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A micro-scale-based approach for the numerical analysis of cement-based materials, subjected to low- and high-cycle fa-
tigue actions, is presented in this paper. The constitutive model is aimed at describing the evolving microstructural changes
caused by cyclic loading protocols. The plastic-damage-based model is formulated combining the concepts of fracture-energy
theories and damage stiffness degradations, representing the key phenomena occurring in concrete under fatigue.
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1 Introduction

Concrete structures like tall towers, bridges and modern buildings made of high strength concretes are highly sensible to suffer
failures and damages under fatigue loads [1]. In this context, plenty of experimental tests are available in the scientific literature
dealing with the fatigue behavior of cement-based composites [2, 3]. Many of these works showed a huge scatter in terms of
fatigue performances of the composites which can be actually attributed to a high variability of the materials nature, stress
levels, inner meso-structures, distribution of fibers, strain-hardening/softening mechanisms and specimen type/size [4, 5].

Current approaches, codes and design guidelines analyze the concrete fatigue performance through empirical rules, in most
cases based on the well-known Wöhler concepts [6]. Fatigue degradation is represented in the so-called stress-life or simple S-
N curves, where the Basquin relationship usually defines the behavior in a log-log straight line [7]. For example, the smeared
crack approach for concrete by [8] can be mentioned, in which the S-N criterion is translated into the damage description and
accounts for the consideration of the stress increments and number of cycles at each material point. Although, these kind of
approaches have been valuably used in practical applications, they completely avoid deeper explanations of the mechanisms
which drive the damage initiations and triggering of concrete-fatigue behavior.

In classical Wöhler curves, three different fatigue types can be differentiated: (i) Oligocyclic (O), (ii) Low (L) and (iii) High
(H) Cycle Fatigue (CF). OCF is mainly due to very high stress levels, where the number of reversals needed to reach the failure
is very limited. In this case, the material is hugely fractured and after very few cycles the crack propagation becomes instable
and failure is quickly reached. On the other hand, LCF and HCF are characterized by stable crack propagation processes. In
LCF, the nucleation and failure processes are driven by an increase in the intermediate-macro crack, which develops cycle
by cycle. The number of failure cycles is commonly lower than 10t. Constitutive models based on fatigue damage-based
description mechanisms are commonly available in literature for this kind of fatigue description [9, 10].

In HCF, the level of stress reaching failure is much lower than that of LCF and the accumulation of damage is driven by
the continuous accumulation of microscopic defects. Main differences between these two are the deformations and achieved
strain levels, since HCF is characterized by remaining on the elastic range while LCF by repeated plastic deformations cycle
by cycle. HCF represents a very complex phenomenon which deals with the generation of micro-cracks at lower scales
under very high number of cycles and their coalescence into macro-cracks up to failure. Plenty of works demonstrated that
non-linear constitutive models classically based on plasticity theory and damage mechanics, often suitable for capturing the
non-linear responses of specimens under LCF, needs to be extended for HCF [11]. Stress levels, cycle times, regression
indices, amplitudes, and frequencies are key variables are key variables in determining the loss of material load capacity.
Available models took into the account the “number of cycle” as variable capable of modifying the internal plastic variables
(i.e., plastic strains, work spent and damage parameters) and necessary to capture the strength loss occurring under HCF
tests [12, 13].

In this context, the present research is mainly intended at proposing a unified model for the numerical analysis of concrete
specimens possibly subjected to both LCF and HCF actions. This paper explores for the first time the potential of assessing
fatigue microcracks formation and growth, and their influence on the macroscopic behavior which has not been proposed yet
in the international scientific literature. The latter is representing the main significant contribution of this work to the current
state-of-the-art.
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2 Unified fatigue damage-mechanisms model

A discontinuous-based approach for the numerical analysis of concrete specimens subjected to (both LCF and HCF) fatigue
action is presented in a unified way.

Particularly, a coupled damage-elasto-plastic constitutive equation is proposed as follows

ṫ = Cd(u̇− u̇cr) (1a)

u̇ = u̇el + u̇cr (1b)

where ṫ = [σ̇N, σ̇T]
T is the interface stress rate vector, Cd the elastic-damage stiffness matrix, u̇ = [u̇, v̇]T is the vector of

relative displacement rates across the interface, u̇el and u̇cr are the elastic and cracking (inelastic) components, respectively.
By providing the concept of effective interface stress, , the plastic (cracking) behavior can be independently integrated and

isolated from the damage part. Thus, Eq. 1 can be thus reformulated as

ṫ = (I−D) ·C · (u̇− u̇cr) → ˙̃t = C · u̇el (2)

being I the second order identity matrix and C the undamaged elastic matrix.
The unified procedure is thus based on a scalar-type approach which is employed to describe the isotropic damage. Partic-

ularly, the following global relationship is proposed to integrate the damage behavior under general cyclic events (i.e., dealing
with either O-, L- or HCF)

Ḋ = ḊLCF + ḊHCF (3)

where the timely accumulated damage can be evaluated as

D =

∫ tf

t0

Ḋdt ∈ [0,1] (4)

3 Low cycle fatigue description

The possibilities of modelling the fracture response, induced by LCF, can be approached through employing zero-thickness
interface elements for discrete crack analysis. A cracking surface defines the (effective) stress level at which the post-elastic
displacements starts [14]

f = σ̃2
T − (c− σ̃2

N tanφ)2 + (c− χ tanφ)2 (5)

where χ is the tensile strength, c the cohesion and φ the frictional angle.
The vector of crack displacement rates can be defined following a non-associated flow rule

u̇cr = λ̇m (6)

where λ̇ is the non-negative plastic multiplier, deriving from the classical Kuhn-Tucker (λ̇ ≥ 0, f ≤ 0, f = 0) and consistency
conditions (ḟ = 0), f = f [σ̃N , σ̃T ] is the yield condition while m is the vector controlling the direction of the fracture
displacements by means of a non-associated flow rule.

The softening post-cracking behavior is driven through considering scaling functions which are based on the ratio between
the plastic work spent Wcr and the available fracture energies ( G#

f ,# = I, II)

ξ? =





1
2

[
1− cos

(
πWcr

G#
f

)]
if Wcr ≤ G#

f

1 otherwise
(7)

where ? alternatively represents c, χ and tanφ.
Finally, a scalar-type approach is employed to describe the isotropic damage for LCF

d# =

e−βd

(
Wcr

G#
f

)αd

1 + (e−βd − 1)

(
Wcr

G#
f

)αd
, # = I, IIa ∧ DLCF =

(
dI 0
0 dIIa

)
(8)

being αd ≥ 0 and βd parameters for controlling the decay shape of the damage induced by fracture.
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Fig. 1: a two scale (macro-micro) approach and b concept of fatigue stress limit.

4 High cycle fatigue description

Plastic strains (and/or cracks) are almost negligible in those tests which fail under HCF when compared with mechanisms
which drive LCF. Therefore, classical approaches based on fracture energy, plasticity theory and damage approaches, are not
able to capture HCF. Very small (micro-) plastic strains and microcracks are the main responsible of fatigue damage under
HCF. After huge cycle reversals they mainly increase and coalesce into few macro-cracks [15].

Based on this idea, a two scale approach (Fig. 1a) is adopted where no plastic strains take place at the macro-scale while
microplastic strains (cracks) are modelled at the micro-level. Therefore, assuming a Hollomon’s type hardening model [16] at
the microscale, it can be written that

σ̃eq = KδMmicro, σ̃eq =

{√
(σ̃N )2 + (σ̃T )2 σ̃N ≥ 0
σ̃T − |σ̃N | tanφ σ̃N < 0

, δmicro =

{√
(umicro)2 + (vmicro)2 σ̃N ≥ 0

vmicro σ̃N < 0
(9)

being K a strength index (or strength coefficient) and M a crack-hardening exponent (which can be possible dependent on the
frequency f ); ucrmicro and vcrmicro are the cracking microscale relative displacements in the normal and tangential direction,
respectively.

Following an isotropic damage approach, it can be stated that

σeq
1−D = KδMmicro ⇒ δmicro =

σ
1/M
eq

(1−D)K1/M
⇒ δ̇ =

σ
1/M
eq − 1

M(1−D)1/MK1/M
˙σeq (10)

Thus, the microscale damage description can be done by means of the following rule

Ḋ =

{
0 if σeq,M−σeq,m

2 ≤ σf
Lel−1

Q(f)σq(f)
eq

(1−D)q(f)+1 σ̇eq if σeq,M−σeq,m

2 > σf
∧ DHCF =

(
Ḋ 0

0 Ḋ

)
(11)

being q(f) = 1/M(f) − 1, Q(f) = K−1/M(f)

M(f) and Lel−1 (keeping in mind that Ḋ = Lel−1 δ̇micro ) a characteristic length
value. The latter three variables are mainly aiming at representing the link between the microscale and the macroscale; σeq,M
and σeq,m are the “sup” and “inf” values of σeq under cyclic protocols, while σf is a fatigue stress limit to be calibrated and
shown in Fig. 1b.

5 Model predictions and examples

This section aims at validating the proposed model by performing and comparing numerical examples against experimental
results of literature on concrete specimens submitted to fatigue effects.

The numerical results tried to simulate flexural fatigue tests on concrete (having a target strength of about 40 MPa) proposed
by Oh [17] who utilized concrete beams measuring 100 x 100 x 500 mm. The unnotched beam specimens were tested under
four-point bending. The fatigue protocol was designed in consideration of the change in the bottom fiber stress from zero to
a predetermined maximum stress. Therefore, the maximum cyclic stress ratio, namely fMAX

R /fmon, was analyzed in each
series to reach the fatigue failure after a certain number of cycles/reversals, i.e., NFAIL.

For the calibration purpose of the numerical examples, key geometric and material properties were chosen according to the
experimental evidences, while the only two parameters which were fitted were q(f) = 24.30 and q(f)+1

2[q(f)+2]Q(f)Lel−1
= 2.1MPa.

Furthermore, the following assumptions were considered for the model integration: D = 0 when the number of cycles is null
and D = 1 in fatigue failure (i.e. N = NFAIL).
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Model simulations

Fig. 2: Numerical examples vs. the experimental tests by Oh (1986) [17].

Numerical S-N curves can be generated from this approach and compared with experimental data. The numerical re-
sults were almost promising in predicting the experimental data and actually follow the well-known Wöhler expression for
describing the S-N curve: i.e., fMAX

R /fmon = a+ b log10NFAIL.
Beyond the general soundness of the proposed unified model for fatigue failure predictions, the numerical results demon-

strate the capabilities of the proposed formulation to reproduce the strong sensitivity of concrete mechanical behavior on the
stress level affecting the HCF.

6 Conclusions

A unified numerical approach was proposed for analyzing low- and high-cycle fatigue actions in concrete. The discontinuous-
based model is aimed at describing the evolving micro- and meso-structural changes caused by cyclic protocols by employing
a damage accumulation rule. Concepts of fracture-energy theory, damage stiffness degradations and microscopic accumulated
inelasticity were combined for predicting failure mechanisms occurring in concrete under cyclic responses.
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