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Abstract: The behavior of fiber suspensions during flow is of fundamental importance to the process
simulation of discontinuous fiber reinforced plastics. However, the direct simulation of flexible
fibers and fluid poses a challenging two-way coupled fluid-structure interaction problem. Smoothed
Particle Hydrodynamics (SPH) offers a natural way to treat such interactions. Hence, this work
utilizes SPH and a bead chain model to compute a shear flow of fiber suspensions. The introduction
of a novel viscous surface traction term is key to achieve full agreement with Jeffery’s equation.
Careful modelling of contact interactions between fibers is introduced to model suspensions in the
non-dilute regime. Finally, parameters of the Reduced-Strain Closure (RSC) orientation model are
identified using ensemble averages of multiple SPH simulations implemented in PySPH and show
good agreement with literature data.

Keywords: short fiber reinforcement; process simulation; smoothed particle hydrodynamics

1. Introduction

Molding of discontinuous reinforced polymer fiber suspensions, e.g., glass fibers in polymer melt,
leads to fiber reorientation. Understanding and predicting the behavior of such fiber suspensions is
crucial for achieving high quality products in common composite manufacturing processes such as
injection molding and compression molding. Due to the high cost of production facilities and molds,
it is desirable to simulate the flow in a computationally efficient and reliable way before running
experiments. The fiber reorientation is also of high interest for subsequent anisotropic structural
simulations in the framework of a continuous CAE chain [1,2].

Jeffery [3] was the first to analytically derive the motion of a single rigid, ellipsoidal shaped body
in a viscous Newtonian flow without buoyancy or inertia. Jeffery’s work was extended by Folgar and
Tucker [4] to account for fiber interactions by introducing a fiber interaction coefficient that models
isotropic diffusivity of fiber orientation. Other phenomenological parameters were introduced to
capture experimentally observed orientation delays in the SRF and RSC model [5] and to account for
anisotropic diffusion in the Anisotropic Rotary Diffusion (ARD) model [6] or the improved Anisotropic
Rotary Diffusion (iARD) model [7]. These phenomenological parameters account for interactions
of multiple fibers in non-dilute suspensions and are fitted to experimental observations, but do not
describe a two-phase suspension. Instead, they model the fiber orientation state with second and
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fourth order moments of the fiber orientation distribution function Ψ(p) introduced by Advani and
Tucker [8] as fiber orientation tensors

A =
∫

S
p⊗ p Ψ(p) dp (1)

and

A =
∫

S
p⊗ p⊗ p⊗ p Ψ(p) dp. (2)

Here, p describes a fiber direction and dp is the surface element on a unit sphere S := {p ∈ R3 :
‖p‖ = 1}. Typically, a closure approach for the fourth order fiber orientation tensor is employed to
describe the evolution of the second order fiber orientation tensor. Whenever this work utilizes a
closure approximation, the invariant-based optimal fitting (IBOF) closure is chosen [9]. Determining
the parameters in these macroscopic models from experiments can be time consuming. Thus, a direct
fiber simulation may be utilized to identify these parameters.

1.1. Point-Wise Interaction Methods

A common approach for the simulation of fiber suspensions is the treatment of fibers as slender
bodies that interact with the fluid at discrete points. Exact solutions from Stokesian dynamics [10] or
slender-body theory [11] are utilized to describe long-range hydrodynamic interaction between fluid
and particles for creeping flows. Several authors proposed models for single flexible fibers suspended
in a fluid. Hinch [12] started by modeling inextensible threads. Yamamoto et al. [13,14] developed
a fiber model consisting of individual beads that experience Stokesian drag forces from the fluid.
These bead chain models are computationally expensive and authors have combined multiple beads
to rods leading to more efficient rod chains [15–17]. Alternatively, spheres [18,19] and spheroids [20]
connected with hinges were suggested. Lindström and Uesaka [21] use a discrete field of point forces
to ensure that the fluid is experiencing forces opposed to the fiber (two-way coupling). Several authors
investigated rheological properties of multiple rigid fibers suspended in a fluid based on these models
for single fibers. Yamane et al. [22] described the motion of multiple rigid rods with hydrodynamic
drag force and torque on the individual rods. They added a lubrication force for rods that are in close
proximity to each other in order to capture short range hydrodynamic effects. However, they did not
account for long range hydrodynamic interaction between particles, which was addressed later by Fan
et al. [23] using slender-body theory. Sundararajakumar and Koch [24] showed that lubrication forces
alone do not prevent penetration of fibers and included contact forces. Suspensions of multiple flexible
fibers were investigated with rod-chain models [25] and simplified bead chain models [26]. In addition
to these rheological investigations, few direct simulations have been applied on component scale with
flexible fibers or bundles to investigate effects such as fiber-matrix separation [27–30].

1.2. Resolved Methods

In contrast to models based on discrete point-wise interaction forces, the suspension flow might
be also described directly by a two-phase flow, in which one phase represents fibers and the other one
the suspending fluid. Solving this fully coupled two-phase system with mesh-based approaches such
as Finite Elements or Finite Volumes raises the problem of large mesh deformations. A simulation
using an immersed boundary method resolves the remeshing problem but requires a mesh resolution
significantly smaller than the fiber diameter to track the interface and is therefore computationally
expensive. An alternative approach for the simulation of two-phase fiber suspensions is the use of
particle methods. Meshless particle methods can offer a natural way to represent fluid-structure
interaction at the fiber surface and have been studied less than point-wise interaction methods. Bian
and Ellero propose a splitting scheme for separate integration of long-range hydrodynamic interactions
and short-range lubrication [31], which was applied in an SPH simulation of a concentrated spherical
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particle suspension [32]. The fine resolution of suspended particles leads to a high accuracy, but comes
at high computational costs. Yashiro et al. [33,34] connected particles to rigid bodies for modeling the
injection molding of dilute short-fiber-reinforced composites using a moving particle semi-implicit
method. Recently, a very similar approach using SPH was reported by He et al. [35,36]. However,
both showed only short time periods when comparing the simulation to Jeffery’s equation and did not
investigate the interaction between fibers. Fiber suspensions were also investigated in the framework
of dissipative particle dynamics with a focus on Boger fluids [37]. This investigation used a Langrange
multiplier to constrain fiber extension and multiple parameters had to be calibrated to analytical
solutions in order to achieve correct hydrodynamic forces on the fiber. Yang et al. [38] employed the
SPH method in order to simulate a single flexible fiber in a viscous fluid with a focus on determining
its drag coefficient. However, they limited their work to a single fiber without interactions.

The present work extends Yang’s model with a viscous surface traction term necessary to meet
Jeffery’s equation precisely and allows for the simulation of non-dilute fiber suspensions through the
introduction of fiber contact forces. First, rotation and bending of a single fiber is compared to Jeffery’s
equation to validate the approach. Then, parameters of the RSC fiber orientation model are determined
using SPH simulations.

2. Theory

SPH was developed independently by Lucy [39] and Gingold & Monaghan [40] for astrophysical
problems in 1977. Since then, multiple formulations were developed and were applied to various
fields. The core idea of SPH is the conversion of a partial differential equation (PDE) for a continuum
into a set of ordinary differential equations (ODE) for multiple Lagrangian particles. The ODEs are
then integrated for each particle to determine their properties (such as mass density or velocity) and
position for the next time step. Since particles carry the mass and are moved according to the velocity
field, this method conserves mass exactly and treats pure advection correctly. Any arbitrary property
α(x) in an n-dimensional domain Ω ⊂ Rn at a position x, x′ ∈ Ω can be described using an integral of
the form

α(x) =
∫

Ω
α(x′)δ(x− x′)dx′ (3)

employing the Dirac distribution δ(x). The two fundamental approximations of SPH are the description
of the continuous integral over the domain using a sum over interpolation points, that can be
interpreted as particles, and the replacement of the Dirac distribution with a smooth kernel W(x− x′, h).
Here, h describes the smoothing length that controls the kernel size and is usually chosen similar to
the average initial distance between particles. A very common smooth kernel is the cubic spline kernel
defined as

W = βn


(2− q)3 − 4(1− q)3 0 ≤ q < 1

(2− q)3 1 ≤ q < 2

0 2 ≤ q

(4)

with q = ‖x−x′‖
h and a dimension-dependent normalization factor βn. Employing the kernel W(xi −

xj, h) = Wij, Equation (3) can be approximated as

α(x) ≈ α̌(xi) = α̌i = ∑
j∈Ω

αjWij
mj

ρj
(5)

denoting a particle’s property α at position xj as αj and by expressing the associated volume as ratio
between mass mj and density ρj of the particle. The key is the usage of an analytically differentiable
kernel such that
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∂α̌i
∂x

= ∑
j∈Ω

αj
mj

ρj
∇iWij (6)

can be computed analytically with the kernel gradient ∂W
∂x (x− xj, h)|i = ∇iWij, hence turning the PDE

to an ODE. The domain Ω = Ωm ∪Ωs is the set of all particles in the model with subsets for the fluid
particles Ωm and solid particles Ωs = Ωw ∪Ωf consisting of wall particles Ωw and fiber particles Ωf.
There is a wide range of variants and actual implementations for this concept and Monaghan gives a
comprehensive review in one of his later publications [41].

The modelling of the fluid phase and its interaction with solid particles follows the work of
Adami et al. [42,43]. The basic fiber model is adapted from Yang et al. [38] and extended to account
for viscous surface traction as well as fiber interactions.

2.1. Fluid Model

In this work, a Transport Velocity Formulation [43] is used to model the suspending fluid, since it
is fairly robust against stability issues such as the tensile instability [44]. Adami et al. [43] separate
momentum velocity v and advection velocity ṽ leading to a Navier-Stokes equation of the form

d̃(ρv)
dt

= −∇p + η∇2v + ρg +∇ · (ρv⊗ (ṽ− v)) (7)

with density ρ, pressure p, viscosity η and body accelerations g. The last term is a momentum
convection that compensates the deviation between advection velocity and momentum velocity.
The difference is based on a virtual background pressure pb that effectively suppresses tensile instability,
but does not influence the actual momentum. Hence, the term σσσA = ρv⊗ (ṽ− v) is called an artificial
stress. The SPH-discretized version of (7) used in this work models the acceleration of particle i in the
fluid domain by

ãi =
1

mi
∑
j∈Ω

(
V2

i + V2
j

)(
−

ρj pj + ρi pi

ρi + ρj
∇iWij

)

+
1

mi
∑

j∈Ωs

(
V2

i + V2
j

)( 2ηiηj

ηi + ηj

∇iWij · (xi − xj)

‖xi − xj‖+ε
(vi − v̂j)

)

+
1

mi
∑

j∈Ω f

(
V2

i + V2
j

)( 2ηiηj

ηi + ηj

∇iWij · (xi − xj)

‖xi − xj‖+ε
(vi − vj) +

1
2
(σσσA

i + σσσA
j )∇iWij

)
, i ∈ Ωm (8)

with the volume attributed to each particle Vi = mi/ρi and the velocity of an adjacent solid v̂j, which
is explained in the next section. Indices are used to refer to the particle based density ρi, pressure pi,
viscosity ηi, mass mi, position xi and velocity vi. The parameter ε is a small value to avoid singularities
in the formulation. The last term is a momentum convection that compensates the deviation between
advection velocity and momentum velocity.

Finally, the discrete conservation of mass is written as

ρi = mi ∑
j∈Ω

Wij, i ∈ Ωm (9)

and an equation of state is used to relate mass density to pressure. The equation of state has the form

pi = p0

(( ρi
ρ0

)γ
− 1
)

, i ∈ Ωm, (10)

where ρ0 describes the nominal density and p0 is a reference pressure chosen large enough to keep the

density variation small. The latter is achieved by setting p0 = ρ0c2

γ with the speed of sound c set to
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the tenfold of the maximum speed in the flow, thus limiting density variation to approximately 1%.
Following Adami et al. [43], the parameter γ is set as γ = 1.

2.2. Interaction between Fluid and Solid Particles

The summation of the first term in Equation (8) includes fiber particles and solid wall particles.
Adami et al. [42] determined the pressure of a solid particle from a force balance along the centerline
of a solid-fluid particle pair as

pi =
∑j∈Ωm ρjWij + (g− ai) ·∑j∈Ωm ρj(xi − xj)Wij

∑j∈Ωm Wij
, i ∈ Ωs (11)

with a prescribed acceleration of the solid ai. The corresponding density may be computed by
inverting (10). To ensure a no-slip condition, the velocity of solid particles is modified before insertion
in (8) to

v̂i = 2vi −
∑j∈ΩmvjWij

∑j∈ΩmWij

, i ∈ Ωs, (12)

where the fluid velocity field is extrapolated and subtracted to ensure zero velocity at the interface
between solid particles and fluid particles [42].

In this work, wall particles are represented by three particle layers to ensure full kernel support
and move with a constant prescribed velocity

vi = const, ai = 0, i ∈ Ωw. (13)

Fibers are represented by a single chain of particles that experience hydrodynamic forces from
the fluid, elastic forces from neighbors within the fiber and contact forces from other fibers. The first
contribution to acceleration is a hydrodynamic interaction

ahydro
i =

1
mi

∑
j∈Ω f

(
V2

i + V2
j

)(
−

ρj pj + ρi pi

ρi + ρj
∇iWij +

2ηiηj

ηi + ηj

∇iWij · (xi − xj)

‖xi − xj‖+ε
(v̂i − vj)

)
, i ∈ Ωf (14)

that balances the momentum together with (8). Modelling the fiber as a single layered chain of SPH
particles has also been applied by other authors [38,45], but it has some implications, which are
discussed further in Section 2.4. One implication is that the particle spacing ∆x is directly related to
the fiber diameter by

d =
2∆x√

π
(15)

to ensure that fiber particles and fluid particles describe equal volumes in the beginning of a simulation.

2.3. Basic Model for Flexible Fibers

Besides the description of the fluid phase with SPH, a suitable model for the elastic fiber is needed.
Thus, the straight-forward linear elastic bead chain formulation of Yang et al. [38] for tensile forces

Ft
ij = EA

(‖ xij ‖
x0

ij
− 1
) xij

‖ xij ‖
(16)

and bending moment

Mb
i =

EI
2

θθθi − θθθ0
i

‖ xi(i−1) ‖ + ‖ xi(i+1) ‖
(17)
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can be used as a basis for further model development. Here, E describes Young’s modulus, while A
and I are the fiber’s cross sectional area and second moment of area respectively. The vector between
two neighboring particles with indices i and j is xij and the enclosed angle is denoted as θθθi. Here,
the vector notation of θθθi indicates that its direction resembles the axis of rotation. The undeformed
reference configuration is denoted with a superscript (·)0 in both, Equations (16) and (17). The bending
moment can be converted to pairs of forces

Fb
ij =

1
2

Mb
i × xij

‖ xij ‖2 (18)

that act on the particle and its neighbors. Figure 1 illustrates these forces and it can been seen, that
generally Fb

ij 6= Fb
ji. It is assumed that torsional torque of the fiber is of minor importance to the

orientation evolution investigated in this work. Finally, the acceleration on a particle i due to elastic
forces can be summarized as

aelastic
i =

1
mi

(
Ft

i(i+1) + Ft
i(i−1) (19)

+ Fb
i(i−1) + Fb

i(i+1) − Fb
(i−1)i − Fb

(i+1)i

)
.

i

−Fb
i(i−1)

i− 1 i + 1

−Fb
i(i+1)

Fb
i(i−1)Fb

i(i+1)

Figure 1. Force pairs representing bending moment on segments between fiber particles.

If the angle between two adjacent particle pairs exceeds a certain critical value θc, the
neighborhood relation between these particles may be revoked permanently to model fracture of the
fiber. Such a criterion is motivated by brittle fiber fracture, as it is typical for glass fibers.

2.4. Viscous Traction at Fiber Surface

A fiber modeled as a particle chain cannot capture a variation of a property in thickness direction
of the fiber, as it stores properties at the center line only. Hence, a fiber placed horizontally in a shear
flow with periodic boundary conditions, as depicted in Figure 2, would not experience any moment
caused by friction forces on its surface. In order to model a physical thickness of the fiber, this work
uses an analytical derivation to apply appropriate moment from surface friction to the fiber segment.
Figure 3 illustrates a cylindrical fiber segment of length ∆L and diameter d with the orientation of its
centerline p. One exemplary surface normal n is shown with its parametrization angle ψ.

The fiber direction p and any arbitrary surface normal n0 are perpendicular unit-vectors. Any
other surface normal can be constructed from this arbitrary normal by rotating it around p. The surface
normal can be parameterized using n0 and ψ employing a rotational tensor R around axis p [46] .
The parameterized normal becomes

n(ψ) = R(ψ)n0. (20)

Using this normal, the viscous traction on the surface can be expressed as
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t(ψ) = (−pI + η∇v) n(ψ) = −pn(ψ) + η∇vn(ψ) (21)

if Newtonian viscosity is assumed. This term represents the force acting on each infinitesimal area
of the fiber surface. The resulting moment can be computed by integrating t with its corresponding
leverage d

2 n(ψ) as

Mv = ∆L
∫ 2π

0

d
2

n(ψ)× t(ψ)
d
2

dψ (22)

with a constant fiber diameter d. The term d
2 dψ represents an infinitesimal circumferential line segment

on the cylinder surface. As the cross product of a vector with itself vanishes, this can be simplified to

Mv = ∆L
∫ 2π

0

d2

4
n(ψ)× η∇vn(ψ)dψ. (23)

The diameter is finite and thus provides some leverage for the traction to generate a moment.
The discrete evaluation of (23) is explained in Appendix A. The equation for angular momentum is
then multiplied with the distance to its neighbors as a cross product leading to the acceleration of
individual particles due to viscous friction

atraction
i =

1
2

Mv
i × xij

J
, j ∈ [i− 1, i + 1] (24)

Here, J denotes the moment of inertia for a cylindrical body around its first principle axis of
inertia and the factor 1

2 is chosen to represent the moment by two equal forces at both neighboring
particles. This acceleration is then applied to the two neighboring particles and implies hereby a
rotational acceleration of a fiber segment, consisting of three particles ∆L = 3∆x. The central particle
is used to evaluate the velocity gradient of Equation (21) as

∇vi = −
1
ρi

∑
j

mj(vi − vj)∇iWij. (25)

It is assumed that the velocity gradient is approximately constant within each segment. In theory,
the velocity gradient could be determined at each point of the cylindrical surface from kernel functions,
but this comes at much higher computational costs and the difference in the resulting moment is
expected to be small.

x1

v1
x2

θ

Figure 2. A fiber is placed horizontally with φ = π/2 in a shear flow. The top and bottom walls have a
prescribed velocity and a no-slip condition, the boundary conditions in x1 direction are periodical.
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n

p

∆L

d
2ψ

Figure 3. Cylindrical fiber segment with length ∆L, orientation p and an arbitrary surface normal n.

2.5. Fiber Interactions

If suspended objects come in close contact (10–50% of the radius [26,47]), lubrication forces oppose
the relative velocity between fibers. Sundararajakumar and Koch [24] showed that lubrication forces
alone do not necessarily prevent penetration at higher fiber volume fractions and added contact forces.
The pressure gradient computed from SPH is generally not sufficient to counteract the accumulated
forces on the fiber bead chain and does not necessarily prevent penetration of fibers.

It is too simple to apply contact forces directly bead to bead, because this would lead to entangled
fibers that interlock at two bead gaps. For the determination of the contact properties at each potential
contact pair (i, j) within the kernel radius, different cases need to be considered:

Surface-Surface: If both interacting particles are located at the center of the fiber (e.g., they have two
neighbor particles each, compare Figure 4 at t0), the normal direction of contact pair (i, j) can be
computed using the cross product

nij = [[pi × pj]] (26)

of the involved fiber direction vectors pi and pj. The operator [[·]] = (·)
‖·‖ is used to conveniently

denote the normalization of a vector. Solving the small linear system of equations

[pi, nij,−pj][Pij, Dij,Pji]
> = xij (27)

with its adjugate matrix leads to the solution for the distance between the fibers Dij and the
projections to source and destination vectors Pij and Pji, respectively.

pi

pj
xij

t0 t1 > t0 t2 > t1 t3 > t2

Figure 4. Snapshots of two fibers in contact. At contact initiation t0, pi and pj denote unit vectors for
the fiber directions and xij is the vector between particles of one active contact pair (i, j). The contact
forces are indicated by arrows which scale with contact force magnitude and rotate in the subsequent
time steps (t1, t2, t3).

Surface-End and End-Surface: If a particle of a fiber end interacts with a central particle of another
fiber, the vector between these two particles xij can be used to obtain the normal direction by
projection. It is assumed that pi describes a unit vector in fiber direction at one fiber particle at
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position A. Let xij be the vector from another fibers’ end particle B to the point A. The closest
point to B on a line with direction pi is denoted as C and can be used to define the normal
direction as

nij = [[
−→BC]] = [[

−→AC −−→AB]]. (28)

Using the definitions above and the fact that C is the projection of B to the line with direction pi,
Equation (28) can be rewritten as

nij = [[Pijpi − (−xij)]] = [[xij + Pijpi]]. (29)

The projection on the destination fiber is given as Pij = −pi · xij and the contact distance is
computed as Dij = ‖xij + Pijpi‖.

End-End: The simplest case is the interaction of two fiber ends. Here, the vector between those two
particles can be simply determined by

nij = [[xij]] (30)

with the corresponding distance Dij = ‖xij‖.

A penalty approach is proposed to prevent fiber penetration, if the distance between fibers falls
below the fiber diameter.

The penalty force is formulated as a Hertzian contact force between two cylinders [48]

Fc
ij =

{
4
3 E∗R∗(d− Dij)

1.5 Dij < d

0 else
(31)

with

E∗ =
E

2(1− ν2)
and R∗ =

√
d
4

(32)

where E is Young’s modulus and ν denotes the Poisson ratio. Strictly, the contact force varies slightly
at fiber ends due to different contact areas. However, the exact pressure distribution in the contact area
is not the focus of this work and for high fiber aspect ratios, the portion of fiber end contact becomes
relatively small. Thus, the contact force at fiber ends may be rather interpreted as a penetration penalty.

Finally, the particle acceleration due to contact forces is computed as

acontact
i = ∑

j

wijFc
ij

mi
nij (33)

for each proximity point j with the contact normal nij and a weighting factor wij. The weighting factor
is necessary to distribute the force at a contact point between particles associated to this contact point
and is defined as

wij =



dp−Pij
dp

0 < Pij < dp
dn+Pij

dn
−dn < Pij ≤ 0

1 two fiber ends

0 else

(34)

with the distance to the previous fiber particle dp = ‖xi − xi−1‖ and next particle dn = ‖xi − xi+1‖.
Friction in tangential direction is neglected and fiber surfaces are assumed to be smooth. However,
friction could be easily incorporated at this point, if the friction coefficient is available. The acceleration



J. Compos. Sci. 2020, 4, 77 10 of 20

is computed for all particles that might possibly contact any other particle and this way, equal force
magnitudes on destination and source fibers are ensured.

2.6. Time Integration and Implementation

The time integration is an extension of the kick-drift scheme used in the original transport velocity
formulation [43]. The advection velocities are computed for a half step as

vn+ 1
2

i = vn
i +

∆t
2

[ãi + g]n− 1
2

, i ∈ Ωm (35)

ṽn+ 1
2

i = vn+ 1
2

i +
∆t
2

[
pb
mi

∑
j∈Ωm

(
V2

i + V2
j

)
∇iWij

]
n− 1

2

, i ∈ Ωm (36)

ṽn+ 1
2

i = ṽn
i +

∆t
2

[
ahydro

i + aelastic
i + atraction

i + acontact
i + g

]
n− 1

2

, i ∈ Ωf (37)

based on the previous accelerations at step n− 1
2 . Equation (36) utilizes the background pressure pb

to move fluid particles such that no agglomerations or voids form. This is done by modifying the

momentum velocity vn+ 1
2

i to the advection velocity ṽn+ 1
2

i . The difference in momentum velocity and
advection velocity is corrected by the artificial stress σσσA

i in the momentum balance. Fiber particles
do not experience a background pressure, as they should not be used to fill voids etc. and thus, their
advection velocity is equal to their physical velocity. Then, all particles are moved according to

xn+1
i = xn

i + ∆tṽn+ 1
2

i , i ∈ Ω (38)

for the full step. Finally, the velocities are updated as

vn+1
i = vn+ 1

2
i +

∆t
2

[ãi + g]n+ 1
2

, i ∈ Ωm (39)

ṽn+1
i = ṽn+ 1

2
i +

∆t
2

[
ahydro

i + aelastic
i + atraction

i + acontact
i + g

]
n+ 1

2

, i ∈ Ωf. (40)

As this is an explicit time integration scheme, it is only conditionally stable. The maximum time
step is computed by

∆t = min

(
0.4

∆x
1.1c0

, 0.125
∆x2

η
, 0.25

√
∆x
g

, 0.5∆x
√

ρ0

E
, 0.5∆x2

√
ρ0 A
2EI

)
(41)

as the minimum of the CFL condition, a viscous condition, a body force condition, a tensile elastic
condition and a elastic bending condition. The implementation was realized in PySPH [49] due to its
flexibility in implementing the additional equations on top of the transport velocity scheme. The code
is publicly available as fork of the original PySPH project (https://github.com/nilsmeyerkit/pysph/
tree/fibers).

3. Results

3.1. Rotation and Bending in a Simple Shear Flow

This section presents simulation results for a 3D shear flow (cf. Figure 2) with periodic boundaries
in x1 and x3. The lateral dimensions of the modelled fluid domain are B = 1.2Lf and the dimension in
flow direction is L = 2B with the length of a fiber Lf. The Reynolds number

https://github.com/nilsmeyerkit/pysph/tree/fibers
https://github.com/nilsmeyerkit/pysph/tree/fibers
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Re =
ρ0Lf

GB
2

η
(42)

is set to Re = 0.5 to be small enough for a quasi-creeping flow, but also as large as possible to increase
the time increment. A dimensionless measure for the fiber stiffness is

S =
Eπ

4ηGr4
e

(43)

for a given shear rate G and ellipsoidal aspect ratio re [50]. Bending of fibers starts with an increased
aspect ratio, higher shear rates and reduced bending stiffness [51]. The dimensionless stiffness S
summarises these effects in one parameter.

First, a stiff fiber with S = 100 is considered. Such a fiber spins in a rigid manner without
significant bending and can be compared to the solution of Jeffery’s equation

Dp
Dt

= ωωωp + ξ (Dp− (p⊗ p⊗ p)D) (44)

with vorticity tensor ωωω and symmetric strain rate tensor D. The shape factor ξ is an alternative measure
for the (equivalent) ellipsoidal aspect ratio re and is defined as

ξ(re) =
r2

e − 1
r2

e + 1
. (45)

The solution to Equation (44) is periodic with

T =
2π

G

(
re +

1
re

)
(46)

being the time for a full rotation of a fiber. When solving Jeffery’s equation for a cylinder with geometric
aspect ratio rp instead of an ellipsoid, Jeffery’s equation can still be applied, but an equivalent aspect
ratio has to be used. Such an equivalent aspect ratio re was derived by Cox [52] based on slender-body
theory and Zhang et al. [53] utilizing Finite Element Analysis. The latter is applicable for small aspect
ratios and therefore Zhang’s cubic fit

re(rp) = 0.000035r3
p − 0.00467r2

p + 0.764rp + 0.404 (47)

is used here.
Figure 5 depicts the orientation φ of a single fiber in shear flow for fiber length Lf = 5∆x and

Lf = 11∆x (e.g., the fiber is represented by 5 or 11 particles in a chain). The rotation period obtained
with the present SPH approach is sligthly faster than the solution to Jeffery’s equation. One possible
reason for the difference is the finite Reynolds number and finite simulation domain with periodic
boundaries, whereas Jeffery used an infinite domain with strictly no effect of inertia. Another reason
might be the coarse resolution with only one layer of particles for the fiber. Due to the averaging nature
of SPH, the exact flow field close to the suspended particles cannot be resolved exactly. The presented
approach solves the entire fluid field, but the low resolution and smoothing makes it less accurate than
e.g., Stokesian Dynamics simulations. However, the simplicity and computational efficiency make it
attractive for engineering applications, such as the parameter fitting presented later.
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(a) Lf = 5∆x (b) Lf = 11∆x
Figure 5. Orientation angle φ for fiber in a shear flow. The fiber length Lf is expressed in multiples
of the particle spacing ∆x. The dashed gray line represents the solution to Jeffery’s equation with
Zhang’s [53] fit. The solid black line represents the solution obtained with this SPH implementation.
If the viscous surface traction term (Equation (24)) is neglected, the fiber stops rotating after one half
rotation, as shown with the black dotted line.

Bending modes were shown in Yamamoto and Matsuka’s [13] numerical results and the
corresponding SPH simulation in Table 1 agree well with their observations. Differences can be
attributed to the fact that Yamamoto and Matsuka used an inextensible fiber, while the fibers simulated
in this work experience stretching, because the Young’s modulus is taken into account for tensile
stiffness as well.

Table 1. Bending modes of a fiber with length Lf = 11∆x for varied dimensionless stiffness. One
example with S = 10 and critical fiber bending angle θc =

π
4 is shown to demonstrate fiber fracture.

Strain 0 1
4 TG 1

2 TG 3
4 TG TG

S = 5, θc = ∞

S = 10, θc = ∞

S = 10, θc =
π
4

S = 20, θc = ∞

S = 100, θc = ∞

This section illustrated that the implementation based on SPH can reproduce the rotation periods
quantitatively. Furthermore, numerically obtained bending modes can be described qualitatively.
In addition, a fully coupled solution for the fluid field is computed. It can be noted that the fluid
field obtained for these single fiber setups does not significantly differ from the ideal field. This is
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reasonable, since a single flexible fiber does not offer much resistance to a highly viscous flow. However,
a significant difference can be expected as soon as multiple fibers interact in a concentrated suspension.
In that scenario, the presence of suspended fibers and their interactions are expected to raise the
macroscopically observed effective viscosity and fiber interactions affect the fiber orientation evolution.

3.2. Parameter Identification for the Orientation Evolution in a Non-Dilute Short Fiber Suspensions

A fully resolved computation of all fibers is often not feasible for full components made from
composite material. It can be sufficient to give a reasonable description of the fiber orientation function
in terms of a fiber orientation tensor, if these are accurate and scale-separation applies. A common
two-parameter model is the RSC model [5] with fiber interaction coefficient CI and a phenomenological
factor κ that models a delay to compensate an over-prediction in the change of orientation observed in
the classical Folgar-Tucker model. In tensor notation, the RSC model reads

DA
Dt

= ωωωA−Aωωω + ξ
(

DA + AD− 2
(
A+ (1− κ)(L−MA)

)
[D]
)
+ 2κCIG

(
1− 3A

)
(48)

with L = ∑3
i=1 λiei ⊗ ei ⊗ ei ⊗ ei and M = ∑3

i=1 ei ⊗ ei ⊗ ei ⊗ ei using the eigenvalues λi and
eigenvectors ei of the second order fiber orientation tensor A. Setting κ = 1 would reduce this
model to the Folgar-Tucker model and setting CI = 0 reduces it to Jeffery’s Equation (44). The choice of
feasible parameters CI ∈ [0, 0.1] and κ ∈ [0, 1.0] remains. Hence, this section computes the orientation
evolution in terms of the second order fiber orientation tensor for a small set of fibers in a 3D shear
flow and compares the solution obtained with SPH to macroscopic models.

The investigated domain is a cube with edge length L = 15∆x and Lees-Edwards boundary
conditions [54,55] are employed to induce a shear rate G on the periodic fluid domain. Essentially,
these boundary conditions shift dummy particles and particles leaving the domain in x1-direction
according to

x′2 = (x2 ± GLt) mod L (49)

with the sign depending on the direction of the shift and the modulo operator mod. Additionally, the
velocity is adjusted

v′2 = (v2 ± GL) (50)

for the shift. Conventional periodic boundary conditions apply in x2- and x3-direction, as depicted
in Figure 6. All fibers are initially oriented in x1-direction and randomly positioned in the cube.
This unidirectional arrangement is chosen because it can be easily achieved without a micro-structure
generator. Instead of analyzing larger representative volumes [26], this work performs multiple
realizations of the random process to create a statistical representative behavior. The advantage of this
approach is that scatter and standard deviation between random realizations on the micro scale can be
observed. The ensemble average of a property 〈·〉tn is defined as the mean across multiple realizations
at the same time step tn.

To obtain optimal parameters at different volume fractions, a least squares fit

minimize
Ci ,κ

∑
n

∥∥A(tn)− 〈Ã〉tn

∥∥2 (51)

is applied to minimize the squared difference of A obtained by Equation (48) and the ensemble
average of the discrete second order fiber orientation tensor Ã of the SPH analysis. This tensor can be
computed as
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Ã =
1
N

N

∑
i=1

pi ⊗ pi (52)

with each fiber’s orientation pi. A flexible fiber has different tangential orientations and the tensor’s
definition becomes ambiguous then. Consequently, the following examples use fibers with a high
stiffness S = 100 to ensure enough rigidity for an unambiguous interpretation of A. However,
the method is in no way limited to rigid fibers.

L

γ̇21Lt

x1

x2

Figure 6. Setup for the 3D shear with fibers in a cube of edge length L = 15∆x. Lees-Edwards boundary
conditions [54] are employed to induce a shear rate G. Therefore dummy particles (light gray) and
particles leaving the domain in x1-direction are shifted periodically in x2 during each domain update.
Conventional periodic boundary conditions apply to all other sides of the cube. The initial state is
generated from fibers aligned in x1-direction at unique random positions in the entire volume. (Some
fibers appear longer in this figure due to other overlapping fibers behind it.)

Figure 7 shows the non-trivial components of the ensemble average 〈Ã〉tn computed from
simulations with five different initial random realizations as a solid green line. The standard deviation
at each time step is depicted as light filled area in the background. The gray solid line represents
orientation tensor components A computed with optimal parameters according to the RSC model
given in Equation (48). The simulation time is 10T, which is the time of 10 full rotations of a single
rigid fiber. The corresponding strain is approximately 150.

The simple parameter fitting approach proposed in (51) works well and generally shows a good
agreement of macroscopic models with the SPH micro-model. All results show a decreasing orientation
amplitude and a trend towards a stationary state with a significant non-zero component in x3-direction.
This trend arises from a combination of fiber contacts and long range pertubations of the flow field that
push fibers out of their original trajectories. Figure 8 shows, how fibers are oriented after 30 strains in
the case of 10 % fiber volume fraction. Several fibers have left the sheared x1x2-plane due to interactions
at this point. Eventually, fiber interactions and shear-induced reorientation balance each other and
lead to a stationary orientation state. The stationary orientation state is reached faster for increased
fiber volume fractions.
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(a) φ = 1%, 7 fibers, CI = 0.001714, κ = 0.95

(b) φ = 10%, 68 fibers, CI = 0.004632, κ = 0.76

(c) φ = 30%, 202 fibers, CI = 0.011405, κ = 0.74
Figure 7. Ensemble average of fiber orientation tensor components for fibers with aspect ratio rp = 4.43
(Lf = 5) in a 3D shear flow and its comparison to the reduced strain model with optimal parameters.
Each simulation result was obtained from five independently sampled initial configurations. The
standard deviation is indicated by a light green filled area for each volume fraction.

The deviations between different initial configurations decrease for increasing fiber volume
fraction, as the sample size increases. The deviation between individual realizations at 1 % volume
fraction is large and it might not be appropriate to describe such a system with a macroscopic fiber
orientation model. This highlights that a macroscopic description requires a sufficient scale separation
and a sufficient number of fibers to provide reliable results. The proposed SPH simulation can be
used to quickly evaluate different configurations and may be used as a tool to not only determine
parameters, but also quantify deviations from macromodels, if the underlying conditions of such
models are in question for a specific application.

The obtained parameters of the interaction coefficient are compared to Folgar and Tucker’s
original work [4] and the values obtained by Phan-Thien et al. [47] in Figure 9. The results from SPH
simulations show a good agreement with literature data and support the use of this approach for
parameter identification.



J. Compos. Sci. 2020, 4, 77 16 of 20

x1

x2
x3

Figure 8. Snapshot of fibers at 10% fiber volume fraction after 30 strains. The colors are introduced to
distinguish fiber particles and represent the particle ID.

Figure 9. Comparison of CI values to the original work of Folgar and Tucker [4] and a fit based on
simulation results by Phan-Tien et al. [47]. The values obtained in the presented work are reasonably
close to these literature results.

4. Conclusions

Fiber suspensions are treated as flexible bead chains of SPH particles surrounded by other
particles representing the fluid domain. The bead chains are connected by elastic tension- and bending
forces and interact with the fluid particles in a two-way coupled manner. A novel viscous surface
traction term is introduced to compensate the missing fiber thickness that is introduced by the line
representation of a fiber. In addition, contact forces are introduced to model fiber interactions in a
non-dilute suspension.

The fiber orientation evolution of a single stiff fiber shows good agreement with the rotation
periods based on Jeffery’s equation thanks to the introduction of a new surface traction term. Bending
modes of single fibers are consistent with results reported in literature.

A periodic domain with Lees-Edwards boundary conditions and suspended fibers is subjected to
shear. The investigation of suspensions with different volume fractions of fibers can be used to directly
compute the fiber orientation tensor. If several of these computations are evaluated in a statistical
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sense, the ensemble average can be used to fit optimal parameters of fiber orientation models. For
relatively stiff fibers of length Lf = 5∆x, good parameters of the RSC fiber orientation model are found
based on the SPH simulation.

In future, the authors plan to extend the investigation to arbitrary initial configurations, flexible
and breaking fibers as well as other flow types beyond shear flows. Further, the assessment of standard
deviations may enable modeling of uncertainties related to the fiber orientation models.
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Appendix A. Evaluation of the Surface Traction Integral

An arbitrary normal to the fiber direction pi named n0 must be generated first. This can be
achieved by forming the cross product of pi with an arbitrary other vector that is not parallel to pi.
Chosing the arbitrary vector [1, 0, 0]>, the parametrized normal in (20) becomes

ni(ψ) =


− sin(ψ)

√
pi

2
2 + pi

2
3

pi1 sin(ψ)pi2+cos(ψ)pi3√
pi

2
2+pi

2
3

−−pi1 sin(ψ)pi3+cos(ψ)pi2√
pi

2
2+pi

2
3

 . (A1)

The integration in (23) leads to

Mv
i =

3∆x d2

4 ηπ√
pi

2
2 + pi

2
3



(pi1 pi
2
2 pi3 + pi1 pi

3
3)

∂v2
∂x1

+ (−pi
2
1 pi2 pi3 + pi2 pi3)

∂v2
∂x2

+ (−pi
2
1 pi

2
3 − pi

2
2)

∂v2
∂x3

+

(−pi1 pi
3
2 − pi1 pi2 pi

2
3)
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2
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2
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2
3)

∂v3
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2
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(A2)

with the velocity gradient from Equation (25). For the special case that pi is equivalent to [1, 0, 0]>,
the moment is computed in the same way with a different arbitrary initial direction, e.g., [0, 1, 0]>.
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