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The connection of relaxation systems and discrete
velocity models is essential to the progress of stability
as well as convergence results for lattice Boltzmann
methods. In the present study we propose a formal
perturbation ansatz starting from a scalar one-
dimensional target equation, which yields a relaxation
system specifically constructed for its equivalence to
a discrete velocity Boltzmann model as commonly
found in lattice Boltzmann methods. Further, the
investigation of stability structures for the discrete
velocity Boltzmann equation allows for algebraic
characterizations of the equilibrium and collision
operator. The methods introduced and summarized
here are tailored for scalar, linear advection–diffusion
equations, which can be used as a foundation
for the constructive design of discrete velocity
Boltzmann models and lattice Boltzmann methods
to approximate different types of partial differential
equations.
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1. Introduction
The mesoscopic approach of lattice Boltzmann methods (LBM)—a well-established highly
parallelizable tool in computational fluid dynamics (CFD)—is based on numerically solving a
discrete velocity Boltzmann equation (DVBE) for particle density functions which are in turn
averaged to obtain macroscopic variables as approximate solution of a target equation (TEQ).
Mainly realized as a bottom-up track, the classical methodology consists of the proposal of an
LBM, the proof of its limit towards the TEQ via asymptotic expansion techniques, and subsequent
testing by means of numerical examples. As a consequence of this common procedure, the
mathematical classification of the bidirectional relations between the ingredients of the employed
LBM and significant attributes of the partial differential equation (PDE) to be numerically solved,
is seldom addressed. Further, the recent trend towards application-selective enhancement of
LBM—extending the basic method with deficiency-compensating techniques for specific test
cases—often omits an in detail analysis concerning consistency, stability and convergence, and
eventuates in a diversity of distinct LBM rather than an elaborated theoretical basis. The
mathematical foundation of LBM seems to be incomplete, compared to the vast possibilities of
analysis tools for conventional top-down methods, starting with a direct discretization of the PDE.
Consequently, restrictive features due to stability issues in certain settings or critical sensitivity of
the solution with respect to parameter choices persist.

Hence, a constructive procedure with a starting point at a given TEQ, ascertaining the possible
LBM formulations for its numerical solution is of paramount interest. Mathematically rigorous
and general treatments for this issue were proposed among others by Bouchut [5] and Junk
[19], where the former publication focuses on Bhatnagar–Gross–Krook (BGK) [3] models for
conservation laws and the latter, on constructing equilibrium distributions for kinetic schemes
and LBM. Further, Bouchut [5] and Aregba-Driollet et al. [1] identified BGK models as a subclass
of relaxation systems (RS), which were introduced in [27] and more closely investigated in [17,18].
The linkage of discrete velocity models (DVM) and relaxation systems (RS) was mentioned
specifically in the context of LBM for example in [35]. This relationship extends to the discretized
versions of DVBE and RS—LBM and relaxation schemes, respectively—and was outlined for
mono-dimensional hyperbolic systems by Graille [14] .

The importance of a joint treatment of RS and DVBE has been proven when Banda et al.
[2] introduced generally applicable tools for a priori stability analysis of LBM based on Yong’s
findings for relaxation systems [43]. These stability structures were evaluated more closely by Junk
et al. [23], Yong [44], and Rheinländer [37]. Otte et al. [32] applied von Neumann analysis [26,40]
for the case of a linear equilibrium. Therein, schemes which are found to be linearly stable also
obey the stability structures proposed in [37], which validates the novel approach. In a second
study, Otte et al. [33] included stability structures into the derivation of a stable linear lattice
Boltzmann collision operator. Caetano et al. [8] recently continued the findings of Graille [14] and
delivered elaborate convergence results for a one-dimensional LBM, acting as another indication
of the suitability of the DVM and RS linkage for injecting mathematical rigour to the theory
of LBM. In DVM, commonly used for LBM simulations, the inclusion of a null velocity is an
essential feature, which distinguishes for example D1Q3 from D1Q2. Nevertheless, previous
results, e.g. [8,14] did not extend to discrete velocity sets larger than D1Q2 for one-dimensional
TEQ and the concatenation of such [14] for the n-dimensional TEQ.

The present work introduces a novel constructive approach for the top-down design of
discrete velocity Boltzmann equations for a given advection–diffusion equation which appears
for example in mathematical models of heat transfer [13] or radiative transport [28]. The formal
procedure comprises a perturbation ansatz to obtain a 3× 3 RS as a link to a generalized D1Q3

DVBE with the corresponding equilibria formally derived from—and pertaining to—the TEQ.
Further, the approach includes both velocity sets, D1Q2 as well as D1Q3, and specifies the
necessary extension of the commonly found notes [8,14,34,35,38] on the relation of D1Q2 DVBE
to the classical 2× 2 RS introduced by Liu [27] and Jin et al. [17,18].
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Figure 1: Schematic overview of the constructive approach (from left to right). The steps focused
in the present work are labeled with drawn through arrows.

The paper is structured along the proposed design process depicted in Figure 1, starting with
the introduction of the herein treated TEQ in Section 2. Based on the TEQ, an RS is constructed
in Section 3. Applying spectral decomposition of the hyperbolic part, the RS converges to the
TEQ and connects to a generalized DVBE, which is introduced in Section 4 and analyzed in
terms of stability structures. A numerical evaluation of the fully discretized lattice Boltzmann
equation (LBE) is conducted in Section 5. Concluding the study, specific results are highlighted
and currently investigated proceeding topics are exemplarily stated in Section 6.

2. Target equation
The TEQ considered here is a scalar advection–diffusion equation

∂tρ+ ∂xF (ρ)− µ∂xxρ= 0, (x, t)∈X × I, (2.1)

with initial condition

ρ (x, 0) = ρ0 (x) , x∈X . (2.2)

For simplicity, we assume that F :R→R is smooth and linear in the conservative variable ρ=

ρ (x, t)∈R, where x∈X ⊆R, t∈ I ⊆R+, and R denotes a convex subset of R. Further, let the
diffusion coefficient µ> 0 and ρ0 ∈L∞ (X ) ∩ L1 (X ).

Throughout the document it is assumed that X is periodically embedded in R and that ρ0
shares the same periodicity features. Per definition of ρ0, F and µ, existence and uniqueness of
well-behaved bounded solutions to (2.1) with (2.2) are verified by non-degeneracy and hence
uniform parabolicity [7,31].

3. A formal perturbation ansatz for relaxation systems
In [18], RS for hyperbolic problems are proposed and used for subsequent discretization to obtain
relaxation schemes which have several numerical advantages. Rheinländer [35] formulates a brief
note adding perturbation terms to a hyperbolic conservation law to obtain the 2× 2 RS proposed
in [18]. The equivalence of this 2× 2 RS to a D1Q2 DVBE was mentioned for example in [4,35].

As a continuation of the approach in [35], the present work introduces arbitrary scaling
by generalization of the perturbation coefficients depending on ε > 0, and adds a second
perturbation step. Two scalings are included, in particular γ = 1 corresponds to hyperbolic
scaling and γ = 2 denotes parabolic scaling. Based on that, δ= 2 (γ − 1) is introduced. The terms
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hyperbolic and parabolic stem from the TEQ obtained in the perturbation limit (ε→ 0), which is
discussed further below.

We start with a scalar conservation law

∂tρ+ ∂xF (ρ) = 0, (x, t)∈X × I, (3.1)

obtained from neglecting the diffusion term in (2.1). Two subsequent steps are performed, each
consisting of the introduction of an artificial variable (AV) and the addition of perturbation terms
(AP) including the (stability) constants τ, a1, a2 > 0. In particular,

AV: φ= F (ρ) ⇒

{
∂tρ+ ∂xφ = 0

0 = F (ρ)− φ
,

AP: εγτ
(
∂tφ

ε +
a1
εδ
∂xρ

ε
)

= F
(
ρε
)
− φε ⇒

{
∂tρ

ε + ∂xφ
ε = 0

∂tφ
ε + a1

εδ
∂xρ

ε =− 1
εγτ (φε − F (ρε))

,

(3.2)

AV: ψε =
a1
εδ
ρε ⇒


∂tρ

ε + ∂xφ
ε = 0

∂tφ
ε + ∂xψ

ε =− 1
εγτ (φε − F (ρε))

0 = a1
εδ
ρε − ψε

,

AP: εγτ
(
∂tψ

εε +
a2
εδ
∂xφ

εε
)

=
a1
εδ
ρεε − ψεε ⇒


∂tρ

εε + ∂xφ
εε = 0

∂tφ
εε + ∂xψ

εε =− 1
εγτ (φεε − F (ρεε))

∂tψ
εε + a2

εδ
∂xφ

εε =− 1
εγτ

(
ψεε − a1

εδ
ρεε
) .

(3.3)

Fixing τ = 1, system (3.2) resembles an approximation to hyperbolic conservation laws, since
for γ = 1 the 2× 2 RS in [18] is obtained, whereas γ = 2 yields the diffusive 2× 2 RS which was
proposed in [17] and further analyzed in [4]. For system (3.2), the limits (ε→ 0) to (3.1) or (2.1),
for γ = 1 or γ = 2, respectively, were proven in [4,18].

Formally, upon condition that ρεε, φεε, and ψεε are sufficiently smooth, we can transform
(3.3) to an equivalent closed equation in ρεε relating to (2.1) via added perturbation terms. The
assumption on smoothness is necessary for the generalization of Schwarz’s theorem to enable
free permutation of variables in higher order partial derivatives. Let (I), (II) and (III) denote the
first, second and third equation of (3.3), respectively. Solving (III) for ψεε, and inserting it into (II)
yields

∂tφ
εε − εγτ∂txψεε − εγτ

a2
εδ
∂xxφ

εε +
a1
εδ
∂ρεε =

1

εγτ

(
φεε − F

(
ρεε
))
. (3.4)

We can solve ∂t(II) for ∂xtψεε = ∂txψ
εε and substitute it in (3.4), which gives

2∂tφ
εε − ∂tF

(
ρεε
)

+ εγτ∂ttφ
εε − εγτ a2

εδ
∂xxφ

εε +
a1
εδ
∂ρεε =

1

εγτ

(
φεε − F

(
ρεε
))
. (3.5)

Solving (3.5) for φεε and injecting it into (I) results (after reordering terms) in

∂tρ
εε + ∂xF

(
ρεε
)
− εγτ a1

εδ
∂xxρ

εε = εγτ
{
−∂txF

(
ρεε
)

+ ∂txφ
εε + εγτ∂ttxφ

εε − εγτ a2
εδ
∂xxxφ

εε
}
.

(3.6)

From ∂xx(I), ∂t(I), and ∂tt(I) we get expressions in ρεε for the remaining φεε-derivatives on the
right-hand side of (3.6). Finally, this forms a closed equation in the conservative variable,

∂tρ
εε + ∂xF

(
ρεε
)
− ε2−γa1τ∂xxρεε = εγτ

{
−∂xtF

(
ρεε
)
− 2∂ttρ

εε − εγτ∂tttρεε + ε2−γτa2∂xxtρ
εε
}
.

(3.7)

In the formal limit ε→ 0, the perturbation terms on the right-hand side of (3.7) vanish due to
their prefactor εγ . Note that, in the limit, the presence of the diffusion term on the left-hand side
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depends on γ. Hence, the scaling completely determines the diffusion effects. In the case of γ = 2,
µ is recovered in the formal limit through a1τ .

Remark 3.1. Based on equation (3.7) we infer that, the diffusion coefficient in the parabolic limit of the RS
(3.3) can be altered with the modification of τ . In case of γ = 1 however, this alteration does not interfere
with the formal limit to the hyperbolic conservation law itself, since for ε small enough, the constant τ
merely acts as a prefactor for the O (ε) diffusion term.

Remark 3.2. A convergence proof of the limit of a diffusive 2× 2 RS towards (2.1) with F ≡ 0, starting at
the equivalent closed equation with a splitting of the initial condition (2.2), is given in [35]. In the present
work we omit such an analysis and solely remark that the extension thereof can be obtained from including
the third order derivatives of (3.7). For convergence to the TEQ we continue with transforming (3.3) to
enable the usage of more general results from [7].

The constructed 3× 3 RS (3.3) can be written in matrix notation as

∂t

ρεεφεε
ψεε

+

0 1 0

0 0 1

0 a2
εδ

0


︸ ︷︷ ︸

=: A

∂x

ρεεφεε
ψεε

=− 1

εγτ

 0

φεε − F (ρεε)

ψεε − a1
εδ
ρεε

 . (3.8)

Via the spectral decomposition

A=DAdD−1 =

 1 1 1

−√χ 0
√
χ

χ 0 χ


−
√
χ 0 0

0 0 0

0 0
√
χ


0 − 1

2
√
χ

1
2χ

1 0 − 1
χ

0 1
2
√
χ

1
2χ

 , (3.9)

where

χ :=
a2
εδ
,

we can rewrite system (3.8) by a change of variablesuv
w

 :=D−1

ρεεφεε
ψεε

 ⇔

ρεεφεε
ψεε

=D

uv
w

=

 u+ v + w
1√
χ (−u+ w)
1
χ (u+ w)

 ,

to obtain a transformed relaxation system (TRS)

∂t

uv
w

+Ad∂x

uv
w

=− 1

εγτ

u−
a1
2a2

(u+ v + w) + 1
2
√
χF (u+ v + w)

v −
(
1− a1

a2

)
(u+ v + w)

w − a1
2a2

(u+ v + w)− 1
2
√
χF (u+ v + w)

 . (3.10)

Bouchut [6] summarized stability conditions for relaxation systems and compared relations
between the available approaches to prove the correct limiting behaviour for ε→ 0. The notes
in [6] comprise observations by Bouchut et al. [7] for frameworking relaxation systems to obtain
possibly degenerate advection–diffusion equations. Convergence is thereafter given if specific
assumptions are satisfied. Based on that, we use the results from [7] to prove the convergence of
(3.10) towards (2.1) in the limit ε→ 0. We define a function

G : [0, 1]× R→R3, (ε, α) 7→


a1
2a2

α− 1
2
√
χF (α)(

1− a1
a2

)
α

a1
2a2

α+ 1
2
√
χF (α)

 , (3.11)

and denote it as generalized Maxwellian. Further, let U = {α∈R : |α| ≤ ‖ρ0‖∞} and F (0) = 0.
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Corollary 3.1. Let τ = 1. Equip the TRS (3.10) with initial data (u, v, w)T =G (ε, ρ0) and specify the
stability constants in the above proposed perturbation ansatz such that a1 = µ and

a2 ≥ a1 ∧ a1√
εδa2

≥ |F ′ (ρ) |. (3.12)

Then

lim
ε↘0

ρεε = ρ∗ ∈C(I;L1
loc (X )) ∩ L∞ (X × I)

is the unique entropy solution to the TEQ (2.1) with initial data (2.2).

Proof. The constraints on G given in [7],

(M1)

3∑
i=1

Gi (ε, α) = α ∀ε∈ (0, 1] ∀α∈U,

(M2)

3∑
i=1

AdGi (ε, α) = F (α) ∀ε∈ (0, 1] ∀α∈U,

(M3)

3∑
i=1

(√
εδAi,i

)2
Gi (0, α) = µα ∀α∈U,

(M4) lim
ε↘0

Gi (ε, α) =Gi (0, α) uniformly for α∈U,

are verified. By construction, G (ε, 0) = 0 ∀ε∈ [0, 1] follows from F (0) = 0, and Gi (ε, ·) is
nondecreasing in U for i= 1, 2, 3 and ε∈ (0, 1] due to condition (3.12). Hence, the claim follows
from [7, Theorem 3.1 and Theorem 4.1].

4. The link to discrete velocity Boltzmann models
The following investigations link the approach given above to a DVBE which under subsequent
discretization leads to an LBM as commonly proposed in the community [25,29]. Therefor, we
construct a DVBE with generalized ingredients to match the generality of the TRS obtained in
Section 3, and use the equivalence of both systems to prove the convergence of the DVBE towards
the TEQ.

Roughly speaking, DVBE are obtained by reducing the velocity space V of the Boltzmann BGK
equation

∂tf + v · ∇xf =Ω (f) =−ω
(
f − feq

)
(4.1)

to a finite set C = {ci}i=0,1,...,q−1 ⊂V , abbreviated with DdQq. In (4.1), the (equilibrium) particle
distribution function f (eq) :X × V × I 3 (x, ξ, t) 7→ f (eq) (x, ξ, t)∈R+

0 resembles the density of
mass inX ⊆Rd, V ⊆Rd and I ⊆R+

0 (at equilibrium), and ω denotes the relaxation frequency. The
resulting DVBE with the BGK collision operator, equipped with the general scaling introduced
above, then reads

εγ∂tfi + εci · ∇xfi = Ji (f) =−ω
[
fi − feqi

]
, i= 0, . . . , q − 1, (4.2)

where fi (x, t) denote discrete velocity distribution functions (populations) with corresponding
equilibria feqi =Ei (f). Additionally, via a weight function w : C →R, each ci ∈ C is assigned a
weight wi = w (ci).

In (4.2) and in the following, we adopt the notation introduced by Rheinländer [35]. That
is, maps contained in the space of functions over C, here abbreviated by C? :=F (C), as well as
their vector representations are denoted by the same symbol, e.g. w = (w0, . . . ,wq−1)T. The (by
construction) linearly independent component maps sj = ((c0)j , . . . , (cq−1)j)

T, j = 1, . . . , d, can
be completed with linearly independent vectors s̃k, k= d+ 1, . . . , q, to a basis such that C? =
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span{s1, . . . , sd, s̃d+1, . . . , s̃q} ∼= Rq . Typically, polynomials in sj are used for the basis completion
[10]. Further, 〈·, ·〉 defines the scalar product on C?, whereas no product sign between two maps
in C? refers to component-wise multiplication.

To include the velocity set D1Q2, let the weights depend on θ > 0, where θ→ 1 transforms
D1Q3 into D1Q2 [35]. Additionally, we generalize the velocity model with a variable speed λ.
For C = {−λ, 0, λ}, the velocity component map reads s = s1 = (−λ, 0, λ)T with corresponding
weights w = w (s) = ( 1

2θ ,
θ−1
θ , 1

2θ ). We obtain C? = span{1, s, s2}, and more specifically

sn =


1, if n= 0,

λn−1s, if n odd,

λn−2s2, if n even.

The here required structure relations for D1Q3 are given by

〈1,w〉= 1, 〈s,w〉= 0, 〈s2,w〉= λ2

θ
, 〈s3,w〉= 0. (4.3)

Respecting the inverse proportionality between the velocity and the scaling parameter ε, we
define three raw moments [10], i.e.

m0 = 〈1, f〉, m1 =
1

εγ−1
〈s, f〉, m2 =

1

ε2(γ−1)
〈s2, f〉. (4.4)

We assume that only m0 requires conservation, identifying it with the conservative variable
ρ in (2.1). The equilibrium populations E (f) can be expressed via the equilibrium operator
ε (m0; ·)∈ C?, depending solely on conserved moments which are generated by the collisional
invariant monomials, here 1 = s0. The relations (4.3) can be used in an algebraic argument, which
is based on the injection of E (f) into the TEQ [35] and extended by removal of scaling dependent
terms. The solution of the resulting linear system leads to the determination of

E (f) = ε (m0; s) = m0w + εγ−1
θ

λ2
F (m0)ws. (4.5)

Inserting (4.5), with C, m0, s and w into (4.2), plus subsequent multiplication with ε−γ , results in
a D1Q3 DVBE

∂t

f0
f1
f2

+

− λ
εγ−1 0 0

0 0 0

0 0 λ
εγ−1

 ∂x
f0
f1
f2

=− ω
εγ

f0 − 1
2θ (f0 + f1 + f2) + εγ−1

2λ F (f0 + f1 + f2)

f1 − θ−1
θ (f0 + f1 + f2)

f2 − 1
2θ (f0 + f1 + f2)− εγ−1

2λ F (f0 + f1 + f2)

 .

(4.6)

Theorem 4.1. Let ω= 1. The D1Q3 DVBE (4.6) with initial data f (x, 0) = ε (ρ0; s) converges in
C(I;L1

loc (X )) to the bounded unique entropy solution of (2.1) with initial condition (2.2).

Proof. Comparing (4.6) to (3.10), equivalence of the D1Q3 DVBE and the 3× 3 TRS is obtained
via identifying the stability parameters

τ :=
1

ω
, a1 :=

λ2

θ
, a2 := λ2. (4.7)

Thus, with ε (·; s)≡G (ε, ·) and τ = 1, convergence to the TEQ follows from Corollary 3.1.

Remark 4.1. The parameter setting (4.7) additionally generates equivalence of the initially constructed
RS (3.3) and the discrete velocity moment system (DVMS), obtained from taking the moments

〈1, ·〉, 1

εγ−1
〈s, ·〉, 1

ε2(γ−1)
〈s2, ·〉

of (4.6). Hence, this moment summation reflects the reverse action of the spectral decomposition in (3.9).
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Rheinländer [37] extended the stability structures proposed by Banda et al. [2] for DVBE, to
a self-contained a priori stability notion for LBE (i.e. the fully discretized version of the DVBE).
The statements on pre-stability in [37] are still valid to obtain structural stability also for the DVBE.
However, it is essential to mention that the following derivations are based on the linearity of F ,
which allows to express the collision operator as a linear map in matrix form by simply taking
the Jacobian. In case of a non-linear collision operator, Banda et al. [2] formulated corresponding
results for the linearized operator around an equilibrium state f∗.

Definition 4.1. Rheinländer [37]: The collision operator J in (4.2) admits a pre-stability structure, if there
exists H ∈GLq (R) and p= (p1, . . . , pq)

T , r= (r1, . . . , rq)
T ∈Rq such that{

HJf =−diag (p)H,

HTH = diag (r) .

Corollary 4.1. The D1Q3 collision operator

JD1Q3 =− ω
εγ

[f − E (f)] ,

defined in (4.6), admits a pre-stability structure, if

θ > 1 ∧ λ

θεγ−1
> |F ′|. (4.8)

Proof. The Jacobian of the collision operator in (4.6) reads

JD1Q3
f (f) =− ω

εγ

(
I3 −

 1
2θ −

εγ−1

2λ F ′ 1
2θ −

εγ−1

2λ F ′ 1
2θ −

εγ−1

2λ F ′

θ−1
θ

θ−1
θ

θ−1
θ

1
2θ + εγ−1

2λ F ′ 1
2θ + εγ−1

2λ F ′ 1
2θ + εγ−1

2λ F ′


︸ ︷︷ ︸

=Ef(f)

)
.

Each column of Ef sums up to 1. Hence, the Jacobian is a projector, i.e.

[Ef (f)]2 =Ef (f) .

Note that this is already fulfilled for the generalized Maxwellian (3.11). Henceforth,

K = diag

(
1

2θ
− εγ−1

2λ
F ′,

θ − 1

θ
,

1

2θ
+
εγ−1

2λ
F ′
)

is a unique symmetrizer for Ef . Condition (4.8) implies that K is positive definite. The results
in [37, Theorem 6, Proposition 13] specify the existence and definition of H , p and r, and thus
complete the proof.

Remark 4.2. The inequalities (3.12) in Corollary 3.1 for the TRS are precisely the stability conditions (4.8)
in Theorem 4.1 for the DVBE, except of the possible equality in (3.12). This observation fits to Rheinländer’s
[37] statement that the existence of a stability structure is only a sufficient condition for stability.

Remark 4.3. The typical space and explicit Euler in time discretization for LBM leads to a stability
structure under an additional condition on the final relaxation frequency appearing in the LBE [37]:
ω4x ∈ [0, 2], where 4x is the space discretization parameter related to ε. An example with specific
parameter choices is given in Section 5 and verifies the observations in [35,37]. Further, a numerical
comparison between LBM with the herein given equilibrium population and LBM with an extended
Navier–Stokes equilibrium is given in [9]. From a formal point of view, the inclusion of extended equilibria
into the current framework would require extended perturbation terms for the steps AP in the proposed
ansatz (Section 3), effectuating additional terms on the right-hand side of (3.7).
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5. Lattice Boltzmann equation—numerical examples
The generality of the herein presented ansatz is reflected in the fact that by varying model
parameters in the constructed DVBE, we can reach either an advection–diffusion equation, a
diffusion equation, or a hyperbolic conservation law. The following numerical tests investigate
the applicability of the stability constraints derived above and suggest approximation orders to
the TEQ. An in detail analysis of accuracy and consistency in each step from TEQ to LBE is not
carried out, though subject to follow-up research. Nevertheless, for the sake of completeness we
briefly recall the classical discretization process.

Given the DVBE (4.2), an LBE can be obtained by complete discretization. As a starting point,
we integrate (4.2) for ci ∈ C along the characteristic [35](

x̂ (η) , t̂ (η)
)

=
(
x+ ε1−γciη, t+ η

)
.

Integrating from 0 to εγ and identifying the total derivative of fi with respect to η leads to exact
integration on the left-hand side, i.e.

fi
(
x̂
(
εγ
)
, t̂
(
εγ
))
− fi (x, t) =

1

εγ

εγ∫
0

Ji
(
x̂, t̂
)

dη. (5.1)

A basic Euler explicit rule approximates the integral on the right-hand side of (5.1) with its left
integration bound, hence

fi
(
x+ εci, t+ εγ

)
− fi (x, t) =−ω

[
fi (x, t)− feqi (x, t)

]
+O

(
εγ
)
.

Via neglecting the γ-th order terms and introducing4t=4xγ , where4x= ε, we obtain the fully
discrete LBE

fi (x+4xci, t+4t)− fi (x, t) =−ω4x
[
fi (x, t)− feqi (x, t)

]
, (5.2)

which operates on a uniform spatial lattice X4x. The lattice is assumed to be invariant under
discrete velocity translation, i.e. ∀x∈X4x :x+4xci ∈X4x for i= 0, 1, . . . , q − 1. For in detail
derivations of several, possibly higher order discretizations of the DVBE, we refer the reader to
He et al. [16], Junk et al. [20], Rheinländer [35], Ubertini et al. [41], Krause [24], Dellar [11], and
Krüger et al. [25].

Remark 5.1. The pathway from the DVBE to the LBE is not focused in the present work. The topic itself
however is controversial, since the assignment εγ =4xγ =4t amalgamates the relaxation limit and the
mesh dependence. The LBE derivation is based on a top-down discretization of the DVBE, which in turn
limits towards the TEQ when ε→ 0. Hence, accuracy orders are typically expressed with respect to the
DVBE. A sublime discussion on DVBE discretization orders is provided by Ubertini et al. [41]. In contrast,
consistency results for the LBE with respect to the TEQ are often based on asymptotic analysis [20,22].

For the following examples, the accuracy of the D1Q3 LBE with respect to the TEQ is assessed
numerically by a time-dependent L2-error [25], as well as a global error obtained from averaging
over fixed physical points in time, respectively

errL2
(tm) =

√√√√∑N
n=0 |m0 (xn, tm)− ρ∗ (xn, tm) |2∑N

n=0 |ρ∗ (xn, tm) |2
, err=

1

M

M∑
m=1

errL2
(tm) , (5.3)

where xn = n4x and tm =m4t.
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(a) Linear advection–diffusion equation
Consider the initial value problem{

∂tρ+ u∂xρ− µ∂xxρ= 0, (x, t)∈ (−1, 1)× (0,∞) ,

ρ0 (x)≡ ρ (x, 0) = sin (πx) , x∈ (−1, 1) ,
(5.4)

with periodic boundaries. According to Mojtabi et al. [30], the analytical solution to (5.4) is

ρ∗ (x, t) = sin (π (x− ut)) exp
(
−µπ2t

)
. (5.5)

The model is uniquely defined by the non-dimensional Peclet number Pe= uL/µ, where u∈R is
the advection velocity, L= 2 is the domain size and µ> 0 denotes the diffusion coefficient.

Table 1 summarizes the parameter choices for the conducted simulations to approximate
the solution of (5.4) with the D1Q3 LBE. The mathematical model parameters are chosen as
λ= 1 and θ= 3, whereas the physical advection velocity is set to u= 10. The time evolution of
the approximated conservative variable is exemplarily visualized in Figure 3a. The asymptotic
analysis executed in [22] predicts theoretical second order convergence in space for D1Q2 and
D1Q3 LBM with respect to advection–diffusion–reaction equations. Further, it can be deduced
that the diffusion coefficient is recovered by the LBM as

µ=
4t
3

(
1

ω4x
− 1

2

)
.

If not stated otherwise, the terminal time tM for err in (5.3) is determined such that for each
choice of Pe in Table 1, the initial pulse ρ0 is diffused to an amplitude of maxn |ρ (xn, tM ) | ≤ 0.01.
Individual error values are summarized in Table 2. The numerical test cases approve the second
order accuracy with respect to the TEQ in the present setting, see Figure 3b and Table 2, where the
respective experimental order of convergence EOC was calculated from averaging convergence
speeds obtained for two subsequent resolutions, respectively [15]. Concerning stability, the above
derivations can be used to obtain a sufficient condition on the stability of the scheme. Dependent
on the advection velocity F ′ ≡ u, we deduce from ε=4x, θ= 3, λ= 1, and γ = 2 that

4x< 1

3|u| . (5.6)

However, the quality of the bound is dependent on ω4x. For our setting, with u= 10, we obtain
a maximum mesh size of 4x≤ 0.03̄. Since instabilities appear after t > 0.3 for a parameter
combination of ω4x = 1.8 and4x= 0.04> 0.03̄, Table 2 suggests that along ω4x→ 2 the bound
sharpens and reaches the analytical region depicted in Figure 2. This observation matches the
results in [37,39] obtained with spectral radius calculation of the evolution operator of the LBE
(5.2).

Figure 2: Structural stability bound (5.6) for the D1Q3 LBE advection–diffusion approximation.
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(a) Analytical solution (Pe= 13.3̄) (b) L2-error at time t̂= 0.3

Figure 3: (a) Exemplary analytical solution (5.5) for Pe= 13.3̄ plotted until terminal time tM . (b)
L2-error at time t̂= 0.3 for linear advection–diffusion tests with parameters from Table 1.

Table 1: Summary of parabolically scaled LBM discretization parameters (·L denotes lattice units).
Note that µ= µL.

µ= 1.5 µ= 0.1̄ µ= 0.0185

parabolic scaling γ = 2 Pe= 13.3̄ Pe= 180 Pe= 1080

N uL 4x 4t ω4x

50 4× 10−1 4× 10−2 1.6× 10−3 0.2 1.2 1.8

100 2× 10−1 2× 10−2 4× 10−4 0.2 1.2 1.8

200 1× 10−1 1× 10−2 1× 10−4 0.2 1.2 1.8

400 5× 10−2 5× 10−3 2.5× 10−5 0.2 1.2 1.8

800 2.5× 10−2 2.5× 10−3 6.25× 10−6 0.2 1.2 1.8

Table 2: Numerical errors for parabolically scaled LBM to approximate the advection–diffusion
equation (5.4) measured in terms of global error err until terminal time tM , local in time L2-error
errL2

(
t̂
)

at t̂= 0.3, and experimental order of convergence EOC.

Pe= 13.3̄ Pe= 180 Pe= 1080

N errL2

(
t̂
)

err errL2

(
t̂
)

err errL2

(
t̂
)

err

50 0.05989428 0.09943222 0.07072684 0.11399244 0.01314406 —
100 0.00964851 0.02481457 0.01695887 0.01882449 0.00320808 0.01888899
200 0.00195161 0.00583256 0.00421151 0.00431378 0.00080292 0.00432645
400 0.00045732 0.00142989 0.00105309 0.00105990 0.00020130 0.00105915
800 0.00011205 0.00035539 0.00026353 0.00026311 0.00005042 0.00026356

EOC 2.2655 2.0320 2.0170 2.1898 2.0065 2.0544
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(b) Diffusion equation
Under the assumption that u= 0 in (5.4), we obtain a diffusion equation as TEQ. The analytical
solution is similarly given by (5.5) with u= 0. The nulled out advection velocity leads formally to
Pe= 0. Hence, the numerical results are obtained from parameters in Table 1, where additionally
uL = 0. The analytical solution is exemplarily visualized in Figure 4a.

The numerical tests suggest consistency of second order with respect to the TEQ (Table 3 and
Figure 4b) and thus are agreement with Weiss’ [42] investigations for the Goldstein–Taylor model
(a formal equivalent to a D1Q2 DVBE).

In contrast to the results for a non-zero advection velocity, all of the simulations conducted
for the diffusion equation as TEQ are stable. The increased stability is reasonable in view of
the theoretical prediction derived above. More precisely, from (5.6), we may infer that 4x<∞.
Hence, structural stability is given unconditionally for ω4x ∈ (0, 2).

(a) Analytical diffusion solution (µ= 1.5) (b) L2-error at time t̂= 0.3

Figure 4: (a) Exemplary analytical solution (5.5) with u= 0 for µ= 1.5, plotted until terminal time
tM . (b) L2-error at time t̂= 0.3 for pure diffusion tests with uL = 0 and parameters from Table 1.

Table 3: Numerical errors for parabolically scaled LBM to approximate the diffusion equation (5.4)
with u= 0, measured in terms of global error err until terminal time tM , local in time L2-error
errL2

(
t̂
)

at t̂= 0.3, and experimental order of convergence (EOC).

µ= 1.5 µ= 0.1̄ µ= 0.0185

N errL2

(
t̂
)

err errL2

(
t̂
)

err errL2

(
t̂
)

err

50 0.00918773 0.02418652 0.00042383 0.00019562 0.00073274 0.00035212
100 0.00173503 0.00647128 0.00010807 0.00004982 0.00018672 0.00008982
200 0.00039696 0.00159275 0.00002729 0.00001257 0.00004714 0.00002267
400 0.00009645 0.00039637 0.00000686 0.00000317 0.00001184 0.00000569
800 0.00002387 0.00009897 0.00000172 0.00000079 0.00000297 0.00000143

EOC 2.1471 1.9832 1.9862 1.9867 1.9867 1.9865
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(c) Hyperbolic conservation law
As noted in Section 3, the choice of hyperbolic scaling results in a hyperbolic conservation law as
TEQ. For the numerical tests, the analytical solution to (5.4) with µ= 0 is obtained by similarly
setting µ= 0 in (5.5). A visualization is provided in Figure 5a.

The corresponding simulation parameters from Table 4 yield first order convergence to the
TEQ for 0<ω4x < 2. Similar observations were found for a D1Q2 LBE by Junk et al. [21].
Simulation results are summarized in Figure 5b and Table 5. Although the overallEOC in Table 5
for ω4x = 0.2 is lower than 1.0, the convergence speeds for two subsequent resolutions tend to 1.0

with increasing N . This trend can also be observed in Figure 5b, where an asymptotic alignment
of the plotted error values for ω4x = 0.2 to the first order reference line is clearly visible. A reason
for the lowered order of convergence is already present in (3.7), where for hyperbolic scaling
(γ = 1) the O (ε) diffusion term arises intrinsically in the method’s derivation (see Remark 3.1).
Its fully discretized analogue is preceded by a modified factor [21], which on the one hand,
grows inversely linear for ω4x→ 0 and hence, for small ω4x slows down the first order along
4x→ 0. On the other hand, this modified factor is nulled out for ω4x = 2, leading to second order
convergence [21]. The latter limit case is included in 5b, where the optimal relaxation frequency
approves the theoretical result from [21].

(a) Analytical advection solution (u= 0.4) (b) L2-error at time t̂= 0.3

Figure 5: (a) Exemplary analytical solution (5.5) with µ= 0 for u= 0.4, plotted until terminal time
t̂M = 8.12. (b) L2-error at time t̂= 0.3 for pure advection tests with parameters from Table 4.

Table 4: Summary of hyperbolically scaled LBM discretization parameters (·L denotes lattice
units). Note that u= uL.

hyperbolic scaling γ = 1 uL = 0.4 uL = 0.3

N 4x 4t ω4x

50 4× 10−2 4× 10−2 0.2 1.2 1.8 2.0

100 2× 10−2 2× 10−2 0.2 1.2 1.8 2.0

200 1× 10−2 1× 10−2 0.2 1.2 1.8 2.0

400 5× 10−3 5× 10−3 0.2 1.2 1.8 2.0

800 2.5× 10−3 2.5× 10−3 0.2 1.2 1.8 2.0
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Stability-wise, the structural condition changes to a plain bound on the advection velocity
|u|< 0.3̄, which is comparable to a CFL condition [12,36]. The numerical tests approve the stability
criterion, in the sense that with ω4x→ 2, instabilities occur when u= 0.4> 0.3̄ (see Table 5). In
the present setting, a complete blowup of the solution due to the violation of the stability bound
appears solely for t > t̂= 0.3 and N > 50.

Table 5: Numerical errors for hyperbolically scaled LBM to approximate the hyperbolic
conservation law (5.4) with µ= 0, measured in terms of global error err until terminal time
t̂M = 8.12, local in timeL2-error errL2

(
t̂
)

at t̂= 0.3, and experimental order of convergenceEOC.

uL = 0.4 uL = 0.3

ω4x = 0.2 ω4x = 1.2 ω4x = 1.8 ω4x = 2.0

N errL2

(
t̂
)

err errL2

(
t̂
)

err errL2

(
t̂
)

err errL2

(
t̂
)

err

50 0.02439189 0.38400936 0.00374231 0.04888185 0.00105668 0.01053714 0.00015934 0.00076687
100 0.01721336 0.25267240 0.00185803 0.02560400 0.00039222 — 0.00003961 0.00022721
200 0.01040428 0.14837123 0.00092552 0.01311085 0.00017623 — 0.00001006 0.00005751
400 0.00569486 0.08146749 0.00046185 0.00663503 0.00008251 — 0.00000254 0.00001446
800 0.00297596 0.04289145 0.00023070 0.00333773 0.00003983 — 0.00000064 0.00000363

EOC 0.7587 0.7906 1.0050 0.9681 1.1824 — 2.0201 1.9310

6. Conclusion
Based on the extension of an existing perturbation formalism, a constructive ansatz for the
design of a 3× 3 RS to approximate a scalar linear advection–diffusion equation was proposed.
Subsequently, the equivalence to aD1Q3 DVBE was established. Structural stability was assessed
along the way to obtain a sufficient criterion for stability of the fully discretized LBE. Finally,
numerical tests approved the correctness of the derived stability bound. Further, overall second
order convergence in space towards the TEQ was numerically investigated for the constructed
LBM.

The novel constructive procedure outlined above, acts as a foundation for the algebraic
characterization of DVM, utilized for example as DVBE in the derivation of LBM. It facilitates
the joint treatment of RS and DVM in the first place, and furthermore decouples the LBM from
the Maxwell–Boltzmann equilibrium and generalizes it to perturbation terms added to the TEQ.
Generally speaking, the herein discussed linkage of the TRS and DVBE is based on construing the
artificial variables and the corresponding perturbation terms in the RS as equilibrium moments
for non-conserved (kinetic) variables in the DVMS. The construction of the LBM DVMS is
done via a linear combination of the population functions fi, which is initially arising from the
moment summation (4.4), such that the reverse effect can be achieved by diagonalization of the
DVMS, similar to spectrally decomposing the RS (see Figure 1). Hence, the conserved moments,
generated from collision invariants, i.e. specific basis polynomials of C?, in turn span the subspace
of possible equilibrium operators for the DVBE. Henceforth, modifications of scaling parameters,
perturbation coefficients, specific moments and artificial variables, effectuate the limit to distinct
TEQ, and finally yield control over the terms appearing in the PDE which is to be approximated.

The equivalencies of RS and DVMS, as well as TRS and DVBE, lead to a better understanding
of the similarities between mathematical results obtained in the more general field of RS and the
specific achievements on the theoretical background of LBM. Current investigations include the
a priori determination of specific equilibria for reaching distinct types of generic, possibly multi-
dimensional TEQ with DVBM and LBM, and further, an accuracy analysis to frame the interlacing
of perturbation coefficients and discretization parameters in the relaxation limit.

Data Accessibility. This article has no additional data.
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