain curve, which is representative of a single
crystal behavior under cyclic loading. Each point represents the saturation resolved
shear stress 𝜏𝑠 for an independent plastic strain controlled experiment. Depending

(a)

110

111

100

(b)

Figure 1.1: (a) A schematic cyclic stress-strain curve partitioned into different regions with
the representative dislocation structures (Suresh, 1998). (b) Inverse pole figure
of Ni indicating dislocation pattern dependence on the tensile-axis orientation
(after Sauzay et al. (2010)). Blue rhombuses represent cells/labyrinths and red
circles PSBs. Reprinted with permission.

on the plastic strain amplitude 𝛾pl = Δ𝜀pl/2, the curve can be partitioned into
different regimes, in which dislocation microstructures vary. At small plastic strain
amplitudes (𝛾pl < 𝛾pl,𝐴𝐵 ≈ 10−4), a hardening behavior associated with primary
dislocations which form so-called veins is observed (figures 1.2(a) and 1.2(b)). The
vein structure consists of edge dislocation bundles of opposite signs, which have a

3



1. Fatigue of metals: A brief introduction

zero net Burgers vector and thus produce no long-range internal stresses (Mughrabi,
1979).

The veins consist primarily of prismatic loops, which were found to be formed by
cross-glide processes (Fourie und Murphy, 1962, Gilman, 1964). The early saturation
in zone 𝐴 is attributed to a reversible flip-flop mechanism of prismatic loops (Feltner,
1965). For a larger plastic strain amplitude 𝛾pl,𝐴𝐵 < 𝛾pl < 𝛾pl,𝐵𝐶 , the vein structures
cannot accommodate the strain, so the microstructure commences to form PSBs.
In the primary slip planes, PSBs show a wall- and channel-like structure, whereas
in {112} cross sections prominent ladder-like dislocations are seen (figures 1.2(c)
and 1.2(d)). Holzwarth und Essmann (1993) demonstrated how the PSB structure
arises from the dislocation-weak zones of the matrix to form ladders. Winter (1980)
developed a two-phase model that suggests that plastic strain accommodation
increases linearly within the PSB to reach 100% for 𝛾pl,𝐵𝐶 . The argument is in
agreement with previous observations showing that the PSB-phase is softer than the
matrix (veins) and that deformation in the plateau regime is carried mainly by PSBs
(Broom und Ham, 1959). The plateau regime has been attributed to an equilibrium
between the multiplication and annihilation of dislocations (Essmann und Mughrabi,
1979). Mughrabi (1983) used a composite model to justify the plateau nature of this
domain, which shows that stresses in the walls are higher than the applied stress
and vice versa in the channels.

For higher strain amplitudes, activation of secondary slip leads to the formation of
labyrinth or cell structures (figures 1.2(e) and 1.2(f)). The cell structure seen in
figure 1.2(f) is a consequence of a transformation of the PSB ladders into cells. Such
structure is not to be confused with cells developing in the primary glide plane, for
instance as in Lukáš et al. (1968).

The structures shown above are found in materials, in which dislocations can easily
cross-slip. On the other hand, materials, such as alloys with high yield stresses or
short range order due to strong solid solution hardening, may exhibit a difficulty in
cross-slip and result in rather planar structures (Mughrabi, 2010).

The behavior of polycrystalline materials is more complex and is summarized in
Suresh (1998). Due to defects in polycrystals such as inclusions, grain boundaries,
etc. the overall behavior may significantly differ from that of single crystals. The
incompatibility of strains between neighboring grains yields multislip loading condi-
tions. Thus favorably oriented grains for multislip in fine-grained polycrystals can be
directly compared to their corresponding single crystals. For such loading conditions,
figure 1.1(b) shows the orientation dependence of dislocation structures in Ni in an

4



1.1. Low- and High Cycle Fatigue

(a) (b)

(c) (d)

(e) (f)

Figure 1.2: TEM images from different stages of fatigued dislocation microstructure of
single crystal copper: (a) primary {111}-type slip plane showing vein-structure
(matrix) fatigued to saturation (Basinski et al., 1980). (b) A {112}-type section
in saturation state showing loop patches with centers free of dislocations
(Holzwarth und Essmann, 1993). (c) Primary slip plane showing PSB wall
structure in the lower part (Winter, 1980). (d) Ladder structures ({112}-type
cross section) observed at Δ𝜀pl/2 = 0.4% showing PSBs appearing in vein-
centers with small dislocation densities (Holzwarth und Essmann, 1993). (e)
(010) cross section showing a labyrinth structure with (100)- and (001) walls
for Δ𝜀pl/2 = 0.4% (Jin und Winter, 1984b). (f) Three-dimensional assembled
TEM images showing cell structure at Δ𝜀pl/2 = 1.45% (Laird et al., 1986). All
figures are reprinted with permission.
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1. Fatigue of metals: A brief introduction

inverse pole figure. The figure shows that grain orientations around [100] and [111]
exhibit cellular or labyrinth structures, whereas [110] orientations predominantly
exhibit ladder structures. The PSBs are similar to the ones observed in single crystals
and have been reported to also be found in the bulk of the material.

The surface damage mechanism, which is related to the formation of surface extrusions
and intrusions, has been described by several authors. The most prominent is the
Essmann-Gösele-Mughrabi (EGM) Model (Essmann et al., 1981, Mughrabi et al.,
1983, Differt et al., 1986), which relies on the idea that vacancy dipoles’ annihilation
is the source of plastic irreversibility. The predominance of vacancy dipoles during
fatigue has been reported by Polák (1970) and Antonopoulos et al. (1976). If located
at a smaller distance than ≈ 50 nm, vacancy dipoles can annihilate and generate
vacancy point defects, thus a net extrusion appearance is expected (Mughrabi, 2009).
Thus, the remaining interstitial dipoles that form at the PSB-interface can glide out
and leave static extrusions (Mughrabi et al., 1983). The random irreversible forward
and backward motion of screw dislocations causes a superposed gradual roughening
of the developed static extrusions. Thus, the surface topology contains several stress
raisers in form of peaks and valleys that can lead to a surface crack.

Micromechanical fatigue simulations The persistent desire to miniaturize compo-
nents necessitates controlling microstructural properties, especially when sample
sizes are on the level of micromechanical defects (Arzt, 1998). Prolonged fatigue
life in high strength steels has been observed when specimen sizes decrease (Furuya,
2008). Because of the small component length scales, physical simulation tools and
models, which are computationally expensive for large volumes, can be effectively
deployed to aid the understanding of fatigue mechanics.

Since dislocation structure formation is controlled by geometrical dislocation arrange-
ments due to elastic interactions between dislocations, the meso-scale simulation
method known as Discrete Dislocation Dynamics (DDD) is able to provide detailed
insight into the structure formation mechanisms. The role of microstructural parame-
ters, e.g. grain shape and orientation, on structure correlations is accessible. Several
groups have used DDD under cyclic loading to explore the mechanisms leading
to irreversible dislocation structure formation2. A detailed analysis of single- and
double slip loading conditions was given in Déprés et al. (2004, 2006). It was shown
that an initial single Frank–Read source can yield, due to annihilation and cross-slip
processes, a dipolar dislocation microstructure which shows good agreement with
experiments. It was found that slip band spacing was inversely proportional to the

2 The above mentioned vacancy generation mechanism due to climb is ignored in these simulations
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square of the slip band thickness. The authors stressed the role of cross-slip for
strain localization and showed that double slip conditions lead to more damage than
single slip. Based on statistical distribution of dipole heights, Déprés et al. (2008)
derived a model which accurately reproduces precisely an experimental hysteresis
loop. Recently it was found that dislocations arising from a single source and trapped
within a stress gradient can lead to irreversible macroscopic plastic deformation
under cyclic bending with very little dislocation storage (Stricker et al., 2017). Pris-
matic loop generation and interaction mechanisms were studied in Erel et al. (2017).
The authors presented two different transport mechanisms of prismatic loops. If
the loops are small in size, then they are driven by stress gradients, whereas long
dipoles, e.g. in PSBs, move primarily due to a strong attraction of mobile screw
dislocations. For multislip orientations, the effects of the initial dislocation density
and crystal size on surface roughness and dislocation cell size were investigated
in Hussein und El-Awady (2016a,b). The cell size and wall thickness showed an
increase upon increasing the crystal size, whereas early surface slip localization was
observed for rather small crystals. Several measures such as the Hausdorff dimension
for surface analysis and information entropy for pattern analysis were also used.
The role of double cross-slip in the development and evolution of slip bands was
emphasized.

Another approach is dislocation-based models, which are widely used by experimen-
talists. A prominent example is the Tanaka und Mura (1981) model, where the
development of extrusions and intrusions is confined within two parallel layers of
glide planes representing a PSB. The source of irreversibility in this model is the
different back stress level caused by one layer on another enabling an increase of
dislocation pileups during cycling.

1.2 Very High Cycle Fatigue

The PSB threshold has simply been considered hitherto as the fatigue limit. However,
unexpected failures, such as the railway accident of Eschede (Esslinger et al., 2004),
for amplitudes below the traditional endurance limit put the latter concept into
doubt. Since many modern applications (bearings, train-axles, etc.) are reliably
required to endure up to 1010 cycles, a surge of interest in the Very High Cycle Fatigue
(VHCF) (or Ultra High Cycle Fatigue (Mughrabi, 1999)) behavior for cycles above
108 emerged. In particular, the development of modern fatigue testing machinery
which run at ultrasonic frequencies (up to 20 KHz) enables VHCF-experiments
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to be completed in less than a day (Willertz, 1980, Bathias, 1999, Eberl, 2005,
Stanzl-Tschegg et al., 2007, Straub et al., 2015, Straub, 2016).

In the VHCF-regime, crack initiation rather than crack propagation has been shown
to be the life controlling mechanism (Mughrabi, 1999, Hong und Sun, 2017) and
governs 95-99% of the fatigue lifetime (Murakami et al., 2000a, Tanaka und Akiniwa,
2002, Hong et al., 2014). Since the loading amplitudes are not enough to form PSBs,
the dislocation microstructure is primarily that of stage I, i.e. dislocation bundles
and veins.

Mughrabi (1999) makes the distinction between the behavior of single-phase ductile
fcc metals (type I materials) and high strength steels containing inclusions (type II
materials), which will be briefly outlined below.

Type I materials A multi-stage S-N curve for type I materials in the VHCF is
postulated by Mughrabi (1999). The first range is the LCF-regime described by
the Manson-Coffin law, followed by a plateau related to the PSB threshold in the
HCF-regime (Δ𝜀pl/2 = 2.5 × 10−5 for copper). Below the latter amplitude and at
higher cycles is the transition zone to VHCF. Since Lukáš et al. (1974) showed that
the Manson-Coffin law is applicable to HCF by mutual transformation of stress- and
plastic strain amplitude, Mughrabi (1999) developed a similar law for VHCF which
reads

𝑁 𝑐+1
𝑓 𝑝 = 𝜀pl,irre,f

4𝜀′
𝑓 2𝑐

= const (1.2)

where 𝜀pl,irre,f is the cumulative irreversible plastic strain at failure and 𝑝 a factor
describing the degree of irreversibility of a system (Essmann, 1982). The fourth
range in the S-N curve is the irreversibility threshold (Δ𝜀pl/2 ≈ 10−5 for copper).

A suggested mechanism behind crack initiation is related to the accumulation of
small irreversible plastic slip that leads gradually to an increase in surface roughness.
After reaching a certain threshold, evolved surface valleys may act as stress raiser
and give rise to embryonic PSBs. With increasing number of cycles, strain becomes
localized in the PSBs, and the latter extends deeper into the volume yielding stage I
crack initiation (Mughrabi, 2006). Indeed, polycrystalline copper subjected to 1010

cycles with amplitudes somewhat below conventional PSB threshold show slip bands
at the surface accompanied with stage I shear cracks (Weidner et al., 2010).
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Type II materials Most of the early studies in the VHCF-regime were performed
on high strength steels with inclusions (Murakami, 1994, Murakami et al., 1998,
Bathias, 1999). It was shown that the S-N curve exhibits a two-fold behavior
(Nishijima und Kanazawa, 1999, Sakai et al., 2000), where surface fatigue failures
govern LCF- and HCF domains and internal failures at subsurface inclusions the
VHCF-regime. The fracture surfaces all show a similar morphology: Around the
inclusion is a relatively small, rough and bright area of several microns, called the
Fine Granular Area (FGA) (Sakai et al., 2000), surrounded by a large (hundreds
of microns) and flat region labeled as the ‘fish-eye’ region (Murakami, 1994). The
term FGA is given different names in the literature such as Optical Dark Area
(Murakami et al., 2000a,b) or Granular Bright Facet (Shiozawa et al., 2001). As a
matter of fact, several groups have shown using selected area electron diffraction
that in the FGA, a local grain refinement takes place (Grad et al., 2012, Hong et al.,
2016). The size of the FGA has been studied and shown to be inversely proportional
to the applied stress (Hong und Sun, 2017). The overall crack initiation time is
found to be mostly consumed in FGA development (Hong et al., 2014).

Understanding the underlying mechanisms in FGA evolution is crucial to obstruct
fatigue failure in type II materials. Several models have been developed in this
regard:

∙ Murakami et al. (2000a,b) explain the formation of the FGA as a result of
hydrogen entrapment by inclusions yielding steady crack growth and leaving
a rough surface behind. The authors predict fatigue failure in terms of the
inclusion geometry and matrix hardness (stress ratio 𝑅𝜎 ̸= 1):

𝜎𝑤 = 𝐶M1(𝐻𝑉 + 120)
(
√

𝑎𝑟𝑒𝑎)
1
6

(︂1 − 𝑅𝜎

2

)︂𝛼M

(1.3)

where 𝜎𝑤 is the fatigue stress limit, 𝑎𝑟𝑒𝑎 the projection area of the inclusion
onto a plane perpendicular to the loading axis, 𝐶M1 a parameter which accounts
for inclusion location (surface, subsurface or interior), 𝐻𝑉 Vicker’s hardness
of the matrix, and 𝛼M a parameter depending on 𝐻𝑉 .

Fatigue fracture has been described in terms of linear elastic fracture me-
chanics: If the maximum stress intensity factor 𝐾max = 𝐶M2𝜎0

√︁
𝜋

√
𝑎𝑟𝑒𝑎

exceeds a threshold stress intensity factor 𝐾th, typically in the range of
4 MPa

√
m < 𝐾th < 6 MPa

√
m (Shiozawa und Lu, 2002), then crack initiation

is possible (Grad et al., 2012). The parameters 𝜎0 and 𝐶M2 are respectively
the maximum tensile stress and a parameter similar to 𝐶M1 related to the
location of the inclusion. It turns out that this assumption is only valid when
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the parameter 𝑎𝑟𝑒𝑎 is taken as the area of the inclusion and the FGA combined,
which makes the latter region of even more importance.

∙ Shiozawa et al. (2006) suggest that in high strength steels rich in carbon, the
FGA forms due to decohesion of spherical carbides from the matrix.

∙ Local grain refinement in the FGA is attributed to the formation of dislocation
cells by Grad et al. (2012). Due to the grain refinement, 𝐾th decreases locally
and gets exceeded by 𝐾max leading to crack initiation in the FGA. Indeed,
Chai et al. (2012) observe local plastic deformation around inclusions and
identify cell structures in TEM images.
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2.1 Discrete Dislocation Dynamics

Discrete Dislocation Dynamics (DDD) is a mesoscale simulation method based
on a discrete representation of dislocations. Thus, plasticity, which is a direct
consequence of dislocation motion, can be studied thoroughly without the necessity
to introduce phenomenological flow rules usually present in continuum plasticity
models (Simo und Hughes, 2006). In contrast to molecular dynamics (MD), where
dislocations arise naturally in a strained crystal, dislocations need to be introduced
into the simulation domain. While MD is limited to small- system sizes (nm) and time
scales (ps), DDD systems can be several microns large and in the microsecond range.
This allows to study mechanisms of complex dislocation networks and dynamical
problems such as early stages of fatigue. Several authors developed DDD codes
during the last 30 years (Kubin und Canova, 1992, Van der Giessen und Needleman,
1995, Fivel et al., 1996, Weygand et al., 2002, Arsenlis et al., 2007). The simulations
in this work were performed using the DDD-framework Weygand et al. (2001, 2002),
Weygand und Gumbsch (2005). Only a brief summary is given here.

Dislocations are treated as line singularities embedded into an elastic continuum.
The curved lines are approximated using straight segments connected by nodes with
assigned properties such as the Burgers vector 𝑏 and line direction 𝑡. The habitat of
dislocations is the crystal system which comprises a set of discrete slip planes fixed
at a constant distance from each other. Dislocation kinetics are described by a semi
empirical Newtonian-type equation

𝑚0
𝜕𝑣

𝜕𝑡
+ 𝐷𝑣 = 𝑓𝑔

pk (2.1)

where 𝑚0 is the effective mass per unit length of a dislocation, 𝑣 the dislocation
velocity, 𝐷 a material specific drag coefficient and 𝑓pk the glide component of the
Peach-Köhler force at a specific location 𝑙 along the dislocation line. Both 𝑚0
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and 𝐷 are atomic-scale properties which are parameterized using MD simulations
(Bitzek und Gumbsch, 2005). The Peach-Köhler force is calculated according to

𝑓pk = 𝜎𝑏 × 𝑒𝑡 (2.2)

where 𝜎 is the total stress and 𝑒𝑡 the normalized line direction. The glide component
of the Peach-Köhler force is calculated according to

𝑓𝑔
pk = (𝑓pk · 𝑒𝑠)𝑒𝑠 (2.3)

= (𝜎𝑏 · 𝑛)𝑒𝑠

where 𝑛 is the normalized glide plane normal and 𝑒𝑠 = 𝑛 × 𝑒𝑡 a unit vector
perpendicular to the line segment and located in the glide plane. The resolved shear
stress in the glide plane is 𝜏 = ||𝑓𝑔

pk||/𝑏 with 𝑏 = ||𝑏||.

For each dislocation line, a one-dimensional FEM approximation is applied (Weygand et al.,
2002, Bitzek et al., 2004) and briefly explained in the following. The principle of
virtual work is applied to equation 2.1 which yields an equation for the rate of energy
dissipation due to dislocation glide

𝑚0

∫︁
�̇�(𝑙) · 𝛿𝑣(𝑙) 𝑑𝑙 + 𝐷

∫︁
𝑣(𝑙) · 𝛿𝑣(𝑙) 𝑑𝑙 −

∫︁
𝑓𝑔

pk(𝑙) · 𝛿𝑣(𝑙) 𝑑𝑙 = 0 (2.4)

where 𝛿𝑣(𝑙) is the virtual velocity of the dislocation at position 𝑙 along the dislocation
loop. The local velocity 𝑣 is interpolated using linear shape functions 𝒩 (𝑙) between
nodal velocities 𝑉 𝐴

𝑣(𝑙) =
𝑁𝐴∑︁
𝐴=1

𝒩𝐴(𝑙)𝑉 𝐴 (2.5)

where 𝑁𝐴 is the total number of nodes. The same interpolation is also used for the
acceleration �̇� and virtual velocity 𝛿𝑣. Substituting equation 2.5 into equation 2.4
yields

𝑁𝐴∑︁
𝐴=1

[︁
𝑚0

𝑁𝐵∑︁
𝐵=1

�̇� 𝐵

∫︁
𝒩𝐴(𝑙) 𝒩𝐵(𝑙) 𝑑𝑙⏟  ⏞  

𝐿𝐴𝐵

+ 𝐷
𝑁𝐵∑︁

𝐵=1
𝑉 𝐵

∫︁
𝒩𝐴(𝑙) 𝒩𝐵(𝑙) 𝑑𝑙

−
∫︁

𝒩𝐴(𝑙) 𝑓𝑔
pk(𝑙) 𝑑𝑙⏟  ⏞  

𝑓𝐴

]︁
· 𝛿𝑉 𝐴 = 0

(2.6)
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where 𝑁𝐵 is the total number of neighboring nodes of node 𝐴 and 𝐿𝐴𝐵 is a matrix
containing coupling information about segment lengths of neighboring nodes. The
nodal force of node 𝐴 reads

𝑓𝐴 =
𝑁𝐵∑︁

𝐵=1
𝑓𝐴𝐵 =

∫︁
𝒩𝐴(𝑙) 𝑓𝑔

pk(𝑙) 𝑑𝑙 (2.7)

which is the sum of nodal forces 𝑓𝐴𝐵 of all segments 𝐴𝐵 connected to node 𝐴.
Requiring equation 2.6 to hold for arbitrary 𝛿𝑉 𝐴 yields a system of equations for
node 𝐴

𝑁𝐵∑︁
𝐵=1

[︁
𝑀𝐴𝐵�̇� 𝐴 + 𝐾𝐴𝐵𝑉 𝐴

]︁
= 𝑓𝐴 (2.8)

where 𝑀𝐴𝐵 = 𝑚0𝐿𝐴𝐵 and 𝐾𝐴𝐵 = 𝐷𝐿𝐴𝐵 are the mass- and stiffness matrices
respectively. Time integration of equation 2.8 is carried out using the Störmer-Verlet
algorithm which necessitates a constant time-step 𝛿𝑡 with a numerical constraint
𝛿𝑡 ≪ 2𝑚0/𝐵.

In order to determine the stress 𝜎, strain 𝜀 and displacement 𝑢 around a dislocation,
a linear-elastic boundary value problem (BVP) with discontinuities has to be solved
(Weygand et al., 2001, 2002). The BVP is shown on the left side of figure 2.1:
Dislocations are embedded into a finite solid of volume Ω with Neumann boundary
conditions (traction 𝑇 0) and Dirichlet boundary conditions (displacement 𝑢0) pre-
scribed on boundaries 𝜕Ω𝑇 and 𝜕Ω𝑢 respectively. The solution to this problem is a
decomposition into an analytical part denoted by (̃.)-fields, for which analytical elastic
fields are given in linear elastic isotropic infinite continua, and a correction part using
FEM (Weygand et al., 2001), denoted by (̂.)-fields, which is added onto the analyti-
cal solution to correct for the boundary condition (Van der Giessen und Needleman,
1995). This yields the set of final equations

𝜎 = �̃� + �̂�, 𝜀 = 𝜀 + 𝜀, 𝑢 = �̃� + �̂� (2.9)

Unfortunately, a computational problem arises due to the long range nature of the
stress field accounting for dislocation-dislocation interaction which is ∝ 1/𝑟: No
cut-off can be introduced to reduce the 𝑂(𝑁2) complexity (𝑁 being the total number
of dislocation segments) commonly applied, for example, for metal potentials in MD.
In Weygand et al. (2002) and Weygand und Gumbsch (2005), the authors address
this problem by introducing a hierarchical method based on a sub-iteration scheme,
where local and global contributions are distinguished. In the so-called sub-timesteps,
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Figure 2.1: Decomposition of the boundary value problem into an infinite solid ((̃.)-fields)
containing dislocations and a correction part ((̂.)-fields) accounting for the
finite solid and boundary condition.

only local interactions in the neighborhood of a segment are accounted for while
the global interactions are kept constant. Upon evolving the microstructure over a
maximum time interval, global interactions and external conditions are updated. The
method offers an acceleration of two orders of magnitude and a stability regarding
junctions.

Alternatively, the superposition principle mentioned before could be replaced by
the eigenstrain method (Lemarchand et al., 1999, 2001, Vattré et al., 2014). In this
model, dislocations are treated as thin plate-like inclusions with their slipped area
regularized as plastic strain. DDD is responsible for the dynamics, local reactions
and computation of plastic strain, while a finite element part calculates long range
stresses due to eigenstrain and solves the boundary condition. Another approach
is to use the multipole method developed by Greengard und Rokhlin (1987), which
was adapted by Wang und LeSar (1995) and Rickman und Lesar (2002) in the DDD
context. It is based on developing complex potentials, from which stress fields can be
derived, and expanding them in multipole series. The method reduces the complexity
of the problem to 𝑂(𝑁).

Dislocation reactions are treated as discrete events. Based on geometrical and
energetic criteria (if the elastic energy ∝ 𝐺𝑏2 is minimized due to junction formation),
segments that are possibly to intersect, are tested if they are favorable to form
a junction (Weygand et al., 2002). In an fcc crystal four types of junctions are
distinguished: Lomer-, glissile-, Hirth- and collinear (Hull und Bacon, 2001).

Partial dislocations are neglected in the used DDD code. This is a good assumption
for the materials used which are aluminium and iron, the first has an fcc lattice with
the largest stacking fault energy (the cores of two partials overlap) (Kubin et al.,
1998) while the second is a bcc metal with no metastable stacking fault (Vitek,
2004).
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2.1.1. Cross-slip

Due to the fact that the Burgers vector 𝑏 and line direction 𝑡 of a screw dislocation
are parallel to each other, no unique glide plane can be associated to it. A screw
dislocation can change the glide plane such that cross-slip can occur whenever the
local stresses are higher in the cross-slip plane of the screw dislocation. In the
underlying work, different approaches are used to treat cross-slip for fcc- and bcc
lattices.

For fcc metals, cross-slip is based on the probabilistic approach given in (Kubin et al.,
1992, Weygand et al., 2002). Only a brief summary is provided here. A segment is
identified as screw if |(𝑒𝑏 × 𝑒𝑡) · 𝑒𝑛| < sin(𝛼cs) with 𝛼cs = 10∘. For such a segment,
a connected sector containing neighboring screw segments is considered for cross-slip
if its length 𝐿sector is greater than a minimum cross-slip length 𝐿min,cs > 3𝑙min,seg

with 𝑙min,seg the minimum segment length. If this is the case, then the sector is
used to calculate an averaged resolved shear stress on both primary 𝜏primary and
cross-slip 𝜏cs planes. If 𝜏cs > 1.1𝜏primary, then the cross-slip probability used in
Weygand et al. (2002) is compared to a random number from a uniform distribution.
If the probability is higher, then the screw dislocation sector can cross-slip if the bow-
out radius in the primary plane is 0.25𝜇/(𝜏cs𝑏) < 3𝐿sector to stabilize the cross-slip
geometry.

The screw sector for bcc metals is defined by connected segments that are of screw
type and obey 𝜏cs > 𝜏primary. There are two possible cross-slip planes, but all
segments of the sector must utilize the same cross-slip plane. If this is the case, then
the sector can cross-slip if 𝐿sector > 𝐿min,cs and the shear stress is larger than the
friction stress applied on screw segments (described in section 2.1.5).

2.1.2. Cyclic loading

The applied cyclic loading is imposed using a tensile-compression boundary condition.
Either strain- or stress control, which implies displacement control of the cyclic
loading are possible. The total displacement in 𝑦-direction of the upper surface
is linearly increased according to 𝑢𝑦 = �̇�𝑓(𝑡)𝐿𝑦, where �̇� is the strain rate, 𝑓(𝑡) a
saw-tooth function and 𝐿𝑦 the length of the sample in tensile direction. Once the
prescribed displacement yields the specified amplitude, the sign of loading rate is
inverted.

The plastic strain in the loading direction 𝜀pl,𝑦 = (< �̃�𝑦(0) > − < �̃�𝑦(𝐿𝑦) >)
⧸︀
𝐿𝑦

is controlled using averaged plastic displacements < �̃�𝑦(0) > of the lower- and
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< �̃�𝑦(𝐿𝑦) > upper 𝑦-surfaces respectively. In the case of stress amplitude monitoring,
the specified stress amplitude is compared with the average stress in 𝑦-direction of
the surface 𝑦 = 𝐿/2.

2.1.3. Grains

The total simulation volume is a cuboidal domain discretized using finite elements
with its boundaries being transmissible to dislocation motion. A grain is realized
as an embedded volume limited by a set of flat interfaces. Inside the volume the
interfaces are shared by the grain and represent grain boundaries. Interfaces shared
with the free surface are transmissible to dislocations. The algorithm allows only
convex geometries and is described in detail in appendix A. Dislocations are not
allowed to penetrate grain boundaries. The grain boundary handling algorithm is
explained in section B.1.

2.1.4. Precipitates

Precipitates are modeled as isotropic spherical inhomogeneities with different size and
different elastic properties of the matrix. Similar to grain boundaries (section 2.1.3),
the interfaces are treated impenetrable to dislocations. Details about the algorithm
for the dislocation-precipitate interface handling are given in section B.2. To avoid
unnatural structures around the precipitate, dislocation discretization is adapted
locally w.r.t. the precipitate radius.

The elastic interaction between a precipitate and a dislocation is separated into two
parts:

∙ an analytical stress field 𝜎* related to the misfit strain 𝑒* = (𝑅𝑝 − 𝑅𝐻)/𝑅𝐻

(Mott und Nabarro, 1940) due to the difference in size between the precipitate
of radius 𝑅𝑝 and the virtual hole of radius 𝑅𝐻 , in which the precipitate is
located. The stress field was given by Ashby und Johnson (1969) in spherical
coordinates as

𝜎*
𝑟𝑟 = −4𝜇𝑒*

𝐶

(︂
𝑅𝑝

||𝑟||

)︂3
(2.10)

𝜎*
𝜃𝜃 = 𝜎*

𝜑𝜑 = 2𝜇𝑒*
𝐶

(︂
𝑅𝑝

||𝑟||

)︂3
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where 𝜇 is the shear modulus of the matrix, 𝑟 the position with respect to
the inclusion center and 𝑒*

𝐶 = 3𝐾𝑝/(3𝐾𝑝 + 4𝜇)𝑒* (𝐾𝑝 is the bulk modulus
of the precipitate) is an extension of the misfit strain 𝑒* denoted as con-
strained eigenstrain (Eshelby, 1957). By using the constrained eigenstrain 𝑒*

𝐶

in equation 2.10, the precipitate’s elastic properties are implicitly taken into
account.

∙ a numerical stress field 𝜎el due to difference in elastic constants using a perfectly
fitting particle. The stress is calculated using the commercial software ABAQUS

for a total strain controlled cyclic loading scenario. The loading profile is a
saw-tooth function with a period controlled by a fixed strain rate. Hexahedral
finite elements with quadratic shape functions are used with a grid refinement
around the inclusion. Because the generated mesh is irregular, especially
around the inclusion, the stress field is linearly interpolated onto a regular grid
and afterwards onto dislocations (appendix C).

The incorporation of the model into the DDD-framework is shown in figure 2.2.
The BVP (on the left side) consists of a finite solid with prescribed traction- or
displacement boundary conditions containing dislocations and a misfitting inclusion
that has different elastic constants (𝐸𝑝 and 𝜈𝑝) than the matrix (𝐸 and 𝜈). The
solution is the decomposition of the BVP into an infinite analytical dislocation part
(upper left), a correction part due the boundary conditions (upper right), a misfitting
inclusion (lower left) and one with different elastic properties than the matrix (lower
right) which is solved in ABAQUS. Then the total stress can be calculated as

𝜎 = �̃� + �̂� + 𝜎* + 𝜎el (2.11)

where 𝜎ana = �̃� + 𝜎* is the analytical part of the stress field from equation 2.9.

2.1.5. Model for bcc metals

An atomistically informed discrete dislocation dynamics code has been previously im-
plemented for bcc metals (Srivastava et al., 2013, Marichal et al., 2014, Srivastava et al.,
2014). In the model, the kink-pair nucleation mechanism is controlled by an activa-
tion enthalpy, which is obtained by fitting a line-tension model to atomistic data.
It can reproduce the well-known tension-compression asymmetry observed in bcc
materials and account for non-Schmid effects which are included in the activation
enthalpy. Yet, in this thesis, computational efficiency is crucial to simulate a large
number of cycles with the available computational resources. Therefore, a somewhat
simplified model for bcc metals is used as will be explained in the following.
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2. Simulation- and analysis methods

Figure 2.2: The boundary value problem (BVP) containing dislocations and a misfitting
isotropic inclusion with different elastic constants than the matrix. The solution
is a decomposition into an infinite part containing dislocations (upper left),
correction part for boundary conditions (upper right), misfitting inclusion
(lower left) and perfect fitting inclusion with different elastic constants (lower
right).

It is assumed that dislocation glide occurs on the {110}⟨111⟩ slip systems (table J.1).
In order to account for Peierl’s barrier, a friction stress 𝜏 ′ is considered for screw
segments. For a dislocation segment 𝐴𝐵, the friction stress reads

𝜏 ′
𝐴𝐵 = 𝑤screw𝐴𝐵 𝜏crit (2.12)

where 𝜏crit is a constant critical resolved shear stress and 𝑤screw𝐴𝐵 an orientation
dependent weight. To avoid sharp cut-offs, a sigmoidal function

𝑤screw𝐴𝐵 = 1
2

(︃
|𝑒𝑏𝐴𝐵 · 𝑒𝑡𝐴𝐵 | − cos 𝛼tol

2 × 10−5 +
⃒⃒
|𝑒𝑏𝐴𝐵 · 𝑒𝑡𝐴𝐵 | − cos 𝛼tol

⃒⃒ + 1
)︃

(2.13)

is chosen with 𝛼tol = 2∘.

The friction stress is included in the calculation of nodal forces 𝑓𝐴 (equation 2.7) as
follows:
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2.2. Irreversibility characterization

∙ For a segment 𝐴𝐵 with length 𝑙seg𝐴𝐵
and Burgers vector 𝑏𝐴𝐵 an averaged

resolved shear stress 𝜏tot𝐴𝐵 = (𝑓𝐴𝐵 + 𝑓𝐵𝐴)/(𝑏𝐴𝐵𝑙seg𝐴𝐵
) is calculated in order

to compare it with the friction stress 𝜏 ′
𝐴𝐵 (equation 2.12) of the segment.

∙ The calculation of 𝑓𝐴 is given by

𝑓𝐴 =
𝑁𝐵∑︁

𝐵=1
𝐻(𝜏tot𝐴𝐵 − 𝜏 ′

𝐴𝐵)
(︂

𝑓𝐴𝐵 − 1
2𝑏𝐴𝐵𝜏 ′

𝐴𝐵𝑙seg𝐴𝐵
𝑒𝑠𝐴𝐵

)︂
(2.14)

where 𝐻 is the Heaviside function. If 𝜏tot𝐴𝐵 is smaller than 𝜏 ′
𝐴𝐵 for all segments,

node 𝐴 is immobile.

∙ Special treatment is given for nodes that are connected to only two segments
(𝑁𝐵 = 2) with the shear stress of one segment below the friction stress
(𝜏tot𝐴1 < 𝜏 ′

𝐴1) and the other higher than the friction stress (𝜏tot𝐴2 > 𝜏 ′
𝐴2). In

this case, the contribution of the force of segment 𝐴2 is only considered in the
screw direction

𝑓𝐴 = 𝑓𝐴2 − (𝑓𝐴2 · 𝑒𝑠𝐴1)𝑒𝑠𝐴1 (2.15)

The latter condition assures a screw segment, which experiences a stress below
the frictions stress, remains straight even if one of its nodes is connected to a
non-screw segment experiencing a force higher than the friction stress.

Dislocation junctions of type ⟨100⟩, which are seen in dislocation networks (Matsui und Kimura,
1976, Louchet und Kubin, 1975)), are the reaction product of two ⟨111⟩-type dislo-
cations for example

1
2[111] + 1

2[11̄1̄] −→ [100].

If the resulting ⟨100⟩ Burgers vector does not lie in one of the planes of the reacting
dislocations, then they are sessile geometrically. Glissile ⟨100⟩-type dislocations have
been reported to have a negligible contribution to plastic strain (Hull und Bacon,
2001), therefore, their mobility is reduced in the DDD model by a applying a higher
friction stress of 100𝜏 ′.

2.2 Irreversibility characterization

The text below closely follows the open source publication El-Achkar und Weygand
(2018).
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2. Simulation- and analysis methods

2.2.1. Graph representation

A graph representation of the dislocation network allows to employ measures, estab-
lished in graph theory (Cormen, 2009). The dislocation microstructure is considered
as a spatial graph 𝐺 = (𝑉, 𝑈) composed of a set of vertices 𝑉 and edges 𝑈 represent-
ing discretization nodes and segments respectively. A node 𝑉𝑖 is characterized by a
Cartesian position 𝑥𝑖, whereas an edge 𝑈𝑙 connecting nodes 𝑉𝑖 and 𝑉𝑗 has properties
such as line direction 𝑡 and Burgers vector 𝑏 acting as a weight. A reaction’s Burg-
ers vector 𝑏react is calculated using Frank’s rule

∑︀
𝑖

𝑏𝑖 = 0 (Hirth und Lothe, 1982,

Cai und Nix, 2016). Figure 2.3 shows examples of reactions leading to a resulting
Burgers vector 𝑏react = 0: In (a) the end-nodes of a collinear reaction (Madec et al.,
2003) (figure 2.3(a)) are connected to each other only by means of virtual edges. The
latter type of edges are also stored during the simulation and allow to track the total
plastic deformation; in (b) the emitted loop of a glissile reaction (figure 2.3(b)) with
Burgers vector 𝑏3 results in 𝑏react = 0, which means that the junction end-nodes
are physically connected to one another only by the glissile loop. Therefore, we
differentiate between physical connections as those where the edges carry a non-zero
Burgers vector and virtual edges belonging to junctions with an effective zero Burgers
vector.

(a) (b)

Figure 2.3: Different reactions with zero-net Burgers vector resulting in different connec-
tions: (a) the end-nodes of a collinear reaction have no physical connection.
(b) End nodes of a glissile reaction are connected by the emitted loop with
Burgers vector 𝑏3 (El-Achkar und Weygand, 2018).

Generally, we define the degree of a node in the dislocation graph as the number of
connections which a node can have. The following types are identified:

∙ 1 in the case of pinned end-nodes of e.g. a Frank-Read source or surface nodes.
Surface nodes are connected to the outside by virtual dislocation segments to
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2.2. Irreversibility characterization

allow for a proper boundary value problem, which requires closed dislocation
loops.

∙ 2 which are discretization nodes along the dislocation loops. Those nodes are the
most frequent ones and can be added or removed easily during rediscretization.

∙ > 2 are related to dislocation junctions. Due to the use of virtual segments,
this number is e.g. 4 for a Lomer; Hirth or collinear reaction and 6 for a glissile
reaction. The end-nodes of a junction are therefore connected multiple times.
More precisely the number of mutual connections corresponds to the number
of loops involved in the junction. Nodes that are shared by several junctions
may have even more connections.

Based on physical edges, the dislocation microstructure is filtered into components.
A component is a subgraph 𝜒, where any two vertices are connected to each other
by physical edges and are not connected to additional vertices in 𝐺 (Cormen, 2009).
This was implemented by traversing the edges of vertices recursively and assigning
the same number to edges belonging to the same component.

2.2.2. Prismatic loops

The algorithm of prismatic loop detection is based on filtering the dislocation
microstructure into closed components 𝜒𝑐. Among 𝜒𝑐, prismatic loops are subsets
which contain at least four distinct dislocation loops, found on at least two glide plane
families (with distinct plane normals) 1 and are quasi-planar. The evaluation of quasi-
planarity requires the calculation of an average normal �̄�(𝜒𝑐), which is determined
using principle component analysis (Jolliffe, 2013). The positions of 𝑚 vertices ∈ 𝜒𝑐

are written into a 3 × 𝑚-matrix 𝑄 and centered by subtracting the positions from
the average position 𝛼(𝜒𝑐). A 3 × 3 covariance matrix 𝐶 = 𝑄𝑄𝑇 is calculated,
and its eigenvalues 𝜆1, 𝜆2 and 𝜆3 (given in ascending order) are computed. These
eigenvalues correspond to the extension of the prismatic loop in different dimensions.
In the case of a classical prismatic loop, 𝜆1 is orders of magnitude smaller than the
other two eigenvalues meaning that the eigenvector corresponding to 𝜆1 is the normal
vector �̄�. A rare case of extremely twisted elongated prismatic loops may show
𝜆1 ≈ 𝜆2 and 𝜆3 >> 𝜆2 meaning that discretization points are spread rather equally
in two dimensions. In this case, eigenvalues are evaluated using the correlation
matrix 𝑅 =

√︀
diag(𝐶)−1

𝐶
√︀

diag(𝐶)−1. Alternatively, �̄� can be calculated using
the best planar fit of the point cloud 𝑄 with a least squares regression. Finally

1 overall four glide planes are involved with only two distinct normals.
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2. Simulation- and analysis methods

quasi-planarity is satisfied if the heuristic condition (𝑥 − 𝛼) · �̄� < 50𝑎, i.e. the
distance from a node ∈ 𝜒𝑐 with position 𝑥 to the plane spanned by the average
position 𝛼 and normal �̄� needs to be smaller than 50𝑎.

Since the discrete dislocation framework assumes dislocation glide, prismatic loops
are created by a sequence of cross-slip, collinear- or glissile reactions. Prismatic
loops have a Burgers vector which is not contained in the effective loop plane. In the
simplest case, they can glide parallel to the Burgers vector direction along prisms
of different complexity. In the context of fatigue irreversibility, prismatic loops are
particularly stable because the total force acting on them under homogeneous stress
fields is zero allowing the loop to only twist due to moments along the glide cylinder
(Hirth und Lothe, 1982, Kroupa, 1966).

The simplest type of prismatic loop consists of interstitial or vacancy type and due
to volume conservation of dislocation glide. They effectively have to occur in pairs
(one interstitial and the other vacancy type) except if they are generated at the
surface or from climbing dislocations. The pairs are linked by virtual edges within
the dislocation network (section 2.2.1). Since there are several possibilities for the
formation of prismatic loops or prismatic clusters, the following classification is
done (figure 2.4): prismatic loops of the 1st order (figure 2.4(a)) which arise due to
cross-slip and annihilation reactions involving only one Burgers vector. Only two
glide plane families (two distinct normals), are involved in this construction and at
least four dislocation sectors. This type is the simplest prismatic loop. Furthermore,
prismatic loops of the 2nd order (figure 2.4(a)) are defined to comprise three different
glide planes and comprise also former Lomer-type junctions (colored in yellow) and
non-junction dislocations. At first sight, this looks surprising, as a Lomer reaction
generally involves two dislocations. Here only the Lomer reaction and only a single
dislocation emerge from the respective end-nodes. This transformation of a Lomer
reaction to a spiral source with pinned end-nodes was first observed by Motz et al.
(2009). The mechanism leading to this structure involves cross-slip respectively
glissile reaction of the two dislocations arms initially forming the Lomer reaction,
involving the third glide plane compatible with their respective Burgers vectors.
This plane is inclined to the line direction of the Lomer junction. Therefore the
incorporated Lomer-junctions’ end-nodes are pinned, evoke extreme stability and
serve as extended obstacles or sources of stress gradients.
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2.2. Irreversibility characterization

Among the evolved structures are prismatic loops of equiaxed or elongated shape
(figure 2.4(a)) which have been previously reported in (Feltner, 1965, 1966). The
shape characterization is approached here using the ratio

𝑝shape = 4
√

𝐴enc
𝑈perim

(2.16)

where 𝑈perim is the perimeter and 𝐴enc the enclosed area of a prismatic loop spanned
by �̄� and 𝛼. The value spectrum of the ratio is 𝑝shape ∈ [0, 1] where 𝑝shape = 1 for
equiaxed and 𝑝shape < 1 for elongated prismatic loops. For rectangular prismatic
loops, side lengths 𝑙1 and 𝑙2 can be retrieved by solving the set of equations

𝑙1 + 𝑙2 = 𝑈perim
2 (2.17)

𝑙1 + 𝑙2
𝑝2

shape − 2
√︁

1 − 𝑝2
shape − 2

𝑝2
shape

= 0 (2.18)

which can be used to calculate the maximum loop dimension defined as max(𝑙1, 𝑙2).
The other type of extracted components are classified as dislocation debris (fig-

(a) prismatic loops of the 1st

order
(b) prismatic loops of the 2nd

order
(c) dislocation debris

Figure 2.4: Prismatic loops of different orders in (a) and (b). Coloring is according to
plane normals, yellow represents a Lomer junction (El-Achkar und Weygand,
2018).

ure 2.4(c)) which are non-planar subsets of 𝜒𝑐 and may contain Lomer junctions.
Similar to the 2nd order type, they are very stable.

2.2.3. Dislocation dipoles

Dislocation dipoles are treated more generally compared to previously discussed
defects. The condition to detect dislocation dipoles is purely geometrical, hence,
dipolar prismatic loops are a subgroup of dislocation dipoles. A pair of dislocations
(dislocations I and II) is considered as a dislocation dipole if both dislocations are
parallel, at a distance ℎ < ℎcrit and span a minimum necessary length of 𝑙 > 𝑙crit.
The algorithm starts on the level of a dislocation loop, all dislocation loops lying
in its vicinity that have the same normal vector and are located in parallel glide
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2. Simulation- and analysis methods

planes are considered. To determine if another loop is close, adaptive discretization
boxes which depend on the volume size and maximum dislocation segment length
are used. If a dislocation loop lies in one of the neighboring boxes, then it is
evaluated. Furthermore, the search continues on the level of dislocation segments.
More specifically, edges 𝑖 and 𝑗 of dislocations I and II respectively are classified
as parallel if the closest distance vector connecting the two edges forms an angle
larger than 80∘ with both edges. The critical allowed distance between the edges
is calculated using ℎcrit = 𝜇𝑏

8𝜋(1−𝜈)𝜏crit
(Kroupa, 1966), where 𝜏crit is the critical

resolved shear stress required to destabilize a dipole. Here, 𝜏crit is assumed to be the
macroscopic total resolved shear stress on the system, which is measured from the
stress-strain curve. The final restriction is that the dislocation pair needs to span
a minimum length of 𝐿min > 2ℎ in order to exceed intrinsic discretization lengths.
Furthermore dislocations in the vicinity of grain boundaries (at distances < 100𝑎

from a grain boundary) are ignored in this algorithm to avoid mistaking dislocation
dipoles with grain boundary pile-ups.

2.2.4. Dislocation structure analysis

A fatigued dislocation microstructure is well-known to show different types of pattern
formation depending on the prescribed strain amplitude, crystal orientation or ease to
cross-slip (Mughrabi, 2010, Xiao und Umakoshi, 2003). To analyze various resulting
dislocation structures, dislocation edges are binned according to their line direction
onto ⟨110⟩, ⟨112⟩ and ⟨122⟩ directions with ≈ 16∘ tolerance. In the case of pronounced
dislocation bundles, the following method to characterize their spatial distribution
is used: dislocation dipoles which belong to a pronounced alignment direction are
filtered and the intersection points 𝑟𝑖 of such dislocations and 200 planes 2 with
normal 𝑛plane = 𝑒𝑡 are calculated, for which the 2d pair correlation function

𝑔2d(𝑟) = 1
𝐴shell𝑁inter𝜌corr

𝑁∑︁
𝑖

𝑁∑︁
𝑗 ̸=𝑖

𝛿(𝑟 − 𝑟𝑖𝑗) (2.19)

is computed. In equation 2.19, 𝑟𝑖𝑗 is the distance between points 𝑖 and 𝑗, 𝜌corr = 𝑁inter
𝐴

(𝐴 area of a plane and 𝑁inter total number of intersection points) is the number
density used for normalization and 𝐴shell = 𝜋(𝑟2

out − 𝑟2
in) the area of the shells, where

𝑑𝑟 = 𝑟out − 𝑟in (figure 2.5). Finally the mean pair correlation function is obtained
by averaging 𝑔2d in 𝑡-direction.

2 the distance between the planes is 100𝑎, such that a combination of the projected positions
resembles the 3-dimensional microstructure along the desired direction.
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2.2. Irreversibility characterization

Figure 2.5: Spatial characterization of a dislocation bundle structure using 2d pair correla-
tion function.

On the other hand, microstructures which exhibit a cell structure pattern are analyzed
using fractal box-counting technique (Hähner et al., 1998a). This measure has been
previously used in the DDD context by Hussein und El-Awady (2016a), however not
normalized by the grid size.

A further measure to characterize dislocation density around Lomer junctions is
computed using

𝜌around(𝑟) = 1
𝑁𝐿𝜌t

4
3𝜋𝑟3

𝑁𝐿∑︁
𝑖

𝑁∑︁
𝑗 ̸=𝑖

𝑙segment,𝑗𝑤𝑖𝑗(𝑟) (2.20)

where 𝑁𝐿 is the number of Lomer-junction segments, 𝑙segment the length of the
segment and

𝑤𝑖𝑗(𝑟) =

⎧⎪⎨⎪⎩ 1 if 𝑑𝑖𝑗 < 𝑟

0 otherwise
(2.21)

where 𝑑𝑖𝑗 is the distance between the middle point of a segment 𝑖 (belonging to a
Lomer junction) and any other segment 𝑗. Self-correlation among Lomer junctions
is deliberately ignored.

2.2.5. Macroscopic damage parameters

Surface roughness Stable dislocation arrangements manifest themselves in the
form of irreversible surface steps leading to a roughening of the free surface. The
deep steps are well-known to cause stress localization leading to crack initiation.
Therefore, to analyze the surface topography evolution during cyclic loading, the
surface, which is initially flat, is discretized into a two dimensional equidistant grid
and the plastic component �̃� is calculated during post-processing analytically at
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2. Simulation- and analysis methods

each grid point. Provided displacement distributions, surface roughness can be
characterized using Root Mean Square (RMS)

RMS =

⎯⎸⎸⎷ 1
𝑁

𝑁∑︁
𝑖=1

(�̃�𝑖− < �̃� >)2 (2.22)

With its help, the irreversibility factor 𝑝, which quantifies the fraction of slip which
is irreversible (Differt et al., 1986, Mughrabi, 1999, Weidner et al., 2010), can be
calculated

RMS = 1.2
√︁

4𝑁cycles𝛾pl,loc𝑝𝑏ℎ̃ (2.23)

where 𝛾pl,loc is the resolved shear strain amplitude, 𝑁cycles the number of cycles and
ℎ̃ the distance along which the peak-to-valley roughness is measured. The resolved
shear strain amplitude can be estimated from 𝛾𝑝𝑙,𝑙𝑜𝑐 = 𝑀Δ𝜀pl,loc/2 where Δ𝜀pl,loc/2
is the local axial plastic strain amplitude and 𝑀 = 2.24 the Sachs orientation factor.
The 𝑝-factor describes the degree of irreversibility of the system (0 < 𝑝 < 1), hence,
it is zero for fully reversible systems and equal to one for fully irreversible systems.

An additional sensitivity measure to characterize the change in surface step heights
is the maximum value of the norm of the gradient of the displacement field ||∇�̃�||.
The gradient, for example, for the 𝑧-surface ∇�̃�𝑧 = (𝜕𝑥�̃�𝑧, 𝜕𝑦�̃�𝑧) is calculated by
computing gradients along the 𝑥- and 𝑦 directions of the grid using second order
accurate central differences.

Irreversible plastic strain In plastic strain-controlled simulations, the total net
plastic strain in loading direction 𝜀pl,y, which is proportional to total signed areas
swept by dislocations, is a cyclic function that is impelled to pass through zero
for each cycle. The implication is that for 𝜀pl,y = 0 it cannot be distinguished
whether the system is fully reversible with every individual FR-source reverting to
its initial state or if an irreversibility is present but signed swept areas cancel out.
To differentiate between both cases, the absolute value of swept areas can be utilized
by summing up the von Mises plastic strain 𝜀pl,vM of 𝑁 loops to yield the so-called
irreversible plastic strain 𝜀pl,irre. This measure can be used to calculate the 𝑝-factor
(Differt et al., 1986) directly from dislocations

𝑝 = 𝜀pl,irre
𝜀pl,cum

=

𝑁∑︀
𝑖=1

𝜀pl,vM𝑖

2Δ𝜀pl𝑁cycles
(2.24)

where 𝜀pl,cum = 2Δ𝜀pl𝑁cycles is the cumulative plastic strain.
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3. Results

3.1 Fatigue in fcc surface grains

The results in the succeeding sections present cyclic loading simulations of surface
grains for different tensile axis orientations. As a ductile fcc material model, Alu-
minium is chosen and assumed to be elastically isotropic (shear modulus 𝜇 = 27
GPa, Poisson ratio 𝜈 = 0.347, lattice constant 𝑎 = 0.404496 nm, drag coefficient
𝐷 = 10−4 Pa s and mass per unit length 𝑚0 = 1.1 × 10−16kg/m). A large part of
the results are published in El-Achkar und Weygand (2018, 2019).

3.1.1. [010]-tensile axis orientation

Aspects of grain geometry

To study the influence of grain geometry w.r.t. dislocation irreversibility, an initial
FR source of length 2000 𝑎 is positioned at the center of a surface grain and subjected
to a total strain controlled cyclic loading. The FR source has a Burgers vector
𝑏1 = 𝑎/2[01̄1] (large surface component) and is located on a slip plane with normals
vector 𝑛1 = 1/

√
3(111). The latter is enforced using a saw-tooth function (sec-

tion 2.1.2) operating at an amplitude of 𝜀tot = 0.2% and a strain rate of �̇� = ±5000s−1

that complies to a frequency of 6250 KHz. The surface grain itself is embedded
into an isotropic elastic medium and modeled such that its grain boundaries are
impermeable to dislocation motion. Details about the grain construction algorithm
and grain boundaries are given in sections A and B.1 respectively. Two different
surface grain geometries are examined (table 3.1): A cuboidal geometry in setup
1a (figure 3.1(b)) and a truncated dodecahedron in setup 1c (figure 3.1(c)). The
crystal orientation w.r.t. the tensile axis and free surface is given in figure 3.1(a).
The boundary conditions for both setups are shown in the figures: Dislocations can
escape the grain only through the surface, displacement boundary conditions 𝑢𝑦 = 0
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Setup Tensile Complementary Microstructure Grain shape
axis 𝑦 axis 𝑥

1a [010] [100] single FR source surface cuboid
𝑏1 = 𝑎/2[01̄1]

1b [010] [100] single FR source surface cuboid
𝑏2 = 𝑎/2[110]

1c [010] [100] single FR source truncated surface
𝑏1 = 𝑎/2[01̄1] dodecahedron

1d [010] [100] single FR source bulk cuboid
𝑏1 = 𝑎/2[01̄1]

1e [010] [100] random distribution of truncated surface
FR sources dodecahedron
𝜌𝑡 = 4.5 × 1011m−2

1f [010] 𝑒𝑏6 = 1√
2 [101] random distribution of truncated surface

FR sources dodecahedron
𝜌𝑡 = 4.5 × 1011m−2

Table 3.1: Setups’ nomenclature for a [010]-tensile axis orientation.

are applied on the bottom surface and 𝑢𝑦 = �̇�𝐿𝑓(𝑡) on the top surface 𝑦 = 𝐿. The
remaining degrees of freedom at the surface have traction free boundary conditions.

In figure 3.2, the evolution of several microstructural measures are shown for 6 cycles.
The dislocation density 𝜌𝑡 (figure 3.2(a)) is up to 1.5 cycles almost equal for both
the dodecahedron (setup 1c) and the cuboid (setup 1a). Afterwards 𝜌𝑡 increases
gradually for the cuboid, whereas the dodecahedron shows both an increase and
decrease of the dislocation density until 4 cycles. Then the dodecahedron shows
a stable increase of the dislocation density to reach 𝜌𝑡 = 5.5 × 1012m−2, on the
other hand the cuboid reaches 𝜌𝑡 = 6.8 × 1012m−2. The evolution of the number of
cross-slip and collinear junctions (figure 3.2(b)) shows higher number of reactions for
the cuboid than for the dodecahedron. The latter shows small number of cross-slip
events and collinear reactions that reach zero after every cycle. On the other hand,
the cuboid shows for both reaction types an increasing trend reaching almost 4.5
and 2.7 times more cross-slip events and collinear reactions respectively than the
dodecahedron. A similar behaviour is observed in terms of the number of prismatic
loops (figure 3.2(c)). The dodecahedron shows a small almost constant number of 8
prismatic loops, whereas an increase in the number of loops is seen for the cuboid
which oscillates around 60 prismatic loops after 4.5 cycles. The evolution of the
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tensile axis

free surface

(a)

free surface

grain boundary

(b)

free surface

grain boundary

(c)

Figure 3.1: (a) [010] crystal orientation of setups 1a-1e. Initial- and boundary conditions
of the (b) cuboid- and (c) dodecahedron surface grain embedded into an elastic
volume (El-Achkar und Weygand, 2018). The initial dislocation microstructure
consists of a single FR source of length 2000 𝑎.

averaged von Mises plastic strain (figure 3.2(d)) shows up to 2-3 times smaller values
for the dodecahedron compared to the cuboidal grain.

Another aspect is the location of the grain w.r.t. the free surface. The analysis
includes the cuboidal surface grain from figure 3.1(b) (setup 1a) and the exact same
grain with the same initial microstructure embedded into the bulk (setup 1d in table
3.1), i.e. having all of its surfaces as grain boundaries. The evolution of the dislocation
density (figure 3.3(a)) shows that for the bulk grain the dislocation density reaches
zero after unloading steps meaning almost full reversibility, whereas as mentioned
above, the surface grain shows an increase in this quantity. In figure 3.3(b), the
microstructure is shown for maximum load for the bulk grain after 15 cycles. Pile-ups
in the primary plane (blue color) and dislocations that form due to double cross-slip
from the original FR source are observed. A remarkable feature is the symmetry of
the developed structure w.r.t. the original plane.
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Figure 3.2: Evolution of the (a) dislocation density, (b) number of junctions, (c) number of
prismatic loops and (d) mean von Mises plastic strain for the cuboid setup 1a
(𝑏1 = 𝑎/2[01̄1]) and setup 1b (𝑏2 = 𝑎/2[110]) orientations and dodecahedron
for 𝑏1 Burgers vector orientation (setup 1c) (El-Achkar und Weygand, 2018).

Burgers vector orientation

The influence of the Burgers vector orientation is analyzed. Two different orientations
for the initial FR source in the cuboidal surface grain (figure 3.1(b)) are considered
(table 3.1):

∙ Setup 1a: the Burgers vector 𝑏1 = 𝑎/2[01̄1] has a large free surface component.

∙ Setup 1b: the Burgers vector 𝑏2 = 𝑎/2[110] is parallel to the free surface.

The microstructure for the first cycle for both setups is shown in figure 3.4. After
reaching the critical stress for activating the FR source, dislocations pile-up at at
the grain boundary in setup 1a until a higher stress is reached on the cross-slip
plane. The latter triggers cross-slip of screw dislocations in the vicinity of the grain
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Figure 3.3: (a) Comparison of the dislocation density evolution for the surface- (setup 1a)
and bulk grain (setup 1d) for 𝑏1 orientation. (b) Dislocation microstructure at
load maximum of the bulk grain after 15 cycles.

boundary on both ends of the cuboid (upward and downward motion depending on
the line direction). The emission of several loops shows that cross-slips events also
occur at a far distance from the grain boundary. On the other hand, in setup 1b,
where the Burgers vector 𝑏2 is parallel to the free surface, cross-slip takes place in
the vicinity of only one grain boundary which is of screw orientation. After 5 cycles,
the microstructure in setup 1a shows a stair-like structure spread throughout the
volume with many cross-slip events and small prismatic loops. Setup 1b shows a
distinct structure that is primarily filled with pairs of prismatic loops of different
sizes.

The evolution of microstructural measures shown in figure 3.2 indicates no substantial
difference in the dislocation density and averaged von Mises strain plastic for both
setups. Yet, more dislocation reactions are observed in setup 1b. Collinear reactions
occur up to three times more for setup 1b than 1a. Also cross-slip events are more
frequent in setup 1b and the dislocation density due to cross-slip (not shown) is up
to three times larger. The number of prismatic loops shows a similar trend as the
number of collinear reactions: The number of prismatic loops in setup 1b increases
gradually until a maximum is reached in the 4th cycle followed by a decrease at the
end of the cycle, whereas for setup 1a they increase and stabilize after the 4th cycle.
It is evident that the number of prismatic loops are 2-3 times higher in setup 1b.

The distribution of the averaged von Mises plastic strain in voxels of side-length
400 𝑎 is shown for load maximum for both setups in figure 3.5. It is apparent, that
plastic strain is spread for setup 1a homogeneously throughout the whole grain in
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(a) (b)

(c) (d)

Figure 3.4: Dislocation microstructure during tensile loading of the first cycle of the cuboidal
surface grain for (a) setup 1a (𝑏1 = 𝑎/2[01̄1]) and (b) setup 1b (𝑏2 = 𝑎/2[110])
(El-Achkar und Weygand, 2018). The primary slip plane is highlighted in gray.
Microstructure in the fifth cycle while unloaded (dislocation density minimum)
for setup (c) 1a and (d) 1b.

contrast to a localization in setup 1b. In both setups peak values of plastic strain can
be observed along the Burgers vector in microstructural zones along which channels
of dipolar loops are found.

The characterization of irreversibility extends to surface analysis (section 2.2.5).
Setup 1b shows surface steps in the direction of the Burgers vector related to
bowing out of dislocations which gradually disappear after unloading. Conversely, for
setup 1a a pronounced surface roughness appears and remains even after unloading.
The microstructure in figure 3.6(a) resembles an alignment of prismatic loops and
dislocation dipoles along 𝑏1 that end at the surface as permanent steps. The surface
profile (grid spacing Δ = 156.25 𝑎) along the 𝑦-direction in the middle of the surface
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3.1. Fatigue in fcc surface grains

(a) (b)

Figure 3.5: Distribution of the voxel-averaged von Mises plastic strain in the cuboidal
surface grain for (a) setup 1a (𝑏1 = 𝑎/2[01̄1]) and (b) setup 1b (𝑏2 = 𝑎/2[110]).
The voxels are of 400 𝑎 side length (El-Achkar und Weygand, 2018).

for cycles 2 and 5 (figure 3.6(b)) shows a drastic topographical change: While the
surface favors a stair-like profile after 2 cycles, a rougher surface is observed after 5
cycles due to localized and sharp peaks. A detailed analysis on the surface roughness
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Figure 3.6: (a) A slice of the dislocation microstructure parallel to 𝑏1 and plastic surface
displacement for the cuboid (setup 1a) after 5 cycles while unloaded. (b) Plot
of the plastic surface displacement along the 𝑦-direction in the middle of the
surface for cycles 2 and 5 (El-Achkar und Weygand, 2018).

evolution is presented in figure 3.7 and consists of contour plots of the surface, the
average displacement, RMS (given in error bars) and minimum/maximum values
for load maximum. The minimum/maximum values as well as RMS increase from
the start to reach their highest values after 4 cycles (point V) and then slightly
decrease. After one cycle, surface displacements are found to be on average positive.
The contour plots show during the first 2 cycles extended displacement steps due

33



3. Results

to individual dislocation arms ending at the surface. The steps show that four
dislocations from both primary and cross-slip planes contribute to the steps (point
I). The steps increase in number after the first and second cycle (points II and III)
and form a complex topography afterwards from the third cycle. During the latter,
the surface is divided into two parts: One side consists of positive and the other
of negative displacements separated by a small region of zero displacement. The
formation of an irreversible step is observed to form whenever a prismatic loop leaves
the surface while its counter part remains in the volume.
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Figure 3.7: Evolution of the surface roughness measures and contour plots of the plastic
surface displacement of the cuboid (setup 1a) for maximum load (the error
bars represent RMS) (El-Achkar und Weygand, 2018).

Glide system interaction and crystal rotation around tensile axis

In the preceding section, the aspects of a single FR source in crystal orientation of
figure 3.1(a) subjected to cyclical loading were examined. To understand the role of
interplay of different glide systems and their orientation w.r.t. the tensile axis, FR
sources of lengths 4745𝑎 are populated into the truncated dodecahedral surface grain
of figure 3.1(c) such that the total dislocation density 𝜌𝑡 = 4.5 × 1011m−2 yielding a
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3.1. Fatigue in fcc surface grains

mean dislocation spacing 1/
√

𝜌𝑡 = 3685.4 𝑎 (setup 1e in table 3.1). The boundary
conditions are kept as above with the exception of a plastic strain controlled cyclic
loading (section 2.1.2) using an amplitude of Δ𝜀pl/2 = 0.01%. To test the influence
of a crystal rotation about the tensile axis (setup 1f), the crystal system is rotated
with angle of 45∘ about the tensile axis such that 𝑏2 − 𝑏5 are symmetric w.r.t. the
free surface (figure 3.8). Intermediate rotations around the tensile axis are given in
section F of the appendix.

tensile axis

free surface

Figure 3.8: Setup 1f: Thompson tetrahedron displaying the rotated [010] crystal orientation
w.r.t. the tensile axis and free surface (table 3.1) (El-Achkar und Weygand,
2019).

The final dislocation density distribution for setup 1e (figure 3.9(a)) shows glide sys-
tems 2, 6, 7 and 11 (Burgers vectors 𝑏5 and 𝑏2 respectively) with highest dislocation
density followed by systems 1, 12, 5 and 8 (Burgers vectors 𝑏4 and 𝑏3 respectively)
that have around half the dislocation density of the latter. Systems 3, 9, 4 and
10 (Burgers vectors 𝑏6 and 𝑏1 respectively) show almost no activity1. In setup 1f
(figure 3.9(b)), the dislocation density is almost equally distributed among systems
1, 2, 5, 6, 7, 8, 11 and 12. The remaining systems have a small dislocation density
≈ 3% per glide system.

Another distinct behavior is visible in the number of Lomer reactions (figure 3.10(a)):
Their number increases at a higher rate in setup 1f than setup 1e and reaches around
900 junctions in contrast to 220 after 5 cycles. Also the surface deformation after 4
cycles reveals qualitative differences (figures 3.10(b) and 3.10(c)): Setup 1e shows
a well-defined block structure whereas setup 1f shows triangular surface markings.
Noticeable is the location of intrusions that are in the center of the surface in setup
1e but spread along the whole surface in setup 1f.

1 Glide system numbering can be found in figure J.1
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Figure 3.9: Distribution of the fraction of the final dislocation density 𝜌 per glide system
w.r.t. the total dislocation density 𝜌𝑡 for [010] crystal orientation setups (a) 1e
and (b) 1f (table 3.1). Glide systems belonging to the same glide plane obtain
the same color (El-Achkar und Weygand, 2019).

Additional sensitivity analysis for a 10∘ rotation from the [010]-tensile axis is given
in section F of the appendix.

Pattern formation

The evolved microstructure of setup 1e shows in a cross-section perpendicular to the
[100] direction a cellular structure after 16 cycles (figure 3.11(a)). A 2000 𝑎 thin TEM-
like (Transmission Electron Microscope) slice is prepared by discretizing the volume
into boxes of side-lengths of 400 𝑎 and keeping dislocations only if they have lengths
above 500 𝑎. The latter procedure allows to remove debris which is unconnected
to the main structure. To quantitatively characterize the obtained structure, the
box-counting technique (Hähner et al., 1998a) is applied to the dotted region of
figure 3.11(a) which contains the largest- and second largest cells denoted by numbers
1 and 2 respectively (figure 3.11(b)). The scaled box-counting measure 𝑁(Δ𝑥)2

shows the slope of this measure approaches zero for box sizes above Δ𝑥 ≈ 900𝑎 and
below Δ𝑥 ≈ 10𝑎.

Amplitude variations

For the preceding setup 1e (table 3.1), simulations for a range of applied plastic
strain amplitudes Δ𝜀pl/2 = {0.001%, 0.002%, 0.004%, 0.01%} are conducted. Since
the dislocation density is directly proportional to the applied amplitude (compu-
tational cost), final cycles of 160, 50, 30 and 16 for the range of amplitudes are
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Figure 3.10: (a) Comparison of the evolution of the number of Lomer junctions in the [010]
crystal orientation for setups 1e and 1f. Contour plots of the plastic surface
displacement after 4 cycles while unloaded for (b) setup 1e and (c) setup 1f
(El-Achkar und Weygand, 2019).

respectively reached. The analysis includes an extensive characterization of the
extracted microstructural defects, which has partly been measured by experiments.
The goal is to qualitatively understand, how microstructural features change upon
changing the loading amplitude and compare the observations with experimental
data.

The dislocation density evolution is fitted using a straight line and its slope is plotted
against the imposed amplitudes in figure 3.12. From an amplitude of 0.002% and
up to 0.01% the slope shows an almost linear regime. Below 0.002%, the slope
curve kinks and the value reaches approximately zero for Δ𝜀pl/2 = 0.001%. The
error bars, which indicate standard deviation, increase with plastic strain amplitude.
In the following, a detailed microstructural comparison for Δ𝜀pl/2 = 0.001% and
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(a) (b)

Figure 3.11: (a) Evolved cell structure of setup 1e (table 3.1) in a TEM-like slice perpendic-
ular to the [100] direction. (b) Box-counting technique (Hähner et al., 1998a)
applied to the dotted region in (a). Δ𝑥 is the box side-length and 𝑁(Δ𝑥) the
number of boxes containing a dislocation. (El-Achkar und Weygand, 2019)

Δ𝜀pl/2 = 0.01% is carried out. The latter will be referred to as small and large
amplitudes respectively.
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Figure 3.12: Linearly fitted dislocation density slope for various applied plastic strain
amplitudes.

In figure 3.13, the stress-plastic strain curves for both amplitudes show hysteresis
behavior. The stresses reach maximal absolute values at the imposed plastic strain
amplitudes, where the loading rate changes sign. Due to the sudden change in
loading direction the plastic strain is overshooting. With increasing number of cycles
this overshoot decreases and the hysteresis shows a more stable shape. The difference
in amplitudes is one order of magnitude, whereas the enclosed area of the larger
amplitude is approximately five times larger than the one of the smaller amplitude.
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3.1. Fatigue in fcc surface grains

The average plastic overshoot is Δ𝜀o,pl ≈ 0.001% and 0.005% for the small and large
plastic strain amplitudes respectively. The width of the overshoot zone is ≈ 0.003%
plastic strain for both amplitudes.

Figure 3.13: Stress versus plastic strain (El-Achkar und Weygand, 2019).

The dislocation microstructure evolution shows for both prescribed plastic strain
amplitudes that plastic slip is at first mainly accommodated by the longest dis-
locations, whereas shorter dislocations act as barriers by forming junctions with
mobile dislocations. However, significant qualitative differences in the microstructure
are observed. Snapshots of the microstructure colored according to the number of
graph components 𝜒 (section 2.2.1) are shown in figure 3.14, where dislocations
colored in black belong to the largest component. For the plastic strain amplitude of
Δ𝜀pl/2 = 0.01%, the dislocation density plot shows after 14 cycles a very stable large
component alongside with numerous small components that are vastly prismatic
loops and dislocation debris. The smaller amplitude Δ𝜀pl/2 = 0.001% shows after
about 10 times more cycles a low dislocation density and no clear structure formation.
The number of components (figure 3.15) increases almost linearly with number of
cycles, but the slope increases with increasing amplitude by a factor of 50.

For Δ𝜀pl/2 = 0.01%, the number of graph components for the dislocation network
show rapid increase with a slope change after 6 cycles to reach almost 400 components
after 16 cycles, whereas a rather slow evolution is observed for Δ𝜀pl/2 = 0.001%
leading to 140 components after 160 cycles. Furthermore, no saturation for the
number of components in the investigated range is observed. Figure 3.16 shows the
evolution of the fraction of the component density 𝜌component with respect to the
total dislocation density 𝜌𝑡 for the largest three components. For Δ𝜀pl/2 = 0.01%
(figure 3.16(a)), the largest component constitutes, from the early stages and until
the end of the simulation, the majority of the dislocation density and reaches a
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(a) (b)

Figure 3.14: Visualization of spatial graph components 𝜒 for (a) Δ𝜀pl/2 = 0.01% after
14 cycles and (b) Δ𝜀pl/2 = 0.001% after 160 cycles while unloaded. The
coloring corresponds to different components and black represents the largest
component (El-Achkar und Weygand, 2019).
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Figure 3.15: Evolution of the number of components (El-Achkar und Weygand, 2019).

saturation value of ≈ 70% of the total dislocation density after 6 cycles. The
component density for Δ𝜀pl/2 = 0.001% (figure 3.16(b)) shows rather comparable
evolution for the largest three components in the early stages and a separation for
the largest component after 70 cycles. The largest component fluctuates strongly
and reaches peak values of up to 40% of the total dislocation density.

The evolution of the total dislocation density and dislocation character density are
shown in figure 3.17. Dislocation character is binned according to |𝑒𝑏 · 𝑒𝑡| < 0.342
for edge, 0.342 < |𝑒𝑏 · 𝑒𝑡| < 0.9396 for mixed and |𝑒𝑏 · 𝑒𝑡| > 0.9396 for screw
character. The dislocation density follows a similar two-slope regime as also seen in
figure 3.15. For Δ𝜀pl/2 = 0.01%, the dislocation density reaches almost 16 times
higher values than the initial density after 16 cycles while only 3 times higher values
for Δ𝜀pl/2 = 0.001% after 160 cycles. Compared to the dislocation density reached
after one cycle, the final density for Δ𝜀pl/2 = 0.01% is approximately three times
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Figure 3.16: (a) Evolution of the fraction of dislocation density for the three largest
components w.r.t. the total dislocation density for (a) Δ𝜀pl/2 = 0.01% and
(b) Δ𝜀pl/2 = 0.001% (El-Achkar und Weygand, 2019).

higher. For Δ𝜀pl/2 = 0.001% an 1.2 fold increase is observed. The analysis of the
dislocation character density shows that the density of screw dislocations is lowest
and fluctuates around a constant value for the examined amplitudes. On the other
hand, the density of mixed dislocations is highest and shows a trend similar to the
total dislocation density. The edge dislocation density evolution is distinguishable
from the rest, in early cycles it is almost equal to the screw density but after a
critical number of cycles (6- and 70 cycles for Δ𝜀pl/2 = 0.01% and Δ𝜀pl/2 = 0.001%
respectively) it shows an increase and separation from the screw dislocation density
which is significant for Δ𝜀pl/2 = 0.01% but rather small for Δ𝜀pl/2 = 0.001%.
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Figure 3.17: Evolution of the total dislocation density and character density for (a)
Δ𝜀pl/2 = 0.01% and (b) Δ𝜀pl/2 = 0.001% (El-Achkar und Weygand, 2019).

The subsequent analysis is a detailed comparison at the level of physically-known
irreversible defects such prismatic loops and dislocation dipoles. The number of
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prismatic loops (figure 3.18) shows the same trend with respect to the slope change
which was observed previously for the dislocation density as well as for component
evolution. At the end of the simulation, the total number of prismatic loops for
Δ𝜀pl/2 = 0.01% is around 320 after 16 cycles and almost four times higher than
for Δ𝜀pl/2 = 0.001%, where around 80 after 160 cycles are found and no saturation
is observed for this value. The larger amplitude shows for the early stages that
prismatic loops of the 1st order are highest in number. After a critical number
of cycles, the latter become similar in number to 2nd order prismatic loops and
dislocation debris. In the case of Δ𝜀pl/2 = 0.001%, the number of prismatic loops
of 1st- and 2nd order as well as dislocation debris evolve quite similar throughout
the simulation. The evolution of the average shape of prismatic loops < 𝑝shape >
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Figure 3.18: Evolution of the number of prismatic loops and dislocation debris for (a)
Δ𝜀pl/2 = 0.01% and (b) Δ𝜀pl/2 = 0.001% (El-Achkar und Weygand, 2019).

during cycling is shown in figure 3.19(a). < 𝑝shape > reaches a steady state value of
0.7 for the small amplitude after 20 cycles, while this value is smaller for the large
amplitude in the early stages and reaches 0.75 at the end of the simulation. The
distribution of 𝑝shape (figures 3.19(b) and 3.19(c)) shows that elongated prismatic
loops (𝑝shape < 1) occur with a much higher probability for both amplitudes. With
increasing number of cycles the maximum shifts from 𝑝shape = 0.7 to 𝑝shape = 0.9 for
both amplitudes.

The distribution of the side length of the maximum loop extension (equations 2.17
and 2.18), which reflects the size of the evolved prismatic loops, is shown in figure 3.20.
For both amplitudes, very small prismatic loops of side lengths 50𝑎 − 150 𝑎 are found
more frequently than large loops. This phenomenon is even more pronounced at
later cycles, where a distinct maximum is visible for loops with maximum dimension
of 50 𝑎. Nevertheless, prismatic loops of maximum dimension larger than 500 𝑎
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(a) (b)

(c)

Figure 3.19: (a) Evolution of the mean prismatic shape 𝑝shape. Distribution of
the shape factor for (b) Δ𝜀pl/2 = 0.01% and (c) Δ𝜀pl/2 = 0.001%
(El-Achkar und Weygand, 2019).

are also present. The investigation of dislocation dipoles by examining the mean
dipolar height < ℎ > and length < 𝑙 > evolution (figures 3.21(a) and 3.22(a)) shows
for Δ𝜀pl/2 = 0.001% in early cycles strong oscillations around the averaged values.
Figure 3.21(a) shows that after approx. 20 cycles, < ℎ > stabilizes for the smaller
amplitude around a value of < ℎ >≈ 38 𝑎. This value varies early for the larger
amplitude between 35𝑎 − 45 𝑎 and increases to reach < ℎ >≈ 42 𝑎 in the end of the
simulation.

The frequency distribution of dipolar heights (figures 3.21(b) and 3.21(c)) shows
an exponential distribution which can be fitted using 𝑎/𝑐1 exp(−(ℎ − 𝑐2)/𝑐1) with
𝑐2 = 11.5 𝑎 and 𝑐1 = 24.8 𝑎 respectively 𝑐1 = 30 𝑎 for the large amplitude for cycles
7 and 15 respectively. The maximum dipolar height is located at the closest glide
plane distance of ℎ = 11.8 𝑎. For the small amplitude the fitting coefficients are
𝑐2 = 11.5 𝑎 and 𝑐1 = 22.4 𝑎 respectively 𝑐1 = 24.3 𝑎 for cycles 80 and 160 respectively.
Again, the height with the highest probability is very close to the smallest glide
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(a) (b)

Figure 3.20: Distribution of the maximum loop dimension of prismatic loops for (a)
Δ𝜀pl/2 = 0.01% and (b) Δ𝜀pl/2 = 0.001% (El-Achkar und Weygand, 2019).

plane distance. Increasing the number of cycles in both amplitude shows a decrease
in the maximum values towards an increase in larger heights. The mean length of
the dipoles < 𝑙 > (figure 3.22(a)) converges for both amplitudes towards a value
of < 𝑙 >≈ 250 𝑎. The frequency distribution of dipolar lengths (figures 3.22(b) and
3.22(c)) shows maximum values at 𝑙 = 200 𝑎 for both amplitudes with a significant
drop in this value afterwards. However, it is noticeable that long extended dipoles
𝑙 = 1000 − 2700 𝑎 exist, although with a smaller frequency.

At a macroscopic level, the repeated forward and backward dislocation motion results
in surface displacements, i.e. a surface roughness, part of which can be permanent
(section 2.2.5). The surface topography, which is initially a flat surface, is represented
by an equidistant grid with a spacing Δ = 156.25 𝑎. At each grid point, the plastic
surface displacement in 𝑧-direction �̃�𝑧 is evaluated analytically in the post-processing
stage. A developed sensitivity measure for surface evolution quantification is the
maximum value of ||∇�̃�𝑧|| (figures 3.23(a) and 3.23(b)). The dotted orange line is a
linear regression and shows for the large amplitude a fluctuation around a steadily
increasing trend, whereas for the small amplitude it indicates a constant behavior.
Nevertheless, a rise at 50 cycles followed by a drop to the initial value after 80
cycles is also observed for the small amplitude. The evolution of the distribution
of the plastic surface displacement �̃�𝑧 for different stages of unloading is shown
in figures 3.23(c) and 3.23(d). For the large amplitude, fitting the distribution to
a normal distribution yields mean and standard deviation values (in units of 𝑎)
of (0.26, 0.58), (0.24, 0.68) and (0.4, 0.75) for cycles 2, 7 and 14 respectively. The
maximum value, which is located at zero for the second cycle, is shifted to higher
values upon increasing the number of cycles. Additionally, values of �̃�𝑧 = −2.5 𝑎
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Figure 3.21: (a) Evolution of the mean dipolar height. Dipolar height distribution for (b)
Δ𝜀pl/2 = 0.01% and (c) Δ𝜀pl/2 = 0.001% (El-Achkar und Weygand, 2019).

and �̃�𝑧 = 1.6 𝑎 are observed after 14 cycles. On the other hand, the distribution
of displacements for the small amplitude for cycles 49, 70 and 146 (figure 3.23(b))
shows rather tight distributions located between −0.4 𝑎 and 0.4 𝑎. After 49 cycles,
the displacements are narrowed down to 0.05 𝑎, 0 𝑎 and −0.05 𝑎 in decreasing order
respectively. A broader stair-case distribution is seen for 70 cycles for a maximum
located at −0.05 𝑎. After 146 cycles, the displacements are extremely localized at
0.05 𝑎 followed by smaller peaks at 0.1 𝑎 and 0 𝑎. A two-dimensional power spectrum
visualization of both surfaces compared to other orientations is shown in figure H.2.

The extension of surface analysis is the irreversibility 𝑝 factor (section 2.2.5). In
figures 3.24(a) and 3.24(b), the evolution of 𝑝 is shown for both amplitudes using
surface- (equation 2.23) and bulk (equation 2.24) evaluation. The dotted orange
line represents the ratio of slopes of the irreversible plastic strain 𝜀pl,irre and the
cumulative plastic strain 𝜀pl,cum using a linear fit (figure H.1). It is evident that
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Figure 3.22: (a) Evolution of the mean dipolar length. Dipolar length distribution for (b)
Δ𝜀pl/2 = 0.01% and (c) Δ𝜀pl/2 = 0.001% (El-Achkar und Weygand, 2019).

both surface and bulk measures decrease with number of cycles and the bulk 𝑝

asymptotically approaches the slope line. Both setups show that 𝑝-surface is smaller
than 𝑝-bulk and that the ratio of 𝑝-surface to 𝑝-bulk is 10 respectively 2 for the
small- and large amplitude. 𝑝 values for amplitudes from figure 3.12 are visualized
alongside with experimental estimations for Cu and 𝛼-iron (Mughrabi, 2009) in a
logarithmic plot (figure 3.24(c)). To mimic copper, an additional setup is included,
for which screw dislocations can only cross-slip if the shear stress on the cross-slip
plane is 50% higher than on the primary plane (𝜏cs > 1.5𝜏primary). Evident is that
𝑝-bulk values are higher than 𝑝 obtained from surface measurements. The previously
used cross-slip condition of 10% yields for the examined amplitude range fairly high
𝑝 values when compared with Cu and 𝛼 iron from experiments. When cross-slip is
set to be more difficult (50%), then the curves shift downward, such that surface
measurements become closer to experimental measurements of Cu.
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Figure 3.23: Evolution of the maximum value of ||∇�̃�𝑧|| for a grid resolution
Δ = 156.25𝑎 for (a) Δ𝜀pl/2 = 0.01% (El-Achkar und Weygand, 2019) and
(b) Δ𝜀pl/2 = 0.001%. Distribution of the plastic surface displacement while
unloaded for (c) Δ𝜀pl/2 = 0.01% (El-Achkar und Weygand, 2019) and (d)
Δ𝜀pl/2 = 0.001%.

3.1.2. [110]-tensile axis orientation

In setup 2a (table 3.2) the crystal orientation is chosen such that 𝑒𝑏4 is in the
direction of the tensile axis and 𝑛4 its complementary perpendicular axis along the
𝑥-direction (figure 3.25). The initial dislocation structure consists of FR sources of
lengths 1000-5000 𝑎 embedded in the dodecahedron of figure 3.1(c) with the same
boundary conditions as above and a plastic strain control cyclic loading with an
amplitude of Δ𝜀pl/2 = 0.01%.
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Figure 3.24: Evolution of the irreversibility factor 𝑝 for (a) Δ𝜀pl/2 = 0.01% and (b)
Δ𝜀pl/2 = 0.001%. 𝑝 is estimated from the surface and the bulk using equations
2.23 and 2.24 respectively. (c) 𝑝 factor for experimental results for Cu and
𝛼-iron from Mughrabi (2009) alongside simulation results for the variation
of cross-slip easiness such that cross-slip occurs if 𝜏cs > 1.1𝜏primary or 𝜏cs >
1.5𝜏primary.

tensile axis

Figure 3.25: Setup 2a: [110] crystal orientation (El-Achkar und Weygand, 2019).

Pattern formation

The microstructure, during the simulation, is very distinct from the [010]-orientation.
Dislocations arrange themselves into very stable bundles along the 𝑒𝑏3 = 1/

√
3[

√
201]
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3.1. Fatigue in fcc surface grains

Setup Tensile Complementary Microstructure
axis 𝑦 axis 𝑥

2a 𝑒𝑏4 = 1√
2 [110] �̄�4 = 1√

3(11̄1) random distribution of
FR sources
𝜌𝑡 = 4.5 × 1011m−2

2b 𝑒𝑏4 = 1√
2 [110] 𝑒𝑏3 = 1√

2 [1̄10] random distribution of
FR sources
𝜌𝑡 = 4.5 × 1011m−2

2c 𝑒𝑏4 = 1√
2 [110] �̄�1 = 1√

3(1̄11) random distribution of
FR sources
𝜌𝑡 = 4.5 × 1011m−2

Table 3.2: Setups’ nomenclature for a [110]-tensile axis orientation.

direction (laboratory frame of reference) and accumulate with increasing number
of cycles. These bundles are indicated by red numbers in figure 3.26(a). Figure
3.26(b) shows the mean pair correlation function (equation 2.19) characterizing the
structure: Dislocations, which are aligned along 𝑒𝑏3, are filtered out (section 2.2.4).
The shell thickness and maximum radius are set to 𝑑𝑟 = 30 𝑎 and 𝑟max = 4100 𝑎

respectively. At very small distances, the mean pair correlation function shows a
very high value followed by a drastic drop (figure 3.26(b)). Several well-defined peaks
are also observed at 𝑟 ≈ 700 𝑎 and 𝑟 ≈ 1800 𝑎.

(a) (b)

Figure 3.26: (a) Slip band pattern formation in setup 2a [110] crystal orientation. The
well-separated dislocation bundles are designated by red numbers from 1-4.
(b) Mean pair correlation function for spatial analysis of the given structure
in (a) (El-Achkar und Weygand, 2019).
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3. Results

The analysis of a different random initial configuration is shown in figure G.1 of the
appendix. Evolution of the surface is provided in figure H.3 of the appendix.

Rotation around tensile axis

Two different setups are examined to demonstrate the influence of the rotation of
the crystal system around the tensile axis (figure 3.27). In both setups the tensile
axis is along 𝑒𝑏4 and 𝑒𝑏3 in setup 2b meaning that 𝑏1, 𝑏2, 𝑏5 and 𝑏6 are symmetric
w.r.t. the free surface and in setup 2c 𝑛1 = (001̄) such that 𝑏5 and 𝑏6 have a zero
surface component (table 3.2).

tensile axis

(a)

tensile axis

(b)

Figure 3.27: Rotated [110] crystal orientations: (a) Setup 2b with 𝑒𝑏4 = [010] and 𝑒𝑏3 =
[100], and (b) setup 2c with 𝑒𝑏4 = [010], 𝑏5 and 𝑏6 have no free surface
component.

In figure 3.28 the final dislocation density distribution per glide system is shown for
both setups. It is obvious that in setup II the dislocation density in glide system
4, 6, 7 and 9 belonging to Burgers vectors 𝑏1, 𝑏5, 𝑏2 and 𝑏6 respectively is equally
distributed2. On the other hand, in setup III glide systems 4 and 7 (𝑏1 and 𝑏2) show
up to almost 1.8 times higher dislocation density on average than systems 6 and 9
(𝑏5 and 𝑏6).

Surface contour plots of both setups are given in figures H.4 and H.5 of the ap-
pendix.

2 Glide system numbering can be found in figure J.1 of the appendix
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Figure 3.28: Distribution of the fraction of the final dislocation density 𝜌 per glide system
w.r.t. the total dislocation density 𝜌𝑡 for [110] crystal orientation setups
(a) 2b and (b) 2c.

3.1.3. [982]-tensile axis orientation

The sensitivity of a 10 degree rotation away from the [110] crystal orientation is
investigated. The tensile axis is chosen as [982] which is the 𝑦-axis in laboratory frame
with [2̄21] pointing in 𝑥-direction. Glide system 9 (Burgers vector 𝑏6) experiences
in this crystal orientation the maximum Schmid factor of 0.45. Eight different
simulations of two different initial dislocation densities are conducted with an initial
dislocation microstructure consisting of FR sources with lengths 4745 𝑎. The sources
are embedded in the dodecahedron of figure 3.1(c) with the same boundary conditions
using several plastic strain amplitudes.

Full glide system simulation

In setup 3a, the initial microstructure consists of randomly distributed FR sources
in all glide systems (table 3.3). Figure 3.29(a) shows the evolved microstructure
after 10 cycles for an initial dislocation density 𝜌𝑡 = 4.5 × 1011m−2 and applied
plastic strain amplitude of Δ𝜀pl/2 = 0.01%. Obvious are several clusters of very
small-size prismatic loops (shown in blue dotted squares) and several dislocation
bundles aligned along 𝑏4. If compared to setup 2a for the pure [110] orientation
microstructure (figure 3.26(a)), the structure shows no clear pattern and very little
alignment along the main edge direction [1̄2̄1] in the crystal frame with Burgers
vector 𝑏6 (yellow solid line). The evolution of the surface of this setup is shown in
figure H.6 of the appendix. Increasing the dislocation density by three (setup 3b in
table 3.3) and keeping the same plastic strain amplitude shows a higher dislocation
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Setup Tensile Complementary Microstructure Plastic strain
axis 𝑦 axis 𝑥 amplitude

3a [982] [2̄21] random distribution of Δ𝜀pl/2 = 0.01%
FR sources
𝜌𝑡 = 4.5 × 1011m−2

3b [982] [2̄21] random distribution of Δ𝜀pl/2 = 0.01%
FR sources
𝜌𝑡 = 13.5 × 1011m−2

3c [982] [2̄21] random distribution of Δ𝜀pl/2 = 0.084%
FR sources
𝜌𝑡 = 13.5 × 1011m−2

3d [982] [2̄21] 54 dislocations in Δ𝜀pl/2 = 0.01%
planes 𝑛3 = 1√

3(1̄1̄1).
16 dislocations in the rest
𝜌𝑡 = 1.35 × 1012m−2

3e [982] [2̄21] random distribution of Δ𝜀pl/2 = 0.084%
FR sources only in
glide system 9
𝜌𝑡 = 1.35 × 1012m−2

Table 3.3: Setups’ nomenclature for a [982]-tensile axis orientation.

density with more dislocation bundles along 𝑏4 (green dotted region in figure 3.29(b)).
The evolution of the dislocation density shows that the dislocation density is around
only 1.3 times higher than the previous case despite the initial difference in density.
In this setup, several dislocation dipoles and prismatic loops align along [1̄2̄1] and
can be seen in the figure parallel to the yellow lines. The relaxation of the structure
(figure 3.29(c)) preserves most of its constituents. On the other side, the increase
of plastic strain strain amplitude by 8.4 (setup 3c in table 3.3) shows an extreme
intensification of the 𝑏4-aligned dislocations alongside dislocations of all orientations
(figure 3.29(d)).

Special glide system selection

Glide systems not belonging to glide system 9 with maximum Schmid factor are
reduced in a two-step manner:
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3.1. Fatigue in fcc surface grains

prismatic clusters

(a) (b)

(c) (d)

Figure 3.29: Dislocation microstructure of a [982] crystal orientation with all glide systems
for a plastic strain amplitude of Δ𝜀pl/2 = 0.01% for (a) setup 3a with
𝜌𝑡 = 4.5×1011m−2 after 10 cycles and (b-c) setup 3b with 𝜌𝑡 = 1.35×1012m−2

after 8 cycles at load maximum and 9 cycles after relaxation respectively. (d)
Microstructure for setup 3c a larger plastic strain amplitude of Δ𝜀pl/2 =
0.084% after 1 cycle. The blue regions indicate clusters of prismatic loops.
The green ellipses contain dislocations that are aligned along 𝑏4 and the yellow
solid lines represent directions along the [1̄2̄1] direction.

∙ In setup 3d (table 3.3), the number of dislocations not belonging to the glide
plane with normals vector 𝑛3, which contains glide system 9, is minimized.
The initial dislocation density is 𝜌𝑡 = 1.35 × 1012m−2 contains FR sources of
lengths 4745 𝑎 that are distributed in glide planes accordingly: 6 in 𝑛1, 6 in
𝑛2, 54 in 𝑛3 and 6 in 𝑛4. The plastic strain amplitude is Δ𝜀pl/2 = 0.01%.

∙ In setup 3e (table 3.3), only glide system 9 with maximum Schmid factor is
considered while other glide systems are discarded. The initial dislocation
density is chosen as 𝜌𝑡 = 1.35×1012m−2 and the applied plastic strain amplitude
Δ𝜀pl/2 = 0.084%. The latter is chosen higher than in setup 3d to ensure the
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development of a pronounced pattern since only one glide system is involved,
i.e. a reduction in junction types (only cross-slip and collinear are possible)
ergo dislocation density compared to setup 3d .

Figure 3.30 shows the final dislocation microstructure. In setup 3d (figure 3.30(a)),
numerous dislocation dipoles (yellow lines) appear alongside with dislocation align-
ment along 𝑏4 (as above). For setup 3e (figure 3.30(b)), pronounced dipolar bundles

(a) (b)

(c) (d)

Figure 3.30: Microstructure of the [982] crystal orientation for (a) setup 3d (see text) after
17 cycles, (b) setup 3e after 3 cycles, (c) relaxing setup 3e and (d) removing
the pinning restriction of the FR sources from (c) and connecting them.

appear and comprise nearly all the dislocation microstructure. Upon unloading and
relaxation (figure 3.30(c)), the overall structural features are preserved, however, the
dislocation density decreases up to almost 4.7 times. An extension of the relaxation
is FR source removal. The latter is achieved by connecting the pinning points of
the source to form a connected closed loop followed by unpinning the points. Figure
3.30(d) shows the microstructure if the process is carried out directly after the regular

54



3.2. Fatigue in bcc metals

relaxation process. The microstructure appears to be quite vacant and only several
prismatic loops which are all aligned along [1̄2̄1] are left.

The surface of the dipolar microstructure of setup 3e (magnified by a factor of 500)
from figure 3.30(b) is shown in figure 3.31(a) with the microstructure underneath. It
demonstrates well-defined embryonic extrusions along Burgers vector 𝑏6 with a rough
central peak shown in figure 3.31(b). The location of the largest peak correlates

(a) (b)

Figure 3.31: (a) Magnified surface displacements of setup 3e after 3 cycles (unloaded) with
the dislocation microstructure from figure 3.30(b) underneath. (b) Plot of
the surface displacement along 𝜉1 and 𝜉2 from (a).

with the position of the highest density region from figure 3.30(b). The calculated
irreversibility factor from the surface and bulk yields 𝑝 = 0.01. Additional contour
plots at load maxima can be seen in figure H.7 of the appendix.

3.2 Fatigue in bcc metals

The simulation model consists of a large spherical inclusion (compared to the
simulation domain)3 which mimics a non-metallic oxide with isotropic elastic material
properties (𝜇𝑃 = 154 GPa and 𝜈𝑃 = 0.36) embedded in a softer isotropic iron matrix
(𝑎 = 0.287496 nm, 𝜇 = 77 GPa and 𝜈 = 0.3). The grid resolution in ABAQUS around
the inclusion is chosen as 100𝑎. The remaining numerical parameters such as the
mass per unit length 𝑚0 and drag coefficient 𝐷 are chosen as for fcc. The results
below correspond to simulations of a single crystal and polycrystal.
3 Depending on the heat treatment the size of, for example Al2O3 inclusions in a steel matrix

SCM440, can vary between 8-33 𝜇m (Jeddi und Palin-Luc, 2018).
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3.2.1. Single crystal

The simulation domain consists of a cube of side length 7500 𝑎, where an inclusion
of radius 𝑅𝑝 is embedded in the center. Dislocations can exit all the surfaces of the
cube and cyclic tension and compression boundary conditions (as in section 3.1.1)
using total strain control (�̇� = 5000 s−1) are applied to the top 𝑦 surface.

[191̄]-tensile axis orientation

A double slip orientation [191̄], 9∘ away from [010], is chosen as the tensile axis
(see figure 3.32). The dislocation microstructure consists of FR sources of lengths
1000 𝑎 such that the total dislocation density 𝜌𝑡 = 5.7 × 1011m−2. All dislocations
are populated in glide system 1 with the highest Schmid factor 𝑆 and cycled under a
total strain amplitude of 0.14%. The radius of the inclusion is set to a large value of
𝑅𝑝 = 2000 𝑎 compared to the total volume (≈ 1/12). Using the commercial software
ABAQUS, the elastic stress field 𝜎el is calculated for each time step and stored so that
it can be interpolated onto dislocations in the DDD part (section 2.1.4). The friction
stress is chosen as 𝜏 ′ = 80 MPa (section 2.1.5), slightly smaller than the critical
bow-out radius of around 133 MPa. In Ashby und Johnson (1969) lower- and upper
bounds are given for critical misfit values to nucleate a dislocation. Accordingly, the
misfit strain is set as 𝑒*

𝐶 = 0.2%.

Figure 3.32: Inverted Thompson tetrahedron showing the [191̄]-tensile axis (𝑦-direction)
orientation.

Snapshots of the dislocation microstructure are shown for the first- and third cycle
for load maximum in figure 3.33. The microstructure can be dissected into several
components:

∙ Orowan loops winding around the inclusion which can be clearly seen in a
section perpendicular to 𝑛1 (figure 3.33(b)).
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3.2. Fatigue in bcc metals

∙ Elongated dipolar dislocations which extend from the inclusion to the free
surface (figure 3.33(b)) and are marked as regions IV, V and VI in figure
3.33(c).

∙ Hexagonal prismatic loops that wrap around the inclusion and span all three
glide planes can be seen in a section perpendicular to 𝑏1 in figure 3.33(a).

∙ Free prismatic loops such as region III in figure 3.33(c).

∙ Dipolar clusters seen in regions I and II in figure 3.33(c).

∙ Random dislocations which belong to screw and mixed types.

During the first three cycles, a dislocation density increase is observed which is
associated with an increase in elongated dipolar dislocations and formation of dipolar
clusters. A zoom into the clustered region (figure 3.33(e)) shows numerous numbers
of prismatic loops of various shapes. Regions I and II (figure 3.33(c)) exhibit a
symmetry with respect to a line passing through the inclusion center and parallel to
the 𝑏1 × 𝑛3 = [2̄1̄1] direction. Figure 3.33(f) shows that the microstructure has a
bias towards edge dislocations.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.33: Evolved dislocation microstructure for a [191̄] orientation for two different
perspectives at load maximum in the (a-b) first cycle and (c-d) third cycle.
(e) Magnification of zone I from (c). (f) Filtered microstructure from (c)
according to edge type dislocations. Colors correspond to different glide
planes (numbering is given in table J.1).
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The analysis of volumetric von Mises plastic strain in voxels of side-lengths 500 𝑎

shows that plastic strain is highly localized in regions I and II (figure 3.34(a)). {112}
sections of different depths (figures 3.34(b) and 3.34(c)) show that plastic strain
extends throughout the whole volume in fine localized bands, while the rest of the
volume shows only small values of plastic strain.

(a)

tensile axis

(b)

tensile axis

(c)

Figure 3.34: Distribution of the von Mises plastic strain at load maximum of the third
cycle in (a) 𝑏1 and (b-c) {112} cross-sections. In (a) the cut is taken from
the center of the volume. The planes’ depths are 1800 𝑎 and −2000 𝑎 away
from the center in (b) and (c) respectively. The voxel side-lengths for plastic
strain evaluation are 500 𝑎.
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Investigation of the lattice misorientation angle 𝜔mis for the plastic rotation vector
(calculation according to section K of the appendix) w.r.t. to a zero reference rotation
shows in a section perpendicular to 𝑏1 highest misorientation 𝜔mis ≈ 0.25∘ above
and below the inclusion (figure 3.35(a)). In a {112} section (figure 3.35(b)), the
largest values seen in figure 3.35(a) are found only in a small region. However, high
𝜔mis values are seen along 𝑏1 in a large area of approximately inclusion size which
extend from one free surface to another.

(a) (b)

Figure 3.35: (a) 𝑏1- and (b) {112} central cross-sections showing the misorientation angle
𝜔mis distribution. The voxel side-lengths for evaluation are 500 𝑎.

Study of inclusion intrinsic properties The influence of the inclusion properties
(section 2.1.4) on the development of the microstructure in figure 3.33 is studied.
To magnify the effect of each property, several setups with individual inclusion
attributes are simulated. In all setups, a single FR source of length 2000 𝑎 with
center coordinates (6105, 3407, 5996)T 𝑎 is inserted into an elastic cube of side-length
7500 𝑎. An inclusion of radius 𝑅𝑝 = 2000 𝑎 is embedded into the center of the domain
and the total strain amplitude is set to Δ𝜀tot/2 = 0.12%. The boundary conditions
are the same as above. Since the friction stress is not an investigation parameter, it
is set to a fairly low value of 𝜏 ′ = 20 MPa (almost 3 times smaller than the critical
bow-out radius) to accelerate the simulation.

The first study compares the behavior of two perfectly fitting isotropic spherical
inclusions with one having the same material properties as the matrix and the other
the different elastic constants 𝜇𝑃 = 154 GPa and 𝜈𝑃 = 0.36 (as above). Figure 3.36(a)
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3.2. Fatigue in bcc metals

shows the dislocation density evolution as a function of cycles for both setups. It
can be seen that the dislocation density is systematically higher for the setup with
the modulus-induced stress field 𝜎el. Nonetheless, both setups show almost full
reversibility of the dislocation density upon load reversal. For the applied strain
amplitude, the obstacle hinders dislocation motion and leads to the formation of
Orowan loops. Further dislocations arriving at the inclusion experience a pile-up
stress leading to stresses higher in the cross-slip plane than in the primary plane,
thus causing screw-type segments to cross-slip (figure 3.36(b)). The inclusion with
different elastic properties than the matrix shows more Orowan loops and cross-slip
events and the development of several prismatic loops (figure 3.36(c)).
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Figure 3.36: Comparison of the behavior of a spherical obstacle with that of an inclusion
that has different elastic properties than the matrix. (a) Dislocation density
evolution. Snapshots of the dislocation microstructure during the second cycle
(maximum loading) for the (b) spherical obstacle and (c) the inclusion with
the modulus-induced stress field 𝜎el. Colors correspond to different glide
planes (numbering is given in table J.1).

In a third setup, the influence of three misfit strains 𝑒*
𝐶 = 0.1%, 𝑒*

𝐶 = 0.2% and
𝑒*

𝐶 = 0.3% is examined. Here the inclusion has the same elastic properties as the
matrix. Figure 3.37(a) shows the evolution of the dislocation density for the setups.
It is observed for all cases that the dislocation density 𝜌𝑡 increases gradually and
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barely decreases during unloading and that its magnitude is proportional to the misfit
strain 𝑒*

𝐶 . The developed dislocation microstructure of the three different misfit
strain is shown in figures 3.37(b), 3.37(c) and 3.37(d). In contrast to the previous
setups, the appearance of dislocations belonging to a third plane with normals 𝑛5 is
visible with a fraction which increases upon increasing 𝑒*

𝐶 . The dislocations form
hexagonal prismatic loops that show extreme stability upon unloading.
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Figure 3.37: (a) Dislocation density evolution for a total strain controlled simulation with
𝜀tot = 0.12% for different misfit strains 𝑒*

𝐶 . Snapshot of the microstructure in
a section perpendicular to 𝑏1 after 4.5 cycles for (b) 𝑒*

𝐶 = 0.1%, (c) 𝑒*
𝐶 = 0.2%

and (d) 𝑒*
𝐶 = 0.3%. Colors correspond to different glide planes (numbering is

given in table J.1).

To understand the formation of hexagonal prismatic loops, a simulation of the
misfit stress field with no external stresses is performed. In the setup a smaller
inclusion radius 𝑅𝑝 = 1250 𝑎 with a very high misfit strain 𝑒*

𝐶 = 1.3% (to activate
a dislocation) is used. The microstructure consists of a single FR source of length
1000 𝑎 belonging to glide system 10 (𝑏4,𝑛5) and positioned at a distance of 2450 𝑎

away from the inclusion. The results show perfectly formed hexagonal prismatic
loops (figure 3.38) which develop analogously to the Hirsch mechanism for fcc
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3.2. Fatigue in bcc metals

materials (Humphreys und Hirsch, 1970) and similar to the ones previously observed
in Munday et al. (2016).

Figure 3.38: Formation of hexagonal prismatic loops of interstitial type, around an inclusion,
and vacancy type which get repelled away.

Radius variation The previous simulations were performed for a constant inclusion
radius and misfit. Figure 3.39 shows the dislocation density evolution for three
different radii 𝑅𝑝 = 2000 𝑎 (above simulation), 𝑅𝑝 = 1625 𝑎 and 𝑅𝑝 = 1250 𝑎 for
𝑒*

𝐶 = 0.2% and 𝑒*
𝐶 = 0. For an inclusion with no misfit, the dislocation density

evolution is similar for the three examined radii and shows almost full reversibility
upon unloading. On the other hand, for 𝑒*

𝐶 = 0.2% the dislocation density for the
smallest radius is even higher than for the largest radius without a misfit. The other
two radii 𝑅𝑝 = 2000 𝑎 and 𝑅𝑝 = 1625 𝑎 show up to 3 times higher dislocation densities.
It is observed that for a misfitting inclusion the dislocation density, depending on
the radius, stays at a large value upon unloading.
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Figure 3.39: Comparison of the dislocation density evolution for different radii 𝑅𝑝 = 2000 𝑎,
𝑅𝑝 = 1625 𝑎 and 𝑅𝑝 = 1250 𝑎 with- and without a misfit.
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[010]-tensile axis orientation

To test the influence of other glide systems, a [010] multislip loading axis is used. All
numerical parameters and boundary conditions are chosen as above with the only
difference that all glide systems are included yielding a total dislocation density of
𝜌𝑡 = 1012m−2. For the above chosen total strain amplitude of 0.14%, the dislocation
density during loading rapidly reaches 𝜌𝑡 = 8 × 1013m−2 so that the simulation
becomes very computationally expensive. Therefore, instead a slightly smaller strain
amplitude of 0.12% is used.

The dislocation density evolution is shown until load maximum of compression
of the first cycle in figure 3.40. Surprisingly, 𝜌𝑡 remains constant after unloading
and continues increasing during compression to reach 𝜌𝑡 = 7.5 × 1013m−2 where it
becomes very cumbersome to compute further steps of simulation. Microstructures
for point A and B from the latter figure are shown in figure 3.41. The microstructure
while unloaded (point A) is quite complex: a stable dislocation network development
is observed on top- and left of the inclusion (figure 3.41(a)) which becomes denser
during compression (figure 3.41(c)).
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Figure 3.40: Dislocation density evolution in a [010]-tensile axis orientation using all glide
systems.

3.2.2. Polycrystal

A polycrystal is modeled as an elastic cube of side-length 20000 𝑎 containing 64
grains and a spherical inclusion about twice as large in volume as a grain of radius
𝑅𝑝 = 4000 𝑎 embedded at the center. The geometrical information of different grains
is constructed using Voronoi Tesselation with the program Voro++ (Rycroft, 2009).
For each grain a random crystallographic orientation is chosen. The incorporation of
grains into DDD is explained in section 2.1.3. The boundary conditions are shown
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3.2. Fatigue in bcc metals

(a) (b)

(c) (d)

Figure 3.41: (a-d) Snapshots of the dislocation microstructure in a [010]-tensile axis orien-
tation for points A and B (figure 3.40) for different perspectives.

in figure 3.42: The cyclic boundary condition of total strain amplitude 0.12% is
applied to the top 𝑦-surface, whereas the bottom 𝑦 surface is fixed at 𝑢𝑦 = 0. The
remaining degrees of freedom are traction free and dislocations can escape the volume
from the cube outer surfaces. The initial dislocation microstructure consists of 375
dislocations of lengths 2000 𝑎 which yield 𝜌𝑡 ≈ 1012m−2. The misfit strain is chosen
as 𝑒*

𝐶 = 0.2%.

At load maximum of the first cycle, most grains show dislocation pile-ups against
grain boundaries with several cross-slip events (figure 3.43(a)). After three cycles,
many dislocations far away from the inclusion have moved back. However, around
the inclusion, several grains show a residual irreversible structure, which at this stage
of cycling is still relatively small.
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(a)

Figure 3.42: Initial- and boundary conditions of the simulated polycrystal.

(a) (b)

Figure 3.43: Snapshot of the dislocation microstructure for the polycrystal (a) at load
maximum of the first cycle (several selected cross-slip events are denoted to by
cs) and (b) in the third cycle while unloaded (dislocation density minimum).
Dislocations of the same grain obtain the same color.

For a detailed visualization of the irreversibility around the inclusion, the von Mises
plastic strain is averaged in planes along the [001]-direction that are 63 𝑎 apart. In
figure 3.44(a) the plastic strain distribution is shown for the first three cycles during
relaxation. Upon increasing the number of cycles, an obvious increase in plastic
strain is observed for all cuts, especially for the ones in the direct vicinity of the
inclusion (right and left) and ones located at the center of the inclusion showing
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3.2. Fatigue in bcc metals

peak values. Similarly, the averaged dislocation density is plotted along 𝑧-planes in
figure 3.44(b). Here the deviation of the dislocation density is even more pronounced
around the inclusion domain when increasing the number of cycles.
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Figure 3.44: Plot along [001] during relaxation of averaged (a) von Mises plastic strain
and (b) dislocation density in 𝑧-planes (separation distance of 63 𝑎).

The analysis of volumetric von Mises plastic strain using voxels of side-lengths 1250 𝑎

shows in central [100]-cuts grains that are highly active and result in significant
plastic strain (figure 3.45). An asymmetry between grains that are active during
tension and compression is visible and that plastic strain is rather continuous and
penetrates through grain boundaries. For all stages of a cycle it can be seen that
after increasing the number of cycles the area of plastic strain increases.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.45: [100]-cuts taken from the center of the volumetric von Mises plastic strain using
voxels of side-lengths 1250 𝑎 for different stages of the first and third cycle:
(a-b) maximum tension, (c-d) maximum compression and (e-f) relaxation
after tension (dislocation density minimum). The white lines represent grain
boundaries.
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4.1 Fatigue in fcc surface grains

4.1.1. Irreversibility as a consequence of grain shape and Burgers vector
orientation

Grain morphology

The role of grain morphology is scrutinized in section 3.1.1 for a single FR source with
Burgers vector orientation 𝑏1 = 𝑎/2[01̄1] which is embedded either in a cuboidal-
(setup 1a) or truncated dodecahedral (setup 1c) surface grain (surface normal
𝑛surf = [001]) and the following observations are made:

∙ After the first bow-out of the initial FR source, cross-slip occurs at one grain
boundary parallel to 𝑏 in the truncated dodecahedral grain and at two grain
boundaries in the cuboidal grain.

∙ Despite no significant differences when comparing dislocation densities, dislo-
cation reactions consisting of cross-slip and collinear junctions are higher for
the cuboid than for the dodecahedron (figure 3.2). The same trend can be
seen for the number of prismatic loops which are almost 8 times higher for the
cuboid. The same trend applies for the mean plastic strain which is 2-3 times
smaller in the case of the dodecahedron.

∙ For the same initial- and boundary conditions a cuboidal bulk grain (setup 1d)
behaves almost fully reversible (figure 3.3).

The orientation of grain boundaries with respect to the Burgers vector plays a crucial
role in the irreversibility behavior of the dislocation microstructure. If multiple
grain boundaries are oriented parallel to 𝑏 then cross-slip can occur at these sites
and result in a volume-spread microstructure with many reactions, prismatic loops
and high plastic strain as seen for the cuboid. On the contrary, if grain boundaries
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are hardly aligned along a screw orientation, then the microstructure is rather
planar showing grain boundary pile-ups and strong reversibility. The high number
of collinear reactions results in dislocation density annihilation and thus an almost
equal dislocation density for the cuboid and dodecahedron. Since the number of
cross-slip reactions is higher for the cuboid, the number of prismatic loops, which are
formed frequently by the intersection of a cross-slipping dislocations with a dipole,
is consequently higher.

Another important aspect is the vicinity of the grain w.r.t. the free surface. The
simulation of a cuboidal bulk grain shows that due to the grain symmetry w.r.t.
the crystal orientation the evolved microstructure leaves no irreversible parts when
unloading. As a matter of fact, the forward and backward reversible dislocation
motion is repeated in the simulated cycles in contrast to a surface grain. In the latter,
dislocation loops can exit the surface, whereas their counter part can stay in the
volume and leads in the unloading scenario to an asymmetry, i.e. irreversibility. This
agrees with the fact that surface grains of ductile fcc metals are characteristic for
crack initiation rather than bulk grains due to their high irreversibility (Mughrabi,
2009).

These findings reveal the three-dimensional nature of plastic irreversibility in grains,
which should be taken into account in modeling aspects or for electron backscatter
diffraction (EBSD) measurements in order to give a complete picture of fatigue
damage.

Burgers vector orientation

Multislip orientations In a cuboidal surface grain (surface normal 𝑛surf = [001]),
the role of the initial Burgers vector orientation w.r.t. the free surface of a single FR
source is investigated in section 3.1.1. The two examined cases are: setup 1a where
𝑏1 = 𝑎/2[01̄1] has a large surface component and setup 1b where 𝑏2 = 𝑎/2[110] has
none (table 3.1).

Since 𝑏2 is parallel to the free surface, pile-ups only at one grain boundary parallel
to the Burgers vector lead to numerous cross-slip events (figure 3.4). Although the
dislocation density evolution for both setups is almost indistinguishable (figure 3.2),
the number of prismatic loops for 𝑏 parallel to the free surface are 2-3 times higher and
the number of collinear reactions are up to 3 times higher than for 𝑏 perpendicular to
the free surface. This can be directly seen in the evolved microstructures in figure 3.4:
Setup 1a (𝑏 has a large free surface component) shows a step-like structure, whereas
setup 1b (𝑏 parallel to the free surface) is a localized structure which mostly consists
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4.1. Fatigue in fcc surface grains

of prismatic loops of various sizes. Since prismatic loops move along a glide cylinder
perpendicular to 𝑏, almost half of the loops exit the free surface in setup 1a while
most them remain in the volume in setup 1b. The large number of collinear reactions
observed in setup 1b (𝑏 parallel to the free surface) is related to prismatic loop
formation and annihilation that keeps the dislocation density almost equal when
comparing the cases. The plastic strain distribution (figure 3.5) shows large values of
plastic strain along channels of prismatic loops (along 𝑏) and the spread-out strain
in the volume in setup 1a compared to a localized distribution in setup 1b (𝑏 parallel
to the free surface).

For the case where 𝑏 has a large free surface component, prismatic loops that leave
the free surface cause a roughening of the free surface (figures 3.6 and 3.7). The
step-like nature of the surface in early cycles changes to a surface with sharp peaks
that are located along prismatic channels along the Burgers vector. The RMS as
well as minimum/maximum displacements show an increase during cycling which
correlate well with the surface topology observed in the contour plots.

The observations agree with the Essmann-Gösele-Mughrabi (EGM) model (Essmann et al.,
1981) that shows that extrusions appear in surface grains with Burgers vector orien-
tation with a large surface component. On the other hand, interior grains with a
Burgers vector parallel to the surface can nucleate a PSB which is unable to cross
the grain boundaries.

The combination of all Burgers vectors in a [010]-tensile axis orientation using many
initial FR sources (setup 1e in figure 3.9) shows three types of glide systems: those
containing the largest dislocation density concentration which belong to Burgers
vectors with a large free surface component (𝑏2 = 𝑎/2[011] and 𝑏5 = 𝑎/2[011̄]). These
systems are followed by glide systems with a medium dislocation density belonging to
Burgers vectors parallel to the free surface (𝑏3 = 𝑎/2[1̄10] and 𝑏4 = 𝑎/2[110]). Both
types of glide systems have an equivalent macroscopic Schmid factor of 𝑆 = 0.41
and as seen before glide systems with 𝑏 parallel to the free surface show even
higher plastic activity than glide systems with 𝑏 perpendicular to the free surface if
treated individually (figure 3.2). Last but not least are glide systems (𝑏1 = 𝑎/2[1̄01]
and 𝑏6 = 𝑎/2[101]) which have a Schmid factor of 𝑆 = 0 and are almost inactive.
Nonetheless, when the crystal system is rotated about the tensile axis (figure 3.8),
such that 𝑏2, 𝑏3, 𝑏4 and 𝑏5 are symmetric w.r.t. the free surface (setup 1f), then
the dislocation density is almost equivalently distributed among the latter Burgers
vectors that have 𝑆 = 0.41. This leads to a higher number of Lomer junctions
(figure 3.10) since all the glide systems required for the formation of 𝑏1- and 𝑏6

type junctions are involved (figure J.2 of the appendix). The rotation of the crystal
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system also leads to different slip patterns on the free surface. The geometry of the
markings can be directly correlated with the intersection of the crystal with the
surface resulting in block-like structures or triangular patterns. Another consequence
of the increased slip activity in this setup is a rougher surface.

To understand whether the observed glide system activity dependence on the Burgers
vector’s orientation w.r.t. free surface is a general property or a special feature of the
examined geometry or cyclic load, a deeper analysis is conducted using four setups
shown in figure 4.1: Cyclic loading of a fully embedded bulk truncated dodecahedron
(figure 4.1(a)) and a cuboidal grain which has two free surfaces that are in 𝑧-direction
(figure 4.1(b)), a tensile test of the dodecahedron studied above (figure 4.1(c)) and
of a pillar with free surfaces (figure 4.1(d)). The dislocation density distributions are
given in figure 4.2. Eliminating the free surface from the dodecahedron (figure 4.1(a))
results in an almost equal dislocation density distribution among glide systems with
𝑆 = 0.41. An additional free surface (figure 4.1(b)) causes the dislocation density for
glide systems, where 𝑏 is parallel to the free surface and 𝑆 = 0.41 to be negligible
and reach a level similar to systems with 𝑆 = 0, an indication that the effect is
even magnified by introducing an extra free surface. A tensile test of the truncated
dodecahedron with a free surface (figure 4.1(c)) shows a similar behavior as for cyclic
loading (screenshots of the microstructures are given in figure M.1 of the appendix).
The tensile loaded pillar (figure 4.1(d)) behaves as the cyclically loaded bulk grain.

Upon changing the tensile axis to [110] (section 3.1.2), the same behavior can be
observed where the dislocation density is almost equally distributed among systems
that are symmetric w.r.t. the free surface (setup 2b in figure 3.28) and drops
in systems that a high Schmid factor but a zero surface component (setup 2c in
figure 3.28).

This means that in multislip loading conditions in surface grains the distribution
of dislocation density among glide systems is controlled by the orientation of the
Burgers vector w.r.t. the free surface. It is a general feature of both monotonic
and cyclic load (figure 4.2(c)) and can be amplified by introducing an additional
free surface (figure 4.2(b)). The influence of the free surface w.r.t. to glide system
activity can be also observed in a [210] double slip orientation (section E of the
appendix).

The comprehension of the physical mechanism of the underlying phenomenon requires
an investigation at the microstructural level. In this analysis, isolated simulations of
separate dislocations with Burgers vectors 𝑏5 = 𝑎/2[011̄] (large surface component)
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(a)

(b)

(c)

(d)

Figure 4.1: Cyclic boundary condition for a (a) fully embedded dodecahedron and (b)
cuboid with two free surfaces in 𝑧-direction. Tensile boundary condition for (c)
the dodecahedron from figure 3.1(c) and (d) a pillar. The yellow box represents
the total elastic volume, dotted lines free surfaces and dark bold lines grain
boundaries.

and 𝑏4 = 𝑎/2[110] (no surface component) embedded in a truncated surface dodeca-
hedron (figure 3.1(c)) in a [010] tensile orientation are performed. The simulations
consist of two sources of lengths 4745 𝑎 containing both slip systems that belong
to the respective Burgers vector. The boundary conditions and geometry are the
same as in figure 3.1(c) with a controlled plastic strain amplitude of Δ𝜀pl/2 = 0.01%.
When both systems are isolated, then Burgers vector 𝑏4 with no surface component
shows at maximum load of the first cycle a higher length of collinear reactions (figure
4.3(a)). This is a similar observation to the surface cuboid using a total strain
control simulation (figure 3.2(b)). For Burgers vector 𝑏4 = 𝑎/2[110], which points
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Figure 4.2: Distribution of the fraction of the final dislocation density 𝜌 per glide system
w.r.t. the total dislocation density 𝜌𝑡 for [010] crystal orientation for setups
from figures (a) 4.1(a), (b) 4.1(b), (c) 4.1(c) and (d) 4.1(d). Glide systems
belonging to the same glide plane obtain the same color.

into the direction of grain boundaries, dislocations result in a localized plastic slip
distribution (figure 3.5) such that during their forward and backward motion, they
are confined by grain boundaries and are more probable to annihilate than in the
case of 𝑏5 = 𝑎/2[011̄] which points to the free surface. Due to the higher annihila-
tion reactions and length 𝑏4 Burgers vector requires longer time to reach the same
dislocation density as 𝑏5. This is seen in the change of frequencies of the dislocation
density evolution for the isolated systems (figure 4.3(b)). This means that during
the loading stage of a plastic strain controlled simulation involving both Burgers
vectors, glide systems with Burgers vectors with a large free surface component can
reach the required plastic strain faster than glide systems with Burgers vectors with
a small free surface component and hence, unloading occurs before any significant
contribution of the latter.
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Figure 4.3: Comparison of the evolution of the (a) length of collinear reactions and (b)
dislocation density for two isolated simulations with one containing Burgers
vector 𝑏4 = 𝑎/2[110] and the other 𝑏5 = 𝑎/2[011̄]. Each simulation contains
two sources which belong to slip systems 1 and 12 in the 𝑏4 case and slip
systems 2 and 6 in the 𝑏5 case.

Using the above information, the dislocation density distribution of setup 1e (fig-
ure 3.9(a)) can be explained from its microstructural evolution (figure 4.4). In the
figure, only dislocations of Burgers vectors 𝑏4 (parallel to the free surface) and
𝑏5 (with a large free surface component) are shown and colored accordingly. Two
dislocations belonging to Burgers vector 𝑏4 are labeled as 1 and 2 and tracked during
loading stages in the first and second cycle. The previously mentioned frequency
variation in the dislocation density due to higher annihilation for Burgers vectors
parallel to the free surface can be observed during the second cycle (figure 4.4(c)):
Dislocations 1 and 2 are in the early stages of bowing out, whereas 𝑏5 dislocations
have evolved further. In figure 4.4(d), dislocations 1 and 2 are seen to move backward,
opposing the direction of the sufficiently high external stress, due to a backstress
from 𝑏5 dislocations. This means that the backstress is an additional factor which
contributes in diminishing the activity of glide systems with a Burgers vector parallel
to the free surface.

It is apparent that the macroscopic Schmid factor is not solely responsible for slip
activity in surface grains but both its combination with the crystal system orientation
w.r.t. the free surface (normals vector 𝑛surf). The results show that dislocation
density distribution in glide systems varies continuously for a rotation around the
tensile axis (figure F.1): The dislocation density is maximum for systems with a
high Schmid factor 𝑆 and a large free surface component of the Burgers vector and
intermediate (almost half) for systems with the same Schmid factor but a Burgers
vector parallel to the free surface. The activity of the latter increases upon increasing
the free surface component until all systems with the same Schmid factor 𝑆 = 0.41
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Figure 4.4: Visualization of the backstress experienced by dislocations belonging to Burgers
vector 𝑏4. The full dislocation microstructure is filtered according to Burgers
vectors 𝑏4 and 𝑏5 during (a) early stages of loading and (b) loading maximum
of the first cycle. (c-d) Temporal evolution in the loading stage of the second
cycle.

are symmetric w.r.t. free surface, thus have equal dislocation densities. Systems
with a zero Schmid factor 𝑆 = 0 have a negligible contribution to dislocation density
independent of their orientation. Therefore, as an indicator for glide system activity,
the absolute value of the free surface component of the Burgers vector |𝑒𝑏 · 𝑛surf |
alongside with the Schmid factor 𝑆 need to be taken into account

𝑆′ = 𝑆 |𝑒𝑏 · 𝑛surf | (4.1)

where 𝑆′ is the modified Schmid factor. Highly active systems of setup 1e (figure 3.9)
have 𝑆′ = 𝑆 = 0.41, intermediate systems 𝑆′ = 0 and 𝑆 = 0.41 and almost inactive
systems 𝑆′ = 𝑆 = 0. So only if 𝑆′ of a considered slip system is high, then the slip
system is highly active. Otherwise, if 𝑆′ is small but 𝑆 is high, medium dislocation
densities are expected.

76



4.1. Fatigue in fcc surface grains

Conclusively, in an experiment or a simulation the tensile axis orientation alone is not
sufficient to understand slip system activity and even surface deformation, but the
entire crystal orientation w.r.t. free surfaces is necessary. For instance, authors such
as Man et al. (2002, 2009) provide a detailed description of their crystallographic
orientations, i.e. both the Burgers vector- and slip plane orientation w.r.t. the free
surface. In their studies, many ‘anomalous’ grains with high Schmid factors show
no persistent slip markings. The authors attribute the aspect to the small angle
between the Burgers vector and the free surface, and due to the size and orientation
of neighboring grains which can reduce the effective Schmid factor. As a matter
of fact Sauzay (2007), Sauzay und Man (2008) show using anisotropic elasticity
that the classical Schmid factor measured in EBSD can be reduced by 24% due to
surrounding grains. They also provide examples of several studies of surface grains
having the same Schmid factor but show different dislocation microstructures and
slip surface markings (Winter et al., 1981, Man et al., 2002, Blochwitz et al., 1996).
The discrepancies can be explained in the present work by the modified Schmid
factor 𝑆′, which controls slip activity, and the rotation around the tensile axis. A
detailed explanation of the dislocation microstructure dependency on the crystal
orientation is investigated in the section below.

4.1.2. Heterogeneous pattern formation for large amplitudes

Analysis of the dislocation microstructure of the simulated setups reveals various
patterns controlled by the crystallographic orientation. The results are discussed
below.

[010]-tensile axis

For a single initial FR source, the tensile axis [010] yields, depending on the 𝑏

orientation, different microstructures (figure 3.4). These were discussed in section
4.1.1. However, when all glide systems are involved, the result is a cellular structure
(figure 3.11). The result agrees with the structures observed in the literature, i.e.
not forming PSB-like structure but rather cells (figure 1.1). The cell structure is
analyzed using the box-counting technique from Hähner et al. (1998a) to estimate its
intrinsic properties. Although the domain area at hand is 13 times smaller than that
in Hähner et al. (1998a), the largest cell-size of 900 𝑎 is comparable. Nonetheless, it
is an inequitable comparison, not only due to the domain and cell sizes, but also
because of the monotonic large strain tension test in the experiment in contrast
to a cyclic loading with rather small strain amplitude. In Plumtree und Pawlus
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(1988) an empirical inverse relationship between the cell size and saturation stress is
developed

𝜎𝑠 − 𝜎𝑏

𝐸
= 𝐴

𝑏

𝜆𝑠
(4.2)

where 𝜎𝑠 is the saturation stress, 𝜎𝑏 the backstress (≈ 3.1 MPa at room temperature),
𝜆𝑠 the linear intercept cell size and 𝐴 an empirical material constant ≈ 7.8 for Al.
For setup 1e, the cell size according to equation 4.2 is 𝜆𝑠 ≈ 3000 𝑎 almost three times
bigger than in the simulation (figure 3.11(b)). The latter aspect can be attributed to
the small simulation volume relative to experiments, which confines the cell-size to
the grain volume. As a matter of fact, Hussein und El-Awady (2016a,b) show using
DDD simulations a proportionality between dislocation cell size and crystal size.

To understand the three-dimensional nature of the cell structure, the spatial analysis
extends into filtering the edges of the dislocation structure along ⟨110⟩, ⟨112⟩ and
⟨122⟩ directions (details in section 2.2.4). Figure 4.5(a) shows the fraction of the
dislocation density in each of these directions. It is observed that after 4 cycles the
fractions reach a steady state: almost 50% of the total dislocation density is aligned
along ⟨110⟩ , ≈ 32% along ⟨112⟩ directions and ≈ 18% along ⟨122⟩ directions. For the
largest graph component 𝜒, ⟨110⟩ oriented dislocations reveal (figure 4.5(b)) a bias
for certain directions: After 8 cycles the structure shows almost no alignment along
𝑏5 = 𝑎/2[011̄] and 𝑏2 = 𝑎/2[011] directions and the largest component is aligned
along the remaining ⟨110⟩ directions which mainly belong to Burgers vector 𝑏2 and
𝑏5 (figure 3.9(a)). This contradicts DDD observations by Madec et al. (2002) for
tensile tests on pillars along the [001]-direction, which report dislocation alignment
along all ⟨110⟩ directions.

To understand the bias in directional alignment mentioned above, ⟨110⟩ oriented
dislocations are examined according to junction percentage (figure 4.5(c)). The figure
shows an increasing fraction of the total dislocation density belonging to junctions
that reaches a maximum of 30% at the end of the simulation. This observation leads
to the hypothesis that dislocation density is higher around Lomer junctions than
random dislocations, due to the stability of Lomer junctions. Indeed, figure 4.6(a)
shows the excess dislocation density around Lomer junctions compared to regular
dislocation (according to equation 2.20). An excess in dislocation density of ≈ 27%
is found around Lomer junctions for 𝑟 = 200 𝑎 with a drop in this measure for
larger radii. However, to explain the previously observed dislocation alignment along
specific directions, the final distribution of Lomer junction density per junction
Burgers vector with respect to the total Lomer junction density (figure 4.6(b)) is
examined. It is clear that Lomer junctions with parallel Burgers vectors 𝑏1 and 𝑏6
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Figure 4.5: Directional analysis for Δ𝜀pl/2 = 0.01%. (a) Fraction of the dislocation density
along binned directions. (b) Evolution of the dislocation density according to
its alignment along ⟨110⟩ directions. (c) Fraction of non-junction dislocation
density in ⟨110⟩ direction w.r.t. the total dislocation density in ⟨110⟩ direction.
Adapted from El-Achkar und Weygand (2019).

(glide systems with Schmid factor 𝑆 = 0) contain the highest Lomer density and
correspond to dislocation alignment along opposite parallel directions 𝑏6 and 𝑏1

respectively. Smaller densities are contained in Lomer junctions of Burgers vectors
𝑏3 and 𝑏4, which have no surface component but a high Schmid factor. Finally
ignorable dislocation densities are seen for Lomer junctions of Burgers vectors 𝑏2 and
𝑏5, which have a large surface component and a high Schmid factor. The reason for
this distribution can be explained by the dislocation density distribution for regular
dislocations (figure 3.9(a)) and the required combination of Burgers vectors to form
specific Lomer junctions (figure J.2 of the appendix): 𝑏1 and 𝑏6 Lomer junctions
contain the largest density because they result from the reaction of glide systems
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Figure 4.6: Role of Lomer junctions for Δ𝜀pl/2 = 0.01%. (a) Excess dislocation density
around Lomer junctions (𝜌Lomer and 𝜌rand are dislocation densities around
Lomer junctions and random dislocations respectively). (b) Final Lomer
junction density distribution 𝜌Lomer per junction Burgers vector with respect to
the total Lomer junction density 𝜌Lomer,t. Glide systems belonging to the same
glide plane obtain the same color. Adapted from El-Achkar und Weygand
(2019).

with the largest dislocation density (high Schmid factor 𝑆 and 𝑏 with a large surface
component) with glide systems with intermediate dislocation density (high Schmid
factor 𝑆 and 𝑏 parallel to the surface). 𝑏3 and 𝑏4 Lomer junctions have smaller
densities due to the reaction of glide systems with the largest dislocation density and
glide systems with a Schmid factor 𝑆 = 0. The remaining Lomer junctions 𝑏2 and 𝑏5

are a result of the reaction of glide systems with intermediate dislocation density and
ones with 𝑆 = 0. Therefore, the underlying dislocation alignment observed above
(figure 4.5(b)) can be correlated with the distribution of Lomer junctions (figure
4.6(b)) and is another implication of the crystallographic orientation w.r.t. free
surface. More specifically, a critical number of cycles is required for stable Lomer
junctions to form along the predominantly mentioned directions as a result of the
total crystallographic orientation. Eventually, regular dislocations moving in the
vicinity of such junctions get trapped into the structure and align accordingly.

Lomer junctions are observed in several experimental studies which involve multi-
or double slip loading conditions, where at least two glide systems that have the
highest Schmid factors result in a Lomer reaction. Such reactions are reported to
posses high stability according to Li et al. (2009). Both in Gong et al. (1997) and
Jin und Winter (1984a) with respective [001] and [1̄12]-tensile axis orientations, the
authors attribute the formation of Lomer junctions as the cause to the observed
early rapid hardening. Gong et al. (1997) report that due to errors in processing and
testing, it is experimentally difficult to obtain an exact [001] orientation, therefore
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4.1. Fatigue in fcc surface grains

a primary slip system would be initially established. Hence, the sensitivity of the
microstructure to a 10∘ misalignment is studied.

[110]-tensile axis

The observed pattern in figure 3.26(a) (setup 2a) has a PSB-like nature. Four well-
organized bundles of edge dislocations are seen and in between them are bowed-out
screw dislocations in a region of less dislocation density. Intrinsic spacings between
the bundles were described using a developed correlation function (equation 2.19)
and show well-defined correlations. The structure is similarly formed by stable
junctions as the [010] pattern, however, here only four glide systems are involved.
The reaction-product of such glide systems yields a Lomer junction in 𝑏3 direction.
The rotation of the crystal system around the tensile axis determines the spatial
orientation, i.e. the alignment of the slip bands. Again the surface deformation
is strongly influenced (figures H.3 and H.4 of the appendix) and changes from
parallelogram patterns to well-defined block structure. The appearance of a PSB
structure around [110] axis has been vastly shown in experiments (figure 1.1(b)).

[982]-tensile axis

The orientation [982] is a 10∘ rotation from [110]. It is the chosen orientation in
Basinski et al. (1969) which examine early stages of fatigue in copper crystals. When
all glide systems are considered in the simulation (figure 3.29), the structure is a
mixture of Lomer junctions aligned along 𝑏4 direction (and dislocations trapped
in the vicinity) and dislocation dipoles with 𝑏6 Burgers vector aligned along [12̄1]
(or [0 11 9̄] in laboratory frame) that belong to the slip system with highest 𝑆. The
presence of very small prismatic loops that form in certain clusters is also seen.
As a whole the pattern represents a combination of a multislip structure alongside
with dipoles as in single slip. By increasing the loading amplitude, the multislip
structure becomes even more transparent. In Basinski et al. (1969), the early few
cycles (stage I) describe dense patches with some segments lying on ⟨110⟩ directions
and some parallel to [12̄1] with no predominant direction. The authors compare the
microstructure to that developed during monotonic loading.

However, as discussed above, an exact crystallographic orientation is experimentally
hard to achieve (Gong et al., 1997). In Jin und Winter (1984a), although the loading
conditions are double slip ([1̄12] loading), the predominance of one slip system is
reported. The cell structure shown by Lukáš et al. (1968) in a crystal oriented for
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single single contains all six Burgers vectors, however, the majority of dislocations
belong to only one Burgers vector. For this reason, glide system 9 (highest 𝑆) is
kept, whereas the initial dislocation density of other systems is minimized. The
microstructure shows an increase in dipoles, yet 𝑏4 alignment is still visible due
to junction formation (figure 3.30(a)). When only glide system 9 is considered
as the initial microstructure, then the result, i.e. veins consisting of edge dipoles,
is comparable to the experimental results from Basinski et al. (1969) (figure 4.7).
Although in the experiment, the microstructure appears cellular, the salient features
which are seen also in cross-glide foils, i.e. densely packed dipolar bundles along
[12̄1], are captured in the simulation. The microstructure loses similarity to one
deformed during monotonic loading.

(a) (b)

Figure 4.7: (a) Early stages of the microstructure in the primary glide plane (cross-section
width ≈ 14 𝜇m) (courtesy of Basinski et al. (1969)). Reprinted with permis-
sion. (b) Simulation showing dipolar structure along [12̄1] (Adapted from
El-Achkar und Weygand (2019)).

The relaxation process (figure 3.30(c)) shows that the microstructure attains the
formed pattern. In the single glide system scenario, if the FR sources are eliminated
by connecting them and removing the pinning restriction (figure 3.30(d)), then only
prismatic loops remain. However, this technique strictly depends on the prior history-
and stage of loading. For example, if FR source elimination is directly followed by
relaxation (as here), then most of the dislocations exit the free surface or annihilate.
But if the FR source removal is followed by a small loading stage, then the proceeding
relaxation process is smooth and the structure is preserved. A similar observation
is reported in Winter (1975), Holzwarth und Essmann (1993) regarding tensile pre-
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4.1. Fatigue in fcc surface grains

deformation preceding fatigue loading causing a more homogeneous distribution of
PSBs.

4.1.3. Microstructure evolution dependency on strain amplitude

Since only early stages of fatigue can be simulated using DDD, the distinction
between different fatigue regimes (low, high and very high cycle) is done at the level
of applied plastic strain amplitude.

In figure 3.12, slopes of the dislocation density evolution curves, which are coarse
indicators of underlying irreversibility, are examined for different applied plastic
strain amplitudes in a [010] crystal orientation (setup 1e). The dislocation density
increase per cycle for amplitudes between 0.002% and 0.01% follows a linear fit with
the imposed amplitude, whereas for an amplitude below 0.002% there is no significant
change in the density slope. Therefore, the plastic strain amplitude Δ𝜀pl/2 = 0.001%
is considered here as a transition to the VHCF amplitude-domain.

In the following, two extreme cases of applied plastic strain amplitudes are discussed:
Δ𝜀pl/2 = 0.01% and Δ𝜀pl/2 = 0.001% which are denoted to as the large and small
amplitude respectively.

Stress–strain behavior

The stress-plastic strain curve (figure 3.13) shows a hysteresis loop for both amplitudes
indicating that irreversible dislocation motion occurs leading to energy storage in
the resulting dislocation structure. Furthermore the plastic strain overshoots the
prescribed values. There are two reasons for this behavior: the loading is applied
in a saw-tooth fashion and the sign of the imposed strain rate is changed once the
absolute value exceeds the imposed plastic strain amplitude. This sudden change
and the high applied strain rate give rise to a number of dislocations which can glide
further as the stress level is still sufficiently high.

Note that in VHCF experiments (Bathias, 1999, Straub et al., 2015), very high
frequencies in the kHz regime are used to reach the required number of cycles.
Therefore, this effect might be present in experiments too, but this is very difficult
to assess as the time resolved deformation and loading conditions of single surface
grains are not accessible experimentally. To quantify the magnitude of the overshoot
in plastic strain, a corresponding number of dislocations sweeping a cross-section in
the middle of the grain is calculated: 4 dislocations (10% additional dislocations)

83



4. Discussion

for the larger amplitude and 1 dislocation (2.5% additional dislocations) for the
smaller amplitude can produce the corresponding plastic overshoot. The observed
overshoot in plastic strain will therefore not change the fundamental behavior. The
effective stress amplitudes of about 55–75 MPa and total strain amplitudes in the
range of 0.085%–0.12% reached in the simulations are both within the range of
experimentally studied fatigue life curves for coarse grained and ultra-fine grained
Al (Höppel, 2006).

Dislocation network characteristics from the graph analysis

Dislocation microstructures under fatigue conditions obtained by different plastic
strain amplitudes show at the local scale common features, like the formation of
dipoles, prismatic loops and the role of Lomer junctions serving as anchor points
for dislocation accumulation. This is characterized by a number of statistical
measures with similar evolutions but different absolute numbers, e.g. more or less
pronounced two stage regime, with an incubation number of cycles followed by a
linear increase of the statistical measures with number of cycles in the investigated
range. On the overall scale, the developed dislocation microstructure (figure 3.14) is
qualitatively different: for large amplitude, structure formation at early stages is
observed, occupying a large fraction of the total grain volume. Up to 70% of the
dislocation density belongs to the largest component while the remainder is found in
prismatic dislocation loops and dislocation debris (figure 3.16(a)). At this stage, even
eliminating artificial FR sources (not shown here) by connecting their end-points and
removing the pinning restriction shows almost no difference during further cycling of
the dislocation network compared to keeping sources. This indicates extreme stability
of the evolved dislocation network and its independence on initial dislocation sources.
Applying this elimination procedure at very early stages results in a large number of
prismatic loops which remain stable during further cycling and almost no increase
in dislocation density occurs. On the other hand, in the small amplitude simulation,
the low dislocation density is contained in the increasing number of prismatic loops
and debris clusters. The largest component containing a large number of Lomer
junctions shows early stage clustering.

The evolution of the number of graph components 𝜒 of the dislocation network
(figure 3.15) shows a nonlinear relationship upon decreasing the prescribed ampli-
tude. Indeed, after 10 times more cycles, the number of components for the small
amplitude is approx. 2.8 times less than for the large amplitude. This phenomenon is
observed also in additional microstructural measures such as the dislocation density
(figure 3.17) and total number of prismatic loops (figure 3.18). Both simulation
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types show that after a critical number of cycles (6- and 70 cycles for the large-
and small amplitude respectively), there is a slope change in the analyzed measures.
The change is very clear in the large amplitude simulation and less pronounced
for the small amplitude. As can be seen from the previous data, the drastic slope
change can be linked to the stability of the structure. For instance, as soon as
the dislocation density of the largest component stops fluctuating heavily and the
dislocation network reaches a critical spacing, then the density of edge dislocations
and the number of stable prismatic loops increase at a different rate.

Dislocation dipoles characteristics

Splitting the dislocation density into different characters (figure 3.17) reveals also a
turning point for the evolution of the edge dislocation density. For Δ𝜀pl/2 = 0.01%,
after 6 cycles the proliferation in edge density is reflected in a microstructure of
mean spacing 1/

√
𝜌𝑡 ≈ 1500 𝑎. A detailed analysis of these edge dislocations reveals

that the edge density mainly constitutes dislocation dipoles and Lomer junctions.
For Δ𝜀pl/2 = 0.001%, the growth in edge density after 70 cycles is rather slow and
related to clustering around the largest component. The analysis of prismatic loops
and dislocation debris (figure 3.18) shows that prismatic loops of second order and
dislocation debris are extremely stable and present sites of dislocation clustering.
And although the dislocation density slope vanishes for this amplitude (previously
mentioned), the number of defects at the microscopic level shows no saturation.

The very large number of prismatic loops for Δ𝜀pl/2 = 0.01% is reflected in the
smoothness in average values and distribution of the prismatic shape factor 𝑝shape

(figure 3.19) compared to large oscillations at early stages for the small amplitude due
to the small number of prismatic loops. For the large amplitude, the averaged shape
factor < 𝑝shape > increases with number of cycles, while for the small amplitude it
converges to < 𝑝shape >≈ 0.7. From the distributions of < 𝑝shape > (figures 3.19(b)
and 3.19(c)), the stability of the mean value for Δ𝜀pl/2 = 0.001% can be seen since
the distributions are very similar with the exception of maximum shift from 0.7 to 0.9
corresponding to prismatic loops of aspect ratios 6 and 2.5 respectively and increase
of equiaxed loops at the expense of elongated loops. These results in the early stages
are in agreement with experimental findings reported by Feltner (1966) (aspect ratio
of 5). In the case of the large amplitude, there is a drastic shift from a Poisson-type
distribution to a cumulative-type distribution and a similar shift in maxima from
0.7 to 0.9. The latter is accompanied by a huge increase in frequency for equiaxed
prismatic loops (from about 0.001 to about 0.16), leading also to an increase of the
mean value. Furthermore it is found that a large number of loops formed at later
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stages are extremely small having side lengths in the range of 50 𝑎–100 𝑎 for both
amplitudes.

The analysis of dislocation dipoles shows that the average dipole height < ℎ >

increases with further cycling for the large amplitude and remains rather constant for
the small amplitude (figure 3.21). The distribution of dipolar heights ℎ is exponential,
indicating also that the smallest possible distance—limited by minimal distance
between parallel glide planes—is the most likely and stable one. The distribution is
in contrast to the normal distribution seen in Déprés et al. (2008) but very similar
to the distribution of dipolar heights in PSBs in Ni single crystals presented by
Hähner et al. (1998b). In the latter work, at the lower end of the distribution and
prior to the most probable height, the histogram decreases smoothly to zero due
to dislocation annihilation mechanisms, not included in the DDD framework. The
authors suggest that dislocation annihilation is not occurring at a critical interplanar
distance and fully spontaneous but involves thermal activation leading to dislocation
climb. In the present study dislocation climb is not considered and therefore the latter
mechanism cannot occur. The maximum height in the experimental distribution
at the highest investigated temperature (750 K) agrees with the observations of
the simulations. In Antonopoulos et al. (1976), analysis of dislocation heights and
lengths for Cu reveals the most common- dipolar height of 4 nm (≈ 11.1 𝑎) and
length of 30 nm (≈ 84 𝑎). It is a similar distribution as in Hähner et al. (1998b).
The stability and strength of the dipoles can be understood because of ℎmax = 11.8 𝑎

is almost 3 times less than the critical height ℎcrit = 35 𝑎, for which a dipole would
break apart under a total resolved shear stress of 𝜏crit ≈ 33 MPa. For higher number
of cycles the maximal strength decreases and therefore favors larger heights. The
average dipolar length < 𝑙 > shows similar convergence in the small amplitude case
but decreases for the large amplitude to reach 250 𝑎 (figure 3.22). Since elongated
prismatic loops are a subset of dislocation dipoles, the distribution of dipolar lengths 𝑙

shows strong similarities with the maximum loop dimension. In the models presented
by Fourie und Murphy (1962), Gilman (1964) short dipoles are a consequence of high
cross-slip activity, large strains or double slip orientations. The influence of cross-slip
was also demonstrated in Wilsdorf und Schmitz (1962), Grosskreutz und Waldow
(1963), where dipoles in aluminum were shown to be generally shorter than those
formed in Cu due to the ease of cross-slip in aluminum.

Macroscopic damage analysis

The consequence of irreversible dislocation motion can be resolved at the macro-scale
by characterizing surface deformation or averaged bulk plastic strain (section 2.2.5).
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Examining the evolution of the maximum value of the norm of the gradient of the
surface displacement field (figure 3.23) shows that this measure is very sensitive
to the applied amplitude in comparison to the evolution of the mean, RMS or
minima/maxima. For the large amplitude a linear increase per cycle is observed
for this value as apposed to the small amplitude, where it is rather constant. This
is supported by the evolution of the corresponding histograms: In the early stages
the surface for the large amplitude is rather flat with a small standard deviation.
However, in the later stages of the simulation, the distribution is wider (standard
deviation increases) and the maximum is shifted away from zero. Although the
number of vacancy- and interstitial prismatic loops are equal (figure D.2), they result
in embryonic extrusions and intrusions at the surface. The observation of equal
vacancy and interstitial loops has been reported by Feltner (1966). In contrast, the
small amplitude shows a very narrow distribution of small surface displacements
with a slight shift from zero to larger values.

The irreversibility 𝑝 factor is an alternative way to describe the amount of irre-
versibility of a system. Since surface measurements are easy to access in experiments,
they are used to determine 𝑝 (Mughrabi, 2009, 1999, Weidner et al., 2010). In the
current study, both bulk- and surface 𝑝 increase with the applied plastic strain
amplitude, which is in agreement with Mughrabi (2006) 𝑝 ∝ 2𝛾pl𝑦𝑠/𝑏 (𝑦𝑠 is the anni-
hilation distance of screw dislocations due to cross-slip), where cyclic irreversibility
is attributed to the irreversible motion of screw dislocations in PSB-channels. The
1/𝑁cycle behavior of 𝑝 is witnessed as it is directly included in formulas 2.23 and
2.24. A shift between surface- and bulk 𝑝 estimations is observed, which is smallest
for the largest amplitude (figure 3.24). The reason is that at smaller amplitudes, the
dislocation density is also smaller, meaning that less dislocations exit the surface
despite generating internal irreversible structures. Another aspect is that when
the surface experiences a small localized deformation while a huge part remains
undeformed, RMS poorly captures these displacements. Also the displacement fields
of the formed structures are short-ranged meaning that the presence of irreversible
bulk structures that do not exit the surface can be barely detected from surface
measurements.

Internal irreversibility can be seen in the evolution of the irreversible plastic strain
𝜀pl,irre

1, which shows no saturation for both amplitudes (figure H.1). This means,
that if given sufficient time, the small amplitude may cause, due to the accumulation
of irreversible plastic strain, a considerable surface roughness and consequently
damage at the free surface. This agrees with the considerations made by Mughrabi
1 The measure 𝜀pl,irre characterizes the entire defect microstructure including prismatic loops,

dipoles and structures that are not separately classified but produce irreversible plastic strain
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(1999) stating that the accumulation of even small irreversible random slip, with
absence of PSBs, can lead to sufficiently strong surface roughening followed by a
surface crack.

In comparison to experimental 𝑝 values, which are available for Cu and 𝛼 iron,
the current estimations for Al show considerably higher values in the considered
amplitude regime. Nevertheless, 𝑝 required to form PSBs (𝑝 ≈ 0.2 − 0.4 (Mughrabi,
2009)) is around 10 times higher than for the large amplitude. If the cross-slip
difficulty is increased to mimic Cu, then the irreversibility decreases and 𝑝 values
come closer to the values observed for Cu (figure 3.24(c)). This means that the ease
of cross-slip in Al is proportional to the increase in irreversibility and the high 𝑝

values.

4.2 Fatigue in bcc metals

Fatigue in bcc metals containing an inclusion is controlled by a larger parameter
space than in fcc metals. For instance, cross-slip, which is a mechanism that controls
dislocation structure formation can occur on three glide planes for each Burgers
vector. The influence of the phenomenological friction stress 𝜏 ′ is an additional
numerical value which needs to be taken into account. Most importantly, the way
the inclusion is modeled, three different properties can be assigned to it:

∙ It acts as a geometrical obstacle.

∙ The difference in elastic constants yields a modulus-induced stress field 𝜎el.

∙ It has a misfit stress field due to a misfit strain 𝑒*
𝐶 .

The resulting microstructures in section 3.2 are analyzed below regarding the influence
of these properties.

4.2.1. Influence of inclusion intrinsic properties

[191̄]-tensile axis orientation

The developed microstructure for a [191̄]-tensile axis orientation shows several
features which are highlighted by different zones in figure 3.33. To explain the effect
of individual inclusion properties on the evolved microstructure, the results of the
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simulations of single FR sources with single inclusion properties (figures 3.36, 3.37
and 3.38) are discussed here.

In figure 3.36 the high reversibility for the obstacle and inclusion with different
elastic properties than the matrix is due to the relatively small strain amplitude since
only few dislocations pile-up and travel a small distance in cross-slip planes before
load reversal without being able to generate a stable network. For the setup with
a modulus-induced stress field 𝜎el the dislocation density is higher (figure 3.36(a)).
The increase in plasticity has two reasons: Dislocations experience higher stresses
due to the stress concentration around the inclusion (figure C.1) so they get activated
earlier and can move further before reversing the load. The second reason is displayed
in figure 4.8: The illustration shows a cross-section for the used Burgers vector 𝑏1,
taken from the center, which reveals the color of the glide plane for which the resolved
shear stress is highest, i.e. a cross-slip map for screw dislocations. The map shows
that the highest resolved shear stress is mainly in plane 𝑛1 except for a small area
around the inclusion where the resolves shear stress is higher for plane 𝑛3. The map
remains constant even at minimal load such that the first bow-out already results in
cross-slip at the two zones. Hence, dislocations can freely leave the primary plane
and even cross-slip multiple times to form prismatic loops. In the obstacle setup,
the map is entirely colored in blue because the Schmid factor for glide system 1 is
highest2. So not only does 𝜎el contribute to a localized stress concentration which
enhances early plastic activity, but also controls cross-slip areas and eventually the
dislocation microstructure.

Figure 4.8: Cross-slip map in a central section perpendicular to 𝑏1 showing the plane with
the highest resolved shear stress. Colors correspond to different glide planes
(numbering is given in table J.1).

2 the other equally high system belongs to a different Burgers vector which is not simulated
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4. Discussion

The other investigated inclusion property is the misfit stress field. In figure 3.37
the general evolved structure for higher misfit values are hexagonal prismatic loops
which form around the inclusion and remain stable even when unloading. A simple
explanation is that the misfit stress is time-invariant/constant throughout the entire
simulation. Therefore, the loading saw-tooth signal, which results in an almost
homogeneous stress field (same material properties), is overlapped on top of the
misfit stress and depending on 𝑒*

𝐶 the developed structure may experience significant
stresses even when unloading and, hence, remain stable.

For a deeper understanding of the misfit parameter, a local stress analysis is conducted
in planes perpendicular to 𝑏1. A cross-slip map in a central plane of an unloaded
inclusion with 𝑒*

𝐶 = 0.2% reveals the six-fold symmetry of the misfit stress field
(figure 4.9): The stress field is radial symmetric and depending on the position,
cross-slip can occur in one of the three involved glide planes. The map characteristics
extend throughout the whole volume and the sign of the stress field shows that
three connected positive sectors are followed by three connected negative sectors.
From figure 4.9 it can be justified how cross-slip of the initial dislocation results in a

Figure 4.9: Cross-slip map of a misfitting inclusion (𝑒*
𝐶 = 0.2%): cutting plane perpendic-

ular to 𝑏1 showing the slip plane number with maximum resolved shear stress
multiplied by the sign of the resolved shear stress.

closed loop (figure 3.38). If the sign of the misfit strain 𝑒*
𝐶 is positive (as here), then

interstitial loops form around the inclusion and are trapped by a stress gradient in
the primary plane (figure 4.10), whereas vacancy loops are repelled away from the
inclusion. Vice versa, if the misfit is negative, then vacancy prismatic loops develop
around the inclusion.

The superposition of the misfit stress field on top of a homogeneous cyclic stress
field (as in figure 3.37) is studied for two misfit strains 𝑒*

𝐶 = 0.1% and 𝑒*
𝐶 = 0.3% in

figure 4.11. For 𝑒*
𝐶 = 0.1% a central 𝑏1 cutting plane (figure 4.11(a)) and a 2500 𝑎

cross-section away from the center (figure 4.11(b)) are analyzed for half the loading
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4.2. Fatigue in bcc metals

Figure 4.10: Entrapment of interstitial loops in stress gradients.

amplitude during tension. In the case of the first cutting plane, the external stress
causes cross-slip to only occur on the 𝑛1 plane (highest Schmid factor), whereas for
the second cutting plane an 𝑛3 region is observed on the left. For a larger misfit
𝑒*

𝐶 = 0.3%, the central cutting plane has a small 𝑛3 region (figure 4.11(c)), whereas
in the second cross-section all three planes are observed with a larger 𝑛3 region
than for 𝑒*

𝐶 = 0.1% (figure 4.11(d)). In the −𝑏1 direction (not shown here), the
cross-sections show the same features but are mirrored. The observation of additional
cross-slip planes for higher misfit values can be explained using Schmid factors of
the underlying tensile axis orientation (figure 4.12). For each point the Schmid
factor is maximum in the initial glide system 1 (𝑛1) followed by glide systems 5
(𝑛3) and 9 (𝑛5). So for a small misfit 𝑒*

𝐶 = 0.1% the misfit stress in the 𝑛5 plane
is relatively small compared to the loading stress which is highest in 𝑛1 planes
(figures 4.11(a) and 4.11(b)). Since the Schmid factor for 𝑛3 planes is relatively high,
the superposition of the misfit stress with the external stress causes the plane to be
observed for a small misfit stress. For a misfit strain of 𝑒*

𝐶 = 0.3%, the misfit stress
in plane 𝑛5 exceeds the loading stress in several locations (figure 4.11(d)), hence,
the observation of characteristic 𝑛5 dislocations with a high density for 𝑒*

𝐶 = 0.2%
and 𝑒*

𝐶 = 0.3% in figure 3.37.

The observed microstructure from figure 3.33 can be explained by the above obser-
vations:

∙ The formation of Orowan loops is attributed to the spherical obstacle nature
of the inclusion which obstructs dislocation motion and causes them to wrap
around the inclusion.

∙ Hexagonal prismatic loops are due to the superposition of the misfit stress field
and the applied stress (figure 3.38).
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(a) (b)

(c) (d)

Figure 4.11: Cross-slip map (as in figure 4.9) for different misfit strains for half the loading
amplitude during tension: (a-b) 𝑒*

𝐶 = 0.1% (c-d) 𝑒*
𝐶 = 0.3% for a for a central

cross-section in (a) and (c) and 2500 𝑎 away from the center in (b) and (d).
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glide system
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Figure 4.12: Schmid factor distribution for tensile axis [191̄]. Coloring is according to glide
planes.

∙ Prismatic clusters, which accommodate the majority of the plastic strain
(figure 3.34(a)), develop in regions controlled by the modulus-induced stress field
(figure 4.8) and retain their stability due to the misfit stress field (figure 3.37(a)).
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4.2. Fatigue in bcc metals

This means that the modulus-induced stress is largely responsible for structure
formation, however the misfit stress, as seen in the dislocation density and stability
of hexagonal loops, plays a key role in structure irreversibility.

In the case of elongated dipolar loops which form at the inclusion due to a regular
forward and backward motion, the interaction with the inclusion misfit field is
more complicated than for hexagonal loops and highly depends on the position.
In figure 4.13 the interaction of an interstitial dipole is illustrated according to
Humphreys und Hirsch (1970). The three-dimensional geometry of the problem is

(a)

(b) (c)

(d) (e)

Figure 4.13: Interaction of an elongated dipole with a misfitting inclusion according to
Humphreys und Hirsch (1970).

shown in figure 4.13(a): The Burgers vector of the loop is along the 𝑦-direction and
the jog AB is in the plane 𝑥 = 𝑅𝑝 and extends from 𝑧 = 0 to 𝑧 = 𝑧0 at a height
𝑦 = 𝑦0 = 𝑧0. For this scenario (figure 4.13(b)) the dipolar arm AC is repelled while
the force on BD is zero. If the arm AC is located at 𝑧 < 0 and BD at 𝑧 > 0 (figure
4.13(c)), then both arms will be repelled, however, if the jog AB is very close to the
inclusion then attraction force is stronger than repulsion. If AC and BD are on the
same side, then one of them is attracted and the other is repelled (figure 4.13(d)). If
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in the latter case, BD is attracted to the inclusion, it can lead to the total attraction
of the interstitial. Last but not least, if AB extends from 𝑧 = 0 to 𝑧 = 𝑅𝑝, then if
𝑦 ≤ 𝑅𝑝, the dipole will be attracted, otherwise repelled (figure 4.13(e)).

The variation of the radius of the inclusion (figure 3.39) shows an increasing ir-
reversibility in the dislocation density upon increasing the radius only when the
inclusion has a misfit. Otherwise, the radius barely plays a role. The misfit stress
according to equation 2.10 is proportional both to 𝑒*

𝐶 and 𝑅𝑝, so by increasing these
values, the stress around the inclusion becomes higher and additional planes will
be included for cross-slip. The following finding is a compliment to the prominent
Murakami model (see equation 1.3), where the only inclusion property included is
the area of the inclusion (∝ 𝑅𝑝).

[010]-tensile axis orientation

The complex microstructure observed for the [010]-loading axis is similarly analyzed
according to overlapping stresses. Since the loading orientation is symmetric w.r.t.
all Burgers vectors, 𝑏1 is used as an example.

For a perfectly fitting inclusion with different material properties than the matrix,
cross-slip maps for Burgers vector 𝑏1 are considered: A three-dimensional plot (figure
4.14(a)) and cross-sections normal to 𝑏1 (figures 4.14(c) and 4.14(e)) are shown, for
which the coloring corresponds to the slip plane with maximum resolved shear stress.
Although the Schmid factors are the same for glide systems 1 (𝑛1) and 5 (𝑛3), the
field 𝜎el splits the domain into regions where either 𝑛1 or 𝑛3 are higher. No region
with the plane 𝑛5 is observed. Despite the fact that 𝑏1 cross-sections show potential
sectors, for which rectangular prismatic loops can form, the sign of these domains is
the same and does not allow to close the loop (unlike figure 4.9). When the misfit
stress (𝑒*

𝐶 = 0.2%) is added on top of 𝜎el, then the connected areas of both planes
become larger on the surface of the cube (figure 4.14(b)). Also the introduction of
plane 𝑛5 is observed, which depends, as explained before, on the magnitude of 𝑒*

𝐶 .

The plateau seen in the dislocation density evolution during unloading (figure 3.40)
is firstly seen during this work. It can be explained by the complex interplay between
dislocations from all glide systems, the misfit stresses and the large cross-slip sectors
which are seen in the maps above. The cross-slip sectors extend throughout the
whole volume unlike the concentrated region in the [191̄]-tensile axis orientation,
which is due to the fact that the Schmid factors are equal in this orientation. As a
matter of fact all Burgers vectors are active such that each dislocation can follow a
complex cross-slip path as in figure 4.14 if the activation stress is sufficiently high.
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4.2. Fatigue in bcc metals

Additionally, the misfit stresses introduce a third plane, for which the Schmid factor
is zero, leading to an even more complex interaction. Thus, the complex stable
regions of dislocations that form in figure 3.41 which cause the dislocation density to
remain constant while unloading can be rationalized by the nature of the stress field
in the multislip loading scenario. This means that multislip orientations with the
presence of an inclusion cause higher irreversibility and are more dangerous than
single slip orientations.

4.2.2. Polycrystal behavior

The investigated polycrystal in section 3.2.2 shows an irreversibility in the dislocation
microstructure in the vicinity of the inclusion (figure 3.44(a)). The growth of the
irreversibility around the inclusion is observed in the plastic strain distribution around
the inclusion. Similar plastic strain maps are shown in Chai (2006), Chai et al. (2012)
which show high localized plastic activity near the inclusion.

An asymmetry during tension and compression is observed, which has its origin in
the overlapping stresses of the misfit stress field and modulus-induced stress field.
Depending on the grain orientation, tension loading stresses can cause for example
a positive resolved shear stress in the same point, where misfit stresses result in a
negative resolved shear stress causing stresses to cancel out but to add up during
compression.

An analogous idea as before is used to analyze the inclusion properties (figure
4.15). Again the misfit strain is found here to play the most important role in the
irreversibility of the dislocation density.

The behavior upon grain coarsening is shown in terms of the evolution of the
dislocation density (figure 4.16). It can be seen that grains with larger diameter
result in a much larger dislocation density than smaller grains for the same loading
conditions. Several reasons can be attributed to this behavior: First, in smaller
grains the probability of a grain containing two- or more cross-slip sectors (presented
above for single crystals) is small. This means that due to the modulus-induced
stress field most dislocations can only cross-slip to one plane until reaching the
grain boundary. On the contrary, dislocations in large grains can pass through
different cross-slip sectors and result in more complex interactions which lead to
dislocation density increase and irreversibility. Another aspect is related to the
short-ranged stresses around the inclusion due to the misfit ∝ 𝑟−3 and difference
in elastic constants ∝ 𝑟−2 (Kirsch, 1898). As a consequence dislocations in small
grains in the vicinity of the inclusion experience higher stresses than the rest of the
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(a) (b)

(c) (d)

(e) (f)

Figure 4.14: Visualization of the slip plane number with maximum resolved shear stress
for Burgers vector 𝑏1: (a-b) Three dimensional visualization of the surfaces of
the simulation domain for 𝑒*

𝐶 = 0 and 𝑒*
𝐶 = 0.2% respectively. (c-d) central

cross-section perpendicular to 𝑏1 for 𝑒*
𝐶 = 0 and 𝑒*

𝐶 = 0.2% respectively. (e-f)
cross-sections perpendicular to 𝑏1 500 𝑎 away from the center for 𝑒*

𝐶 = 0 and
𝑒*

𝐶 = 0.2% respectively.

polycrystal and get stuck at grain boundaries without any major interaction with
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Figure 4.15: Dislocation density evolution for an inclusion with different properties. Ob-
stacle: a perfectly fitting spherical obstacle. Modulus: a perfectly fitting
inclusion with different material properties than the matrix. 𝑒*

𝐶 = 0.2%:
inclusion with a misfit strain 𝑒*

𝐶 . all: All the properties combined.

far away grains. On the other hand, dislocations in larger grains can move far away
from the inclusion and react with other dislocations further away.

This means that the irreversible zone in polycrystals can be always found around
the inclusion and can extend in larger grains throughout the whole volume. In
other words, a grain refinement produces a smaller irreversibility which is localized
around the inclusion. The formation of cell structures, described in the literature
(Chai et al., 2012, Grad et al., 2012), is not possible due to computational restriction
in system size and cycle number. However the observed increasing irreversibility is
an early stage of a stable structure formation which may lead to a cell structure.
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Figure 4.16: (a) Dislocation density evolution for polycrystals with different number of
grains with average grain diameters < 𝑑grain >= 2500 𝑎, < 𝑑grain >= 740 𝑎
and < 𝑑grain >= 312.5 𝑎. Microstructure snapshots of the polycrystal with (b)
< 𝑑grain >= 312.5 𝑎 during compression of the third cycle, (c) < 𝑑grain >=
740 𝑎 during compression of the first cycle and (d) < 𝑑grain >= 2500 𝑎 tension
maximum of the first cycle. Dislocation coloring is according the grain number.
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5. Summary and conclusion

In this work, DDD simulations of early stage low-amplitude fatigue were conducted
for fcc- and bcc metals. For a deeper understanding of the underlying physical
mechanisms during cyclic loading, analysis tools, based on a graph, were developed.
The procedure enables the extraction of irreversible microstructural components,
which are critical during fatigue, such as prismatic loops and generalized dislocation
dipoles for further geometrical characterization. As an aim to describe the disloca-
tion structure formation, several functions which measure spatial correlation and
clustering were established. Thus, a statistical foundation, based on a mathematical
quantification of the dislocation microstructure was set.

Fcc metals The carried out investigations showed the significant role of the grain
shape in controlling the degree of irreversibility of a system. It turns out that grain
boundaries oriented for screw pile-ups enhance the proliferation of plastic slip and
consequently irreversible dislocation activity. This means that the grain shape needs
to be considered as an extra parameter when setting up model systems, especially
since many micromechanical simulation models in the literature use cuboidal geome-
tries. Another aspect is related to two-dimensional EBSD measurements, which lack
the complete information of grain geometry. Thus, in order to understand damage
development in certain grains, the three-dimensional information is required.

The grain orientation given by EBSD can be used to estimate Schmid factors, which
are majorly used in the literature to determine dislocation activity in a grain. The
current simulations of surface grains showed that slip system activity is controlled by
both the Schmid factor and the orientation of the Burgers vector of a slip system with
respect to the free surface: A slip system I is highly active provided a high Schmid
factor and a large free surface component of its Burgers vector. The physical origin
of this phenomenon is related to the high density of collinear reactions exhibited by
slip systems II with a a high Schmid factor but small free surface component. The
latter behavior enables slip systems I to reach the prescribed plastic strain faster
than slip systems II resulting in a change of frequency in dislocation densities which
causes a backstress on systems II obstructing their motion. Accordingly, an initial
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multislip loading scenario can result in dislocation activity similar to double slip
loading. This means that surface roughening, which is the cause of fatigue crack
initiation in fcc metals, is aided by this phenomenon since dislocations with large
surface components are highly active and vice versa. The findings are of importance
for the analysis of polycrystalline samples. One of the key issues for fatigue damage
is the identification of possible grains more susceptible to damage initiation.

Several crystal orientations were examined and were able to produce structural
patterns which agree with experimental findings. In multislip loading conditions,
either cellular or slip band structures with well-defined correlations emerged. Both
arrangements were thoroughly analyzed and found to be controlled by extremely
stable Lomer junctions that bring regular dislocations to cluster around them. A
sensitivity of the microstructure with respect to a minimal crystal rotation showed
that if such a rotation is to occur around the tensile axis, then the microstructure
remains unaltered. However, if the crystal is to be rotated around another arbitrary
axis, then the Schmid factors combined with Burgers vectors’ orientation with
respect to the free surface can result in a very distinctive microstructure. Relaxation
simulations showed that the stability of the structures is assisted by pinned points
such as those of FR-sources.

A study of the influence of plastic strain amplitudes extending from the persistent
slip band threshold to the VHCF-regime showed that the nature and geometrical
characteristics of irreversible defects are very similar. The main difference was seen
in the evolution rate with a non-linear transition to the VHCF domain. A precise
method to estimate the well-known irreversibility factor 𝑝 from both the surface and
the bulk was developed. With its help, it was found that even for VHCF amplitudes,
where the dislocation density appears to be fully reversible, a small but gradual
microstructural irreversibility was seen in the 𝑝 factor. This observation is congruent
with the suggested damage mechanism by Mughrabi where the accumulation of very
small plastic slip over a large number of cycles leads to a surface roughening.

Outside the scope of this work, first attempts were made to extrapolate the rate of
formation of irreversible defects based on the gathered statistical data and gained
knowledge. The model relies on fitting the plastic strain evolution of single dislo-
cations according to their geometrical location in the grain. Then probabilities for
cross-slip, emission of a new dislocation and formation of dipoles are estimated and
evaluated using a Monte Carlo method. First simulations showed good agreement
with DDD, however only the tensile loading stage was modeled and has yet to be
extended to unloading and compression as a future work.
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Bcc metals Type II metals containing non-metallic inclusions larger than the
average grain size were modeled in this work using a bcc iron matrix and an oxide
inclusion. The bcc dislocation model was adapted for computational efficiency using
a phenomenological friction stress for screw dislocations. The inclusion was modeled
as a spherical misfitting isotropic obstacle that has different material properties than
the matrix. The latter properties were incorporated on the level of stress fields,
where misfit stresses were analytical and modulus-induced stresses numerical.

The results showed that the interplay between the individual sectors of the stress
fields plays a huge role in controlling the microstructural evolution. For instance the
modulus-induced stress field determines the region of structure formation, whereas,
depending on the magnitude, the misfit stress may introduce for a given Burgers
vector a third cross-slip region and ensure the stability of the structure.

The influence of the inclusion radius was studied and shown to play a significant role
only when the inclusion possessed a misfit strain. Therefore, the misfit should be
considered as an extra parameter in modeling fatigue crack initiation at an inclusion.
For instance, the prominent Murakami

√
𝑎𝑟𝑒𝑎 model only considers the geometry of

the inclusion.

The findings suggest that longer fatigue life can be achieved by reducing the inclusion
misfit and radius. Also multislip orientations, for which the modulus-induced stress
fields yield complex cross-slip domains, are adverse for plastic reversibility.
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A. Grain construction algorithm

A grain is defined by a centroid of position 𝑥centroid and a number of planes, where a
plane 𝑖 has a normal vector 𝑛𝑖 pointing to the outside and a distance 𝑑centroid𝑖 from
the centroid. To construct the grain, first all possible plane intersections need to be
computed followed by line intersections. So for planes 𝑖 and 𝑗 to have an intersection
their normals need to be not parallel which is valid if the norm of the intersection
line direction ||𝑡𝑘|| > 0 (𝑡𝑘 = 𝑛𝑖 × 𝑛𝑗). A point 𝑃𝑘 belonging to intersection line 𝑘,
which is shared by both planes can be calculated by using a third plane with normal
vector 𝑒𝑡𝑘 . The three planes intersect each other in the point

𝑃𝑘 =
−𝑑centroid𝑖(𝑛𝑗 × 𝑡𝑘) − 𝑑centroid𝑗 (𝑡𝑘 × 𝑛𝑖)

𝑛𝑖 · (𝑛𝑗 × 𝑡𝑘) (A.1)

From the list of lines gathered, plane vertices are obtained by computing line
intersections. The latter is achieved by reducing the problem to two dimensions by
projecting the lines onto their plane. Therefore, the intersection point of lines 𝑖 and
𝑗

𝑃 ′ = 𝑃𝑖 + 𝜆𝑒𝑡𝑖 (A.2)

where

𝜆 = −
−(𝑃𝑖 − 𝑃𝑗) · 𝑡𝑖 + (𝑒𝑡𝑖 · 𝑒𝑡𝑗 )(𝑃𝑖 − 𝑃𝑗) · 𝑡𝑗

−1 + (𝑒𝑡𝑖 · 𝑒𝑡𝑗 )2 (A.3)

The intersection point 𝑃 ′ needs to be inside the grain. For this reason, the point is
tested against all grain boundaries 𝑖

(𝑑centroid𝑖𝑛𝑖 − (𝑃 ′ − 𝑥centroid)) · 𝑛𝑖 < −𝜖 (A.4)
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where 𝜖 denotes a very small number negligible compared to unity. If the point lies
inside of the grain, then the vertex is saved. A plane having less than 3 vertices is
considered not active.

In order to create a free surface, a plane with a normal vector same as that of the
free surface is set at a distance larger than the free surface of the total cuboidal
domain. Such plane would obtain no vertices and would be considered as inactive.
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B.1 Grain boundaries

Integrating the equation of motion at time step 𝑛 yields a new nodal position 𝑥𝑛+1.
Before assigning the new position, the node is tested against grain boundaries to
ensure it remains inside the grain. For the sake of computational efficiency, the
system is discretized initially into voxels which hold the information whether they
intersect a grain boundary. In the following algorithm, only nodes that lie in such
voxels are tested against the grain boundaries which they intersect. For a grain
boundary 𝑖, 𝑥𝑛+1 lies outside if the condition in equation A.4 is fulfilled, hence, 𝑥𝑛+1

needs to be projected back into the grain. Different cases are considered depending
on the actual position 𝑥𝑛:

∙ 𝑥𝑛 is inside the grain:

– If 𝑥𝑛 is at a smaller distance than 𝑑gbs = 3𝑎 from the grain boundary,
then the original position 𝑥𝑛+1 = 𝑥𝑛 is retained.

– Otherwise, a direction vector 𝑡 = 𝑥𝑛+1 − 𝑥𝑛 is calculated (if not pre-
scribed) and the new position is projected according to

𝑥𝑛+1 = 𝑥𝑛 − 0.5𝑑gbs + (𝑥𝑛 − 𝑥ref𝑖) · 𝑛𝑖

𝑛𝑖 · 𝑡
𝑡 (B.1)

where 𝑥ref𝑖 is a reference position on grain boundary 𝑖 (see figure B.1).

∙ 𝑥𝑛 is on the grain boundary. If the direction vector 𝑡 is not prescribed, it is set
to 𝑡 = (𝑛𝑖 × 𝑛gp) × 𝑛gp, where 𝑛gp is the glide plane normal. This means 𝑡 lies
in the glide plane and points to the grain inside. Accordingly, the projection
follows

𝑥𝑛+1 = 𝑥𝑛 − 0.5𝑑gbs
𝑛𝑖 · 𝑒𝑡

𝑒𝑡 (B.2)
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∙ 𝑥𝑛 is outside the grain boundary. The glide vector 𝑡 is calculated as in the
latter case if not prescribed. The new nodal position is corrected according to
equation B.1.

Figure B.1: Schematic visualization of the projection algorithm for the case that 𝑥𝑛 is
inside the grain and at a distance larger than 𝑑gbs.

B.2 Spherical inhomogeneities

Given is a spherical inhomogeneity of radius 𝑅𝑝 and located at 𝑥center. Similar to
section B.1, to ensure dislocations do not cut the sphere, the algorithm projects
new nodal positions predicted to lie inside of the sphere to the outside. Hence, it is
distinguished whether the nodal position at time 𝑛:

∙ 𝑥𝑛 is outside the sphere.

– Then if 𝑥𝑛 lies at a distance 𝑅𝑝 + 𝑑sph from the sphere center (𝑑sph = 3𝑎),
the new position is retained.

– Otherwise, the intersection point 𝑥inter between 𝑡 = 𝑥𝑛+1 − 𝑥𝑛 and the
sphere which is closer to 𝑥𝑛 is used to project out the new position:

𝑥𝑛+1 = 𝑥inter + 𝑑sph𝑒𝑡 (B.3)

∙ On the other hand, if 𝑥𝑛 is inside of the sphere, then the following distinction
is made:
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– if a prescribed direction 𝑡 is provided, then the intersection point 𝑥inter

is calculated between 𝑥𝑛 and a point which lies along 𝑥𝑛 + 𝜆𝑒𝑡 with 𝜆

chosen such that the point is outside the sphere. Hence, the new position
is calculated as in equation B.3.

– If no prescribed direction is given, then 𝑡 = 𝑟 −𝑟gp where 𝑟 = 𝑥𝑛 −𝑥center

is the vector connecting the current position with the sphere center and
𝑟gp = (𝑟 · 𝑛gp)𝑛gp is the projection of 𝑟 along 𝑛gp. Therefore the new
position is projected using

𝑥𝑛+1 = 𝑥center + 𝑟gp + (𝑑out + 𝑑sph)𝑒𝑡 (B.4)

where 𝑑out =
√︁

𝑅2
𝑝 − ||𝑟gp||2 (see figure B.2).

Figure B.2: Schematic visualization of the projection algorithm for the case that 𝑥𝑛 is
inside the sphere without a given prescribed direction vector.
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C. Validation of the inclusion stress field
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Figure C.1: Stress field interpolation from an irregular grid onto a regular one: Contour
plots of a slice 𝑥 = 3750 𝑎 (half the length in 𝑥-direction) of the (a) elastic
stress field generated using ABAQUS and (b) interpolated stress field onto a
regular grid. (c) Line plot along 𝑧 = 3750 𝑎 from (a) and (b). The relative
error between both cases is shown in (d).
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D. Prismatic loops: interstitial and va-
cancy classification

The classification of prismatic loops according to vacancy- or interstitial types is
illustrated in figure D.1. After finding all prismatic loops in the system, only prismatic
loops of the 1st-order are considered. In the figure, the dotted segment with orange
nodes belongs to a prismatic loop with centroid 𝛼 (blue node). If 𝑛 · (𝑏 × 𝑡) < 0,
then the used convention is that the extra-half plane points in the glide plane normal
direction 𝑛. Then if (𝑛 · 𝑝) (𝑛 · (𝑏 × 𝑡)) < 0, the prismatic loop is of vacancy type
(as in the figure), otherwise it is counted as interstitial. Here 𝑝 is the vector pointing
from 𝛼 to a segmental node.

Figure D.1: Scheme to determine prismatic loop types.

Figure D.2 shows the evolution of first order prismatic loops in a [010] orientation
(setup 1e) separated into vacancy and interstitial types. For the large amplitude, the
curves corresponding to both types show an entanglement throughout the simulation.
In the case of the small amplitude, up to 110 cycles both types are almost equal (≈
12 prismatic loops each), afterwards no increase in interstitial type prismatic loops
is seen, whereas the vacancy type continues increasing to reach a maximum of 25
prismatic loops.
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D. Prismatic loops: interstitial and vacancy classification

(a) (b)

Figure D.2: Evolution of vacancy- and interstitial prismatic loops for setup 1e for (a)
Δ𝜀pl/2 = 0.01% and (b) Δ𝜀pl/2 = 0.001% (El-Achkar und Weygand, 2019).
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E. [210]-tensile axis

For a [210] double-slip orientation (Schmid factors in figure E.1), two different setups
are realized:

∙ Setup 4a: the crystal orientation is rotated around the tensile axis such that
glide system 4 has a non-significant component in the free surface direction.

∙ Setup 4b: both glide systems 4 and 9 have a non-vanishing equal free surface
component.

1 2 3 4 5 6 7 8 9 10 11 12
glide system

0.0

0.1

0.2

0.3

0.4

0.5

S

Figure E.1: Schmid factor distribution for a [210]-tensile axis orientation.

Figure E.2 shows the dislocation density evolution per glide system. It is obvious
that in setup 4a that glide system 9 is highly active, whereas glide system 4 falls
behind after 1 cycle. On the other hand, both glide systems are equally active in
setup 4b.
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E. [210]-tensile axis

(a) (b)

Figure E.2: Dislocation density evolution per glide system for a [210]-tensile axis in setups
(a) 4a and (b) 4b.
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F. Sensitivity analysis of a rotation away
from a [010]-tensile axis

Rotation around the tensile axis The dislocation density distribution is analyzed
for different rotation angles 10∘, 20∘, 30∘ and 40∘ around the [010]-tensile axis. The
surface components for Burgers vectors 𝑏2 (systems 7 and 11) and 𝑏3 (systems 5
and 8) for different rotation angles are given in table F.1. Figure F.1 shows that
the increase in dislocation density distribution in Burgers vectors 𝑏3 and 𝑏4 (same
surface component as 𝑏3) is proportional to the increase in the respective surface
component. For a 10∘ rotation, the dislocation density in 𝑏3 and 𝑏4 is intermediate
(almost half the activity compared to 𝑏2 and 𝑏5), whereas for a 40∘ rotation the
density is almost equally distributed among 𝑏2, 𝑏3, 𝑏4 and 𝑏5.

Rotation around the 𝑧-axis A 10∘ rotation around the 𝑧-axis changes the Schmid
factor distribution (figure F.2(a)) and yields a double slip condition of two highly
active slip systems 2 and 11 (figure F.2(b)). The two systems belong to 𝑏5 and 𝑏2

respectively and favor no reactions between them. Although 𝑆 is high for systems 5,
8, 1 and 12 (𝑏3 and 𝑏4 respectively), the dislocation density is negligible in them.
The latter has a drastic influence on the microstructural evolution (figures F.2(c)

Rotation angle |𝑒𝑏2 · 𝑛surf | |𝑒𝑏3 · 𝑛surf |
0∘ (setup 1e) 0.707 0
10∘ 0.696 0.122
20∘ 0.664 0.241
30∘ 0.612 0.353
40∘ 0.541 0.454
45∘ (setup 1f) 0.5 0.5

Table F.1: Chosen rotation angles of the crystal around the axis [010] and surface com-
ponents of Burgers vectors 𝑏2 and 𝑏3. Burgers vectors 𝑏5 and 𝑏4 are omitted
because they have the same surface components as 𝑏2 and 𝑏3 respectively,
whereas 𝑏1 and 𝑏6 have a zero Schmid factor 𝑆 = 0.
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F. Sensitivity analysis of a rotation away from a [010]-tensile axis
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Figure F.1: Final distribution of the fraction of the dislocation density 𝜌 per glide system
w.r.t. the total dislocation density for a rotation around the tensile axis of
(a) 10∘, (b) 20∘, (c) 30∘ and (d) 40∘.

and F.2(d)). After 8 cycles a rather planar pattern is observed with a small number
of Lomer junctions.

Rotation to a [2 12 1]-tensile axis To investigate additional sensitivity towards a
10∘ rotation away from [010] which yields only one system with the highest Schmid
factor, a [2 12 1]-tensile axis is simulated. The orientation is chosen such, that system
7 (𝑏2,𝑛3) with the highest Schmid factor 𝑆 has a 2.5 times smaller 𝑆′ (equation 4.1)
than glide system 6 (𝑏5,𝑛2), which has a slightly smaller 𝑆 (figure F.3). The outcome
of the simulation in terms of dislocation density distribution among glide systems
(figure F.3(b)) shows that glide system 6 is the most populated followed by glide
systems 7, 1 and 5. In contrast to the previous setups, the glide system with the
highest Schmid factor remains relevant despite the small 𝑆′. Nevertheless, its role is
less important than predicted by the 𝑆 distribution, which means that the effect is
present, but not enough to diminish its role.
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F. Sensitivity analysis of a rotation away from a [010]-tensile axis
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Figure F.2: (a) Schmid factor 𝑆 distribution for a 10∘ rotation of the [010] crystal system
(setup I) around the 𝑧-axis. (b) Final distribution of the fraction of the
dislocation density 𝜌 per glide system w.r.t. the total dislocation density.
(c-d) Different views of the microstructure after 8 cycles (dislocation density
minimum).
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F. Sensitivity analysis of a rotation away from a [010]-tensile axis
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Figure F.3: (a) Modified Schmid factor 𝑆′ (in gray) on top of the Schmid factor for a
[2 12 1] orientation 10∘ away from [010]. (b) Dislocation density distribution
per glide system w.r.t. the total dislocation density.
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G. [110]-tensile axis
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Figure G.1: (a) Dislocation microstructure of a different initial microstructure of setup 2a
in a [110] orientation (section 3.1.2) showing a slip band pattern. (b) Contour
plot of the correlation function 𝑔2𝑑 and its mean along 𝑏3 in (c).
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H. Macroscopic analysis measures
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Figure H.1: Evolution of the irreversible plastic strain (see section 2.2.5) and signed plastic
strain for setup 1e for Δ𝜀pl/2 = 0.01% and Δ𝜀pl/2 = 0.001% in (a) and (b)
respectively.
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H. Macroscopic analysis measures
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Figure H.2: Power spectral density of surface displacements for a [010] tensile axis orien-
tation (setup 1e) in (a) Δ𝜀pl/2 = 0.01% and (b) Δ𝜀pl/2 = 0.001% after 16-
and 160 cycles respectively, (c) setup 2a of [110] tensile axis after 1 cycle, (d)
setup 2b of [110] tensile axis after 1 cycle, (e) for Δ𝜀pl/2 = 0.01% in a [111]
tensile axis orientation after 2.5 cycles, (f) setup 3e: Δ𝜀pl/2 = 0.084% in a
[982] tensile axis orientation (only glide system 9) after 3 cycles, (g) [112]
tensile axis orientation after 1 cycle.
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H. Macroscopic analysis measures

(a)

(b)

(c)

Figure H.3: Surface evolution in a [110] crystal orientation (setup 2a) for load maxima of
cycles (a) 1, (b) 2 and (c) 6.
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H. Macroscopic analysis measures

(a)
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Figure H.4: Surface evolution in a [110] crystal orientation (setup 2b) for load maxima of
cycles (a) 1, (b) 4 and (c) 6.
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H. Macroscopic analysis measures

(a)

(b)

(c)

Figure H.5: Surface evolution in a [110] crystal orientation (setup 2c) for load maxima of
cycles (a) 1, (b) 3 and (c) 5.
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H. Macroscopic analysis measures

(a)
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(c)

Figure H.6: Surface evolution for setup 3a in a [982] crystal orientation with all glide
systems (microstructure in figure 3.29(a)) for load maxima of cycles (a) 1, (b)
3 and (c) 5.
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H. Macroscopic analysis measures
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Figure H.7: Surface evolution for setup 3e in a [982] crystal orientation using only glide
system 9 for load maxima of cycles (a) 1, (b) 2 and (c) 3.
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H. Macroscopic analysis measures
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(d)

Figure H.8: Extrusion development in a [112] crystal orientation for load maxima of cycles
(a) 1, (b) 2 and (c) 4. (d) [1̄12] crystal surface after Jin und Winter (1984a).
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I. Plastic strain tensor analysis

Consider the plastic strain tensor 𝜀pl = 𝐴swept/(2𝑉av)(𝑏 ⊗ 𝑛 + 𝑛 ⊗ 𝑏) where 𝐴swept

is the swept area of a dislocation in an averaging volume 𝑉av. For dislocations
belonging to glide system 1 (𝑏4 = 𝑎/2[110] and 𝑛1 = (11̄1̄)), the plastic strain tensor
reads

𝜀pl(𝑏4, 𝑛4) = 𝑎/2𝐴swept
2𝑉av

⎡⎢⎢⎢⎢⎣
⎛⎜⎜⎜⎜⎝

1

1

0

⎞⎟⎟⎟⎟⎠ (1 1̄ 1) +

⎛⎜⎜⎜⎜⎝
1

1̄

0

⎞⎟⎟⎟⎟⎠ (1 1 0)

⎤⎥⎥⎥⎥⎦

= 𝑎/2𝐴swept
2𝑉av

⎡⎢⎢⎢⎢⎣
⎛⎜⎜⎜⎜⎝

1 1 0

1̄ 1̄ 0

1 1 0

⎞⎟⎟⎟⎟⎠+

⎛⎜⎜⎜⎜⎝
1 1̄ 1

1 1̄ 1

0 0 0

⎞⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎦

= 𝑎/2𝐴swept
2𝑉av

⎛⎜⎜⎜⎜⎝
2 0 1

2̄ 1

symm. 0

⎞⎟⎟⎟⎟⎠
Generally for 𝑏4 dislocations, the plastic strain tensor has the form

𝜀pl(𝑏4) =

⎛⎜⎜⎜⎜⎝
𝜀pl,𝑥𝑥 0 𝜀pl,𝑥𝑧

𝜀pl,𝑦𝑦 𝜀pl,𝑦𝑧

symm. 0

⎞⎟⎟⎟⎟⎠ (I.1)

For dislocations of Burgers vector 𝑏5 = 𝑎/2[011̄], it has the form

𝜀pl(𝑏5) =

⎛⎜⎜⎜⎜⎝
0 𝜀pl,𝑥𝑦 𝜀pl,𝑥𝑧

𝜀pl,𝑦𝑦 0

symm. 𝜀pl,𝑧𝑧

⎞⎟⎟⎟⎟⎠ (I.2)
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I. Plastic strain tensor analysis

Both Burgers vectors can relax the applied boundary condition in 𝑦-direction since
they are symmetric w.r.t. the tensile axis. However, only 𝑏5 produces plastic strain
in the free surface direction 𝑧 which means that a free surface maximizes plastic
strain relaxed in its direction enabling glide systems that possess such property. This
implies that the extrusion/intrusion formation in surface grains (Essmann et al.,
1981) is more favorable due to the presented mechanism.
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J. Glide system numbering and combina-
tions to form Lomer junctions

Figure J.1: fcc glide system numbering illustrated using a 2d-collapsed Thompson-
tetrahedron.

In figure J.2 required combinations of glide systems to form a Lomer junction of a
certain Burgers vector are given. For example to obtain a Lomer junction of Burgers
vector 𝑏1, a reaction between glide systems 1 and 7 or glide systems 8 and 2 is
needed.

Figure J.2: Required combinations of glide systems to form a Lomer junction in fcc.
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J. Glide system numbering and combinations to form Lomer junctions

Glide system Normals vector Burgers vector
1 𝑛1 = (110) 𝑏1 = [11̄1]
2 𝑛1 = (110) 𝑏2 = [1̄11]
3 𝑛2 = (101) 𝑏2 = [1̄11]
4 𝑛2 = (101) 𝑏3 = [111̄]
5 𝑛3 = (011) 𝑏1 = [11̄1]
6 𝑛3 = (011) 𝑏3 = [111̄]
7 𝑛4 = (1̄10) 𝑏3 = [111̄]
8 𝑛4 = (1̄10) 𝑏4 = [111]
9 𝑛5 = (1̄01) 𝑏1 = [11̄1]
10 𝑛5 = (1̄01) 𝑏4 = [111]
11 𝑛6 = (01̄1) 𝑏2 = [1̄11]
12 𝑛6 = (01̄1) 𝑏4 = [111]

Table J.1: bcc glide systems’ nomenclature.
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K. Misorientation calculation

For each discretization voxel the infinitesimal rotation tensor 𝑊 can be written
as a rotation vector 𝜔 = (−𝑊23, 𝑊13, −𝑊12)T. Then a rotation matrix 𝑅 can be
calculated

𝑅 = cos(𝛼)𝐼 + (1 − cos(𝛼))(𝑒𝜔 ⊗ 𝑒𝜔) + sin(𝛼)𝑒𝜔 (K.1)

where the angle 𝛼 = ||𝜔||.

Then the misorientation angle 𝜔mis can be estimated from

𝜔mis = arccos
(︂1

2tr
(︁
𝑅ref𝑅

−1 − 1
)︁)︂

(K.2)

where 𝑅ref is the rotation matrix of a reference voxel (Sutton et al., 1995).
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L. Influence of the misfit strain
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Figure L.1: Influence of the misfit strain on the dislocation density evolution for the [191̄]
setup from section 3.2.1 for Δ𝜀tot/2 = 0.12% .

137





M. Cyclic- vs. monotonic loading

(a) (b)

(c) (d)

Figure M.1: Two different perspectives of the microstructure of a [010] tensile axis (setup 1e)
for (a-b) cyclic loading after 16 cycles (Δ𝜀pl/2 = 0.01%) and (b-c) monotonic
tensile loading after 0.31% total strain (≈ 0.19% plastic strain) followed by a
relaxation and FR-source elimination.
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H. W. Höppel. Mechanical properties of ultrafine grained metals under cyclic and
monotonic loads: an overview. In Materials Science Forum, volume 503, pages
259–266. Trans Tech Publ, Switzerland, 2006.

D. Hull und D. J. Bacon. Introduction to Dislocations. Butterworth-Heinemann,
Oxford, fifth edition edition, 2001.

F. Humphreys und P. B. Hirsch. The deformation of single crystals of copper and
copper-zinc alloys containing alumina particles-II. Microstructure and dislocation-
particle interactions. Proceedings of the Royal Society of London. Series A, 318
(1532):73–92, 1970.

A. M. Hussein und J. A. El-Awady. Quantifying dislocation microstructure evolution
and cyclic hardening in fatigued face-centered cubic single crystals. Journal of the
Mechanics and Physics of Solids, 91:126–144, 2016a.

A. M. Hussein und J. A. El-Awady. Surface roughness evolution during early stages
of mechanical cyclic loading. International Journal of Fatigue, 87:339–350, 2016b.

D. Jeddi und T. Palin-Luc. A review about the effects of structural and operational
factors on the gigacycle fatigue of steels. Fatigue & Fracture of Engineering
Materials & Structures, 41(5):969–990, 2018.

N. Jin und A. Winter. Cyclic deformation of copper single crystals oriented for
double slip. Acta Metallurgica, 32(7):989–995, 1984a.

N. Jin und A. Winter. Dislocation structures in cyclically deformed [001] copper
crystals. Acta Metallurgica, 32(8):1173–1176, 1984b.

I. Jolliffe. Principal Component Analysis. Springer Series in Statistics. Springer New
York, 2013.

C. Kirsch. Die Theorie der Elastizität und die Bedürfnisse der Festigkeitslehre.
Zeitschrift des Vereines Deutscher Ingenieure, 42:797–807, 1898.

145



Bibliography

F. Kroupa. Dislocation dipoles and dislocation loops. Le Journal de Physique
Colloques, 27(C3):C3–154, 1966.

L. Kubin und G. Canova. The modelling of dislocation patterns. Scripta Materialia,
27(8):957–962, 1992.

L. Kubin, G. Canova, M. Condat, B. Devincre, V. Pontikis, und Y. Bréchet. Disloca-
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