KIT | KIT-Bibliothek | Impressum | Datenschutz

Transport properties of strongly coupled electron–phonon liquids

Levchenko, Alex; Schmalian, Jörg

In this work we consider the hydrodynamic behavior of a coupled electron–phonon fluid, focusing on electronic transport under the conditions of strong phonon drag. This regime occurs when the rate of phonon equilibration due to e.g. umklapp scattering is much slower than the rate of normal electron–phonon collisions. Then phonons and electrons form a coupled out-of-equilibrium state where the total quasi-momentum of the electron–phonon fluid is conserved. A joint flow-velocity emerges as a collective hydrodynamic variable. We derive the equation of motion for this fluid from the underlying microscopic kinetic theory and elucidate its effective viscosity and thermal conductivity. In particular, we derive decay times of arbitrary harmonics of the distribution function and reveal its corresponding super-diffusive relaxation on the Fermi surface. We further consider several applications of this theory to magneto-transport properties in the Hall-bar and Corbino-disk geometries, relevant to experiments. In our analysis we allow for general boundary conditions that cover the crossover from no-slip to no-stress flows. Our approach also covers a crossover from the Stokes to the Ohmic regime under the conditions of the Gurzhi effect. ... mehr

Open Access Logo

DOI: 10.1016/j.aop.2020.168218
Zitationen: 4
Zitationen: 6
Zugehörige Institution(en) am KIT Institut für Quantenmaterialien und -technologien (IQMT)
Institut für Theorie der Kondensierten Materie (TKM)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 08.2020
Sprache Englisch
Identifikator ISSN: 0003-4916
KITopen-ID: 1000120247
HGF-Programm 43.21.01 (POF III, LK 01) Quantum Correlations in Condensed Matter
Erschienen in Annals of physics
Verlag Elsevier
Band 419
Seiten 168218
Projektinformation HYDROTRONICS (EU, H2020, 873028)
Vorab online veröffentlicht am 30.05.2020
Schlagwörter Electron–phonon scattering, Drag viscosity, Superdiffusion, Magnetotransport, Noise
Nachgewiesen in Dimensions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page