KIT | KIT-Bibliothek | Impressum | Datenschutz

Capabilities and limitations of a new thermal finite volume model for the evaluation of laser-induced thermo-mechanical retinal damage

Luecking, M.; Brinkmann, R.; Ramos, S.; Stork, W. 1; Heussner, N.
1 Institut für Technik der Informationsverarbeitung (ITIV), Karlsruher Institut für Technologie (KIT)


Many experimental studies focus on the physical damage mechanisms of short-term exposure to laser radiation. In the nanosecond (ns) pulse range, damage
in the Retinal Pigment Epithelium (RPE) will most likely occur at threshold levels due to bubble formation at the surface of the absorbing melanosome. The
energy uptake of the melanosomes is one key aspect in modeling the bubble formation and damage thresholds. This work presents a thermal finite volume model
for the investigation of rising temperatures and the temperature distribution of irradiated melanosomes. The model takes the different geometries and thermal
properties of melanosomes into account, such as the heat capacity and thermal conductivity of the heterogeneous absorbing melanosomes and the surrounding
tissue. This is the first time the size and shape variations on the melanosomes‘ thermal behavior are considered. The calculations illustrate the effect of the
geometry on the maximum surface temperature of the irradiated melanosome and the impact on the bubble formation threshold. A comparison between the
calculated bubble formation thresholds and the RPE cell damage thresholds within a pulse range of 3 to 5000 ns leads to a mean deviation of 𝜇 = 22 mJ ∕ cm2
... mehr

Verlagsausgabe §
DOI: 10.5445/IR/1000120555
Veröffentlicht am 14.08.2020
DOI: 10.1016/j.compbiomed.2020.103835
Zitationen: 7
Zitationen: 8
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Technik der Informationsverarbeitung (ITIV)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2020
Sprache Englisch
Identifikator ISSN: 0010-4825, 1879-0534
KITopen-ID: 1000120555
Erschienen in Computers in biology and medicine
Verlag Elsevier
Band 122
Seiten Art.Nr. 103835
Nachgewiesen in Dimensions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page