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Abstract 

Fine-tuning of manufacturing processes for optimum part quality requires many resource-intensive trial experiments in practice. To reduce the 
experimental effort, physics-based process simulations in conjunction with optimisation algorithms can be applied, e.g. finite-element-models 
and evolutionary algorithms. However, they generally require considerable numerical expertise and long computation times. Efficient 
optimisation of such expensive-to-evaluate models often employs surrogate-based optimisation (SBO). SBO constructs numerically inexpensive 
approximations of the original model, which guide the optimiser in the parameter space. This allows concentrating costly simulations on the most 
promising regions. While SBO significantly reduces the computational load in many cases, current SBO-strategies are inevitably problem-specific 
and cannot be reused in other, even similar situations. Consequently, subtle problem variations, e.g. minor geometry changes in material forming, 
require an entirely new optimisation and all previous numerical effort is in vain. Thus, surrogate techniques with generalised applicability are an 
open field of research. Machine Learning techniques using convolutional neural networks (CNNs) are capable of ‘learning’ complex system 
dynamics from data. In this work, CNNs are used to extend the predictive capabilities of SBO towards variable instead of fixed manufacturing 
settings. Specifically, material draw-in optimisation in textile forming (‘draping’) for variable geometries is studied. Using reinforcement 
learning, a CNN is trained to estimate optimum positions of pressure pads during draping of a pre-specified class of box-shaped geometries. Once 
trained, the CNN interprets a forming result and infers beneficial pad positions. Unlike conventional SBO strategies, it can also give 
recommendations for variable geometries from the selected geometry class. The paper shows that, in principle, CNNs are able to extract 
information from a range of different forming tasks and apply it to a new, unknown situation. Since they reuse information gained from previous 
simulations, they are considered a viable option for future, generalised SBO-strategies. 
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1. Introduction 

Most industrial manufacturing processes require careful 
adjustment of process parameters for optimum operation 
in terms of e.g. part quality, cycle time and cost. In practice, 
identification of such optimum process parameters often 
involves many time- and resource-intensive trial experiments. 
However, an entirely experimental process optimisation 
quickly becomes cumbersome, especially for complex 
manufacturing process and delicate materials such as textiles 
used in fibre reinforced plastics. Under such conditions, high-

fidelity process models, e.g. finite element (FE) simulations, in 
combination with general-purpose optimisation algorithms 
may help identify promising process parameters prior to actual 
experimental trials. This is usually referred to as “virtual 
process optimisation”. Although significant part quality 
improvements are reported, e.g. [1,2], such models typically 
require substantial numerical expertise for configuration and 
considerable computation times. This makes virtual process 
optimisation time-consuming and in many cases impracticable.  

Surrogate-based optimisation (SBO) seeks to reduce 
computational loads when optimising such expensive-to-
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evaluate functions [3]. Surrogate models are numerically 
efficient, phenomenological approximations of the relation 
between input parameters and observed output of the high-
fidelity-model. After initial model training, optimisation is 
done on the surrogate model in short time, which yields 
potential optima (candidate solution). In turn, the high-fidelity 
model (simulation) validates these candidate solutions 
resulting in a new observation. This ‘new’ observation is fed 
back into the database and model training and optimisation is 
repeated until convergence or triggering of a termination 
criterion [4]. 

In material forming, as considered in this work, most SBO-
applications focus on metal forming, e.g. [5-7]. In recent work 
of the authors [8,9], SBO-strategies are also applied to textile 
forming. All studies report a significant speed-up of 
optimisation. However, current SBO-strategies are always 
problem-specific [10] since they solely generate a unique 
relation between preselected input parameters and 
corresponding quality output. In consequence, even subtle 
changes of the optimisation task, e.g. minor geometry 
variations, instantly invalidate any obtained surrogate model 
and all previous numerical effort is in vain.  

With the advent of techniques of Machine Learning (ML), 
generalisation of surrogate models beyond component-specific 
parameters appears achievable: For example, the authors have 
shown in work [11] that ML-algorithms can estimate process 
results for flexible geometry features in textile forming 
processes. Further generalisation is aspired in [12], where 
image-based ML-techniques estimate the full strain-field 
during textile forming given the component geometry. 

The present work aims at enhancing SBO towards flexible 
geometries by image-processing ML-techniques. More 
specifically, optimisation of material draw-in during fabric 
forming is considered: By iterative interaction with a simplified 
model, an ML-algorithm learns to give process 
recommendations for variable geometries. After the training, 
the algorithm is requested to give process recommendations for 
‘unknown’ geometries that are not part of the training database. 
FE forming simulations validate these process 
recommendations. They are found to improve the process 
result. Hence, ML-techniques may extend current SBO-
capabilities and are deemed a viable tool for time-efficient part 
and process design. 

2. Modelling Approach 

2.1. Conceptual View 

From an optimisation perspective, an FE forming simulation 
can be seen as a function 𝜑𝜑sim: 𝑃𝑃

𝐺𝐺
→ 𝑄𝑄  that maps process 

parameters 𝑝𝑝 ∈ 𝑃𝑃  to a part quality metric 𝑞𝑞 ∈ 𝑄𝑄  for a given 
component geometry 𝑔𝑔 ∈ 𝐺𝐺. In this work, the variable process 
parameters 𝑝𝑝 are pressure pad positions for control of material 
draw-in, while the part quality 𝑞𝑞 is quantified by the in-plane 
shear deformation 𝛾𝛾12 and local fabric curvature 𝜅𝜅 (wrinkling), 
respectively. In general, evaluating 𝜑𝜑sim  is so costly that a 
direct optimisation of 𝜑𝜑sim  using iterative algorithms, e.g. 
evolutionary algorithms, takes impracticably long. 

For time-efficiency, classical SBO pursues constructing a 
numerically efficient substitute function 𝜑𝜑ML: 𝑃𝑃

𝐺𝐺
→ 𝑄𝑄  to 

approximate 𝜑𝜑sim, i.e. 𝜑𝜑ML ≈ 𝜑𝜑sim, and perform optimisation 
on 𝜑𝜑ML  instead of 𝜑𝜑sim . In general, 𝜑𝜑sim  is a ‘black-box’-
function for which additional information, e.g. gradients, as 
required for analytical approximations, may be inaccessible. 
Thus, only data-driven approximation techniques based on 
input-output-observations (samples) are eligible. 

Although SBO helps reduce the number of simulations for a 
single optimisation problem, any change of the optimization 
task invalidates 𝜑𝜑ML. Therefore this work investigates the idea 
of constructing a more generalised function Πform: 𝐺𝐺 → 𝑃𝑃 
which directly estimates optimum process parameters 𝑝𝑝 ∈ 𝑃𝑃 
given a geometry 𝑔𝑔 ∈ 𝐺𝐺 . Again, Πform  is constructed 
(‘learned’) using observations. This work uses artificial neural 
networks to model Πform . Owing to their extraordinary 
modelling capacity, they show characteristics of universal 
approximators. That is, given sufficient training data, they will 
approximate any continuous function, regardless of its 
complexity and are thus deemed suitable to model Πform . 
While classical surrogate modelling trains the model function 
𝜇𝜇ML  on a pre-sampled database of input-output examples 
(‘supervised learning’), the idea of this work is to train Πform 
by interaction with a forming simulation 𝜑𝜑sim (Fig. 1). During 
training, Πform  is repeatedly presented different geometries 
from a geometry database. If Πform  gives sound process 
recommendations, it is rewarded, otherwise penalised. 

 

Fig. 1. General workflow to obtain the ML-model function Πform which 
estimates beneficial process parameters for new geometries. 

The reward 𝑟𝑟  is quantified by the reward function and 
depends on the part quality 𝑞𝑞 ∈ 𝑄𝑄  as obtained using 𝜑𝜑sim . 
During training, Πform  is stepwise adjusted towards 
maximisation of the reward 𝑟𝑟. Its recommendations are initially 
random, but with the course of training, Πform identifies, which 
geometry requires which process configuration. After training, 
the network is used to estimate process parameters for a new 
geometry, which is not part of the training geometries. 

In machine learning, this approach is referred to as 
“reinforcement learning”. Originating in robotics and 
automation, it has recently been applied for optimisation, e.g. 
in [13] for optimisation of chemical reactions.  
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2.2. Data Representation and Algorithm Configuration 

In punch-die forming processes, the formed geometry must 
necessarily be undercut-free to avoid collision-free tool 
closure. Therefore, without loss of information, a projection of 
the geometry onto the tool-plane is tractable, which can be 
encoded in an image. In this work, different greyscale-values 
quantify the local elevation above tool plane. Analogously, the 
strain field of the fabric is encoded in an image: Each pixel in 
the image corresponds to an element of the discretised fabric 
from the simulation. Plotting the elements’ shear strain state 
onto the undeformed (i.e. flat) fabric yields a 2D representation 
of the forming result. The data representation is exemplarily 
visualised in Fig. 2.  

 

Fig. 2. Image-based data representation according to [12] (a); two-stage 
processing approach for estimation of process parameters (b). 

Apart from a convenient dimensional reduction from 3D to 
2D, such an image-based approach grants access to a number 
of ML-techniques specialised in image-processing, e.g. object 
recognition, classification, tracking and modification. Also, an 
image-based geometry description is universal and does not 
require defining component-specific geometry parameters.  

In material forming, a close spatial relationship prevails 
between local component geometry, material strains and the 
effect of restraining forces during material draw-in. 
Convolutional neural networks (CNN), a special type of 
feedforward networks, are specifically designed to extract 
patterns in such spatially structured data. As the name hints, 
CNNs slide (‘convolve’) kernel matrices (‘templates’) across 
target images while continuously computing the degree of 
coincidence. Matches between template and target image 
activate neurons in subsequent layers. Upon layerwise 
repetition, complex relationships can be encoded (‘learned’), 
e.g. estimation of forming results.  

The model function Πform  in this work comprises two 
CNNs: First, the component geometry is evaluated by 𝐶𝐶𝐶𝐶𝐶𝐶1 
(cf. Fig. 2 b). It takes the geometry (greyscale image) as input 
and yields a full-field estimation of the resulting shear angles 
for free forming, i.e. without pads, also encoded in a greyscale-
image. This image-estimation is then parsed to 𝐶𝐶𝐶𝐶𝐶𝐶2, which 
interprets the strain field estimation and infers beneficial 
process parameters (scalar values). 

This work focuses in particular on the implementation of 
𝐶𝐶𝐶𝐶𝐶𝐶2 since 𝐶𝐶𝐶𝐶𝐶𝐶1 has already been studied in previous work. 
Detailed information on implementation, training and 
application of 𝐶𝐶𝐶𝐶𝐶𝐶1 can be found in [12]. Thus an existing, 
pre-trained version of 𝐶𝐶𝐶𝐶𝐶𝐶1 is used. 

2.3. Forming Simulation Setup and Quality Assessment 

This work studies virtual optimisation of material draw-in 
during forming of plain-weave fabrics for variable geometries. 
Specifically, forming of box-shaped geometries is considered, 
whose corners are deliberately pronounced (fillet radii  
𝑟𝑟 = 20 mm ) to provoke severe shear deformations and 
forming defects. While the height is fixed to 150 mm, the 
geometry can be varied by means of length 𝑙𝑙  and width 𝑤𝑤 
between 50 mm ≤ 𝑙𝑙, 𝑤𝑤 ≤ 250 mm. The geometry definition 
along with example variations are visualised in Fig. 3 a.  

 

Fig. 3. (a) Visualisation of shape variation (a); (b) draping simulation setup. 

Regarding forming simulation, a macroscopic FE-based 
modelling approach is applied which employs constitutive 
descriptions of the relevant deformation mechanisms during 
forming, usually categorised according to intra-ply and 
interface mechanisms [14]. All constitutive models are 
implemented within the commercially available FE solver 
ABAQUS/EXPLICIT by means of several in-house user-
subroutines. While modelling on the macroscopic scale, intra-
ply mechanisms, namely membrane and bending behaviour, 
have to be described in a decoupled fashion. This is achieved 
by means of superimposed membrane and shell elements to 
represent the single ply of the stacked laminate [14]. 

Membrane behaviour is implemented for woven fabrics 
using hypervisco-elastic constitutive equations according to 
Poppe et al. [15], which correctly account for fibre 
reorientation under large deformations. To account for 
material-specific shear locking, a non-linear shear modulus is 
used and parameterised via experiments. Regarding bending 
behaviour, a hypoviscoelastic model with a Voigt-Kelvin 
approach is utilised in a non-orthogonal, curvilinear fibre-
parallel frame [16]. Thereby, fibre-orientation is correctly 
accounted for during bending. Both intra-ply mechanisms are 
parametrised for the same material (fabric thickness 𝑡𝑡 =
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0.3 mm ). Since the influence of the material parameters is 
beyond the scope of this investigation, they are kept constant 
in all runs. Eventually, interface behaviour between fabric and 
tool is implemented via a built-in contact in ABAQUS/EXPLICIT. 

 A fully automatised pre- and post-processing framework is 
applied during model generation. To save computation time, 
symmetry conditions are applied. The tool is modelled by 
means of discrete rigid surfaces and is closed in a single stroke 
of two seconds. For process variation, two quadratic pads 
(30 × 30 mm) are integrated in the forming simulation. Their 
position along the punch perimeter can be varied, whilst 
maintaining a 30-mm-distance to the punch opening line. The 
pads’ downforces are constant (𝐹𝐹𝑝𝑝 = 5 𝑁𝑁 each). Fig. 3 b) shows 
an example forming simulation setup for visualisation. 

Compared to their relatively high tensile stiffness, fabrics 
show low shear resistance, which makes in-plane shear the 
predominant deformation mechanism until a material 
dependent forming limit 𝛾𝛾12lock  (‘locking’). Excessive shear 
causes fibre compaction and therefore high membrane stresses. 
This increases the likelihood of unwanted defects, e.g. 
wrinkling and poor resin infiltration. Therefore, the maximum 
shear angle 𝛾𝛾12m   after forming is often used to assess the 
draping quality and is also evaluated in this work. 

Apart from in-plane 𝛾𝛾12m  , this work also evaluates the local 
fabric curvature 𝜅𝜅  to quantify wrinkling. In process 
optimization, usually the maximum of a quality attribute is 
evaluated. However, for wrinkling assessment evaluating the 
maximum curvature 𝜅𝜅m   proved unstable and prone to 
physically implausible outliers. 

To overcome this, more global quality metrics are proposed 
in literature, e.g. [17], and adapted in this work: The curvature 
values of each element in the fabric are sorted into a histogram. 
Then, a Weibull-distribution is fitted and its 99.5 % percentile 
𝜅𝜅p995 is determined, cf. Fig. 4. This global metric delimits the 
influence of individual elements and any spurious outliers do 
not distort the part quality result. This approach is found to give 
reproducible results. 

 

Fig. 4. Simulation result example with significant wrinkling effects, 
according curvature histogram, Weibull-distribution and 99.5 % percentile. 

2.4. Reward Function Definition 

Technically, pressure pads introduce local tensile membrane 
forces, similar to blank holders, and reduce aforementioned 
compressive stresses in the fabric. To assess and quantify the 
influence of pads on the forming result, an extensive parametric 
study is performed, see Fig. 5 for an example visualisation. It 
shows the influence of different pad positions on the draping 
quality for three example geometries with variable width 𝑤𝑤 of 
𝑤𝑤geo1 = 100 mm , 𝑤𝑤geo2 = 150 mm  and 𝑤𝑤geo3 = 200 mm , 
respectively. The corner radii of the geometries have been 
chosen deliberately severe, so that the fabric is at its forming 
limit, i.e. 𝛾𝛾12m  ≅ 𝛾𝛾12lock independent of the pads. Since the pads 
do not influence 𝛾𝛾12m  , draping quality is solely quantified by 
𝜅𝜅p995  (wrinkling). For comparison, straight horizontal lines 
mark 𝜅𝜅p995 for free forming, i.e. without pads. Dashed vertical 
lines mark the minimum of 𝜅𝜅p995 for each geometry. 

 

Fig. 5. Influence of the pad positions position on the forming result 
for three exemplary geometries. 

A significant impact of the pads is observed for each 
geometry. Position-dependent, they reduce or increase 
wrinkling tendencies: Compared to free forming, a reduction of 
𝜅𝜅p995 by ≈ 6% can be achieved, while an increase by ≈ 12% 
is observed for adverse positions. Overall, pad-positioning 
offers sufficient optimisation potential in this work. 

Fig. 5 also shows that the optimum pad-positions directly 
move with width 𝑤𝑤 , and analogously length 𝑙𝑙 , of the box 
geometry, i.e. position of the corner. For instance, as 𝑤𝑤geo1 =
100 mm  changes to 𝑤𝑤geo3 = 200 mm  the optimum pad-
position analogously shifts from 𝑝𝑝 = 80 mm to 𝑝𝑝 = 180 mm. 
That is, a constant ‘offset’ of ∆𝑙𝑙= ∆𝑤𝑤≈ 20 mm  between 
optimum pad-position and geometry parameters is observed. 
This observation allows deducing an optimality-criterion for 
rapid evaluation of process parameters without the need of 
computation-intensive simulations. Specifically, an explicit 
formula for the reward 𝑟𝑟(𝑝𝑝) is cast as 
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𝑟𝑟𝑥𝑥 = −1 + 2.5 𝑒𝑒𝑒𝑒𝑒𝑒 ((𝑒𝑒𝑥𝑥 − (𝑙𝑙 − ∆𝑙𝑙))

2)

𝑟𝑟𝑦𝑦 = −1 + 2.5 𝑒𝑒𝑒𝑒𝑒𝑒 ((𝑒𝑒𝑦𝑦 − (𝑤𝑤 − ∆𝑤𝑤))
2
)

𝑟𝑟   = 𝑟𝑟𝑥𝑥 + 𝑟𝑟𝑦𝑦  

(1) 

in which 𝑒𝑒𝑥𝑥 and 𝑒𝑒𝑦𝑦 denote the position of the pads, 𝑙𝑙 and 𝑤𝑤 
the geometry parameters and ∆𝑙𝑙  and ∆𝑤𝑤  denote the observed 
‘offset’ between corner position and optimum pad-position. 

This definition of the reward function ensures that a positive 
reward 𝑟𝑟 is returned, when the algorithm Πform  recommends 
pad-position near the optima (i.e. leading to reduced 𝜅𝜅p995) and 
is otherwise penalised (negative reward). 

The analytical formulation beneficially reduces the 
computational load during methodology development in this 
work. However, such a rule may only be tractable for simple 
geometries, wherefore actual forming simulations must replace 
this explicit reward function in future applications. 

2.5. Algorithm Training Scheme 

Training of 𝐶𝐶𝐶𝐶𝐶𝐶2 is done using an actor-critic-approach as 
described in [18]. In essence, two networks are utilized during 
training: The desired “actor”-network 𝐶𝐶𝐶𝐶𝐶𝐶2, and an auxiliary 
network required for actor-training, the so-called “critic”-
network. Loosely speaking, during algorithm training the actor 
𝐶𝐶𝐶𝐶𝐶𝐶2 gives process recommendations while the critic informs 
the actor how to improve its recommendations. Fig. 6 visualises 
the training scheme and is outlined in the following. 

 

Fig. 6. Visualisation of the algorithm training scheme. 

One training iteration consists of two steps, an observation 
step and a network training step. To obtain a new observation, 
a greyscale image of the shear angle distribution 𝑠𝑠  (process 
‘situation’) is drawn from the database resulting from 𝐶𝐶𝐶𝐶𝐶𝐶1 
and parsed to 𝐶𝐶𝐶𝐶𝐶𝐶2. 𝐶𝐶𝐶𝐶𝐶𝐶2 analyses the image 𝑠𝑠 and returns a 
parameter recommendation 𝑒𝑒 = (𝑒𝑒𝑥𝑥 𝑒𝑒𝑦𝑦)𝑇𝑇. The quality of this 
parameter recommendation 𝑒𝑒  is then evaluated using the 
reward function 𝑟𝑟  defined in equation (1). Finally, the 
estimated forming result 𝑠𝑠 , the recommended process 
parameters 𝑒𝑒  and the obtained reward 𝑟𝑟  are collated in an 
‘observation’-tuple {𝑠𝑠, 𝑒𝑒, 𝑟𝑟} and stored in a process database 𝑀𝑀 

(‘memory’). This is repeated for the remaining images in the 
database, i.e. in each iteration each image is evaluated once. 

During the subsequent algorithm training, at first the critic 
network is updated using the observations stored in the memory 
𝑀𝑀. This is done by adjusting weights and biases of the neurons’ 
interconnections (i.e. model parameters 𝜃𝜃𝑐𝑐 ) so that predictions 
match better the observations in the memory 𝑀𝑀. That is, 𝜃𝜃𝑐𝑐 is 
tuned to minimise the ‘loss’-function 𝐿𝐿(�̂�𝑟, 𝑟𝑟)  between 
predicted reward �̂�𝑟(𝜃𝜃𝑐𝑐, {𝑠𝑠, 𝑒𝑒}) and the ‘true’ reward 𝑟𝑟({𝑠𝑠, 𝑒𝑒}) 
that was originally received for the process recommendation 𝑒𝑒 
for in process situation 𝑠𝑠. Formally, this is cast as 

 𝜃𝜃𝑐𝑐∗ = 𝑎𝑎𝑟𝑟𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚𝜃𝜃𝑐𝑐 ∈ ℝ
𝐿𝐿(�̂�𝑟, 𝑟𝑟) (2) 

While different loss functions 𝐿𝐿(�̂�𝑟, 𝑟𝑟)  are applicable in 
general, this work uses the L2-loss defined by 

 𝐿𝐿 = 𝐿𝐿2 =
1
𝑚𝑚∑𝐿𝐿2𝑖𝑖

 

𝑖𝑖=1
= 1𝑚𝑚∑ (�̂�𝑟𝑖𝑖 − 𝑟𝑟𝑖𝑖)2

 

𝑖𝑖=1
 (3) 

with 𝑚𝑚 being the number of observations in the memory. 
Subsequently, the model parameters of 𝐶𝐶𝐶𝐶𝐶𝐶2 (‘actor’) 𝜃𝜃𝑎𝑎 are 
updated in direction of increasing reward 𝑟𝑟  using the 
expectation 𝐸𝐸 of 

 
𝜕𝜕𝑟𝑟
𝜕𝜕𝜃𝜃𝑎𝑎 𝑗𝑗

= 𝐸𝐸 [(𝜕𝜕𝑟𝑟𝑖𝑖𝜕𝜕𝑒𝑒𝑖𝑖
   𝜕𝜕𝑒𝑒𝑖𝑖𝜕𝜕𝜃𝜃𝑎𝑎 𝑗𝑗

)
𝑖𝑖=1  

] (4) 

, wherein 𝜕𝜕𝑟𝑟𝑖𝑖𝜕𝜕𝑝𝑝𝑖𝑖
 is the gradient of reward 𝑟𝑟𝑖𝑖 with respect to the 

process recommendation 𝑒𝑒𝑖𝑖  for the 𝑚𝑚 -th of 𝑚𝑚  observations in 
the memory 𝑀𝑀 . The variable 𝜃𝜃𝑎𝑎 𝑗𝑗  denotes the 𝑗𝑗 -th model 
parameter in 𝜃𝜃𝑎𝑎. 

The networks’ weights are initialised randomly. Therefore, 
evaluations of the networks will be of low significance at 
training start. Consequently, any gradient information 𝜕𝜕𝑟𝑟𝑖𝑖𝜕𝜕𝑝𝑝𝑖𝑖

 may 
be misleading for the actor-network within the first iterations. 
More important, adjusting the actor network at the very start, 
often leads to poor results, since the network directly 
approaches the minimum in closest proximity without globally 
exploring other options. This is known as exploration-vs-
exploitation dilemma in literature. Therefore, this work delays 
updating the actor network 𝐶𝐶𝐶𝐶𝐶𝐶2 (equation (4)) until the critic-
network’s predictions have reached a minimum accuracy 
measured by the L2-loss. Empirically, a threshold of  
𝐿𝐿2 <  𝐿𝐿2 𝑇𝑇ℎ𝑟𝑟 = 1.0  proved sufficient. Until then, in each 
iteration process parameters 𝑒𝑒 are chosen randomly to facilitate 
exploration and build a rather global process memory 𝑀𝑀 before 
exploiting promising strategies.  

Once, 𝐿𝐿2  is sufficiently small and actor training starts, 
random actions are selected only with a certain, constantly 
decreasing probability 𝜀𝜀 ∈  [0,1]. In this work, an exponential 
decay is chosen, i.e. 𝜀𝜀 = 𝜀𝜀0𝑘𝑘, with 𝜀𝜀0 = 0.95 and 𝑘𝑘 the current 
training iteration number. This approach is known as 𝜀𝜀-greedy 
exploration [18] and seeks to balance exploration, i.e. probing 
random process parameters, and exploitation, i.e. refining 
current network strategy. 
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3. Results 

3.1. Algorithm training progress 

In total 20 box geometries are generated, converted to 
greyscale-images and evaluated by the existing 𝐶𝐶𝐶𝐶𝐶𝐶1 
presented in [12]. This results in 20 greyscale-images 𝑠𝑠1 20 of 
the estimated shear angle distributions (cf. Fig. 2). As length 𝑙𝑙 
and width 𝑤𝑤  are known for each geometry, in each case a 
reward function according to equation (1) is established, 
resulting in 20 reward functions 𝑟𝑟1 20. 

The images 𝑠𝑠1 20 and the according reward functions 𝑟𝑟1 20 
are stored in a database 𝑺𝑺 = {{𝑠𝑠1, 𝑟𝑟1}, {𝑠𝑠2, 𝑟𝑟2},  }. It is common 
practice to split 𝑺𝑺 into two non-intersecting subsets, i.e.𝑺𝑺𝑇𝑇 ∪ 
𝑺𝑺𝑉𝑉 = 𝑺𝑺  and 𝑺𝑺𝑇𝑇 ∩  𝑺𝑺𝑉𝑉 = { } . Training is performed on the 
training set 𝑺𝑺𝑇𝑇 only, while the algorithm’s performance on the 
‘unknown’ validation subset 𝑺𝑺𝑉𝑉  allows for an assessment of the 
generalisation capabilities. In this work 5 geometries are held 
out for validation, while 15 geometries are used for training. 

Fig. 7 a) shows the evolution of the loss 𝐿𝐿2  of the critic 
network during algorithm training on a logarithmic scale. 
Within the first 𝑘𝑘 ≤ 10 iterations, a precipitous drop of the 𝐿𝐿2-
loss is observed, i.e. the critic networks rapidly improves its 
accuracy on estimating the reward for given process 
parameters. Then, a plateau is observed for another 
approximately 20 iterations ( 10 ≤ 𝑘𝑘 ≤ 30 ). This occurs, 
because a growing number of observations with new 
information on the system dynamics becomes available in the 
memory. From approximately 30th iteration on, the loss 
decreases in a monotonous manner apart from small spikes. 
This hints that new observations are now recurring rather than 
new events and do not convey as much new information to the 
network as before. Loosely speaking, the network has 
sufficient information on the underlying process dynamics. 

In iteration 𝑘𝑘 = 𝑘𝑘0 = 74, the 𝐿𝐿2-loss becomes smaller than 
the pre-defined threshold 𝐿𝐿2𝑇𝑇ℎ𝑟𝑟 = 1.0 and training of the actor 
network 𝐶𝐶𝐶𝐶𝐶𝐶2  starts according to equation (4). At the same 
time, the exploration probability 𝜀𝜀 starts decaying, cf. Fig. 7 b). 
That is, the algorithm follows more and more its own policy 
rather than performing exploration by acting randomly. After 
150 iterations the exploration probability 𝜀𝜀 is less than 5 % and 
𝐶𝐶𝐶𝐶𝐶𝐶2 acts virtually deterministic. 

 

Fig. 7. Evolution of loss (a) and exploration probability (b). 

 

The quality of the process recommendations 𝑝𝑝 of 𝐶𝐶𝐶𝐶𝐶𝐶2 is 
quantified by the obtained reward 𝑟𝑟. Since in each iteration 
multiple images are evaluated, the average reward per iteration 
𝑟𝑟 vg is used to assess the performance of 𝐶𝐶𝐶𝐶𝐶𝐶2. Note, that only 
data from 𝑺𝑺𝑇𝑇 is used for adjusting network parameters. When 
evaluating data from the validation set 𝑺𝑺𝑉𝑉 , the network 
parameters 𝜃𝜃𝑎𝑎 and 𝜃𝜃𝑐𝑐 are kept constant and not adjusted. Thus, 
data from the validation set 𝑺𝑺𝑉𝑉 is always ‘new’ to the algorithm 
and the according reward 𝑟𝑟 vg V  allows an assessment of the 
performance on unknown geometries. 

Fig. 8 shows the evolution of 𝑟𝑟 vg  during training. Two 
graphs are plotted, the average reward on the training 
geometries 𝑟𝑟 vg T  and the average reward on the held out 
validation geometries 𝑟𝑟 vg V . During the initial exploration 
phase (grey shade), random process parameter combinations 
are drawn only. Consequently, the average reward 𝑟𝑟 vg T  is 
entirely random and serves only to build the memory 𝑀𝑀. The 
average reward on validation geometries 𝑟𝑟 vg V is set to zero. 
Since no training on the actor network 𝐶𝐶𝐶𝐶𝐶𝐶2 is done during 
exploration, any evaluation of 𝐶𝐶𝐶𝐶𝐶𝐶2  would be meaningless. 
Once exploration is terminated (iteration 𝑘𝑘 = 74), training of 
𝐶𝐶𝐶𝐶𝐶𝐶2 starts and its model parameters 𝜃𝜃𝑎𝑎 are stepwise adjusted 
in direction of increasing reward. 

 

Fig. 8. Evolution of average reward 𝑟𝑟avg. 

Both graphs, 𝑟𝑟 vg T  and 𝑟𝑟 vg V , show a similar evolution. 
Initially, a steep ascent of 𝑟𝑟 vg T  and 𝑟𝑟 vg V  within the first 
additional iterations ( 74 ≤ 𝑘𝑘 ≤ 90 ) is apparent. Further 
training (90 ≤ 𝑘𝑘 ≤ 110) still increases both rewards, though at 
a lower rate. In the end (𝑘𝑘 ≥ 110), both rewards approach an 
approximately constant reward-level in an asymptotic manner. 

The reward-level on the training geometries 𝑟𝑟 vg T is almost 
constantly higher than the validation-reward 𝑟𝑟 vg V. This is a 
common observation in surrogate-modeling and ML: While the 
surrogate/ML-model constantly improves on supplied training 
data, transferring obtained relationships to additional 
(validation) data usually introduces some error. In extreme, this 
can lead to a nearly perfect approximation of training data, 
while performing poor on additional (validation) data. This 
phenomenon is known as ‘overfitting’ in statistical modelling. 

Overall, the increasing validation curve 𝑟𝑟 vg V  clearly 
shows, that 𝐶𝐶𝐶𝐶𝐶𝐶2 is able to extract process ‘knowledge’ from 
a set of geometries and apply it to new ‘unknown’ situations.  
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3.2. Performance on unknown box-geometries 

Validation of the ML-assisted process is done for a 
geometry 𝑔𝑔𝑣𝑣𝑣𝑣𝑣𝑣  ( 𝑙𝑙 = 120 mm ,  𝑤𝑤 = 180 mm ) from the 
validation set 𝑺𝑺𝑉𝑉 . First, the ML-assisted recommendation is 
obtained by Πform . After conversion of geometry 𝑔𝑔𝑣𝑣𝑣𝑣𝑣𝑣  to a 
greyscale image, evaluation of Πform  comprises two steps 
(cf. Fig. 2): 

 Estimate forming result 𝑠𝑠v l from geometry-image 
by 𝐶𝐶𝐶𝐶𝐶𝐶1 (pre-trained available as described in [12]) 

 Estimate optimum process 
parameters 𝑝𝑝 using 𝐶𝐶𝐶𝐶𝐶𝐶2 

To validate the quality of the ML-predictions, FE-forming 
simulations are used. Please refer to section 2.3 for model 
description. Two different simulation setups are considered, 
free forming of fabric, i.e. no pads, and forming with pads 
positioned according to ML-recommendation (Fig. 9, left). The 
forming results are evaluated with regard to fabric curvature 𝜅𝜅, 
as a measure of wrinkling. Fig. 9 (right) shows the resulting 
curvature-metrics of both simulations. 

 

Fig. 9. Example visualisation of simulation setup for validation and column-
plot of the improvement. 

Two different curvature measures are plotted, the 99.5% 
percentile of the Weibull-fit 𝜅𝜅p995 and the maximum curvature 
𝜅𝜅m   for reference. Compared to free forming, the ML-assisted 
process recommendation by Πform  successfully reduces the 
fabric curvature by 13.5 % ( 𝜅𝜅m  ) or 11.1% ( 𝜅𝜅995p ), 
respectively. That is, the overall function Πform  has made 
meaningful inference on process parameters given a ‘new’ 
geometry from the geometry class. Therefore, process 
knowledge has successfully been transferred from previous 
forming tasks to a new forming task.  

3.3. Process recommendations on double-dome geometry 

Another important aspect is, whether Πform  can make 
inference on a geometry, that lies outside the training geometry 
class of ‘boxes’. To this, the double-dome geometry 𝑔𝑔𝐷𝐷𝐷𝐷  is 
evaluated as shown in Fig. 10. 

 

Fig. 10: Visualisation of the double-dome geometry as a test case and 
according evaluation scheme by Πform (𝐶𝐶𝐶𝐶𝐶𝐶1 and 𝐶𝐶𝐶𝐶𝐶𝐶2). 

Forming of the double-dome does only evoke moderate 
shear deformations below the fabric’s deformation limit, i.e. 
𝛾𝛾12m  < 𝛾𝛾12lock . Therefore wrinkling did not occur and local 
curvature 𝜅𝜅  is not significantly influenced. Thus, the shear 
angles 𝛾𝛾12 are evaluated instead. Fig. 11 visualises the effect of 
different pad-positions. The straight horizontal line denotes 
𝛾𝛾12m   in free forming. Again, introducing pads gives a position-
dependent reduction of 𝛾𝛾12m   by up to 9.1 %, except for the 
outermost position 𝑝𝑝 = 180 mm . In this case, pads even 
increase 𝛾𝛾12m  , i.e. deteriorating the forming result. 

 

Fig. 11: Visualisation of the effect of different pad positions on the maximum 
shear angle during forming. 

The dashed vertical line marks the recommendation 
𝑝𝑝 ≈ 90 mm by Πform. Comparing the recommendation 𝑝𝑝 with 
the parametric study, reveals that 𝑝𝑝 lies in a promising range. 
Thus, Πform has transferred process knowledge from previous 
process-observations (box-geometries) and made meaningful 
inference on a new geometry from a different geometry class. 

4. Conclusion and Outlook 

A machine-learning-assisted approach is presented, which 
rapidly estimates beneficial process parameters (pad positions) 
in textile forming for variable component geometries using an 
image-based approach. To this, a function Πform is proposed, 
which comprises two main steps: First, an image-processing 
convolutional neural network (𝐶𝐶𝐶𝐶𝐶𝐶1 ) analyses a greyscale-
image of the geometry of interest and yields an image-
estimation of the shear angle distribution after forming. Then, 
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a second network 𝐶𝐶𝐶𝐶𝐶𝐶2  interprets this estimation and infers 
beneficial pad positions. 

The function Πform is trained using Reinforcement Learning 
on a simplified phenomenological model deduced from textile-
forming simulations. To facilitate comprehensibility of the 
algorithm behaviour during development, convex, box-shaped 
geometries are considered. After training, Πform is validated on 
two test scenarios. First, it must make inference on an 
‘unknown’ box-geometry that was held out during algorithm 
training. Second, a common benchmark geometry in textile 
draping, the “double-dome”, is used to test the generalisation 
capability of Πform. In both cases, an FE forming simulation 
validates the process recommendations of Πform. 

Overall, Πform  is found to give meaningful 
recommendations, which improve the forming result. Thus, it 
may be concluded that Πform  is generally able to extract 
process knowledge from process examples of different 
geometries and apply it to ‘new’ components. This 
significantly extends current surrogate capabilities, which are 
always component-specific and limited to a certain, pre-
specified parameter selection. Also, results of this work hint 
that surrogate training could be decoupled from the 
optimisation task to a certain extent: Given sufficient 
computational resources, Πform  could be pre-trained on a 
sufficiently large database and potential users may apply Πform 
without the need of modelling and training a surrogate 
themselves. Although training such a model would require 
considerable computational effort, the benefit of immediate 
process recommendation and ease of application may outweigh 
the expenses in the long term.  

Further development is still envisaged. First, the simplified 
phenomenological reward-function needs to be replaced by 
actual forming simulations. Even if similar functions may be 
tractable for other simple geometries, e.g. ellipsoids or 
cylinders, this appears unlikely for arbitrary geometries.  

Additionally, the scope of geometries requires extension, 
since Πform only makes valid process recommendations for the 
range of previously seen geometry classes (e.g. convex shapes). 
Therefore, future training databases require the deliberate 
inclusion of additional geometry shapes for full generalisation, 
e.g. convex-concave shapes. 

Finally, a remaining research question pertains to 
component-specific optimisation: Although results show that 
Πform  gives reasonable ‘near-optimum’ recommendations, 
they do not necessarily have to be strict optima. To achieve an 
optimum solution, a component-specific refinement of Πform 
is required. Future research may investigate, if additional 
training of Πform on a single geometry further improves initial 
recommendations and converges to an actual optimum. 

Overall, the proposed ML-based process optimisation 
approach appears as a promising enhancement of current SBO-
strategies for fast and efficient process design at early stages of 
product development. 
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