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Abstract: Recently we demonstrated the simultaneous detection of the chemiluminescence of the
radicals OH* (310 nm) and CH* (430 nm), as well as the thermal radiation of soot in laminar and
turbulent methane/air diffusion flames. As expected, a strong spatial and temporal coupling of OH*
and CH* in laminar and moderate turbulent flames was observed. Taking advantage of this coupling,
multispecies tomography enables us to quantify the reconstruction quality completely independent
of any phantom studies by simply utilizing the reconstructed distribution of both species. This is
especially important in turbulent flames, where it is difficult to separate measurement noise from
turbulent fluctuations. It is shown that reconstruction methods based on Tikhonov regularization
should be preferred over the widely used algebraic reconstruction technique (ART) and multiplicative
algebraic reconstruction techniques (MART), especially for high-speed imaging or generally in the
limit of low signal-to-noise ratio.

Keywords: optical emission tomography; chemiluminescene; combustion; Tikhonov regularization;
algebraic reconstruction technique; laminar and turbulent flows

1. Introduction

Optical emission tomography facilitates the detection of 2D or even 3D distributions of
the chemiluminescence emission of laminar and turbulent hydrocarbon flames of any geometry.
The development and application of tomographic methods for the reconstruction of flame structures in
laminar and turbulent flames have gained a lot of interest in the past decade [1,2], for example, to image
the distribution of chemiluminescent species [3–29] or the volumetric OH-LIF signal [30–33], as well as
the 3D flow field using tomographic particle image velocimetry (tomo PIV) [2,34–37]. Floyd et al. [6]
and Anikin et al. [3] were the first to investigate turbulent flames with optical emission tomography.
More recently the focus has shifted towards space- and time-resolved tomographic measurements
with kHz-repetition rate [8,13,15,17,25,28,29,31].

The quality and reliability of tomographic reconstruction methods applied to turbulent flames has
hitherto been assessed solely on the basis of numerical studies on phantoms, see for example [4,6,7,15,38–40].
In these studies, the radon projections are simulated based on a model distribution, and the reconstructed
distribution is compared with the model distribution as a function of noise level. So far it was the
only viable method, because there is no ground-truth to objectively and independently judge the
reconstruction quality of experimental data. This is particularly problematic in the reconstruction
of turbulent flow fields, where an objective evaluation of the noise level (measurement error) in the
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projection data is nearly impossible and raises criticism as to whether the reconstructed structures
are real or dominated by reconstruction artifacts. In order to be able to assess the quality of the
reconstruction, a reliable knowledge of the actual signal-to-noise ratio in the turbulent flow field is
essential. This also applies to phantom studies if they are used for validation. Here, multi-wavelength
detection [41] opens a new tool by exploiting the strong spatial and temporal coupling of OH* and
CH* [42–46] and the independence of the detection noise at both wavelengths. The last point is crucial
in this context: while both species are subject to the same turbulent fluctuations, the photon and
detector noise is statistically in its nature and therefore independent of each other at both wavelengths.

In our previous work (Part I [41]), we presented a novel extension (POETλ) of our planar emission
tomograph (POET) that enables the simultaneous detection of multiple wavelengths or species in
laminar and turbulent flames using a single image-intensified camera. In this work (Part II) we will
take advantage of the strong spatial and temporal coupling of OH* and CH* in laminar and moderate
turbulent flames to quantify the reconstruction quality completely independent of any phantom studies.
We will show that the spatial location of turbulent flame fronts can indeed be reproduced with high
probability. However, reconstruction methods based on Tikhonov regularization [40,47,48] should be
preferred over the widely used algebraic reconstruction technique (ART) [49,50] and multiplicative
algebraic reconstruction techniques (MART) [49,51–53], especially for high-speed imaging of turbulent
flames or generally in the limit of low signal-to-noise ratio. We will also show that the validation
of tomographic methods based on the back projection of reconstructed distributions, as recently
suggested in the literature [12,13,15,28,29], is flawed. The good agreement between experimental and
back-projected data is a necessary but not a sufficient condition for the quality of the reconstruction.

2. Materials and Methods

2.1. Tomographic Setup

The tomographic setup has been described in detail previously [41]. Briefly, it consists of ten
telescopes arranged in a semicircle around the flame, as shown in Figure 1. The flame emission is
deflected into the vertical direction by UV-enhanced 45◦ aluminum mirrors mounted on top of each
telescope, which projects the light onto a row of optical fibers. The telescopes perform two important
functions: (1) They ensure that each optical fiber detects the luminescence signal only at a small solid
angle in space and (2) they map the field of view (64 mm) to the length of a fiber row, with a reduction
factor of 5.7. All ten fiber rows are bundled into a single ferrule and the emitted light is imaged
onto a single intensified charged coupled device camera (ICCD, PIMAX 4, Princeton Instruments).
Each leg of the fiber bundle (Ceram Optec SIA) contains 102 fused silica fibers (NA 0.22, core �100 µm,
outer �125 µm, including polyimide jacket) densely packed and arranged side by side in a row. On the
telescope side the polyimide jacket has been removed from the fibers to allow for a denser packing of
the bare fibers (�110µm) and, hence, a better optical resolution with a total length of each fiber row of
11.22 mm (102× 110 µm).
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Figure 1. (a) Schematic illustration of the tomographic setup. The emission of the flame is imaged by 
ten 45° deflection mirrors and suitable telescopes onto individual rows of optical fibers. See reference 
[41] for more details. (b) 3D-representation of the tomographic setup and measurement test section. 
(c) Optical layout of the relay optic between the fiber output and the ICCD camera. The signal of each 
individual optical fiber is spatially separated into its wavelengths by a prism and imaged onto the 
camera. (FF: fiber ferrule, OPM: off-axis parabolic mirror, EM: flat-elliptical mirror, BP: band-pass 
filter (optional), SP: short-pass filter, WP: wedged prism.) 

Towards the camera, the optical fibers are brought together in a single ferrule in which the 
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stainless-steel spacer. The output signal of the optical fibers is collimated by an off-axis parabolic 
mirror (OPM1) and deflected by a flat elliptical mirror (EM1) through a short-pass filter (SP) and a 
wedged prism (WP), as displayed in Figure 1c. The signal of each individual optical fiber is spatially 
separated into its wavelengths by the prism and imaged through another set of mirrors (EM2 & 
OPM2) onto the image-intensified CCD camera (ICCD). The short-pass (SP) filter prevents crosstalk 
of the spectrally separated signals from neighboring rows of optical fibers. Optionally, a band-pass 
filter (BP) can be used to limit the detection wavelength to a specific species, e.g., OH* @ 308 nm or 
CH* @ 431 nm. The reconstruction grid consists of 102 × 102 grid cells and the tomographic setup 
has an effective optical resolution in the tomographic measurement plane of about 2 cells or ∼ 1.3 
mm, in accordance with the Nyquist–Shannon sampling theorem [41]. Perpendicular to the 
measurement plane the optical resolution is 0.9 ± 0.3 mm. 

In the following, the coordinate system is defined as (compare Figure 1a): The coordinate system 
is centered in the middle of the flame or the measurement region, with the ݖ-axis (vertical direction) 
oriented perpendicular to the measurement plane. The acute angle between the ݔ -axis and the 
projection directions of telescopes 1 and 10 is 9°. The ݕ-axis lies in the middle between projection 
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Figure 1. (a) Schematic illustration of the tomographic setup. The emission of the flame is imaged by ten
45◦ deflection mirrors and suitable telescopes onto individual rows of optical fibers. See reference [41]
for more details. (b) 3D-representation of the tomographic setup and measurement test section.
(c) Optical layout of the relay optic between the fiber output and the ICCD camera. The signal of each
individual optical fiber is spatially separated into its wavelengths by a prism and imaged onto the
camera. (FF: fiber ferrule, OPM: off-axis parabolic mirror, EM: flat-elliptical mirror, BP: band-pass filter
(optional), SP: short-pass filter, WP: wedged prism.)

Towards the camera, the optical fibers are brought together in a single ferrule in which the
individual fiber rows of the different telescopes are stacked one above the other, each separated by
a stainless-steel spacer. The output signal of the optical fibers is collimated by an off-axis parabolic
mirror (OPM1) and deflected by a flat elliptical mirror (EM1) through a short-pass filter (SP) and a
wedged prism (WP), as displayed in Figure 1c. The signal of each individual optical fiber is spatially
separated into its wavelengths by the prism and imaged through another set of mirrors (EM2 & OPM2)
onto the image-intensified CCD camera (ICCD). The short-pass (SP) filter prevents crosstalk of the
spectrally separated signals from neighboring rows of optical fibers. Optionally, a band-pass filter
(BP) can be used to limit the detection wavelength to a specific species, e.g., OH* @ 308 nm or CH*
@ 431 nm. The reconstruction grid consists of 102 × 102 grid cells and the tomographic setup has
an effective optical resolution in the tomographic measurement plane of about 2 cells or ∼1.3 mm,
in accordance with the Nyquist–Shannon sampling theorem [41]. Perpendicular to the measurement
plane the optical resolution is 0.9± 0.3 mm.

In the following, the coordinate system is defined as (compare Figure 1a): The coordinate system
is centered in the middle of the flame or the measurement region, with the z-axis (vertical direction)
oriented perpendicular to the measurement plane. The acute angle between the x-axis and the projection
directions of telescopes 1 and 10 is 9. The y-axis lies in the middle between projection directions 5 and 6.

2.2. Tomographic Reconstruction

For the reconstruction, the measurement area is divided into a Cartesian grid with n = 102× 102
elements and an edge length of 64 mm. In the following, we assume that the flame is a low scattering
optical medium with homogeneous refractive index even for sooting flames, so that the light follows
a straight line from the emission source in the flame to the detector. That is, index gradients caused
by fluctuations of the local flame temperature and species concentrations are neglected. Under this
assumption, each projection bi can be approximated as a “ray-sum” [4,40,54]:

bi =
n∑
j

Ai jx j (1)

here x j is the unknown species concentration at pixel j and Ai j is the contribution of pixel j to the
projection i. Reconstructing the species distribution from the set of m = 10 × 102 projections then
requires solving a set of linear equations,

Ax = b (2)

where b ∈ Rm is a vector containing the measured projection intensities and x ∈ Rn are the unknown
species concentrations. Since we are in the limit of low optical density and low optical scattering,
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the projection matrix A ∈ Rm×n is constant, specific to the selected arrangement and only needs to
be determined once. However, one cannot solve for the species concentrations directly, because
the linear system is not well-posed, as defined by Hadamard [55]. More specifically, Equation (2) is
rank-deficient, meaning that it permits an infinite number of solutions and additional assumptions must
be made to limit the solution space [40,48]. Additionally, the solution does not depend continuously
on the measured projections. Small changes (errors) of the projection data caused, e.g., by noise,
are amplified and lead to extreme changes in the solution vector x. Both problems can be mitigated by
regularization methods [40,47,48,54]. In this work, we use a combination [56,57] of 1st order Tikhonov
regularization [47] and compressive sensing [58]. The species concentration is then obtained by solving
the optimization problem:

x = argmin[ f (x)] s.t. x ≥ 0
with

f (x) = ‖Ax− b‖22 + λ1‖Lx‖22 + λ2‖x‖21

and ‖ . . . ‖q
(∑

j

∣∣∣x j
∣∣∣q)1/q

and Li j =


1 i = j

−1/ni i neighboring j
0 otherwise

(3)

here ‖ . . . ‖q denotes the Euclidian norm (q = 2) or Manhatten norm (q = 1). ni is the number of direct
neighbors to pixel i, apart from the edges of the reconstruction grid, ni = 4. The Laplacian L adds an
additional set of n equations to the linear system to remedy the rank-deficiency and enforces a piecewise
smooth distribution. The extra term, λ2‖x‖21, has its origin in compressive sensing theory and minimizes
the number of nonzero pixels [58]. Practically, it enforces the species concentrations to be zero in areas
where the signal is close to or below the noise level. In statistics and machine learning, Tikhonov
regularization and compressive sensing are also known as ridge and lasso regression, respectively.
Since the classical L-curve method is not recommended for determining the optimal regularization
parameters for the specified regularization scheme used here [40,59], the optimal parameters were
determined by trial-and-error and phantom studies. Basically, the reconstruction was tested with
different parameters and a combination was chosen in which the distribution is not excessively smeared
by the regularization. The reconstruction of experimental distributions and the phantom studies share
the same parameters. Although, this is not a robust method for determining λ1 and λ2, any analytical or
quantitative method would only improve the reconstruction result compared to our values, especially
for the phantom studies in Section 3. Equation (3) is solved by a gradient descent solver until the scalar
objective function values of two successive iteration steps fulfill the convergence criterion:

ε1 =
f (p) − f (p−1)

max
(

f (p), f (p−1)
) < 10−6 (4)

where f (p) = f
(
x(p)

)
is the scalar objective function value in the p-th iteration. The convergence

threshold has been set to a sufficiently low value, such that we do not observe any significant
improvement (change) in the reconstructed distribution upon further tightening the convergence
criterion. Its choice is validated by the phantom studies in Section 3.

For comparison, we will also include and apply the 0th-order Tikhonov regularization from our
previous work [3,4]. In that case, the regularization term just consists of the Euclidian norm of the
target distribution, without the Laplace operator, and the optimization problem simplifies to:

x = argmin
[
‖Ax− b‖22 + λ‖x‖22

]
s.t. x ≥ 0 (5)

To the best of our knowledge, the work of Anikin et al. [3,4] is so far the only study that uses
Tikhonov regularization for the tomographic imaging of laminar and turbulent flames. The vast
majority of tomographic studies on combustion processes uses either the algebraic reconstruction
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technique (ART) [6,7,10–17,19,20,23,28,29,60] or its sibling, the multiplicative algebraic reconstruction
technique (MART) [21,22,25,26,30–32]. ART was developed independently by Gordon, Bender and
Herman [49] and Hounsfield [50]. It is based on an iterative process developed by Kacmarz [61] for
solving consistent, linear systems of equations. The original ART algorithm is characterized by a rapid
convergence with regard to the sum of squared errors, but shows a pronounced salt-and-pepper noise
in the reconstructed distributions. Various variants have been developed to suppress noise artifacts
and to improve convergence [34,51,52,62,63]. However, ART is used in its original formulation in
almost all tomographic investigations of flames:

ART : x(p+1)
j = x(p)j +ω j

(
bi −

n∑
k

Aikx(p)k

)
s.t. x j ≥ 0

with ω j =
βAi j∑n
k A2

ik

j = 1 . . . n∧ i = 1 . . .m
p = 1, 2, . . .

(6)

here x(p)j is the solution at pixel j in the p-th iteration and β < 1 a relaxation factor, which controls the
speed of convergence. Just like with Tikhonov regularization, the solution is limited to positive values.
This constraint is implicit in many publications but is not always explicitly mentioned.

In many cases, particularly for tomographic particle imaging velocimetry (tomo-PIV) [2,34–37],
MART is preferred over ART because of its faster convergence, while maintaining similar performance
in terms of reconstruction accuracy [49,51–53]. In MART the solution is updated in each iteration step
in a multiplicative fashion:

MART : x(p+1)
j = x(p)j

(
bi∑n

k Aikx(p)k

)βAi j s.t. x j ≥ 0
j = 1 . . . n∧ i = 1 . . .m

p = 1, 2, . . .
(7)

Unlike ART, the exact solution obtained with MART depends on the initial distribution. Conceptually,
ART finds the solution with minimal energy, while MART maximizes the entropy of the reconstructed
image if and only if the initial solution is uniform [53]. Without measures to terminate the iterative process
prematurely, however, both methods eventually approach a solution that approximates the least squares
solution to Equation (2). This is desirable in the case of discrete ill-posed problems, but is problematic
when using these methods to solve rank-deficient problems. We will discuss this point and the impact of
termination criteria in more detail later in the text.

Unless otherwise stated, we will use the normalized difference between the Euclidian norm of the
solution vectors of two successive iteration steps as the termination criterion for ART and MART:

ε2 =

∣∣∣‖x(p)‖2 − ‖x(p−1)
‖2

∣∣∣
‖x(p)‖2

< 10−4
· β (8)

with β = 0.1 and 0.01 for ART and MART, respectively. The termination criterion is similar to that
defined in [6,38,64,65]. However, there is still a large number of papers that do not provide any
information on the exact termination criterion, which makes it difficult to assess the results.

3. Results

One of the key innovations of the new tomographic setup is the ability to detect multiple
wavelengths, and thus different species simultaneously [41]. Figure 2 shows typical, simultaneously
measured distributions of OH* and CH* of laminar (top) and turbulent (bottom) methane–air flames
5 mm and 13.3 mm above the burner, respectively. The exposure time in all cases is 1 ms and each
distribution is normalized by its maximum value. OH* and CH* are commonly used as flame front
markers because their spatial location is inherently tied to the position of maximum heat release
rate, even in turbulent flames [42]. The relative location between the maximum heat release rate and
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that of OH* or CH* changes only slightly with the strain rate and curvature of the flame front [42].
The same applies to the ratio of the chemiluminescence intensities, at least under moderately turbulent
conditions [42,66,67]. In addition, since the luminescence lifetime of OH* and CH* is only about
1 ns [68], there is no appreciable interaction between the electronically excited species and the turbulent
flow field. Thus, we expect a strong correlation between OH* and CH* in space and time.Energies 2019, 12, x FOR PEER REVIEW 6 of 20 
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Figure 2. Simultaneously acquired, normalized species distributions of OH* (left column) and CH*
(right column) in laminar (top row, CH4 2 slm, air 10 slm, h = 5 mm, λ1 = 5, λ2 = 10) and turbulent
(bottom row, CH4 2 slm, air 100 slm, h = 13.3 mm, λ1 = 5, λ2 = 5). The exposure time is 1 ms.
(slm = standard liters per minute).

A very good spatial overlap of the measured OH* and CH* distributions can already be observed
visually in Figure 2. This is quantitatively expressed by the normalized correlation coefficient [69]
between the two distributions:

ρ(x, y) =
∑

i(xi−x)(yi−y)
sxsy

i = 1 . . . n (9)

where x and y are the mean values and sx and sy the standard deviations of the two distributions
x (OH*) and y (CH*). The correlation coefficient captures the most important contribution to the
structural similarity index (SSIM) [70] that was recently used by Liu et al. in a phantom study [14].
ρ(x, y) and SSIM are practically identical over the entire range of exposure times and within the
standard deviation.

Figure 3 shows correlation coefficients for the laminar (dashed lines) and turbulent (solid lines)
methane/air diffusion flames in Figure 2 over a wide range of exposure times. Each point is the
average correlation coefficient of a series of at least 500 simultaneously acquired distributions (OH*
and CH*) and the error bars reflect the 1σ-standard deviations. The ⊗-symbol and the two image
insets emphasize that the correlation coefficients are calculated based on the simultaneously acquired
and reconstructed distributions at 310 and 430 nm. We will return to this distinction in Section 4.1.
In Figure 3, blue solid squares represent reconstructions based on the 1st-order Tikhonov regularization
in Equation (3) (this work), while light-blue open circles have been calculated using the 0th-order
Tikhonov regularization in Equation (5) [3,4]. It is worth noting that the correlation coefficients obtained
using both methods are comparable to each other. At an exposure time of 1 ms the correlation coefficient
is ∼0.8, indicating that the OH* and CH* distributions are very similar and that we capture the real
flame structure with high probability. The remaining uncertainty is due to reconstruction artifacts
caused by measurement noise. If the exposure time is successively reduced, the signal becomes weaker
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and weaker until noise becomes dominant. Since the noise fluctuations for both species are statistically
independent from each other, the correlation disappears at low exposure times or low signal-to-noise
ratios. At first glance, this might be counterintuitive, because for two independent random variables,
the correlation coefficient is independent of the variance of each of the variables. However, in this case
a high noise level in the radon projections leads to a nondeterministic deterioration of the reconstructed
distributions due to the occurrence of “artifacts” in the ill-posed inversion problem. In other words,
adding noise to the projections does not simply add a similar (albeit scaled) amount of noise to each
pixel in the reconstructed distribution.

Energies 2019, 12, x FOR PEER REVIEW 7 of 20 

 

in the ill-posed inversion problem. In other words, adding noise to the projections does not simply 
add a similar (albeit scaled) amount of noise to each pixel in the reconstructed distribution. 

 
Figure 3. Normalized cross-correlation between simultaneously acquired distributions of OH* and 
CH* in turbulent (solid) and laminar (dashed) methane/air diffusion flames as a function of image 
exposure time. Comparison of different reconstruction methods: Tikhonov regularization based on 
Equation (3) and according to Anikin et al. [4] (Equation (5)), as well as the algebraic reconstruction 
technique (ART, Equation (6)) and the multiplicative algebraic reconstruction technique (MART, 
Equation (7)). 

Figure 3 also contains correlation coefficients obtained using the algebraic reconstruction 
technique (ART, Equation (6), dark red, diamonds) and the multiplicative algebraic reconstruction 
technique (MART, Equation (7), light red, triangles). Figure 3 shows that, especially at low exposure 
times (high noise levels/low signal-to-noise ratio), the correlation coefficients of ART and MART are 
significantly lower compared to the Tikhonov regularization, which is to be expected from previous 
phantom studies, see for example [38]. With longer exposure times (higher signal-to-noise ratio), 
however, correlation coefficients of all methods become comparable. Thus, the algebraic 
reconstruction algorithms appear to be more susceptible to reconstruction artifacts and less suitable 
for instantaneous or time-resolved imaging in the limit of low signal-to-noise ratio. As an example, 
Figure 4 shows reconstructions of a single snapshot of the turbulent OH* distribution in Figure 2 
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Figure 3. Normalized cross-correlation between simultaneously acquired distributions of OH* and CH*
in turbulent (solid) and laminar (dashed) methane/air diffusion flames as a function of image exposure
time. Comparison of different reconstruction methods: Tikhonov regularization based on Equation (3)
and according to Anikin et al. [4] (Equation (5)), as well as the algebraic reconstruction technique (ART,
Equation (6)) and the multiplicative algebraic reconstruction technique (MART, Equation (7)).

Figure 3 also contains correlation coefficients obtained using the algebraic reconstruction technique
(ART, Equation (6), dark red, diamonds) and the multiplicative algebraic reconstruction technique
(MART, Equation (7), light red, triangles). Figure 3 shows that, especially at low exposure times (high
noise levels/low signal-to-noise ratio), the correlation coefficients of ART and MART are significantly
lower compared to the Tikhonov regularization, which is to be expected from previous phantom studies,
see for example [38]. With longer exposure times (higher signal-to-noise ratio), however, correlation
coefficients of all methods become comparable. Thus, the algebraic reconstruction algorithms appear
to be more susceptible to reconstruction artifacts and less suitable for instantaneous or time-resolved
imaging in the limit of low signal-to-noise ratio. As an example, Figure 4 shows reconstructions
of a single snapshot of the turbulent OH* distribution in Figure 2 using all four reconstruction
algorithms. Intensities have been normalized to the maximum intensity in the 1st-order Tikhonov
regularization. All reconstructions show a similar global pattern of the approximately annular flame
structure. The differences are more in the details, whereby the previously mentioned salt-and-pepper
noise can be observed in ART (c) and MART (d). The Tikhonov regularizations of 1st- (a) and 0th-order
(b) are very similar, Equations (3) and (5), respectively. In the latter case there is a stronger proportion
of intensity in areas where there should be no intensity (e.g., inside and outside the ring-shaped flame
structure). Exactly these areas are covered by the second regularization term (λ2‖x‖21) in Equation (3),
which is absent in Equation (5) and which tends to minimize the number of non-zero intensities.
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Figure 4. Reconstruction of a snapshot of the turbulent methane/air flame in Figure 2 (OH* @ 310 nm,
exposure time 1 ms) using four different reconstruction algorithms: (a) 1st-order Tikhonov regularization
(this work), (b) 0th-order Tikhonov regularization (Anikin et al. [3,4]), (c) ART and (d) MART. Intensities
have been normalized to the maximum intensity in (a).

It is worth noting, that ART and MART are currently the most frequently used methods in the
literature for the tomographic reconstruction of 2D and 3D flame structures in laminar and turbulent
flames on the basis of flame chemiluminescence [6,7,10,12,13,15,16,19,21–23,25,26,29] or the volumetric
OH-LIF signal [30–33], as well as tomographic particle image velocimetry (tomo PIV) [2,34–37].
The main reason could be that ART and MART are numerically easy to implement and less demanding
in terms of memory consumption, which is particularly advantageous for time-resolved 3D tomography.
As an example, Cai and coworkers demonstrate the time-resolved (up to 4 kHz) and volumetric
tomographic reconstruction with the ART algorithm of a turbulent methane/air flame using either
multiple cameras and customized relay optics [29] or a single camera and a fiber bundle [13,15]. To be
absolutely clear, the exact level of noise in the literature data is unknown and the comparison in Figure 3
is solely based on the signal-to-noise ratios in our experiment. However, the spatial resolution of the
volumetric reconstruction grid (∼ 0.5 mm) is similar to our work, so one might expect comparable signal
levels. A direct comparison is made difficult by the fact that an unspecified thresholding operation
removes detection noise in dark image areas in the literature data [13,15,29]. All reconstructions
presented here have been calculated without any threshold value, only a background image has
been subtracted.

As stated previously, the work by Anikin et al. [3,4] seems to be the only study that uses Tikhonov
regularization for the tomographic imaging of laminar and turbulent flames. This is surprising for
two reasons: (a) ART and MART show a lower accuracy in phantom studies (see for example [38])
than the regularization methods, at identical noise levels in the projection data. (b) Chemical species
tomography of turbulent flow fields usually suffers from a limited number of radon projections,
which makes reconstruction a rank-deficient problem, m � n in Equation (2), for which the use of
nonregularized methods, including unmodified ART and MART, is not advisable [40]. This is again
illustrated in Figure 5, which shows the convergence behavior of the Tikhonov regularization in
Equation (3) and of the algebraic reconstruction technique (ART, Equation (6)). For both methods,
it shows the convergence criterion or tolerance, Equation (4) or (8), and the normalized error ex between
the reconstructed and true distributions as a function of iteration steps:

ex =
‖x(p) − xexact

‖2

‖xexact‖2
(10)

where xexact and x(p) are the true and reconstructed distributions in the p-th iteration step.
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Figure 5. Convergence behavior of (a) Tikhonov regularization and (b) ART for turbulent species
distributions (Figure 2) and a noise level of 20% as a function of the number of iterations.
The respective convergence criterion (tolerance, black solid), the normalized error (green dash-dotted)
and the correlation coefficient of two reconstructed distributions with statistically independent noise
(blue dashed) are shown.

For the creation of Figure 5, 300 experimentally determined distributions of the turbulent flame
in Figure 2 were selected at random and assumed to be the true species distributions (xexact). Radon
projections were calculated for each individual distribution and normal distributed noise with a
Gaussian distributed noise level of 20% (SNR = 5, compare Section 4.2 below) was added. These noisy
projections then served as input for the reconstruction algorithms and both the tolerance criterion and
the normalized error were saved as a function of the iteration cycles. The graphs in Figure 5 only
represent the mean values from all 300 reconstructions, but the ratio of mean values and 1σ-standard
deviation is greater than 10 at almost all points. Figure 5 also contains mean correlation coefficients ρ
(Equation (9)) obtained by correlating reconstructions of two distributions with the same xexact but
statistically independent random noise contributions.

Figure 5a shows that the reconstruction using Tikhonov regularization is well-behaved in that
the error ex convergences to a more or less constant value after a certain number of iteration steps or
below a given tolerance, e.g., ε1 ≈ 10−6 (vertical dashed line). Additional iteration steps do not lead
to any further improvement of the reconstruction, but also to no deterioration. Mathematically the
regularization term in Equation (3) ensures that the solution of the underlying equation system is not
contaminated by small singular values [40]. By contrast, the error term in ART shown in Figure 5b
first decreases, passes through a minimum (eopt), and then begins to increase again as the iterative
algorithm continues. The results for 0th-order Tikhonov regularization Equation (5) [4] and MART
Equation (7) are similar, to the 1st-order Tikhonov regularization and ART, respectively.

This behavior is well known in literature, see for example [64,65,71], and common when applying
those and similar iterative algorithms, which have been designed for discrete ill-posed problems,
to rank-deficient problems without applying measures to span the null-space in the equation system
Equation (2) [40,48]. Subsequently, different stopping criteria have been proposed in the literature in
order to terminate the reconstruction prematurely before the accuracy of the reconstructed distribution
deteriorates again significantly as the iterative solver progresses [6,64,65,71]. The problem: The majority
of recent publications on the tomographic reconstruction of laminar and turbulent flames that use ART
or MART do not provide any information on the convergence criteria. Likewise, there is sometimes
even no information on additional constraints (e.g., x ≥ 0) or whether measures have been taken to
remedy the rank-deficiency. Therefore, the quality of the reconstructed fields is often very difficult
to assess.
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This is further complicated by the fact that for ART and MART the optimal convergence criterion,
that is, the tolerance or number of iterations at which the error is minimal, strongly depends on the
noise level or signal-to-noise ratio. For ART, Figure 6a shows the tolerance ε2,opt/β and the number
of iterations as a function of the noise level (or SNR) at the point where the error between true and
reconstructed distributions is minimal. Both criteria vary over about two orders of magnitude in the
investigated range of signal-to-noise ratios (SNR ∼ 2 . . . 20). Figure 6b shows the relative difference
between the minimal error eopt and maximal correlation coefficient ρopt and the corresponding values ê
or ρ̂ when using the convergence criterion in Equation (8): ε2/β = 10−4. It immediately becomes clear
that the choice of the termination criterion has a great influence on the accuracy of the reconstructed
distribution. Since there are minima or maxima in Figure 6b, one must know the true noise level
or the SNR in order to apply the optimal termination criterion. Therefore, the correct selection of a
representative intensity distribution and of a realistic noise level is of great importance in phantom
studies if they are to be used to validate experimental results. Nonetheless, even if the termination
criterion is adapted to the experimental conditions, the minimum reconstruction error of ART is
significantly larger on average than with the Tikhonov regularization, as show in Figure 5.
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Figure 6. (a) Variation of tolerance ε2/β and number of iterations of the ART algorithm at the point of
minimum reconstruction error eopt (compare Figure 5b) as a function of noise level or signal-to-noise
ratio (SNR). (b) Relative change between the optimum error eopt or optimum correlation coefficient ρopt

and their values (ê and ρ̂) for a fixed termination criterion of ε2/β = 10−4.

Finally, we would like to emphasize that the correlation coefficient ρ(x1, x2) between two
reconstructed images of the same true distribution xexcact, possessing statistically independent noise,
correlates strongly with the reconstruction error ex, independent of the reconstruction algorithm.
Figure 7 shows a scatter plot of the correlation coefficient against the reconstruction error. Each point
corresponds to a single iteration step of the reconstruction algorithm, obtained from simulations similar
to Figure 5, and for noise levels between 5% and 40% (with a step size of 5%). 300 simulations were
carried out for each noise level, with randomly selected experimental reconstructions shown in Figure 2
as initial distribution. On average, the correlation coefficient and the reconstruction error have a clear
relationship to one another over a wide range of reconstruction errors and noise levels, regardless of
the reconstruction algorithm.

From an experimental point of view, the OH* and CH* distributions meet exactly the requirements
for the correlation coefficient: Within the optical resolution of the tomographic system and due to
the strong spatial and temporal coupling of both species, they represent the same distribution (flame
structure), but have statistically independent noise. Thus, the correlation coefficient shown in Figure 3 is
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indeed an independent measure to assess the validity of the reconstructed flame structure, based solely
on experimental data and completely free of phantom studies.Energies 2019, 12, x FOR PEER REVIEW 11 of 20 
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obtained from two reconstructions of the same true distribution but with independent noise.

The relationship in Figure 7 has another important conclusion: Take for example the reconstruction
of the turbulent flame in Figure 2 at an exposure time of 1 ms, corresponding to a frame rate of 1 kHz
in time-resolved measurements. Under these conditions the noise level in the projections is ∼16%
(see Section 4.2) and the correlation coefficient is ρ ≈ 0.8. The correlation coefficient is mainly sensitive
to the structure of the reconstructed distributions, i.e., the value is high if the locations where intensity
variations for both species, OH * and CH *, are as coherent as possible. Thus, a high-correlation
coefficient means that we capture the flame structure with high probability, i.e., the spatio-temporal
location of the flame front, provided that the two distributions or species used to calculate the
correlation coefficient have a high spatio-temporal correlation themselves. However, the normalized
reconstruction error is still ∼50% as shown in Figure 7, meaning a quantitative interpretation of
instantaneous reconstructed intensities (single shot results) has a much greater uncertainty than the
flame front position (compare Section 4 in [41]).

4. Discussion

4.1. Erroneous Validation Methods

At this point we will briefly discuss another way of assessing the quality of tomographic
reconstructions that is occasionally suggested in the literature, see for example [12,13,15,28,29].
The idea is the following: In the reconstruction, one of the experimental projection directions is
omitted. Then the projection in the previously omitted direction is calculated backwards from the
reconstructed distribution (reprojected) and compared with the experimental values of the left-out
projection. This procedure is a variant of cross-validation common in machine learning, with the
difference that it does not compare the target values (namely, the reconstructed distribution), but the
back-projected, dependent variable (namely, the projection data). This indirect method via the back
projection is necessary, because for turbulent systems the true distribution (ground-truth) is not known.

The results of such a cross-validation are presented in Figure 8 for the same four reconstruction
algorithms considered above and based on the experimental data of turbulent diffusion flames in
Figure 2. Figure 8a,b show the normalized cross-correlation ρ

(
bexp, b′

)
and the relative squared error

r
(
bexp, b′

)
, respectively, between the experimental bexp and reprojected b′ projection data of turbulent

diffusion flames. This is different from Figure 3 where the correlation coefficients were calculated for
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reconstructed distributions with statistically independent noise, namely at 310 and 430 nm. The relative
squared error is defined as:

r
(
bexp, b′

)
=
‖bexp − b′‖2
‖b′‖2

(11)
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Figure 8. Comparison of a simulated (reprojected) and experimental projection direction, if the latter is
omitted in the reconstruction process: (a) Normalized cross-correlation coefficients and (b) relative squared
error between reprojected and experimental projection data for different reconstruction algorithms.

Each point in Figure 8 corresponds to the mean value of at least 500 simultaneously acquired
distributions and error bars reflect the 1σ-standard deviation. For each image, the intensity distribution
was reconstructed, omitting a randomly selected projection direction. The figure shows the combined
results of both wavelengths, 310 and 430 nm, which are identical for the cross-validation strategy. It is
immediately noticeable that the correlation coefficients shown in Figure 8a between reprojected and
experimental projections are practically identical for all algorithms and the correlation coefficients
exceed 70% even for short exposure times. At first sight, this might be in conflict with the correlation
coefficients in Figure 3. Furthermore, the relative squared error for ART and MART shown in Figure 8b
is even better (smaller) for all exposure times than for the Tikhonov regularization.

This apparent contradiction between Figures 3 and 8 has its origin in the very nature of the
respective reconstruction algorithms: First, every reconstruction algorithm is designed to minimize the
difference between experimentally observed and back-projected projections. As a necessary condition,
every reconstruction algorithm should achieve a reasonable agreement between bexp and b′, even if
the projection direction bexp was not considered in the reconstruction. However, it says little about
the details of the actual reconstructed distribution, since the projections are only an integral measure.
Secondly, aside from the natural constraint that all intensities should be non-negative (x ≥ 0), ART and
MART eventually converge to the least-squares (LSQ) solution, which minimizes the least-squares
error term at the cost of amplifying small measurement errors and resulting in stronger reconstruction
artifacts [40,48,49,52]. In other words, both LSQ and ART/MART effectively minimize the sum of
squared errors or, equivalently, r

(
bexp, b′

)
. Of course, the same applies to the Tikhonov regularization,

but the latter introduces a penalty term (see regularization terms in Equation (3)) to the objective
function (least squares error), which essentially reduces reconstruction artifacts (large outliers in the
distribution) at the “cost” of increasing the sum of squared errors. This is directly reflected in the higher
error values of the Tikhonov regularization compared to the ART and MART algorithms in Figure 8b.
The good agreement between reprojected and experimental projections is therefore only a necessary
condition of the algorithms, but it is not sufficient to assess the quality or accuracy of the reconstruction.
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By contrast, the correlation coefficients in Figure 3 do not suffer from the same limitation, because they
compare two independent reconstructions (independent noise) of the same distribution.

The erroneous method of cross-validation described above, which relies exclusively on numerical
reprojections, differs significantly from the work of Ma et al. [72]. In that study the authors validate the
tomographic setup by comparing a vertical slice of the reconstructed 3D-chemiluminescence distribution
with a 2D-OH-PLIF image at the same location in a turbulent flame. Again, two independently
determined distributions are compared with each other for validation. Unfortunately, the work of
Ma et al. [72] presents no information on the nature of the reconstruction algorithm.

4.2. Signal-to-noise Ratio Estimate

As outlined in the previous sections, the actual noise level or signal-to-noise ratio (SNR) effectively
determines the reconstruction accuracy that can be achieved, within the limitations of the particular
reconstruction algorithm. Evaluation of the SNR is straight-forward for a stable flame, for example
the laminar diffusion flame in Figure 2 (top) just above the burner exit, using a series of independent
images taken one after each other. Figure 9 shows the average SNR of the radon projections (black
squares) as well as of the pixels of the reconstructed distributions (blue circles), using the Tikhonov
regularization in Equation (3). The regularization parameters were kept constant and were identical to
those in Figure 2. Here, the SNR is defined as the ratio of the mean intensity divided by its standard
deviation: SNR = bi/sb,i or x j/sx, j. Thus, it is the upper limit of the SNR of an individual fiber (pixel)
when acquiring a single image. It was determined independently for each optical fiber bi (radon
projection) and pixel x j in the reconstruction grid from a series of 300 images for each exposure time.
Since most of the reconstructed pixel intensities are almost zero but not exactly zero, only projections
or pixels with an intensity of more than 10% of the maximum intensity in the respective image frame
were used for the analysis.Energies 2019, 12, x FOR PEER REVIEW 14 of 20 
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Figure 9. Average signal-to-noise ratio (SNR) of the laminar methane/air diffusion flame in Figure 2,
evaluated for the raw fiber signals or radon projections (black squares) and the reconstructed images
(blue circles) and as a function of exposure time. The data was recorded 2 mm above the nozzle exit,
where the flame is spatially and temporally stable. The gray dashed line is an estimate of the fiber
signal-to-noise ratio of the turbulent flame (see text for details).

The values in Figure 9 reflect the mean SNR across all fibers (pixels) and the error bars correspond
to the 1σ-standard deviation of the SNR. As expected, the SNR scales approximately with the square
root of the exposure time: SNR ∝ τ0.46. At an exposure time of τ = 1 ms the average signal-to-noise
ratio of the radon projections is SNR ≈ 6, corresponding to a noise level of about 16%. Even at such a
moderate SNR, the correlation coefficient is ρ ≈ 0.8 as shown in Figure 3, indicating that the flame
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structure is reproduced with high probability. The pixel SNR of the reconstructed images is about a
factor of 2 . . . 3 lower than the SNR of the measured fiber signals.

As previously mentioned, the SNR of the radon projections of a turbulent flame cannot be
determined directly. In order to estimate the SNR of a turbulent flame we simulated the radon
projections and reconstructed distributions at different noise levels. The approach is similar to that in
Section 3. An experimentally determined distribution of the turbulent flame in Figure 2 was randomly
selected and assumed to be the true species distribution. Then the associated radon projections were
calculated and used as input for the reconstruction algorithm in Equation (3). Before the reconstruction,
normal-distributed noise was added to the projections and the correlation coefficient ρ between two
reconstructed distributions of the same true distribution but with independent noise was calculated.
The whole process was repeated for different noise levels (SNR) and for a total of 300 experimental
distributions per noise level. The gray dashed line indicates the simulated SNR of turbulent flame
structures similar to those in Figure 2, where the correlation coefficient of the simulated reconstructions
matches its experimental value shown in Figure 3 at a given exposure time. Overall, the SNR of the
laminar and turbulent flames are about the same, indicating that the average intensity detected by each
fiber is comparable in the laminar and turbulent flames investigated here. Moreover, once correlation
coefficients between distributions of OH* and CH* for any turbulent flame are known, we can estimate
the SNR by simulating and matching simulated and experimental correlation coefficients.

So far, we have only looked at the mean SNR values, averaged over all optical fibers or pixels.
For the laminar flame, we can further analyze the signal-to-noise ratio as a function of the spatial
position. This is shown in Figure 10a, where the average SNR of the fiber signals is plotted as a function
of the signed distance from the burner center (black filled circles). Also shown is the average pixel
SNR for reconstructions using the Tikhonov regularization (solid horizontal line) and ART or MART
(dashed horizontal line). At positions close to the radius of the laminar diffusion flame (∼15 mm) the
fiber signal intensity and, hence, the SNR increases, because the radon projections have a larger overlap
along the projection path with the ring-shaped flame front.
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Figure 10. (a) Average signal-to-noise ratio (SNR) of the radon projections across a laminar methane/air
diffusion flame at an exposure time of 1 ms (filled black circles). Also shown is the SNR normalized
by the effective number of sampled pixels for Tikhonov regularization (open gray circles) and ART
(open red diamonds) in comparison to the average pixel SNR of the reconstructed images (Tikhonov:
solid line, ART: dashed line). (b) Root-mean-square (rms) values of the reconstructed intensities of a
laminar (top row) or turbulent (bottom row) flame and for Tikhonov regularization (left column) and
ART (right column).
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Mathematically, the radon projection is just the sum of all pixel intensities of the reconstruction
grid, weighted by the projection matrix elements (Equation (1)). Assuming the signal-to-noise ratio
SNRx of a single pixel is constant, the signal-to-noise ratio SNRb of the radon projection should scale
with the square-root of the number of non-zero pixels nx>0 contributing to the projection:

SNRb = SNRx ·
√

nx>0 (12)

Since not every pixel that contributes to a projection lies 100% in the projected volume, only an
effective number of pixels can be specified using the projection matrix:

ni,e f f =
∑
{ j|x j>0}

Ai j (13)

where the summation covers all pixels with nonzero intensities and ni,e f f is the effective number of pixels
for the projection bi. Again, since most pixel intensities x j are almost zero but not exactly zero, only pixels
with an intensity of more than 10% of the maximum intensity are treated as nonzero: x j > 0.1×max(x).
As an example, for radon projections near the center of the burner (−5 mm < d < 5 mm), where the
SNR is almost constant, we get from Equation (13) ne f f ,Tikh = 5.8 for the Tikhonov regularization
and ne f f ,ART = 6.5 for ART. The difference between Tikhonov regularization and ART is due to
reconstruction artifacts near the flame front in the ART reconstruction. Finally, Figure 10a also shows
the fiber signal-to-noise ratio divided by the square-root of the number of effective pixels contributing
to each fiber, separately for the Tikhonov regularization (gray open circles) and for the ART algorithm
(red open diamonds). The scaling factor for the Tikhonov regularization contains an additional factor
√

2, which takes into account the smoothing of the reconstructed distribution by the Laplacian in
Equation (3).

For both reconstruction methods, the scaled SNR is constant, with the exception of artifacts at
the outermost edges, hence, the rise of the fiber SNR close to the radius of the ring-shaped flame is
indeed due to summing the signals of a larger number of pixels. Additionally, in the case of Tikhonov
regularization, the scaled SNR is almost identical to the mean SNR of the reconstructed pixels. Thus,
any reconstruction artifacts of the Tikhonov regularization Equation (3) do not additionally worsen
the noise level in the reconstructed distributions compared to the radon projections. In other words,
the relationship between the SNR of the reconstructed pixels and the radon projections is consistent
with Equation (1).

This is different with ART or MART, where the mean SNR of the reconstructed pixels is about
20%− 30% lower than the scaled SNR of the radon projections. Contrary to Tikhonov regularization,
reconstruction artifacts lead to a deterioration of the pixel SNR with ART (MART). The pixel SNR is
lower than would be expected given the level of noise in the radon projections. This is also evident
from Figure 10b, which shows the root-mean-square (RMS) of the reconstructed distribution of laminar
and turbulent flames as well as for the Tikhonov regularization and ART. The color scale is the same for
each flame type (image row). For both flames, the RMS fluctuations of the reconstructed distributions
for ART are larger than for Tikhonov regularization, with more noticeable reconstruction artifacts
occurring in image areas in which there is no flame.

5. Conclusions

Taking advantage of the strong temporal and spatial correlation between OH* and CH*, we were
able to asses and quantify the quality of the reconstruction of turbulent flames for the first time
using experimental data alone, that is, without phantom studies. Even at a noise level of 16% in the
radon projections, the spatial position of turbulent flame structures can be reconstructed with a high
probability. Generally, Tikhonov regularization should be preferred over algebraic reconstruction
techniques, especially in the limit of low signal-to-noise ratios.
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As outlined above, the determination of the signal-to-noise ratio under turbulent conditions is
by no means trivial. However, without an informed knowledge of the signal-to-noise ratio in the
projection data, decoupled from the turbulent fluctuations of the flow field, a reliable evaluation of
the quality and accuracy of a reconstruction algorithm for a given task is almost impossible. This is
also the case with phantom studies where a firm assumption about the expected noise level must be
made. Given that the actual noise level in the experimental data is usually unknown under turbulent
conditions, the chosen noise level in the phantom studies used to validate the tomographic method
might be questionable.
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