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Virus-like particles (VLPs) are protein-based nanoscale structures that show high
potential as immunotherapeutics or cargo delivery vehicles. Chimeric VLPs are
decorated with foreign peptides resulting in structures that confer immune responses
against the displayed epitope. However, insertion of foreign sequences often results in
insoluble proteins, calling for methods capable of assessing a VLP candidate’s solubility
in silico. The prediction of VLP solubility requires a model that can identify critical
hydrophobicity-related parameters, distinguishing between VLP-forming aggregation
and aggregation leading to insoluble virus protein clusters. Therefore, we developed
and implemented a soft ensemble vote classifier (sEVC) framework based on chimeric
hepatitis B core antigen (HBcAg) amino acid sequences and 91 publicly available
hydrophobicity scales. Based on each hydrophobicity scale, an individual decision
tree was induced as classifier in the sEVC. An embedded feature selection algorithm
and stratified sampling proved beneficial for model construction. With a learning
experiment, model performance in the space of model training set size and number
of included classifiers in the sEVC was explored. Additionally, seven models were
created from training data of 24–384 chimeric HBcAg constructs, which were validated
by 100-fold Monte Carlo cross-validation. The models predicted external test sets of
184–544 chimeric HBcAg constructs. Best models showed a Matthew’s correlation
coefficient of >0.6 on the validation and the external test set. Feature selection was
evaluated for classifiers with best and worst performance in the chimeric HBcAg VLP
solubility scenario. Analysis of the associated hydrophobicity scales allowed for retrieval
of biological information related to the mechanistic backgrounds of VLP solubility,
suggesting a special role of arginine for VLP assembly and solubility. In the future, the
developed sEVC could further be applied to hydrophobicity-related problems in other
domains, such as monoclonal antibodies.

Keywords: virus-like particles, solubility, hydrophobicity, hydrophobicity scales, machine learning, feature
selection

Abbreviations: cVLP, chimeric virus-like particle; FN, false negative; FP, false positive; HBcAg, hepatitis B virus core antigen;
MAD, median absolute deviation; MC-CV, Monte Carlo cross-validation; MCC, Matthew’s correlation coefficient; MIR,
major immunodominant region; PCA, principal component analysis; sEVC, soft ensemble vote classifier; SVM, support
vector machine; TN, True negative; TP, true positive; VLP, virus-like particle.
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INTRODUCTION

New formats of targeted therapies are emerging, such as virus-like
particles (VLPs) (Ong et al., 2017). VLPs are highly immunogenic
macromolecular assemblages based on viral proteins, resembling
the structure of the virus they were derived from Kushnir
et al. (2012). Since they lack viral nucleic acids, the particles
are non-infectious (Chackerian, 2007; Kushnir et al., 2012).
VLPs are on the market as vaccines against the virus they
were derived from, e.g., human papillomavirus-VLPs against
human papillomavirus infection to prevent cervical cancer,
or hepatitis B surface antigen-VLPs against hepatitis B virus
infection (McAleer et al., 1984; Bryan et al., 2016). An approach
increasingly investigated is the display of foreign epitopes on a
VLP scaffold resulting in chimeric VLPs (cVLPs) (Ong et al.,
2017). They benefit from the inherent immunogenicity of a
viral structure coupled with the structure of a foreign target
antigenic epitope (Pumpens and Grens, 1999). Hepatitis B core
antigen (HBcAg) has been widely applied as a VLP platform for
chimeric antigen display due to its excellent stability, successful
production in a high diversity of expression systems, and
induction of strong B- and T-cell responses (Pumpens and
Grens, 1999; Jegerlehner et al., 2002; Klamp et al., 2011). The
foreign peptide is typically introduced genetically into the VLP
at the N-terminus, C-terminus, or preferably in the major
immunodominant region (MIR) (Karpenko et al., 2000; Pumpens
and Grens, 2001). However, insertion of a foreign epitope often
results in insoluble, misassembled or aggregated capsids, lacking
the desired immunogenicity (Karpenko et al., 2000; Billaud
et al., 2005; Gillam and Zhang, 2018). The process of identifying
soluble cVLP constructs is highly empirical and time-consuming
(Chackerian, 2007). While few reports studied cVLP solubility
based on sequence data, the number of observations included
in these studies is limited (Karpenko et al., 2000; Billaud et al.,
2005; Janssens et al., 2010). Early development of cVLPs would
therefore greatly benefit from a model to predict solubility which
is probed using a large data set.

A variety of general approaches to predict protein solubility
exists that are based on information from 3-D structures and
simulations and/or amino acid sequence information. For a
detailed overview of aggregation and solubility prediction tools,
we refer to a recent review (Trainor et al., 2017). 3-D structure-
based methods include the prediction of soluble expression by
molecular dynamics (MD)-simulated unfolding combined with a
support vector machine (SVM) architecture (Schaller et al., 2015),
dynamic exposure of hydrophobic patches in MD simulations
(Chennamsetty et al., 2009; Jamroz et al., 2014), and projection
of sequence-based methods onto 3-D structures (Sormanni et al.,
2015; Zambrano et al., 2015). Although high-throughput 3-D
structure generation of VLP building blocks has been described
previously (Klijn et al., 2019), the computational cost of creating
3-D structures is still high, limiting the applicability of this
approach in candidate selection for several hundred molecules.
Amino acid sequence-based methods can be distinguished into
amino acid composition-based algorithms such as machine
learning approaches using SVM or random forest classifiers
(Magnan et al., 2009; Agostini et al., 2012; Samak et al., 2012;

Xiaohui et al., 2014; Yang et al., 2016) and sliding-window-based
algorithms, such as AGGRESCAN, Zyggregator, and CamSol
(Conchillo-Sole et al., 2007; Tartaglia et al., 2008; Sormanni
et al., 2015). Interestingly, sequence-based methods have been
reported to be superior to solvent-accessible surface-based
methods in the prediction of monoclonal antibody aggregation
(Hebditch et al., 2019).

The above-mentioned methods have in common that their
goal is to identify proteins or patterns in proteins that are prone
to aggregation and therefore have a higher chance to be insoluble
upon expression. In the following section, we will discuss why
hydrophobic interactions play a special role for VLP solubility
and why the application of current models is difficult for the cVLP
solubility problem.

HBcAg has been extensively studied in a C-terminally
truncated form with amino acids 150–183 removed, termed
Cp1−149. It assembles to VLPs while being easier to handle
in experiments and processes than the full-length HBcAg.
This is attributed to the removal of the strongly positively
charged C-terminal amino acids that bind nucleic acids (Gallina
et al., 1989; Zlotnick et al., 1996; Wizemann and von Brunn,
1999; Alexander et al., 2013). The smallest HBcAg species
observed in physiological solutions are dimers, stabilized by an
intermonomer disulfide bridge and a hydrophobic core (Wynne
et al., 1999). The dimeric Cp1−149 aggregates aggressively and
readily forms capsids at low concentrations, neutral pH, and
low salt (Ceres and Zlotnick, 2002). Capsid formation is an
entropy-driven process relying on hydrophobic interaction and
is therefore similar to protein aggregation (Ceres and Zlotnick,
2002; Gorbenko and Trusova, 2011). Since capsids can exist
in much higher concentrations in physiological buffers than
dimers, the solubility limitation introduced by insertion of a
foreign epitope is most probably related to an interference with
the assembly reaction (Billaud et al., 2005; Chackerian, 2007).
Investigation of chimeric HBcAg VLP assembly by diafiltration
showed a dependence of the assembly reaction on the inserted
epitope sequence (Rüdt et al., 2019). When the assembly reaction
is hampered by the insertion of a foreign epitope, the strong
entropic drive for protein-protein interaction probably leads
to insoluble aggregates as opposed to soluble capsids. Ordered
aggregation of dimers to capsids can therefore be assumed
as a prerequisite for high-level soluble expression, whereby
hydrophobicity plays a major role. Therefore, an appropriate
measure of hydrophobicity is paramount to describing the cVLP
solubility problem.

The hydrophobic effect is described by the free energy change
of water surrounding a solute. For amino acids in specific, it
has been investigated based on organic solvent-water partition
coefficients, for example (Nozaki and Tanford, 1971). This
partition coefficient might be suitable for the description of
solute distribution in such systems. Protein folding, however, is a
much more complicated matter influenced by more and different
properties of the amino acids than their tendency to accumulate
in a certain phase and is still not fully understood (Garde and
Patel, 2011; Harris and Pettitt, 2016). To overcome the limitation
of this definition of hydrophobicity for biological systems, so-
called hydrophobicity scales have been developed. These are,
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for example, based on the analysis of the distribution of amino
acids in the core or surface of the protein (Naderi-Manesh et al.,
2001), thermodynamic calculations elevating different aspects
of solvation (Chothia, 1976; von Heijne and Blomberg, 1979),
or peptide retention times in reversed-phase chromatography
(Wilce et al., 1995). These scales have in common that they try
to describe the hydrophobic effect in the interplay with other
factors related to geometries and electrostatic contributions. It
is therefore important to note that throughout this manuscript,
hydrophobicity is referred to as a value describing the tendency
of proteins, amino acids, or functional groups to influence
a biological process toward an outcome that is thought to
be connected with hydrophobicity, such as aggregation, rather
than its strict thermodynamic definition for smaller solutes
(Harris and Pettitt, 2016). Hydrophobicity scales assign each
proteinogenic amino acid a particular hydrophobicity value.
These hydrophobicity values can be used to calculate overall
protein hydrophobicity or regions within the molecule. Simm
et al. (2016) identified 98 protein hydrophobicity scales in the
literature. These scales have been derived using experimental
and theoretical techniques based on a great variety of training
data, ranging from small to large sets of proteins, peptides, single
amino acids, or 3-D structures. Application of a hydrophobicity
scale to a new problem requires that an appropriate scale is
chosen. This can be based on comparison of the investigated
experimental conditions to the framework in which the
hydrophobicity scales were derived or the choice of frequently
applied hydrophobicity scales. None of these two approaches
is recommended as they both introduce bias into the model.
Feature selection algorithms can help overcoming this bias
and selecting the appropriate scales using a set of training
data. In a study on aggregation-prone regions of 354 peptides,
feature selection has been successfully employed to derive critical
features for peptide or protein aggregation (Fang et al., 2013).
The most important 16 critical features were incorporated in
SVM and random forest architectures. In another study, an SVM
architecture using 40 features was applied (Tian et al., 2009).
These methods project the problem onto a space of a dimension
of the number of feature variables. This could also be applied
to hydrophobicity values calculated by several hydrophobicity
scales. Another approach is to regard each hydrophobicity
scale individually to be included in a classifier in a one-
dimensional input data space. Reflecting upon hydrophobicity
scales, this is reasonable since each of the scales were derived
to be individual measures of hydrophobicity. Considering them
individually, the physicochemical meaning behind the scales
remains largely unchanged. The strength of this method comes
with the combination of several classifiers. This results in potent
ensembles that incorporate the classifiers’ strengths, while ideally
overshadowing their weaknesses in classification (Matteo and
Giorgio, 2012). In an article on hydrophobicity scale optimization
by a genetic algorithm, the authors pointed out, that statistical
methods may have strong prediction performance, but may not
be applicable to new or even to similar problems and small data
sets (Zviling et al., 2005). Therefore, preserving physicochemical
information in hydrophobicity scales was one important goal
in this research.

In summary, ensemble methods based on hydrophobicity
scales promise to be a potent tool to describe classification
or regression problems related to hydrophobicity. The cVLP
solubility problem calls for a method that ascertains critical
features of the molecules in an aggregating environment, capable
of distinguishing between structures that probably aggregate to
soluble VLPs and those that aggregate to insoluble structures.
The objective of this study was to create an interpretable protein
solubility model framework and to uncover information about
the VLP solubility problem that will aid in engineering soluble
cVLP candidates. Therefore, a soft ensemble vote classifier
(sEVC) was developed and implemented, which consists of
individual decision trees, each based on a hydrophobicity
scale including an embedded feature selection algorithm.
Physicochemical information contained in the hydrophobicity
scales was largely conserved by (I) using each scale as an
individual classifier within an ensemble and (II) by implementing
a simple one-level decision tree as classifier. Feature selection
was implemented to boost model performance and identify the
most relevant hydrophobicity scales for chimeric HBcAg VLP
solubility. The applicability of the model was evaluated with 568
chimeric C-terminally truncated HBcAg VLP constructs using 91
hydrophobicity scales.

MATERIALS AND METHODS

VLP Solubility Data
Chimeric HBcAg VLP constructs were based on His-tagged
C-terminally truncated HBcAg (Schumacher et al., 2018). The
molecules were created using 82 different peptide inserts and
eight different insertion strategies, a total of 691 chimeric VLP
constructs, which were experimentally tested for solubility. The
peptides are inserted into the HBcAg molecule in the MIR. An
insertion strategy defines where exactly in the MIR the peptide
is inserted and which amino acids are deleted. Inserts that
have not been tested with all eight insertion/deletion strategies
were excluded from this study. The final data set comprised
568 chimeric HBcAg VLPs with all possible combinations of
strategies A-H and inserts 1–71. Solubility was evaluated by SDS-
PAGE after lysis of the expression host E. coli. Solubility was
treated as a binary class system with class labels “soluble” or
“positive” or “1” and “insoluble” or “negative” or “0”. Throughout
this paper, an “observation” is referred to one of the 568 chimeric
HBcAg VLP constructs. Class “soluble” was attributed to 283 of
568 observations, while 285 of 568 were class “insoluble.” With
49.8%/50.2% class division, the data set can be considered as a
balanced classification problem.

Data Set Division
Model training, model evaluation, and data processing were
performed with MATLAB R2018a (The Mathworks, Natick,
US-MA). Models were always generated by and calculated on
randomly selected validation subsets (or with stratified random
sampling). In this article, randomization is achieved by using the
randn command of MATLAB, which generates pseudorandom
values. Seven data subsets containing ntrain observations
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were created prior to model construction, where ntrain =
{24, 24, 24, 48, 96, 192, 384}. These data sets were constructed
once and the remainder of available data ntest was used as an
external test set. Observations were drawn from the data set
by stratified sampling aiming at a balanced representation of
strategies and inserts, i.e., the respective strata. Stratified sampling
was achieved by limiting the occurrence of strategies and inserts
in the data set. The maximum allowed number of inserts in
the sampled data set was ninsert,max = roundup

(
ntrain

ninserts

)
, where

ninserts = 71. The maximum allowed number of strategies was
accordingly ntrain

nstrategies
, where nstrategies = 8. When the maximum

number of a certain insert or strategy in the training set was
reached, all identical inserts or strategies, respectively, were
made unavailable to random selection in order to sample the
strata evenly.

Hydrophobicity Scales
Ninety eight hydrophobicity scales were retrieved from a
recent article on peptide classification (Simm et al., 2016),
originally derived from AAindex (Kawashima et al., 2007),
the SPLIT 4.0 server (Juretiæ et al., 1993), and ProtScale
(Gasteiger et al., 2005). Each scale was centered and scaled
to unit variance. Reversed scales were excluded if there was
a complementary, non-reversed scale available, resulting in 91
scales (see Supplementary Table S1).

Hydrophobicity Scale-Based Soft
Decision Tree Ensemble Vote Classifier
The model generation comprised a feature selection, a soft
ensemble vote classifier (sEVC) informed by classifiers based on
hydrophobicity scales, and a Monte Carlo cross-validation (MC-
CV) procedure. Figure 1 illustrates the construction of the sEVC.
Feature values were computed from amino acid sequences and
hydrophobicity scales. A hydrophobicity scale assigns each amino
acid a hydrophobicity value. The sum over the amino acids results
in the feature value 0.73 amino acids in N- and 71 amino acids
in C-terminal direction were omitted in the calculation, as they
were identical for all constructs. Each classifier in the sEVC was
constructed from feature values calculated for each observation
in the training set using one hydrophobicity scale. The individual
classifiers based on this feature value were decision trees with one
split (also called decision stumps) which were trained based on
Gini’s diversity index (Gini, 1912; Windeatt and Ardeshir, 2004).
This one-level tree design ensures that a simple hydrophobicity
threshold decides about the predicted class. Decision trees were
constructed using the fitctree function of MATLAB’s statistics
and machine learning toolbox. The resulting ntrees decision trees
assigned each observation a class decision and a class probability.
For a hard ensemble vote classifier, the probabilities are equal to 1.
In the here applied sEVC, the class probability is the probability
estimate derived from the associated child node in the decision
tree. The class decision and the associated class probability
becomes the decision tree’s vote. The votes of all decision trees for
a particular observation are summed up in the sEVC. The class
that has a higher sum of probability values is the elected class.

Figure 2 shows the procedure for model construction
from stratified training set selection, over model selection
by MC-CV through to model construction and prediction.
Model performance was evaluated by 100-fold MC-CV. During
validation, 50% of the data was used for training and
the remaining data was predicted. MC-CV samples nvali,train
randomly without replacement. Compared to k-fold cross-
validation, the number of cross-validation groups in MC-CV is
not governed by the choice of their sizes, and observations can
be sampled in different cross-validation sets. The information on
the model performance can then be used to inform about optimal
classifier numbers for construction of the model. For the final
model, the entire training data set is used for model training
and feature selection. The embedded feature selection sorts the
features with decreasing feature importance. In 91 models, the
best 1–91 classifiers are included. The resulting classifiers are used
to predict the external test set.

Model Performance Evaluation
The performance of the sEVC was evaluated based on Matthew’s
correlation coefficient

MCC =
TP × TN − FP × FN

√
(TP + FP) (TP + FN) (TN + FP) (TN + FN)

(1)

where TP, TN, FP, and FN stand for true positive, true negative,
false positive, and false negative classification of the model
subsets, respectively (train, validation, and test contingency
matrix). The MCC is considered to be the least biased singular
metric to describe the performance of binary classifiers, especially
for cases of class imbalance (Powers, 2011; Chicco and Jurman,
2020). Another metric that was used is the accuracy A as defined
in Equation (2).

A =
TP + TN

TP + TN + FP + FN
(2)

Feature Selection
The model generation was preceded by an embedded feature
selection. The decision trees were evaluated individually to
assess feature importance (Figure 1). The feature importance
was defined as the accuracy of the individual decision trees
for the prediction of the training set. While the MCC is a
less biased metric (Powers, 2011), it is not defined for cases
where terms in the denominator are zero, which was the case
for the smallest training sets. For comparability, accuracy was
subsequently used as the feature importance metric throughout
this study. Feature importance was computed for every model
and for each validation run. The features (and thus the respective
decision trees) were then sorted in descending order according
to their importance, so that most important features were chosen
first during model generation.

Learning Experiment
To explore the model design space with further scrutiny, the
model’s performance was characterized in a learning experiment.
To investigate the effect of training set size, the number of
training observations was varied in steps of 5% of the ntrain = 384
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FIGURE 1 | Workflow of the ensemble vote classifier. The ensemble vote classifier is constructed by computation of feature values from virus-like particle sequence
data and 91 hydrophobicity scales. With the training set features, one-level decision trees are induced. The individual decision trees’ accuracy in predicting the
training set is defined as the feature importance. In the ensemble model, each decision tree contributes a solubility decision with associated probability. The results
are aggregated and the most probable class is chosen by the ensemble.

data set from 5 to 95%, resulting in 19 different training set
sizes (see also Figure 2). The external test set was composed of
the remaining 184 observations. The training sets were drawn
randomly without stratified sampling from the stratified ntrain =

384 data set. The remainder of the 384 observations was not
used or evaluated. The number of included decision trees (1–91)
was screened in addition to the training set size. Thus, a matrix
of 19 × 91 individual model settings was created. Each model
setting was repeated ten times resulting in 19 × 10 × 91 models.

Each training set was sampled individually for all 19 × 10 × 91
models, resulting in 17,290 training sets. Feature selection was
performed 17,290 times, i.e., individually for each of the models.
Model performance was evaluated based on the external test
set and the training set. The median and median absolute
deviation (MAD) of the ten model repetitions were computed.
They were the basis for the discussion of model performance
at respective training set sizes and included number of
decision trees.
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FIGURE 2 | Modeling workflow comprising stratified sampling, a learning experiment, model selection, and construction. Stratified sampling results in training sets of
ntrain = {24, 48, 96, 192, 384} data points. These training sets are split in 100-fold Monte Carlo cross-validation to inform about the optimal number of classifiers.
The training set is then used to construct a model with preceding feature selection to predict the external test set. The largest training set is additionally utilized for a
learning experiment exploring the performance of the model in the space of training set size and number of included decision trees.

Systematic Misclassification
To evaluate systematic misclassification, the frequency of true
and false predictions were evaluated for each insertion strategy.
The relative frequency of strategies found within the classification
groups TP, TN, FP, and FN was calculated by summing up their
occurrence in the respective groups in the 17,290 models of the
learning experiment and normalizing it by the overall occurrence
of the strategies in all classification groups and all models.

Model Generation
The sEVC workflow comprises stratified training set selection,
model validation by MC-CV and prediction of an external test
set (Figure 2). The number of included decision trees was a
hyperparameter that was screened for the model generation on
the ntrain = {24, 24, 24, 48, 96, 192, 384} data sets. The optimal
number of included decision trees in the MC-CV validation
procedure should inform about the best model for the prediction
of the external test set. This relationship was investigated for all
seven training sets.

RESULTS AND DISCUSSION

Data Set Construction
The data set consists of observations that can be assigned to 71
unique peptide inserts and 8 unique insertion strategies. Stratified
sampling was used to build a representative training set from

the full data set. Figure 3 shows seven training sets comprising
ntrain = {24, 24, 24, 48, 96, 192, 384} observations sampled by 2-
D stratified sampling in a grid of inserts over insertion strategies.
Soluble constructs are marked in blue and insoluble constructs
are marked in red. The fraction of soluble constructs in the
training set f sol is between 0.46 and 0.54, resulting in a maximum
deviation of 0.04 from the expected value f sol,total = 0.498. In the
seven models, deviation of f sol from the theoretically expected
value of f sol,total = 0.498 derives from random sampling but is
limited due to stratified sampling. From Figure 3G, it can be
seen that the choice of the insert is strongly influencing solubility,
while the insertion strategy only has an effect on solubility for
a small number of constructs. This pattern is confirmed when
considering the entire solubility matrix (Separate Data Table
in the Supplementary Material), underpinning the usefulness
of stratified sampling especially for smaller data sets. With 24
training examples, only a third of the 71 inserts are represented by
the training set. To investigate the influence of this potential lack
of information during model training, three different training sets
with 24 samples have been created.

Influence of Training Set Size and
Number of Decision Trees in the
Ensemble Vote Classifier
The sEVC’s performance characteristics were evaluated in a
learning experiment exploring the space of training set size
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FIGURE 3 | Model training sets 1–7 (A–G) created by stratified sampling of
ntrain = {24, 24, 24, 48, 96, 192, 384} data points. Stratified sampling was
informed by the construction of the entire data set, where eight insertion
strategies were used for 71 different inserts, amounting to a total of 568
observations. While for the sampling procedure the solubility data of the
observations were unknown, their solubility class is illustrated for interpretation
purposes. Blue represents soluble and red represents insoluble observations.
The fraction of soluble observations is indicated above the plots by fsol.

and number of included classifiers, i.e., decision trees. In
this experiment, 190 × 91 models were created using the
best 1–91 decision trees as determined individually for each
model by the feature selection algorithm. The highest median
training MCC can be observed at low training set sizes of ≤57
(Figure 4A). Note that a brighter color corresponds to better
model performance (higher MCC) and lower model variability
(lower MAD of MCC). Most models with an MCC > 0.80 are
found at the smallest training set size of 19. This concurs with
the area where the MAD is greatest with ≥ 0.06 (Figure 4B).
Larger MAD values indicate greater variation between the
model repetitions. This suggests a high dependency of model
performance on the individual random sampling of the training
set. Increasing training set size results in lower training MCC
and MAD of MCC. MAD is smaller since more information
is available during model training. Additionally, large training
sets have a higher probability to contain a significant fraction
of identical training observations in the ten different random
samplings.

Decision trees with lowest feature importance are included in
the models with the largest number of included decision trees
due to feature selection. Model performance aggravation due to
inclusion of these decision trees was the case for larger training
sets, where median training MCC decreases with the number of
included decision trees.

The external test set observations are identical for all models,
while the training set and therefore the resulting model is
individually different. Median test set MCC is <0.48 for low
training set sizes ntrain ≤ 38 (Figure 4C). Most models of this size
produce a test set median MCC of ≤0.54, compared to training
MCC of≥0.8 for most models, suggesting an overfitted model for
small training data sets. The largest MCC of the external test set
predictions are found at training set sizes ≥ 249 and at > 23 and
< 65 number of included decision trees, which is also overlapping
largely with the region of lowest MCC MAD with many models
showing a test set MAD ≤ 0.01 (Figure 4D). Therefore, in this
area, the best models are found having high MCC (most ≥ 0.6)
on the test set and low MAD of MCC. The difference between
training and external test set MCC in this area is ≤ 0.1. Thus,
the training set is a good indicator of model performance in
said area.

It has to be noted that the model performance was evaluated
on randomly chosen subsets of the stratified ntrain = 384 data
set, constraining the benefits from stratified sampling. Stratified
sampling can be expected to decrease overfitting and variation
seen for low training set sizes, as the probability of drawing a non-
representative sample set is drastically reduced, as discussed both
above and below.

Selection of Models Based on Stratified
Training Sets
In the seven models created by stratified samplings, the shaded
area, representing the model’s MAD of validation MCC, is
decreasing with increasing training set size (Figure 5). This
was expected due to the increasing amount of information
available during model training. The sets with ntrain = 24 were
constructed three times to investigate the robustness of small
training set sizes. Of these, the first has a smaller MAD area
than the other two, which can possibly be attributed to a
“lucky” stratified sampling. With only 24 samples, the MC-
CV comprises 12 validation training and 12 validation test
observations, resulting in potentially larger artifacts of random
selection. Also, stratified sampling based on the insert does not
have a strong effect, since only a maximum of 24 different
inserts of the total 71 inserts are chosen, leaving 47 inserts
unrepresented. Validation MCCs are comparably stable over
the number of included decision trees. Some of the models
show a slight MCC increase over the first number of included
decision trees (models 1–3 and 5) and some show a gradual
but shallow decline at larger numbers of included decision
trees (>50; models 4, 6, and 7). This underlines the effect
seen in the learning graph while being less pronounced, which
probably can be attributed to the more balanced training data
set. Most of the models result in validation MCCs of around
0.6, whereas model 3 of training set size ntrain = 24 has
a significantly lower validation MCC of around 0.2. When
considering the MCC of the external test sets, each of the
models shows adequate performance when a minimum number
of decision trees was included. At around 30 decision trees,
the models have an external test set MCC that is either above
or close to their overall median MCC. The test set MCCs at
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FIGURE 4 | Model performance based on training and external test data described by (A) the median Matthew’s correlation coefficient (MCC) and (B) the median
absolute deviation (MAD) of the MCC for training data and (C) median MCC and (D) MAD of MCC for external test data. Each rectangle represents a decaplicate of a
model with the number of training examples shown on the y-axis and the number of included decision trees in the ensemble classifier on the x-axis. The training
observations were randomly sampled from the stratified dataset with ntrain = 384. The decision trees are sorted in descending order by feature importance. This
means, that at point n on the x-axis, the results of the models including the n best decision trees are shown. White/bright color denotes high median MCC values
and low MAD of the MCC, dark (violet or blue) color denotes low median MCC values and high MAD of the MCC, relative to all MCC data in the learning experiment.
A well-predicting and reproducible model has high MCC and low MAD, respectively (both bright).

30 decision trees are > 0.6 for all models, except model 2
with an MCC of 0.56. The mean MCC of all seven models’
external test data over decision tree numbers was computed
to inform about the average model performance dependent
on the number of included decision trees (data not shown).
It was optimal at 29 and 30 decision trees, both with a
mean MCC of 0.61.

At larger training set sizes, the trend in validation data is
more translatable to the trend in external test data, while at
low training set sizes of 24 observations, the model should only
partially rely on validation data and may include a minimum
number of decision trees to avoid overfitting. Another reason
for this is feature selection, which is performed on a potentially
unrepresentative data set. It can therefore result in prioritizing
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FIGURE 5 | Validation and external test set Matthew’s correlation coefficient (MCC) on stratified training data with training set size of (A) 24, (B) 48 and 96, and (C)
192 and 384 observations, depending on the number of included decision trees. Validation median and median absolute deviation (MAD) are calculated from
100-fold Monte Carlo cross-validation. The median is shown as red dots connected by a line to guide the eye. The shaded area represents the MAD around the
median and are colored from yellow over orange to pink with increasing training set size. The black line represents the performance of the model on the external test
set of size ntest = 568− ntrain.

decision trees that fit unrepresentative data but not the entire
data set well. Comparison of the model’s performance to other
published models can be difficult since many report their results
as accuracies – typically in the range of 0.62–0.83 (Idicula-
Thomas et al., 2006; Smialowski et al., 2006; Magnan et al.,
2009; Hebditch et al., 2017). In the ideal balanced case, the
MCC of these models would be 0.24–0.66 (for the explanation
on the relation of MCC and accuracy see Supplementary
Material S2). However, many of those models are not based
on a balanced data set, which would then lead to a lower
MCC. The model presented in this paper shows MCC values
close to the best MCC estimates of previously published models.
In a review on HBcAg cVLPs, insert charge was described
to be the most important parameter for solubility of cVLP
candidates (Whitacre et al., 2009). Construction of a decision
tree on a scale that rates aspartic acid and glutamic acid with
-1, arginine and lysine with +1, and all other amino acids
with 0, resulted in an MCC of 0.38 on the external test set
using the ntrain = 384 training and corresponding test set
(data not shown). The correlation of insert charge to cVLP
solubility, as described in the above-mentioned review, was
therefore observed with the data set investigated in this article.
It was not as strong as the predictions of the sEVC based on
hydrophobicity scales.

Some trends with regard to the number of included decision
trees have been uncovered and discussed. However, it has to

be noted that the effects are quite small over a wide range of
included decision trees, especially with stratified training sets.
On the one hand, this indicates that the model performs well
over a large space of a chosen number of classifiers and training
set sizes. On the other hand, it highlights the potential of the
ensemble classifier to include more orthogonal scales that could
describe more aspects in the data and therefore result in even
better models. In a very simple way, the orthogonality of the
scales can be analyzed by principal component analysis (PCA).
PCA on the 91 normalized hydrophobicity scales revealed that
the first principal component already explains 68.8% of the
variance (Supplementary Figure S1). This may be expected,
when considering how the scales were derived. Many of the
hydrophobicity scales originate in some way from other scales
being only slightly modified. It would therefore be highly
interesting to investigate the sEVC framework constructed with
a set of scales that complement each other to explain more of the
variance found in the data and result in even better models.

The Potential of Feature Selection to
Retrieve Biological Information
Feature selection is an important tool to boost model
performance. It can also serve to retrieve biological information
with respect to the modeled problem. Accuracy was chosen as
metric for feature importance to avoid cases where the MCC
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FIGURE 6 | Median feature importance measured by the median training set
accuracy of the individual scales in all 190 × 91 models in the learning
experiment. Median accuracy of scales was sorted in descending order, so
that scale 1 has highest accuracy and therefore highest feature importance,
while scale 91 has lowest feature importance. The IDs of the scales (i.e.,
feature names) are noted below in respective order.

is not defined. Decision trees that individually classify more
observations of the training set correctly therefore have higher
feature importance. In the learning experiment, 19 different
training set sizes (ntrain = 19, 38, . . . , 384) were evaluated
910 times, giving a statistically strong insight into feature
importance in the range of tested training set sizes. Median
feature importance ranges from 0.54 to 0.85 (Figure 6) and
shows an MAD of 0.02–0.04, while MAD increases toward lower
accuracies (data of accuracies and MAD in Supplementary
Table S2). This median feature importance value is valid for
the entire training data set of 384 observations. It describes, in
the framework of the presented chimeric HBcAg VLP solubility
problem, which decision tree, and therefore hydrophobicity
scale, is most suitable for the distinction of soluble and insoluble
constructs independent of the training set size.

Feature importance can be used to obtain a biological
interpretation of the model based on the characteristics of the
hydrophobicity scales with highest feature importance (best) and
lowest feature importance (worst). Feature importance describes
their quality to predict within the cVLP solubility problem. With
the first three scales, feature importance declines more than with
the following 57 scales. The last four scales decrease markedly in
feature importance. The best scale SET3 originates from a study
on the prediction of transmembrane helical regions (Zviling et al.,
2005). In this study, a genetic algorithm optimization approach
amplified hydrophobicity and hydrophilicity of hydrophobic
and hydrophilic amino acids, respectively, compared to the
input scales. Insoluble expression results from protein-protein
interaction leading to the formation of aggregates, potentially
leading to inclusion bodies (Carrio and Villaverde, 2005).
Transmembrane regions in proteins are naturally hydrophobic
(Silverman, 2003) and in the absence of membranes therefore

prone to protein-protein aggregation. The good performance
of this scale suggests that findings on hydropathy based on
the propensity to form transmembrane helices is comparable to
the solubility investigated in this study. The scale VHEG790101
has second-highest feature importance and was derived using
surface accessibility data from Chothia’s study of 1976 (Chothia,
1976; von Heijne and Blomberg, 1979). Free transfer energies
of residues from polar to non-polar solvent were calculated
adding protonation energies for charged residues. This highlights
the benefit of amplifying hydrophilicity of charged residues for
application in the VLP solubility scenario. In a machine learning
study on protein aggregation, VHEG790101 was also rated as
an important feature to predict aggregation propensity (Fang
et al., 2013). The EISEN scale has similar but slightly lower
feature importance, which can be explained by the fact that
its hydrophobicity values are simply the average of five scales’
normalized hydrophobicity values among which is the scale of
Chothia and Von Heijne (Eisenberg et al., 1982).

WILM950103reverse, the scale that has lowest feature
importance, is based on C4 reversed phase chromatography
retention times of peptides (Wilce et al., 1995). Retention on
chromatography columns is often based on small fractions of the
molecular surface and cannot directly be translated to properties
related to the entire molecule (Hebditch et al., 2019). ZIMJ680101
was created by statistical analysis based on only 40 proteins.
The space of applicability of this scale is probably limited and it
therefore performs badly in the VLP solubility scenario. In the
above-mentioned study by Fang and colleagues, ZIMJ680101 also
was rated as an important feature (Fang et al., 2013), highlighting
that a direct comparison between the presented model and Fang’s
model cannot easily be drawn. The third-worst scale is one of
seven hydrophobicity scales derived from a study on solvent-
accessibility of amino acids (Naderi-Manesh et al., 2001). Scales
NADH010101-7 are created by information theory and represent
the self-information derived from different thresholds of solvent-
accessibility. These aim to describe the amino acids’ surface
accessibility within a protein. From scales 1 to 7, the threshold for
surface accessibility was increased from 5 to 50% of its maximum
accessibility. Scales 1 and 2 with 5 and 9% threshold ranked at
27 and 26 in feature importance analysis. Increased thresholds
of 16, 20, 25, and 36% resulted in feature importance ranks
of 36, 43, 47, and 39. Scale 7 with 50% accessibility threshold
is significantly worse with position 89 of 91 scales in feature
selection. This comparison suggests that there is a dependence of
the threshold set in the study by Naderi-Manesh and colleagues
on the performance of these scales in the solubility model. The
scales with low threshold (5 and 9%) only count residues as
inaccessible if they are almost completely buried, thus boosting
the hydrophobicity of very hydrophobic amino acids relative
to the other amino acids. On the contrary, with the cut-off of
50% accessibility, amino acids that have a significant share of
solvent-accessible surface but still below 50% will be regarded as
hydrophobic. The lower threshold is probably more applicable
to the cVLP solubility problem, since the aim of the epitope
design is to expose rather than bury it. This in turn means that
the insertion of typically strongly buried hydrophobic residues
can corrupt protein folding by their orientation to a protein
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core, potentially leading to misfolded proteins that aggregate
to insoluble clusters. The feature importance ranking of these
scales might indicate that, for solubility, strongly hydrophobic
residues have a significant influence on solubility, while residues
that are somewhat hydrophobic, but still have some solvent-
accessible area are not as critical. This argument also supports
that chromatography-based scales may not be the best choice to
describe macro-properties such as solubility, as discussed above.

To retrieve information related to the hydrophobicity of
individual amino acids, it is valuable to analyze hydrophobicity
values of the normalized best and worst scales compared to the
median of all hydrophobicity scales. If a particular scale performs
better in feature selection than average, this can probably be
attributed to the fact that the hydrophobicity values of certain
amino acids are different from the median value. Figure 7 shows
normalized hydrophobicity scale values for all amino acids for
(Figure 7A) the three best and (Figure 7B) the three worst scales
in the scope of this study. In the following, the hydrophobicity
values of the highlighted scales are discussed in reference to
the individual amino acid median hydrophobicity value and its
MAD (of all 91 hydrophobicity scales). The three best scales are
SET3, VHEG790101, and EISEN, in descending order. They have
in common that arginine (single-letter code R, as indicated in
Figure 7) has a significantly lower hydrophobicity value than in
most other scales. This value falls well below the MAD range of
the hydrophobicity value of all scales for arginine. Alanine (A)
and glycine (G) are attributed a slightly larger hydrophobicity
value than within the MAD of their distribution. SET3 and
VHEG790101 also rate hydrophobicity of aspartic acid (D)
lower and asparagine (N) higher compared to the MAD range.
Compared to the median and the other two scales, SET3 has a
markedly low hydrophobicity value for phenylalanine (F).

The three worst scales are NADH010107, ZIMJ680101, and
WILM950103reverse, in descending order. For the worst scales,
it is more difficult to identify patterns in the deviation from the
median hydrophobicity values. However, a general trend in the
worst three scales is that hydrophobicity values of hydrophobic
amino acids are particularly low while charged amino acids are
about average or above. Overall, the consensus of the best scales
is that arginine should be attributed a lower hydrophobicity
value than the population of scales would suggest, while alanine
should be more hydrophobic than in most of the scales. Other
charged amino acids are partly rated slightly less hydrophobic,
such as aspartic acid and lysine. The worst scales’ accuracies
are probably lower since a number of hydrophobic amino acids’
hydrophobicity values are comparably low, while, compared to
the population of hydrophobicity scales, a number of charged
or polar amino acids’ hydrophobicity values are relatively high.
Amino acids such as cysteine or phenylalanine show conflicting
trends in the worst and best scales and thus no conclusion thereof
can be drawn.

The above analysis suggests that a unique property of arginine
might contribute to its special scale position having both absolute
lowest and relatively low hydrophobicity in the three best
scales. Arginine’s role as an agent to reduce protein-protein
interactions and increase solubility is only partially understood
(Arakawa et al., 2007). As free amino acid in high concentrations

(1 M), it has been shown to interact favorably with almost
all amino acid side chains and peptide bonds. This means,
that arginine can reduce both hydrophobic and electrostatic
interactions (Arakawa et al., 2007). As an additive, arginine
favorably interacts with tryptophan and therefore can suppress
hydrophobic interactions leading to aggregation (Tsumoto et al.,
2004). Exactly this effect is thought to bear the potential of
introducing protein-protein interactions when arginine is present
in abundance in the amino acid sequence of a protein (Warwicker
et al., 2014). This conclusion was drawn by investigating the
ratio of lysine to arginine (K/R) to highlight the specific effects
of arginine on protein solubility as compared to lysine, since
both bear one positive charge. It has also been shown that
decreasing arginine content could increase solubility of a single-
chain variable fragment (Austerberry et al., 2019). A negative
arginine-related solubility effect was also seen in a study on a
large data set of E. coli expressed proteins (Price et al., 2011). In
this study on cVLPs, higher arginine content leads to decreased
hydrophobicity values, which in turn leads to higher probability
for soluble classification. This effect was observed although
the K/R ratio [mean (K/R) = 0.32] was strongly unfavorable
considering the results of Warwicker and colleagues (Warwicker
et al., 2014). Another study showed that mutations from surface
lysines to arginine in GFP could enhance its chemical stability
(Sokalingam et al., 2012). However, protein folding was found
to be aggravated. Protein solubility is a very complex topic
and depends on a variety of factors of different dimensions,
which is illustrated by the cVLP solubility problem. HBcAg
dimers have low solubility in physiological pH and ionic strength,
since hydrophobic and other interactions strongly favor VLPs
(Ceres and Zlotnick, 2002). The assembly is an entropy-driven
mechanism and is therefore similar to protein aggregation (Ceres
and Zlotnick, 2002; Gorbenko and Trusova, 2011). Association
relies on weak protein-protein interactions of HBcAg, such as
hydrophobic interaction in a tyrosine pocket (Bourne et al.,
2009) in the base of the molecule. This ordered aggregation
is probably mandatory for the soluble state of HBcAg at the
high expression levels in E. coli’s cytosol, since HBcAg dimers
were found to be aggressively aggregating and forming capsids
already at low concentrations (Ceres and Zlotnick, 2002). Protein
insolubility during expression can therefore exhibit an entirely
different origin than for other proteins – the association of the
HBcAg proteins to structures that are not VLPs but unordered
aggregates, which themselves are not soluble. Truncated wild-
type HBcAg (Cp1−149, based on UniprotID: P03147; The UniProt
Consortium, 2018) contains eight arginine residues with a K/R
of 0.25, even though the arginine-rich C-terminus of the full-
length HBcAg is not considered. To investigate this relationship
with cVLPs, a one-level decision tree solely based on K/R
ratio of all 568 observations was constructed, resulting in an
inverse relationship as observed by Warwicker and colleagues
(Warwicker et al., 2014). With the VLP solubility data, K/R
values below the cut point are predicted as soluble with an
Accuracy of 0.65 and MCC of 0.3, while in Warwicker’s study
lower K/R lead to higher chances of insolubility. Arginine-
based interactions could therefore be hypothesized to be of great
importance in the recruitment of other HBcAg molecules to
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FIGURE 7 | Normalized hydrophobicity scale values for the 20 proteinogenic amino acids. Amino acids are shown on the x-axis indicated by single-letter code. In
each graph, 91 scales’ amino acid hydrophobicity values are represented by black dots, their median is shown as a blue line with a shaded blue area representing
the median absolute deviation. A dashed, horizontal line through zero is shown to guide the eye. The scale indicated by a subfigure title is highlighted in red for (A)
the three scales with highest median feature importance and (B) the three scales with lowest median feature importance as determined in the learning experiment.
The normalized scales’ sign was changed so that hydrophobicity of aspartic acid is always negative.

FIGURE 8 | Relative frequency of classification groups based on insertion strategies A-H in (A) the training set and (B) the external test set of the 17,920 models in
the learning experiment. Strategy E and H are marked additionally to guide the eye. TP, true positive; TN, true negative; FP, false positive; FN, false negative.

form VLPs eventually. Therefore, arginine’s property to increase
protein-protein interactions when present in the amino acid
sequences can be assumed to enhance VLP assembly, which is
mandatory for significant levels of soluble HBcAg. Following this
reasoning, substitution of arginine with lysine would maintain
overall protein charge but probably promote the existence of
either soluble HBcAg dimers incapable of assembly or insoluble
HBcAg aggregates.

The role of arginine can also be discussed with respect to
other amino acids. Tryptophan is not present in abundance in
truncated wild-type HBcAg. Four tryptophan residues build the

core of the HBcAg helices and are paired with either tyrosine,
phenylalanine, or arginine residues (see also Supplementary
Figure S2). Since arginine-tryptophan interactions were found
to be extraordinarily strong (Arakawa et al., 2007), additional
tryptophans in the epitope may result in misfolding during
protein expression, since abundant arginines and other residues
interact favorably with the tryptophans in the epitope region. This
would give reason to the low feature importance observed in the
three worst scales, which underrate tryptophan hydrophobicity.
In the data set, 0, 1, or 2 tryptophans are introduced compared
to the wild-type Cp1−149. Interestingly, observations containing
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two additional tryptophans are all insoluble, while observations
containing zero or one additional tryptophan are found both
in the soluble and in the insoluble group. As discussed above,
valine probably also plays a vital role that is shown by its
low hydrophobicity values in the worst scales. Arginine-valine
interaction was found to be the only unfavorable interaction in
single amino acid experiments (Arakawa et al., 2007). With the
above reasoning, this could hamper assembly of HBcAg VLPs and
therefore decrease VLP solubility.

Systematic Classification Errors Based
on Insertion Strategies
The average model performance with respect to the eight
insertion strategies is related to properties of the utilized
molecules that are strongly associated with the presented
problem. If a strategy has a significantly higher relative frequency
of FP classifications than FN classifications, the sEVC model
systematically overestimates the solubility of observations created
with this strategy. This indicates a particularly bad performance
of this strategy. From Figure 8, it can be seen that this is the
case for strategy H, both in training (A) and external test sets
(B). During model construction, it would therefore be interesting
to tweak strategy H’s solubility prediction so that the numbers
of strategy H’s FP = FN. This can of course only be done for
constructs where there is already a significant influence visible
in the training set and when the training set is large enough. If
a strategy is more numerous in the FN than in the FP group,
the opposite case is true, where the model underestimates its
solubility. These strategies are systematically good for solubility
with respect to the model. This can, for example, be observed
for strategy E. Its solubility prediction could be tweaked to
higher solubility during model training. From the insertion sites
and deletions that are different in the eight strategies we could,
however, not find a relation that would explain the above-
mentioned behavior. This relationship could be related to 3-D
properties that cannot be explained by the 2-D amino acid
sequence information only. The same approach has been tested
on the 71 inserts, where no significant effects could be observed
on the comparably large amount of different inserts and therefore
their rarer occurrence (data not shown). The presented model
performance analysis, which is based on the particular training
set structure, can be used as a potent tool to learn about the
characteristics of the data set and to boost model performance.

CONCLUSION AND OUTLOOK

In this article, we presented a novel solubility prediction
framework based on experimental and theoretical
hydrophobicity scales that was applied to the prediction of
chimeric HBcAg VLP solubility. In summary, little information
was fed into our model, i.e., publicly available sequences,
hydrophobicity scales, and solubility data.

The best models predicted with an MCC of > 0.6 on
the external test set. Stratified training set sampling based
on information on the inserted peptide sequence and the
insertion strategy proved beneficial especially for small training

set sizes. Evaluation of the contingency matrix revealed that
certain epitope insertion strategies were overrepresented in the
FP or the FN group of both training and test set and were
therefore particularly limiting or promoting, respectively, for
cVLP solubility. Detailed assessment of the best and worst
features, i.e., hydrophobicity scales, suggested a special role
for arginine for soluble cVLP expression. Contrary to reports
on the solubility of other proteins, a large arginine content
did not disrupt but rather improved cVLP solubility. We
hypothesized that arginine’s positive interaction with almost all
amino acids plays a crucial role in recruiting HBcAg dimers
or larger building blocks to form a capsid, which in turn is
required for meaningful levels of HBcAg concentrations in
physiological buffers.

The presented framework proved to be applicable to small and
larger training set sizes and could, with minor adaptations, be
transferred to the prediction of monoclonal antibody solubility
or even other biophysical properties. In the future, an informed
design of scales that are orthogonal could greatly benefit
the presented approach, as it would diversify the classifiers’
performances and therefore benefit the ensemble classifier.
Additionally, it would be interesting to evaluate the model as
a regression tool, avoiding the discretization that is performed
during the sEVC procedure. Our results also suggest that building
a global solubility model for all proteins is highly challenging
and may only be feasible if a balanced data set of equally
represented protein classes at very high observation numbers
is available.
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