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A micro-mechanically motivated phenomenological yield function, for polycrys-

talline cubic metals is presented. In the suggested yield function microstructure is

taken into account by the crystallographic orientation distribution function in terms of

tensorial Fourier coefficients. The yield function is presented in a polynomial form in

powers of the stress state. Known group-theoretic results are used to identify isotropic

and anisotropic parts in the yield function, whereby anisotropic parts are characterized

by tensorial Fourier coefficients. The form of the presented yield function is inspired

by the classic, phenomenological von Mises - Hill yield function first published in

1913. For a specific choice of material parameters, both functions coincide, thus a

micro-mechanically motivated generalization of the von Mises - Hill yield function is

presented. For the given yield function, two dimensional experimental results are suf-

ficient, to identify a three dimensional anisotropic yield behavior. The work concludes

with a treatment of the isotropic special case, i.e. a tension-compression split in yield

behavior as well as parameter ranges for convexity and shapes of the yield surface.
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1 INTRODUCTION

Generally a yield criterion is a function used to distinguish, whether the response of a material to a given stress state is reversible
(elastic) or irreversible (e.g. plastic or viscoplastic) and can also be viewed as equivalent stress hypotheses [1]. Yield functions
thus serve as a limit to the elastic range of the underlying material and define five dimensional hyper-surfaces in stress space
[2]. In an associated plastic flow theory [3] the yield function serves as a potential for irreversible deformation. Plastic flow is
thereby governed by the normal-derivative of the yield function to the current stress state. Convexity of the yield surface and
normality of plastic flow to the yield surface both follow from a postulate for stable inelastic material [4].

Historically significant efforts were made to describe plastically isotropic and anisotropic material behavior via various kinds
of yield functions. Publications by von Mises [5, 6] established a quadratic form of the yield function, which is still widely
used today. Hill is generally viewed as having introduced the first fully anisotropic quadratic yield criterion for orthotropic
materials [7], but his function can also be viewed as a special case of the quadratic von Mises yield function specified for
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plastically anisotropic behavior [6]. Thus from now on we will refer to the quadratic von Mises - Hill yield function. This
function can be used to describe plastically anisotropic material with an orthotropic symmetry by using six parameters for
plastically incompressible behavior. Later publications aimed at generalizing the yield criterion of von Mises - Hill by using
arbitrary powers of stress states instead of being purely quadratic. Examples are criteria of the Barlat class, e.g., the Barlat-05-
p18 yield criterion [8], which uses 18 parameters to describe anisotropic yield. Further discussion of anisotropic yield criteria
is, e.g. summarized in the work of Altenbach et al. [9].

All the mentioned criteria have in common, that they are phenomenological in nature. Thus they follow from empirical
evidence and do not incorporate microstructural information into yield behavior. In addition the identification of anisotropy
parameters requires a large range of experiments and these parameters often lack a clear physical interpretation [3].

In continuum mechanics 𝑛-point probability functions are often used to homogenize the effective properties of polycrystal
materials [10]. In this work we consider the relationship between microstructure, in the form of a one-point probability distri-
bution of crystal orientations, and macroscopic plastic yield. We present a quasi-phenomenological yield function to describe
plastically anisotropic and the special case of plastically isotropic behavior. Quasi-phenomenological means, that the material
model is formulated on the macroscopic scale, but the coefficients used are determined in terms of the microstructure and are
therefore observable. Microstructure is accounted for by making use of the crystallite orientation distribution function and its
representation by tensorial Fourier coefficients. The yield function is presented in powers of the stress direction and can be
viewed as a generalization of the quadratic von Mises - Hill form. Previously published group-theoretic results allow a split into
isotropic and anisotropic parts of the yield function, where texture accounts for anisotropic behavior. Main assumptions that lead
to the suggested new yield function are

i) a correlation between crystallographic texture and plastic yielding,

ii) plastic incompressibility,

iii) a polynomial form in powers of stress direction,

iv) the yield condition is positively homogeneous of degree one in the absolute value of stress and

v) a weakly pronounced crystallographic texture.

Notation. Throughout this work a direct tensor notation is preferred. If tensor components are used, then the Einstein summation
convention is applied. Scalars are denoted as small Latin or Greek letters, e.g., 𝑐 and 𝜂. First-order tensors are denoted by bold
lower case Latin letters, e.g. 𝐚, second-order tensors by upper case bold Latin or bold Greek letters, e.g. 𝜎. Arbitrary 𝑛th-order
tensors are marked via a subscript, e.g., 𝕁4 for a fourth-order tensor. The Kronecker symbol is denoted by 𝛿𝑖𝑗 . The scalar and
dyadic produssct are denoted by 𝐚 ⋅ 𝐛 and 𝐚⊗ 𝐛. The symbol ⋆ denotes the Rayleigh product, which for tensors 𝕋n of arbitrary
rank 𝑛 is defined by 𝐐 ⋆ 𝕋 = 𝑇𝑖𝑗..𝑛(𝐐𝐞𝑖)⊗ (𝐐𝐞𝑗)⊗…(𝐐𝐞𝑛). A map 𝐐 → 𝐐⊗𝑟 defines a 𝑟 times dyadic product of the tensor
𝐐 with itself.

2 PRELIMINARIES

2.1 Crystallite orientation distribution function and its tensorial representation
A polycrystalline structure can be described by 𝑛-point probability functions [11]. A one-point probability function describes
the volume fraction of lattice orientation and is, in engineering sciences, called crystallite orientation distribution function
(CODF). For a non-uniform CODF the material is said to posses a crystallographic texture. Higher order 𝑛-point probability
functions, (𝑛 ≥ 2) are used to described additional aspects of grain structure, like shape and size of crystal grains (morpholog-
ical texture). As morphological texture has a less pronounced influence on plastically anisotropic behavior [12] it will not be
considered here.

The orientation of a single crystal can be described by a proper orthogonal tensor 𝐐 ∈ SO(3) with 𝐐 = 𝐠𝑖 ⊗ 𝐞𝑖, where the vec-
tors 𝐠𝑖 and 𝐞𝑖 denote orthonormal lattice vectors and a fixed orthonormal reference basis respectively. The CODF 𝑓 (𝐐) specifies
the volume fraction d𝑣∕𝑣 of all crystals with the orientation 𝐐 [13]. Thus d𝑣∕𝑣(𝐐) = 𝑓 (𝐐)d𝑄, where d𝑄 is the volume element
in SO(3) which ensures invariant integration over SO(3). The CODF is normalized, non-negative and reflects the symmetry of
the constituting crystals 𝐇C and the sample symmetry 𝐇S resulting from processing [13]. For a uniform orientation the CODF
is constant 𝑓 (𝐐) = 1.
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Tensorial representations of the CODF have been established [14, 15, 38]. A Fourier series expansion of a cubic CODF is
proposed as

𝑓 (𝐐) = 1 +
∞∑
𝑖=1
𝑓𝛼𝑖

(𝐐), 𝑓𝛼𝑖 = 𝕍 ′
𝛼𝑖
⋅ 𝔽 ′
𝛼𝑖
(𝐐),

𝔽 ′
𝛼𝑖
(𝐐) = 𝐐 ⋆ 𝕋 ′

𝛼𝑖
,

(1)

where {𝛼𝑖} = {4, 6, 8, 9, 10…}. For a Fourier series expansion the square integrability of 𝑓 (𝐐) is a necessity, which is assumed
here. The 𝕋 ′

𝛼𝑖
are called cubic reference tensors, are normalized to ‖𝕋 ′

𝛼𝑖
‖ = 2𝛼𝑖 + 1 and reflect the crystal symmetry 𝐇C. The

𝕍 ′
𝛼𝑖

are called tensorial Fourier or texture coefficients and reflect the sample symmetry 𝐇S. For a number 𝑁 of discrete single
crystal orientations 𝐐𝛾 with volume fraction 𝑐𝛾 they can be computed via [16]

𝕍 ′
𝛼𝑖
= 1

2𝛼𝑖 + 1

𝑁∑
𝛾=1
𝑐𝛾𝐐𝛾 ⋆ 𝕋 ′

𝛼𝑖
. (2)

We assume the texture coefficients 𝕍 ′
𝛼𝑖

to be a representation of the crystallographic texture, defined at every material point in the
regarded sample. For determination of these texture coefficients pole figure data are necessary. These can be obtained, e.g., by
diffraction measurements. For details regarding diffraction techniques see Kocks et al. [10] and the literature mentioned therein.

Tensors with a prime are harmonic (completely symmetric and traceless [17]), thus e.g.

𝑉 ′
𝑖𝑗𝑘𝑙

= 𝑉 ′
𝑗𝑖𝑘𝑙

= 𝑉 ′
𝑗𝑖𝑙𝑘

= 𝑉 ′
𝑘𝑗𝑖𝑙

= ⋯ , 𝑉 ′
𝑖𝑖𝑘𝑙

= 0. (3)

The number of independent components in a harmonic tensor is

dim(𝕍 ′
𝛼𝑖
) = 2𝛼𝑖 + 1. (4)

Cubic base tensors of unequal rank are mutually orthogonal in the following sense [18]

∫
SO(3)

𝔽 ′
𝛼𝑖
(𝐐)

2𝛼𝑖 + 1
⊗

𝔽 ′
𝛽𝑖
(𝐐)

2𝛽𝑖 + 1
d𝐐 = 𝕆,∀𝛼𝑖 ≠ 𝛽𝑖. (5)

Note that the {𝛼𝑖} start with index 4, which is due to the fact that a cubic reference tensor of rank 2 is zero. Also cubic texture
coefficients with uneven tensor rank vanish up to rank eight [13]. The Frobenius norm of all texture coefficients is in this work
(see Eq. 2) bounded by one, thus ‖𝕍 ′

𝛼𝑖
‖ ∈ [0, 1]. The Frobenius norm is a measure for the anisotropy of texture [19]. As has been

stated isotropic materials have an CODF equal to one, so that all texture coefficients vanish for completely random orientation
distribution. For single crystals the norm of all texture coefficients is equal to one and corresponds to maximum anisotropy.

A generalization of Fourier series expansion for arbitrary crystal symmetries has been published [17, 20]. Further details
concerning the CODF and its tensorial representation can be found in the works of Bunge and Zheng et al. [13, 21, 22]. An
evolving texture will not be considered in this work. We restrict our derivations to the special case of a texture constant in time.
However, in a tensorial setting, it is possible to derive evolution equations for texture coefficients [23]. Further work has been
focused on the estimation of a CODF based on leading texture coefficients [24].

2.2 Decomposition of tensors into irreducible parts
From the theory of group representations it is well known, that any finite order tensor can be decomposed into a sum of
harmonic tensors. Irreducible states, that for a considered representation no proper sub representation exists [25]. The pro-
cedure of decomposing tensors into irreducible parts (where these parts are harmonic tensors) allows a separation into isotropic
and anisotropic components of a given tensor and enables a more intuitive physical understanding of the decomposed ten-
sor [17]. For the decomposition the detailed number of independent tensors and their construction is of interest. In this
subsection we will use known group theoretic results, to investigate the number of independent components in a specific
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T A B L E 1 Number of fundamental (N), linear independent fundamental (M) and symmetric

isotropic tensors (O)

Rank 2 4 6 8
𝑁 1 3 15 105

𝑀 1 3 15 91

𝑂 1 2 3 5

representation which is of interest in the derivation of our yield function. The construction of independent tensors will be
dealt with in Sec. 3.

In this work we let 𝑇 (𝑟)𝑉 be the space of 𝑟-th order tensors of a three-dimensional Euclidean space 𝑉 . The map 𝐐 → 𝐐⊗𝑟 of
a rotation 𝐐 on 𝑉 defines a linear representation of the rotation group SO3 on 𝑇 (𝑟)𝑉 . For a subspace𝑍 ∈ 𝑇 (𝑟)𝑉 invariant under
𝐐⊗𝑟 the restriction 𝐐⊗𝑟|𝑍 is a linear representation of the rotation group on 𝑍. The decomposition of these representations, so
a decomposition of tensors invariant under arbitrary rotations, will be of concern in this section.

For a given representation 𝐐⊗𝑟|𝑍 there exists a complete set of irreducible unitary representations 𝑙 of dimension 2𝑙 + 1
which can be expressed as a sum

𝐐⊗𝑟||𝑍 = 𝑛00 + 𝑛11 +⋯ + 𝑛𝑟𝑟. (6)

The 𝑛𝑙 are multiplicities of each sub representation 𝑙. In this work we will be concerned with representations of harmonic
tensors of ranks 4, 6 and 8, which are subspaces of 𝑇 (4)𝑉 , 𝑇 (6)𝑉 and 𝑇 (8)𝑉 respectively. We will denote the subspaces of
harmonic tensors by ℐ𝑚 for harmonic tensors of rank 𝑚, which is used [17, 26, 27].

The decomposition of the rotation group restricted to harmonic tensors has been previously published [26] and [28]. The
result is

𝐐⊗4|||ℐ4
= 0 +2 +4,

𝐐⊗6|||ℐ6
= 0 +2 +4 +6,

𝐐⊗8|||ℐ8
= 0 + 22 + 24 +5 +6 +8.

(7)

For interpretation we examine a fourth-order tensor ℂ4 ∈ ℐ4. Thus ℂ4 maps ℐ2 → ℐ2. The decomposition implies, that ℂ4 can
be written as a sum of three harmonic fourth-order tensors in a one-, five- and nine-dimensional subspace of ℐ4 respectively.
Thereby parts corresponding to the irreducible representation 0 are isotropic tensors, whereas the remaining parts 𝑘, 𝑘 > 0
are anisotropic tensors.

2.3 Isotropic tensors
Fundamentally isotropic tensors 𝕀2r of rank 2𝑟 are linear combinations of Kronecker-deltas 𝛿⊗r

𝑖𝑗
and permutations thereof [29].

So one fourth order isotropic tensor 𝕀4 is 𝐼𝑖𝑗𝑘𝑙 = 𝛿𝑖𝑗𝛿𝑘𝑙. From this combination there exist two further permutations, so that the
maximum number 𝑁 of fundamentally isotropic tensors of rank 4 is 3. For higher tensor ranks there exist linear dependencies
between the fundamentally isotropic tensors, such that the number of linear independent fundamentally isotropic tensors𝑀 is
lower than 𝑁 . In this work we will restrict ourselves to isotropic tensors with certain symmetries. These are a permutation of
indices in the Kronecker-deltas and a permutation of the Kronecker-deltas themselves. The notation used will be 𝕀S,𝑖𝛼 , where 𝛼 is
the tensor rank, 𝑖 the number of the isotropic tensor and 𝑆 indicates symmetries in the stated sense. If one imposes this symmetry
restriction, the resulting symmetric tensors are linear combinations of the fundamentally isotropic tensors, which can be shown
by a quick calculation. Thus, e.g. the second symmetric fourth order isotropic tensor is 𝐼S,2

𝑖𝑗𝑘𝑙
= 1∕2(𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘). The number

of symmetric isotropic tensors for a given rank is 𝑂 in this work. In Tab. 1 the numbers𝑁,𝑀 and 𝑂 for even isotropic tensors
up to rank eight are summarized.

For later use we include the results of scalar products between the symmetric isotropic tensors 𝕀S,𝑖𝛼 and maps of symmetric
second order tensors𝐀 → 𝐀⊗r , which can be easily obtained via a quick calculation. These results are summarized in Tab. 2. The
main invariants of a symmetric second order tensor are denoted by 𝐼1, 𝐼2 and 𝐼3. With usage of the Cayley-Hamilton theorem
tr(𝐀4) can be expressed via 𝐼1, 𝐼2 and 𝐼3.
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T A B L E 2 Results of scalar products between symmetric isotropic tensors and a symmetric

second order tensor

𝕀𝐒,𝟏𝟐 ⋅ 𝐀 = tr(𝐀) =𝑰𝟏

𝕀S,14 ⋅ (𝐀⊗2) = tr2(𝐀) =𝐼21
𝕀S,24 ⋅ (𝐀⊗2) = tr(𝐀2) =𝐼2
𝕀S,16 ⋅ (𝐀⊗3) = tr3(𝐀) =𝐼31
𝕀S,26 ⋅ (𝐀⊗3) = tr(𝐀)tr(𝐀2) =𝐼1𝐼2
𝕀S,36 ⋅ (𝐀⊗3) = tr(𝐀3) =𝐼3
𝕀S,18 ⋅ (𝐀⊗4) = tr4(𝐀) =𝐼41
𝕀S,28 ⋅ (𝐀⊗4) = tr2(𝐀)tr(𝐀2) =𝐼21 𝐼2
𝕀S,38 ⋅ (𝐀⊗4) = tr2(𝐀2) =𝐼22
𝕀S,48 ⋅ (𝐀⊗4) = tr(𝐀)tr(𝐀3) =𝐼1𝐼3
𝕀S,58 ⋅ (𝐀⊗4) = tr(𝐀4) =−1

6
𝐼41 + 1

2
𝐼22 + 2

3
𝐼1𝐼3

3 ANISOTROPIC YIELD FUNCTION FOR POLYCRYSTALLINE MATERIALS

In this section a micro-mechanically motivated anisotropic yield function for polycrystalline cubic metals is presented. We start
by considering a yield function 𝜑, being a function of the deviatoric stress state 𝜎′ and CODF 𝑓

𝜑
(
𝜎′, 𝑓

)
. (8)

We assume the yield function to be a smooth function 𝜑 ∶ ℐ2 × → ℝ, where  is a rotationally invariant neighborhood
of an isotropic orientation distribution 𝑓Iso [30]. By using assumption i) we have introduced texture by means of the CODF to
macroscopic yield behavior. This assumption is frequently used in continuum mechanics [31, 32]. The usage of deviatoric stresses
leads to a plastically incompressible theory (assumption ii)), where plastic deformation is purely deviatoric. This assumption is
usually made for metallic materials, due to the fact that plastic deformation is governed by dislocation glide and thus volume
preserving [3]. Pressure-sensitive plasticity [33] will not be considered here.

Combining assumptions i) and ii), a polynomial form in powers of stress direction (assumption iii) and a positively homo-
geneous function of degree one in the absolute value of 𝜎′ (assumption iv) we conclude, that a general form of an anisotropic
yield function is

𝜑
(
𝜎′, 𝑓

)
= ‖𝜎′‖
𝜎f

(
ℍ4 ⋅

(
𝐍⊗2
𝜎′

)
+ ℍ6 ⋅

(
𝐍⊗3
𝜎′

)
+ ℍ8 ⋅

(
𝐍⊗4
𝜎′

)) ≤ 1, (9)

where 𝐍𝜎′ = ‖𝜎′‖−1𝜎′ is the stress direction and 𝜎f is the yield stress which results from an uniaxial tensile test. Assumption iii)
is motivated by the usual polynomial form of most existing phenomenological yield functions in powers of stress. Assumption
iv) is similar to other existing yield functions, e.g. the von Mises - Hill criterion, which is positively homogeneous of degree
one in ‖𝜎′‖. The so far unspecified tensors ℍ𝑚 depend on the CODF and thus on the given microstructure. Their specific form
will be derived in the following for aggregates of cubic crystallites. Such a restriction is in general not necessary, the tensors ℍ𝑚
can be derived explicitly for arbitrary crystal symmetries.

For analyzing the tensors ℍ𝑚 we assume the sample to be an aggregate of cubic crystals with a weakly pronounced texture
(assumption v)). The implication of a weakly pronounced texture follows [31] after a Taylor series expansion in the CODF

𝜑
(
𝜎′, 𝑓

)
= 𝜑

(
𝜎′, 𝑓iso

)
+ 𝜕𝜑
𝜕𝑓

||||𝑓=𝑓iso
(
𝑓 − 𝑓iso

)
+ 𝑜

(‖𝑓 − 𝑓iso‖2), (10)

with the deviation 𝑓 − 𝑓iso of a CODF 𝑓 from an isotropic CODF 𝑓iso. For small deviations of an isotropic CODF, thus for weakly
pronounced texture, dropping all terms 𝑜(‖𝑓 − 𝑓iso‖2) is a good approximation. Thus weak texture implies a decomposition of
each ℍ𝑚 into an isotropic and an anisotropic part, which is linear in the CODF. The isotropic parts of each decomposition are
isotropic tensors of rank 𝑚. As can be seen in Tab. 2 these tensors are 𝕀S,24 , 𝕀

S,3
6 and 𝕀S,38 .
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We now proceed to determine the anisotropic parts of each ℍ𝑚, which are linear in the CODF. Therefore we make use of
the the principle of material frame indifference [34], which has to be fulfilled by any function in continuum mechanics, and the
irreducible decomposition in Eq. (7). The principle of material frame indifference implies

𝜑
(
𝐑 ⋆ 𝜎′, 𝐑(𝑓 )) = 𝜑(𝜎′, 𝑓),∀𝐑 ∈ SO(3). (11)

Here 𝐑(𝑓 ) is the rotated CODF, defined by 𝐑(𝑓 )(𝐐) = 𝑓 (𝐑T𝐐). We note, that ℍ𝑚 ∈ ℐ𝑚 for 𝑚 = 4, 6 and 8. This is due to the
symmetry and tracelessness of𝐍𝜎′ . Thus the principle of material frame indifference is equivalent to the mathematical restriction
of the rotation group to ℐ𝑚. This allows us to use the irreducible decomposition introduced in Eq. (7), to additively decompose
each tensor ℍ𝑚. Resulting tensors in the sub representation 0 are the isotropic tensors already introduced. In addition, due to
the assumption of a weakly pronounced texture, all sub representations 𝑘, 𝑘 > 0 are linear in the CODF.

For deriving the specific form of each sub representation we make use of a previously published proof [26]. The author shows,
that each harmonic tensor in 𝑘 depends only on certain texture coefficients. This dependency is unique up to a multiplicative
constant 1. Thus, in our framework, each harmonic tensor in 𝑘 is (up to an arbitrary multiplicative constant) identical to a
projection of the texture coefficient 𝕍 ′

𝑘
to the corresponding subspace 𝑘.

After these considerations we conclude the following for an aggregate of cubic crystals:

• All terms corresponding to the subspace 2 vanish, as there is no cubic texture coefficient of rank two.

• All terms corresponding to the subspace 𝑙 with 𝑙 uneven vanish, as there is no cubic texture coefficient of uneven rank (for
ranks smaller eight).

• ℍ4 can be additively decomposed into two terms, the first being isotropic and the second being equal to 𝕍 ′
4.

• ℍ6 can be additively decomposed into three terms, the first being isotropic, the second a sixth order anisotropic tensor depend-
ing solely on the cubic texture coefficient of rank four, which we define as 𝕍 ′

6,4(𝕍
′
4), and 𝕍 ′

6.

• ℍ8 can be additively decomposed into four terms, the first being isotropic, the second an eighth order anisotropic tensor
depending solely on the cubic texture coefficient of rank four 𝕍 ′

8,4(𝕍
′
4), the third term being an eighth order anisotropic tensor

depending solely on 𝕍 ′
6 as in 𝕍 ′

8,6(𝕍
′
6) and the last term being 𝕍 ′

8.

Each tensor in the decomposition is explicitly determined up to a scalar constant. These constants are material parameters in
the resulting yield function. Summarized, the tensors ℍ𝑚 can be decomposed as

ℍ4 = 𝑐1𝕀
S,2
4 + 𝜂1𝕍 ′

4 ,

ℍ6 = 𝑐2𝕀
S,3
6 + 𝜂2𝕍 ′

6,4 + 𝜂3𝕍
′
6 ,

ℍ8 = 𝑐3𝕀
S,3
8 + 𝜂4𝕍 ′

8,4 + 𝜂5𝕍
′
8,6 + 𝜂6𝕍

′
8.

(12)

For clarification the material parameters have been partitioned into isotropy (𝑐𝑖) and anisotropy (𝜂𝑖) coefficients. Thus the yield
function is calibrated via three isotropy and six anisotropy coefficients.

The harmonic tensors 𝕍 ′
6,4(𝕍

′
4),𝕍

′
8,4(𝕍

′
4) and 𝕍 ′

8,6(𝕍
′
6) are isotropic projections of the corresponding texture coefficients [26]

𝕍 ′
6,4
(
𝕍 ′
4
)
= 𝕄6,4

[
𝕍 ′
4
]
,

𝕍 ′
8,4
(
𝕍 ′
4
)
= 𝕄8,4

[
𝕍 ′
4
]
,

𝕍 ′
8,6
(
𝕍 ′
6
)
= 𝕄8,6

[
𝕍 ′
6
]
,

(13)

such that the resulting tensors are harmonic. With this restriction in mind, the isotropic tensors 𝕄6,4,𝕄8,4 and 𝕄8,6 can be
constructed as linear combinations of Kronecker-deltas. Thus all anisotropic parts of the yield function are explicitly determined
through the CODF and its tensorial Fourier series representation.

After these considerations an anisotropic yield function which shows explicitly the influence of crystallographic texture
on plastic behavior has been derived. It can be calibrated with three isotropy (𝑐𝑖) and six anisotropy (𝜂𝑖) material param-

1 The author uses Wigner D-functions and spherical harmonics𝑊𝑙𝑚𝑛 to represent CODFs. The author shows, that the irreducible representation 𝑘 can depend

only on those𝑊𝑙𝑚𝑛 with 𝑙 = 𝑘. In addition it is proven, that the relationship between𝑊𝑙𝑚𝑛 and an anisotropic irreducible representation 𝑘 is determined up to

an arbitrary multiplicative constant.



DYCK AND BÖHLKE 7 of 10

eters. For using this function texture data, e.g. obtained through EBSD measurement or X-Ray diffraction, are necessary.
With the texture coefficients microstructure data is inherently included in macroscopic yield behavior in a phenomenological
sense.

4 APPLICATIONS

4.1 Comparison to existing yield functions
The derived yield function can be considered as a generalization of the quadratic yield function by von Mises - Hill. This follows
after considering, that for a quadratic yield function all material parameters in Eq. (9) except 𝑐1 and 𝜂1 are set to zero. Focusing
on plastically isotropic behavior first, we recognize, that for 𝑐1 =

√
3∕2 the proposed yield function coincides with the isotropic

formulation of the well known von Mises - Hill yield function.
When 𝜂1 differs from zero the yield function is quadratic and anisotropic. This form, where the plastic anisotropy is taken

into account by the texture coefficient, has been previously used [35]. This followed as an ansatz to incorporate micro-structure
to phenomenological plastically anisotropic behavior. In comparison, in this work the formulation followed after considering
group-theory and the principle of material frame-indifference. It has been shown [36], that the quadratic yield function coincides
with the orthotropic quadratic form by Hill and that the constants appearing in Hill’s yield function can be identified with the
entries of the texture coefficient 𝕍 ′

4.

4.2 Identification of material parameters in the yield function for sheet metals
With the presented yield function a three dimensional plastic material behavior can be modeled. The parameter identification
for sheet metals is possible by comparing standard tensile tests in the sheet plane, thus two dimensional data, with simulated
results. A possible procedure for a parameter identification is shown in the following.

For sheet metals it is common to experimentally determine 𝑅-values (also called Lankford coefficients) and yield strength
values in uniaxial tensile tests, where samples with different angles to the rolling direction are used. 𝑅-values are often deter-
mined as ratio of plastic strain in width direction to plastic strain in thickness direction after 20% elongation. However it is
advantageous to use plastic strain rates instead of plastic strain [3]. Then 𝑅-values follow as

𝑅 =
𝜀̇p ⋅ 𝐧w ⊗ 𝐧w
𝜀̇p ⋅ 𝐧t ⊗ 𝐧t

, (14)

with plastic strain rate 𝜀̇p, width direction 𝐧w and thickness direction 𝐧t . In associated flow plasticity 𝜀̇ follows as the derivative
of the yield function to the current stress state as

𝜀̇p = 𝜆
𝜕𝜑

(
𝜎′, 𝑓

)
𝜎′

. (15)

These relations, combined with the stress state 𝜎 = 𝜎𝐧𝜙 ⊗ 𝐧𝜙 can be used to calculate 𝑅-values predicted by the yield function
and compare them to experimentally determined ones. 𝐧𝜙 is thereby the tensile direction with angle 𝜙 to rolling direction of the
sheet. Due to the homogeneity of the yield function in ‖𝜎′‖ we can use Eq. (14) without knowing the absolute value of stress
state. Only the direction 𝐧𝜙 ⊗ 𝐧𝜙 is relevant. In addition, yield strength can be simulated with the proposed yield function via

𝜎
(
𝐧𝜙

)
𝜎f

=
√
3∕2

(
ℍ4 ⋅

(
𝐍⊗2
𝜎′

)
+ ℍ6 ⋅

(
𝐍⊗3
𝜎′

)
+ ℍ8 ⋅

(
𝐍⊗4
𝜎′

))−1
. (16)

Thus, once the texture of a material is known (e.g. through X-Ray measurement [10]) and texture coefficients are calculated
according to Eq. (2) Eqs (14) and (16) can be used to simulate the in plane variation of yield stress an 𝑅-values for various
angles to rolling direction. These results can be compared to experimental data and material parameters can be identified by
minimizing the error between experimental and simulated results. This means, that it is possible to identify a three dimensional
anisotropic yield behavior by simple uniaxial experiments in sheet plane.
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Three dimensional stress state. Plane stress setting.

F I G U R E 1 Isotropic cubic yield function for different parameter combinations, 𝑐1 =
√
3∕2

4.3 Discussion of the special case of an isotropic yield function
By setting all anisotropy coefficients, i.e. 𝜂1,… , 𝜂6, to zero one retrieves an isotropic yield function. For this special case
we will discuss tension and compression yield behavior, shape of the yield function du to parameter variation and convex-
ity. We will begin by noting, that when uneven powers of 𝐍𝜎′ are considered in the yield function, an asymmetry regard-
ing tension and compression behavior is introduced [3]. This is sometimes also called 𝐽3 theory, in contrast to the isotropic
von Mises yield function, which is called 𝐽2 theory. In this terminology 𝐽2 and 𝐽3 are the second and third principal invari-
ants of the deviatoric stress tensor. The proposed yield function can easily be used to model such a behavior, by simply
choosing 𝑐2 ≠ 0.

For further investigating the plastically incompressible isotropic yield function we use the two-dimensional 𝜋-plane [2].
Therefore a transformation from three-dimensional principal stress state to the 𝜋-plane is necessary, which is achieved with the
transformation

𝜎′1 = −
√
2
2

(
𝑥 +

√
3
3 𝑦

)
, 𝜎′2 =

√
2
2

(
𝑥 −

√
3
3 𝑦

)
, 𝜎′3 =

√
2
3𝑦. (17)

In the 𝜋-plane the isotropic yield surface, the boundary of the yield function with 𝜑(𝜎′) = 𝜎f , is implicitly defined as 𝑦 = 𝑦(𝑥).
In two dimensions the resulting yield function can be displayed graphically and convexity can be studied analytically and by
visual inspection of the yield surface. A method [2] for studying convexity, where a vanishing curvature at given stress states is
looked for, is used. The points where curvature vanishes are called convexity borders. However in the published manuscript some
terms are missing, which has been reported [37]. In this paper we implemented the isotropic yield function in the commercial
software tool MAPLE, differentiated symbolically and investigated vanishing curvature.

Due to the fact, that a purely isotropic yield function up to quartic terms is practically identical to the one up to cubic terms, we
will limit this discussion to a yield function with quadratic and cubic isotropic terms. Shapes of the resulting yield function are
displayed in Fig. 1 for three dimensional stress states and for a plane stress setting. The isotropic von Mises - Hill yield surface
is included for comparison (𝑐1 =

√
3∕2 as discussed in Subsec. 4.1) and different values for 𝑐2 are used. The yield surface has

been normalized to 𝜎f .
This parameter study indicates, that 𝑐2 can be used for a differentiation between tensile and compressive stress states. For

𝑐2 ≤ 0 yield stresses in tensile direction increase, whereas compressive yield strength decreases until a convexity border is
reached. The opposite is true for 𝑐2 ≥ 0.
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The convexity borders can be calculated along the lines 𝑦 = −
√
3𝑥∕3 and 𝑦 =

√
3𝑥∕3. They lie in the parameter range

−
√
2

3
√
3
≤ 𝑐2
𝑐1

≤
√
2

3
√
3
. (18)

5 CONCLUSIONS

In this paper a micro-mechanically motivated quasi-phenomenological yield function for polycrystalline cubic metals is pre-
sented. The general form of the yield function follows after the assumptions of i) a correlation between crystallographic yield,
ii) plastic incompressibility, iii) a polynomial form in powers of stress direction, iv) a positively homogeneous function of degree
one in the absolute value of stress and v) a weakly pronounced crystallographic texture. By considering previously published
group-theoretic results and the principle of material frame indifference we determine how the CODF, a one-point probabil-
ity distribution in the form of its tensorial representation with Fourier coefficients, influences anisotropic yield behavior of
cubic crystal aggregates. The tensorial Fourier coefficients, which are microstructural quantities accessible, e.g., through X-Ray
diffraction measurement, are measures for the anisotropy in yield behavior.

The derived yield function covers plastically anisotropic and the special case of plastically isotropic material behavior in a
single framework. It is shown, that the derived yield function can be considered as a generalization of the well known quadratic
von Mises - Hill yield function. Further we present a simple way to identify material parameters of sheet metal for a three
dimensional anisotropic yield behavior by experiments done in the sheet plane. After a discussion of the special isotropic case
of the presented yield function we see, that a tension compression split in yield behavior can be easily introduced by including
uneven powers of stresses into the yield function.

R E F E R E N C E S

[1] V. A. Kolupaev, Equivalent Stress Concept for Limit State Analysis, Vol. 86, Springer 2018.
[2] J. Betten, Acta Mech. 1979, 32, 233.
[3] D. Banabic, H.-J. Bunge, K. Pöhlandt, A. E. Tekkaya, Formability of Metallic Materials: Plastic Anisotropy, Formability Testing, Forming Limits

(Eds: D. Banabic, K. Pöhlandt), Springer 2000.
[4] D. C. Drucker, in Proc. of 1st US National Congress of Applied Mechanics 1951, pp. 487–491.
[5] R. v. Mises, Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse 1913, 582.
[6] R. v. Mises, Z. Angew. Math. Mech. 1928, 8, 161.
[7] R. Hill, Proc. R. Soc. Lond. A, Math. Phys. Sci. 1948, 193, 281.
[8] F. Barlat, H. Aretz, J. W. Yoon, M. E. Karabin, J. C. Brem, R. E. Dick, Int. J. Plast. 2005, 21, 1009.
[9] H. Altenbach, A. Öchsner, State of the art and future trends in material modeling (Ed: Springer), Springer 2018.

[10] U. F. Kocks, C. N. Tomé, H.-R. Wenk, Texture and Anisotropy, Cambridge University Press 2000.
[11] S. Torquato, Random Heterogeneous Materials, Springer, New-York 2002.
[12] E. Kröner, J. Mech. Phys. Solids 1977, 25, 137.
[13] H. J. Bunge, Mater. Des. 2003, 4, 795.
[14] M. Guidi, B. L. Adams, E. T. Onat, Textures Microstruct. 1992, 19, 147.
[15] J. A. Geary, E. T. Onat, Representation of nonlinear hereditary mechanical behavior, Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United

States), 1974.
[16] T. Böhlke, in Computational Materials Science 2005, pp. 276–283.
[17] Q.-S. Zheng, W.-N. Zou, J. Eng. Math. 2000, 37, 273.
[18] M. Lobos Fernández, T. Böhlke, J. Elast. 2019, 134, 1.
[19] M. Lobos, T. Yüzbasioglu, T. Böhlke, J. Elast. 2017, 128, 17.
[20] R. Tsotsova, Doctoral thesis, Karlsruhe Institute for Technology (KIT) 2011.
[21] Q.-S. Zheng, W.-N. Zou, Appl. Math. Mech. (English Edition) 2001, 22, 885.
[22] Q.-S. Zheng, W.-N. Zou, Appl. Math. Mech. (English Edition) 2001, 22, 865.
[23] T. Böhlke, Computers and Structures 2006, 84, 1086.
[24] M. Junk, J. Budday, T. Böhlke, Mathematical Models and Methods in Applied Sciences 2012, 22, 1250043.
[25] M. Hamermesh, A. A. Mullin, Group Theory and its Applications to Physical Problems, Addison-Wesley, New York 1962.
[26] C.-S. Man, Effects of Texture on the Plastic Anisotropy of Orthorombic Sheets of Cubic Metals: A Group-Theoretic Analysis, University of

Kentucky, Lexington 1997.
[27] H. A. Jahn, Acta Crystallographica 1953, 6, 368.
[28] C.-S. Man, M. Huang, J. Elast. 2012, 106, 1.



10 of 10 DYCK AND BÖHLKE

[29] E. A. Kearsley, J. T. Fong, Journal of Research of the National Bureau of Standards, Section B: Mathematical Sciences 1975, 79B, 10.
[30] C.-S. Man, Int. J. Plast. 2002, 18, 1683.
[31] C.-S. Man, M. Huang, Int. J. Non-Linear Mech. 2001, 36, 501.
[32] T. Böhlke, A. Bertram, Journal de Physique IV (Proceedings) 2002, 105, 167.
[33] H. Altenbach, A. Öchsner, Plasticity of Pressure-Sensitive Materials, Springer 2014.
[34] W. Noll, On material frame-indifference, Carnegie Mellon University, Pittsburgh 1995.
[35] T. Böhlke, Doctoral thesis, Otto-von-Guericke Universität Magdeburg 2001.
[36] T. Böhlke, A. Bertram, E. Krempl, in International Journal of Plasticity 2003, pp. 1867–1884.
[37] A. Bolchoun, V. A. Kolupaev, H. Altenbach, Forschung im Ingenieurwesen/Engineering Research 2011, 75, 73.
[38] B. L. Adams, J. P. Boehler, M. Guidi, E. T. Onat. Journal of the Mechanics and Physics of Solids 1992, 40, 723.

How to cite this article: A. Dyck, T. Böhlke. A micro-mechanically motivated phenomenological yield function for
cubic crystal aggregates. Z Angew Math Mech. 2020;100:e202000061. https://doi.org/10.1002/zamm.202000061

https://doi.org/10.1002/zamm.202000061

