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Abstract
In online optimization, input data is revealed sequentially. Optimization problems in
practice often exhibit this type of information disclosure as opposed to standard offline
optimization where all information is known in advance. We analyze the performance
of algorithms for online optimization with lookahead using a holistic distributional
approach. To this end, we first introduce the performance measurement method of
countingdistribution functions. Then,wederive analytical expressions for the counting
distribution functions of the objective value and the performance ratio in elementary
cases of the online bin packing and the online traveling salesman problem. For bin
packing, we also establish a relation between algorithm processing and the Catalan
numbers. The paper shows that an exact analysis is strongly interconnected to the
combinatorial structure of the problem and algorithm under consideration. Results
further indicate that the value of lookahead heavily relies on the problem itself. The
analysis also shows that exact distributional analysis could be used in order to discover
key effects and identify related root causes in relatively simple problem settings. These
insights can then be transferred to the analysis of more complex settings where the
introduced performance measurement approach has to be used on an approximative
basis (e.g., in a simulation-based optimization).
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1 Introduction

Online optimization with lookahead deals with sequential decision making under
incomplete information where each decision must be made based on a limited, but
certain preview (lookahead) of future input data. In many applications, this optimiza-
tion paradigm provides a better view of a decision maker’s informational state than
pure offline and online optimization since not all may be known about the future, but
information concerning the near future may be available.

The input of an online optimization problem – both with and without lookahead –
consists of a sequence σ = (σ1, σ2, . . . , σn) of input elements σ1, σ2, . . . , σn . One of
the most prominent lookahead types is request lookahead where a new input element
is revealed only when an old one has just been served (Allulli et al. 2008; Tinkl 2011).
Under request lookahead of size l ∈ N, an algorithm has access to a fixed number l of
unserved input elements (or to all of the remaining unserved input elements if there
are less than l of them). The first of these input elements would also be known in the
pure online situation, but the remaining l−1 input elements are known only due to the
lookahead capability. If an algorithm is allowed to process the known input elements in
an arbitrary order, this type of lookahead corresponds to a buffer of size l where input
elements can be reordered for subsequent processing. In stricter settings of online
optimization with lookahead, buffers may be forbidden requiring to process input
elements in the given order. In this paper, we will consider online optimization with
lookahead where lookahead allows for buffering. An overview on various lookahead
concepts throughout different applications can be found in Dunke (2014). Note that
for l = 1, we obtain the setting without lookahead. Request lookahead construes the
lookahead set as dependent on the processing statuses of the input elements and not
in an independent process of release. There are other types of lookahead, e.g., time or
property lookahead (Dunke 2014).

Basic online problems have been studied in the framework of competitive analysis
(Borodin and El-Yaniv 1998; Fiat and Woeginger 1998): Algorithms for an online
optimization problem have to compete with an optimal offline algorithm which knows
the whole input in advance, and quality guarantees have to hold for all possible input
sequences. Hence, competitive analysis is a worst-case analysis; results are overly
pessimistic and do not reflect an algorithm’s practical abilities (Dorrigiv 2010; Fiat
and Woeginger 1998). We conclude that more comprehensive analysis methods are
required to display an algorithm’s overall behavior in a way supportive for decision
makers in applications.

Advances in information technologies such as RFID, GPS, or GIS enable decision
makers nowadays to obtain certain information about the near future. This information
could be used algorithmically as a lookahead. However, lookahead is often still only
considered an add-on to online optimization. The intermediate setting of lookahead has
been addressed sporadically for a competitive analysis in the following areas: Routing
and transportation (Allulli et al. 2008; Jaillet andWagner 2006;Tinkl 2011), scheduling
(Li et al. 2009; Mandelbaum and Shabtay 2011; Zheng et al. 2013), organization of
data structures (Albers 1997, 1998; Breslauer 1998; Young 1991), data transfer (Imreh
and Németh 2007), packing (Grove 1995), and metrical task systems (Ben-David and
Borodin 1994; Koutsoupias and Papadimitriou 2000).
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In this paper, we theoretically investigate what can be achieved through looka-
head relative to the pure online case without lookahead. Since the choice of the right
algorithm is most crucial to overall system performance, we assess algorithm per-
formance with respect to practical needs. The following results and contributions are
obtained in the paper: An exact distributional analysis is carried out for basic settings
in two important classes of online problems (packing and routing). The analysis pro-
vides a holistic view of the performance of online algorithms; in particular, it yields
considerably more information than conventional competitive analysis. To the best
of our knowledge, such a comprehensive analysis has not been accomplished before
in online optimization. Through our derivations, concrete explanations for observ-
able lookahead effects in the classes of packing and routing problems are found
which relate to the combinatorial structure of the problem settings. We also recog-
nize that the human limits of grasping the combinatorial structure are likely to be
reached soon when more complex settings need to be analyzed. Nonetheless, the
validity of the methodological approach shown in this paper provides motivation
to pursue this type of performance analysis on a sampling basis in more complex
settings.

The remainder of the paper is organized as follows: In Sect. 2, we present a holistic
distributional approach to performance measurement which allows comparing algo-
rithms with different lookahead regimes to each other. Sections 3 and 4 validate the
method in a theoretical analysis of the bin packing and traveling salesman problem.
Exact analysis is possible because the implications of lookahead on the objective can
be traced back to a combinatorial structure. We are aware that the considered prob-
lem settings are fairly simple. Yet, the performance analysis becomes quite involved.
However, in the given problem settings we gain insight into why algorithms may
substantially profit from additional information (in the case of the traveling salesman
problem) or why not (in the case of bin packing). For more complex settings, the
introduced approach of performance measurement is recommended to be used on an
approximative basis (e.g., in a simulation-based optimization as carried out in Dunke
2014). The paper ends with a conclusion in Sect. 5.

2 Performancemeasurement in online optimization with lookahead

There are many perspectives on assessing algorithm performance:Worst-case analysis
gives strong guarantees, but lacks in displaying the overall behavior. Average-
case analysis addresses the overall behavior, but requires distributions on instances.
Distributional analysis illustrates the whole performance spectrum and submits a fine-
grained quality image. We first give an overview of existing performance measures
which are related to our approach in Sect. 2.2. We denote an optimal offline algorithm
which knows σ in advance by Opt and the set of all input sequences by �; the cost
of an algorithm Alg on input sequence σ is denoted by Alg[σ ]. The discussion is
restricted to minimization.
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2.1 Literature review

Competitive analysis (Borodin and El-Yaniv 1998; Johnson 1973; Karlin et al.
1988; Sleator and Tarjan 1985) has become the standard for measuring the per-
formance of online algorithms. Alg is called c-competitive if there is a constant
a such that Alg[σ ] ≤ c · Opt[σ ] + a for all σ ∈ �. The competitive ratio cr
of Alg is the greatest lower bound over all c such that Alg is c-competitive, i.e.,
cr = inf{c ≥ 1 |Alg is c-competitive}. It states how much Alg deviates from Opt
due tomissing information in theworst case. However, there are notable disadvantages
of the competitive ratio (Dorrigiv 2010; Fiat and Woeginger 1998): First, results are
overly pessimistic because singleworst-case instances, often pathologically construed,
decide upon algorithm quality, and also competing with an omniscient offline algo-
rithmmay be irrelevant in practice. Second, competitive analysis is oblivious to overall
algorithm behavior since performance is reduced to a single, worst-case-related figure;
this makes discriminating algorithms with the same worst case, but different average
case impossible. Third, a direct comparison between two algorithms is impossible.
And fourth, the method often fails to reproduce the beneficial impact of lookahead.

Comparative analysis (Koutsoupias and Papadimitriou 2000) differs from compet-
itive analysis as it relates the best objective value of a class of algorithm candidates to
that of another class of algorithm candidates which are weaker than Opt, but stronger
than those in the first class. Let A,B be algorithm classes where B is more powerful
than A, e.g., due to lookahead, then the comparative ratio is

ccomp
r := max

B∈B
min
A∈A

max
σ∈�

A[σ ]
B[σ ] .

Tomaximize ccomp
r ,B chooses candidateB, whereuponA answers withA, whereupon

B chooses the worst instance σ ∈ � for A. Comparing algorithm classes with varying
lookahead levels to each other (without reference toOpt) is also the foundation of our
approach.

In an average-case analysis, stochasticity refers to probabilities for input sequence
occurrences. Let D be a probability distribution over all input sequences, then Alg
is called c-competitive under D if there is a constant a such that ED(Alg[σ ]) ≤
c · E(Opt[σ ]) + a. The expected competitive ratio of Alg under D is cDr = inf{c ≥
1 |Alg is c-competitive under D}. The expectation can also be taken over all ratios:

The expected performance ratio of Alg under D is c′D
r = inf

{
c ≥ 1 |ED

(
Alg[σ ]
Opt[σ ]

)
≤

c
}
. According to Souza (2006), the expected performance ratio should be favored

because sequences with small (large) objective would be underrepresented (overrep-
resented) in the isolated expectations. The expected performance ratio indicates which
algorithm performs better on most sequences, and by Markov’s inequality the proba-
bility for a sequence with ratio far from the expectation can be bounded.

The main advantage of distributional performance analysis is that an algorithm
is judged by a distribution instead of a single key figure. Relative interval analysis
(Dorrigiv et al. 2009) is a preliminary stage of distributional analysis since it only
considers the extreme values of a distribution for two algorithms. Define
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MinAlg1,Alg2(n) := min|σ |=n
{Alg1[σ ] − Alg2[σ ]},MaxAlg1,Alg2(n)

:= max|σ |=n
{Alg1[σ ] − Alg2[σ ]},

then the relative interval of Alg1 and Alg2 is

IAlg1,Alg2 =
[
lim inf
n→∞

MinAlg1,Alg2
(n)

n , lim sup
n→∞

MaxAlg1,Alg2
(n)

n

]
.

The relative interval of an algorithm pair corresponds to its asymptotic range of amor-
tized costs, and it allows for a direct comparison of two algorithms without reference
to Opt.

Stochastic dominance (Müller and Stoyan 2002) origins from statistics where it
is used to establish an order between distributions of two random variables. By
interpreting the objective value obtained by an algorithm as a random variable, this
concept has been transferred to online optimization (Hiller 2009) where the objec-
tive value distributions of two algorithms Alg1 and Alg2 are related to each other.
Let FAlg : R → [0, 1] be the cumulative distribution function of the objective
value of Alg: Alg1 dominates Alg2 stochastically at zeroth order if and only if
Alg1[σ ] ≥ Alg2[σ ] for all σ ∈ �;Alg1 dominatesAlg2 stochastically at first order
if and only if FAlg2(v) ≥ FAlg1(v) for all v ∈ R. If Alg1 stochastically dominates
Alg2 at first order, then E(Alg1) ≥ E(Alg2). Unfortunately, stochastic dominance
does not admit a total ordering among all distributions and we cannot expect a rela-
tion to hold for arbitrary algorithms. However, when comparing an algorithm without
lookahead Alg1 to one with lookahead Alg2 (in minimization), Alg1 ≥st Alg2
would illustrate the benefit of lookahead because Alg2 attains smaller objective val-
ues on more instances than Alg1.

Bijective analysis (Angelopoulos and Schweitzer 2013) is a special case of stochas-
tic dominance where input sequences are uniformly distributed. The idea is to find a
bijection b : � ↔ � such that the objective value ofAlg1 onσ is neverworse than that
of Alg2 on the image b(σ ) of σ . Essentially, the approach consists in establishing an
order of the elements in � such that Alg1 outperforms Alg2 on every pair (σ, b(σ )).
Alg1 is called no worse than Alg2 (Alg1 	 Alg2) if for all n ≥ n0 ≥ 1 with some
n0 ∈ N there exists b : � ↔ � with Alg1[σ ] ≤ Alg2[b(σ )] for all σ ∈ �. Alg1 is
called better than Alg2 if Alg1 	 Alg2 and not Alg2 	 Alg1. Hence, Alg1 does
not have to outperform Alg2 on each sequence, but there has to be a relabeling of the
sequences such that this relation holds between the original and relabeled sequences.
We point out the advantages in Angelopoulos and Schweitzer (2013) for bijective anal-
ysis that can be transferred to any distributional approach: First, the idea is simple and
intuitive, yet powerful. Second, algorithms can be compared directlywithout reference
to an optimal offline algorithm. And third, typical algorithm properties are likely to be
uncovered.
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2.2 Counting distribution functions

Inspired by the bijective analysis of Angelopoulos and Schweitzer (2013), our analysis
of algorithm performance is based on a distributional approach facilitating a compre-
hensive performance evaluation. We choose a performance measurement approach
which summarizes the global behavior of an algorithm over all instances, but also
takes into account local quality of algorithms in terms of comparing their perfor-
mance on the same problem instance. The approach has been introduced in Dunke
and Nickel (2013) and is further discussed in Dunke (2014).

In online optimization, nothing is known about the future. Likewise, in online
optimization with lookahead, a limited amount of information about the future is
available. Therefore, it is reasonable to impute this assumption also in the analysis
method for algorithm performance.When no probabilities for instance occurrences are
given, from the principle of insufficient reason the maximum entropy distribution is
the best way to emulate the state of informational nescience as it minimizes the amount
of a-priori information in the distribution (Jaynes 1957a, b). The uniform distribution
over � is the maximum entropy distribution among all distributions with support �

(which follows from Langrangian relaxation by the definition of the entropy together
with the constraint that the sum over all probabilities equals 1). For finite �, this leads
to counting results saying how many instances yield a certain objective value. The
counting distribution function1 subsumes these frequency information of objective
values over �:

Definition 2.1 (Counting distribution function of objective value). Let σ ∈ � be an
input sequence, letAlg be an algorithm, and letAlg[σ ] be the objective value ofAlg
on σ . If � is a discrete set, then the function FAlg : R → [0, 1] with

FAlg(v) :=

∑
σ∈�

1[−∞,v](Alg[σ ])

|�|
is called the counting distribution function of the objective value of Alg over �. 
�

For objective value v ∈ R, the counting distribution function of the objective
value FAlg(v) relates the number of input sequences with objective value smaller
than or equal to v to the number of all possible input sequences. As every instance is
considered with equal weight, this yields a counting result in the sense that FAlg(v)

can be understood as the proportion among all input sequences leading to an objective
value smaller than or equal to v.

A first step of comparing two algorithms Alg1 and Alg2 by their counting dis-
tribution functions of the objective value (see Fig. 1a) can be done by graphically
examining the relative positions of their plots. For instance, when – in a minimization
problem – the plot of FAlg1(v) lies below that of FAlg2(v) for a major proportion of
objective values v, we can conclude as a first rule of thumb that FAlg1(v) outperforms
FAlg2(v) on the majority of input sequences.

1 The indicator function 1A(x) is 1 if x ∈ A and 0 otherwise.
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Fig. 1 a Counting distribution function of the objective value of Alg1 and of the objective value of Alg2.
b Counting distribution function of the performance ratio of Alg1 relative to Alg2

The following definitions account for the relative performance of two algorithms
to each other when both are restricted to operate on the same input sequence:

Definition 2.2 (Performance ratio). Let σ ∈ � be an input sequence, and let Alg1,
Alg2 be two algorithms for processing σ , respectively. rAlg1,Alg2(σ ) := Alg1[σ ]

Alg2[σ ] is
called the performance ratio of Alg1 relative to Alg2 with respect to σ . 
�
Definition 2.3 (Counting distribution function of performance ratio). Let σ ∈ � be
an input sequence, let Alg be an algorithm, and let rAlg1,Alg2(σ ) be the performance
ratio ofAlg1 relative toAlg2 on σ . If� is a discrete set, then the function FAlg1,Alg2 :
R → [0, 1] with

FAlg1,Alg2(r) :=
∑

σ ∈ �1[−∞,r ](rAlg1,Alg2(σ ))

|�|
is called the counting distribution function of the performance ratio of Alg1 relative
to Alg2 over �.

In a first step, comparing Alg1 and Alg2 by their counting distribution function
of the performance ratio (see Fig. 1b) can be done by partitioning all instances into
subsets with ratio smaller than 1 (favoring Alg1), with ratio larger than 1 (favoring
Alg2), and with ratio equal to 1 (displaying indifference between Alg1 and Alg2).
The cardinalities of these subsets then can be put into relation to each other to provide
a first impression about instance-wise algorithm qualities. Note that the competitive
ratio of Alg1 is obtained as maxσ∈� rAlg1,Alg2(σ ) if Alg2 is Opt.

The two-sided approach has the following advantages: First, the objective value
distributiongives a global viewonalgorithmquality over all instances; the performance
ratio distribution offers a local view on the quality of both algorithms relative to each
other on the same instance. Second, distribution-based analysis also yields information
about ranges and variability. And third, algorithms with arbitrary lookahead levels can
be compared.

In the sequel, we derive exact expressions for the counting distribution functions in
two fundamental online optimization problems (bin packing in Sect. 3 and traveling
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salesman problem in Sect. 4) to assess the influence of lookahead on algorithm perfor-
mance. The study shows that already in fairly easy problem settings, an exact analysis
becomes quite involved. On the other hand, the analysis allows us to gain insight why
lookahead does not prove that much beneficial in packing problems as compared to
routing problems. To the best of our knowledge, an explicit consideration of all input
sequences as conveyed by the exact distributional analysis has never been conducted
before.

3 Online bin packing with lookahead

The bin packing problem is a fundamental combinatorial problem from the class of
cutting and packing problems (Csirik and Woeginger 1998). It consists of packing
the items (or more precisely their sizes) from input sequence σ = (σ1, . . . , σn) into
the least possible number of bins of capacity C . The online bin packing problem has
been in the research focus of Computer Science ever since the 1970s (Johnson 1973,
1974) due to a series of appealing worst case analyses that could be established in this
field. Surveys of the competitive analysis results on classical bin packing algorithms
can be found in Borodin and El-Yaniv (1998), Csirik and Woeginger (1998) and Sgall
(2014). In particular, it deserves mentioning that (in the limit) the well-known algo-
rithms BestFit and FirstFit are 17

10 -competitive and their decreasing type (offline)
variants where items are preordered by non-increasing size BestFitDecreasing and
FirstFitDecreasing are 11

9 -competitive.

3.1 Problem setting and notation

In the online version, items are packed one after another without knowing any remain-
ing item. In the online version with request lookahead of size l, items are packed
sequentially with knowing l remaining items (or all remaining items if there are less
than l of them); in particular, it is allowed to have a packing order different from
the revelation order. Recall that the case l = 1 coincides with the pure online setting
without additional lookahead.We now compare the pure online setting with the setting
enhanced by lookahead: Online algorithm BestFit puts the (only) known item into
the fullest open bin that can accommodate it, if any; otherwise a new bin is opened
and the item is put in it (Csirik and Woeginger 1998). Online algorithm BestFitl
with request lookahead l first sorts the known items in order of non-increasing sizes
and then puts the largest known item into the fullest open bin that can accommodate
it, if any; otherwise a new bin is opened and the largest item is put in it (Csirik and
Woeginger 1998). Observe that BestFit1 conincides with BestFit.

Under lookahead of one additional item (l = 2), we derive exact expressions for
the counting distribution functions of the objective value and the performance ratio
for the case of two item sizes 0.5+ ε and 0.5− ε with arbitrary ε ∈ (0, 1

6 ) and C = 1.
Under these conditions at most two items fit into a single bin. A similar situation has
been considered by Kenyon (1996) as a motivation to introduce the random order
performance ratio as an alternative to competitive analysis.
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Fig. 2 Counting distribution functions of a costs and b performance ratio of costs in the bin packing problem
with 200 items

BestFit2 emulates BestFit with the additional feature that the two known items
are always sorted by decreasing size. From now on, we refer to BestFit as Bf and
BestFit2 asBf2. As stated above, the following analysis is restricted to item sequences
σ = (σ1, . . . , σn) with σi ∈ {0.5 + ε, 0.5 − ε}, ε ∈ (0, 1

6 ), and n ∈ N. The following
additional notation is used:

• Large / small item: Item of size 0.5 + ε / 0.5 − ε

• nl(σ ) / ns(σ ): Number of large / small items in σ

• Bf(n,m) / Bf2(n,m): Number of item sequences of length n which need exactly
m bins under BestFit / BestFit2

• Ci : i th Catalan number2 given by Ci = (2i
i

) − ( 2i
i+1

) = 1
i+1

(2i
i

)

As the main result of the analysis in this section, we find that the benefit attainable
through lookahead in bin packing is of small magnitude which becomes evident in the
plots of the counting distribution functions in Fig. 2. According to Sect. 3.2, this minor
effect is attributable to rather restrictive conditions which have to hold for an input
sequence in order to facilitate a saving of one bin through lookahead. Moreover, the
combinatorial relation of the problem setting to the Catalan numbers becomes evident
in the analysis, and it becomes clear that algorithmperformance is closely related to the
combinatorial structure of the problem. Exact expressions for the counting distribution
functions of the number of bins used and the performance ratio are then derived in
Sect. 3.3.

2 The Catalan numbers (Shapiro 1976) are a sequence of natural numbers discovered by
Eugene Charles Catalan (1814-1894) which appear in many counting problems. They start with
1, 1, 2, 5, 14, 42, 132, 429, 1430, . . .
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3.2 Combinatorial analysis of the lookahead effect

We analyze the behavior ofBf andBf2 from a combinatorial perspective. The analysis
shows that there is a close relation between the Catalan numbers and the extent of
improved algorithm performance through lookahead. Additionally, we find that a bin
saving through lookahead can only be achieved when several conditions on the item
sequence are fulfilled at the same time. Hence, through our combinatorial analysis,
we identify the core reason for the minor effect of lookahead in online bin packing.

Theorem 3.1 For any item sequence σ = (σ1, σ2, . . .) with σi ∈ {0.5 + ε, 0.5 − ε},
ε ∈ (0, 1

6 ), it holds that Bf[σ ] − Bf2[σ ] ∈ {0, 1}.
Proof Thefirst difference in the packings ofBf andBf2 occurswhen item subsequence
(0.5 − ε, 0.5 − ε, 0.5 + ε) appears and there is no bin to accommodate any of these
items. Bf2 packs the first and third item into a single bin at full capacity and keeps the
second (small) item unpacked in the lookahead until the end of the sequence (since
items are homogenous), whereasBf packs the first two items in a bin at capacity 1−2ε
and the third item in a second bin. Thus, Bf2 leads with one bin less used, but also
one small item less packed. Bf2 also loses its lookahead power as it holds the small
item in the lookahead and will not change orders of two lookahead items ever again.
Thus, both Bf2 and Bf will process the remaining items in parallel, but starting from
a different bin configuration. The number of upcoming new bins for the remaining
items by Bf can only be the same or one less than that of Bf2 (without considering
the left-over small item) because items have to be packed in the same order and –
as a result of the different bin configurations—Bf can pack one small item without
opening a new bin, whereas Bf2 has to open a new bin immediately. Finally, Bf2 has
to pack the left-over small item: When the number of new bins in the previous step
is the same for Bf2 and Bf and in the packing of Bf2 there is room for a small item,
Bf2 will end up with one bin less than Bf, otherwise Bf2 will have to open a new bin
resulting in a tie for the numbers of bins used. 
�
From Theorem 3.1 it follows that Bf2 dominates Bf in the sense that for each item
sequence it produces the same number of bins or even needs one bin less.

Definition 3.1 (Condensation of an input sequence). Let σ = (σ1, σ2, . . .) be an input
sequence with σi ∈ {0.5 + ε, 0.5 − ε}, ε ∈ (0, 1

6 ). The condensation σ c of σ is the
input sequence that arises by repetitively removing all pairs (0.5− ε, 0.5− ε) starting
in an odd position if the number of large items encountered previously is not larger
than the number of small, unremoved items encountered previously. 
�

A pair of removed small items in Definition 3.1 is also referred to as a condensed
pair or as a condensation in an input sequence. Observe that condensed pairs of small
items will be packed together in a single bin by Bf with an unused capacity of 2ε,
whereas forBf2 there remains hope that either of the two small itemswill be combined
with a large item without any unutilized capacity. Hence, the term condensation will
be helpful in the analysis.
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Example 3.2 (Condensation of an input sequence). Consider for ε = 0.1 the item
sequences σ1 = (0.4, 0.4, 0.6, 0.6, 0.4, 0.6) and σ2 = (0.6, 0.4, 0.4, 0.6, 0.4, 0.4,
0.6, 0.4, 0.4, 0.4). The condensation of σ1 is σ c

1 = (0.6, 0.6, 0.4, 0.6); the condensa-
tion of σ2 is σ c

2 = (0.6, 0.4, 0.4, 0.6, 0.6, 0.4). 
�
Theorem 3.2 For any item sequence σ = (σ1, σ2, . . . , σn)with σi ∈ {0.5+ε, 0.5−ε},
ε ∈ (0, 1

6 ) and n ∈ N, it holds that Bf[σ ] − Bf2[σ ] = 1 if and only if there is an odd
j ∈ N such that the following conditions are satisfied:

(i) nl((σ1, . . . , σ j−1)) = ns((σ1, . . . , σ j−1)
c)

(ii) (σ j , σ j+1, σ j+2) = (0.5 − ε, 0.5 − ε, 0.5 + ε)

(iii) ns((σ j+3, . . . , σn)) = ns((σ j+3, . . . , σn)
c)

(iv) nl((σ j+3, . . . , σn)) ≥ ns((σ j+3, . . . , σn)) + 1

Proof ⇒: Let Bf[σ ] − Bf2[σ ] = 1 for σ = (σ1, . . . , σn). Then σ can be split into
σ i = (σ1, . . . , σ j−1) and σ i i = (σ j , . . . , σn) such that Bf[σ i ] − Bf2[σ i ] = 0,
Bf[σ i i ] − Bf2[σ i i ] = 1 and both algorithms produce the same bin configurations
(albeit in a different order) for σ i . In particular, this means that Bf2 will pack σ j−1
before σ j . Among all these splits there exists one with longest σ i which we refer to
as σ i from now on.

Recall that the first difference in the packings of Bf and Bf2 occurs when item
subsequence (0.5 − ε, 0.5 − ε, 0.5 + ε) appears and no open bin can accommodate
any of these items. By definition, σ i immediately precedes this subsequence. If |σ i |
was odd, any algorithm would leave a bin with space at least 0.5 − ε after packing
the odd number of items in σ i . Hence, the first (small) item of the subsequence could
also be added contradicting that no open bin can accommodate any of the items. Thus,
|σ i | is even and j is odd.

From Definition 3.1, it follows that nl(σ i ) ≥ ns((σ i )c) because any pair of small
items that would lead to more small than large items immediately after this pair has
been deleted in ns((σ i )c) and |σ i | is even. For nl(σ i ) = ns((σ i )c), each large item has
a matching small item which comes after or immediately before the large item. Thus,
the configuration determined by Bf is composed of nl(σ i ) completely filled bins and
|σ i |−2nl (σ i )

2 bins with two small items. Clearly, this number of bins is optimal. From
the proof of Theorem 3.1, both Bf2 and Bf attain the optimal number of bins by the
same bin configurations for nl(σ i ) = ns((σ i )c). For nl(σ i ) > ns((σ i )c), we show by
contradiction that σ i cannot be a longest possible subsequence such that Bf2 and Bf
produce the same bin configurations: Assume that σ i is a longest possible subsequence
such that Bf2 and Bf produce the same bin configurations and nl(σ i ) > ns((σ i )c).
Then there is at least one bin containing a large item without a matching small item.
An additional small itemwill be put into such a bin, an additional large itemwill need a
new bin, but the configurations of both algorithms will remain the same contradicting
the definition of σ i . Thus, nl(σ i ) = ns((σ i )c) which is (i).

According to (i) and the definition of σ i , there must be an odd j such that Bf2
starts to exhibit an advantage over Bf on σ i i = (σ j , σ j+1, σ j+2, . . .) after σ i has been
packed resulting in the same bin configurations with no space left by both algorithms.
Only (σ j , σ j+1) = (0.5− ε, 0.5− ε) potentially produces a difference. To make this
happen, Bf2 need not pack these two items into the same bin, whereas Bf has to. This
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happens if and only if σ j+2 = 0.5+ ε: Bf2 will not pack σ j+1 immediately, but delay
it until the end of the item sequence, whereas σ j+2 will be matched with σ j . This
establishes (ii).

To see (iii), note that the processing of Bf2 on σ i i = (0.5 − ε, 0.5 − ε, 0.5 +
ε, σ j+3, . . . , σn) is emulated byBf on σ̃ i i = (0.5−ε, 0.5+ε, σ j+3, . . . , σn, 0.5−ε).
Assume there is a condensed pair of small items in the subsequence starting with
σ j+3; if there is more than one condensation, consider the first one. Let σ j ′ be the
first small item of this condensation. Bf produces a bin with two small items for σ j

and σ j+1, but not for σ j ′ and σ j ′+1 since two small items starting in an even posi-
tion of the original sequence cannot be put in the same bin by Bf. Bf2 processes
(σ j , σ j+1, σ j+2, . . . , σn−1, σn) as (σ j , σ j+2, . . . , σn−1, σn, σ j+1) emulated by Bf,
i.e., it does not produce a bin with two small items for σ j and σ j+1, but for σ j ′
and σ j ′+1 since in (σ i , σ̃ i i ) these items are condensed items. Between σ j+3 and
σ j ′ , neither algorithm produces another bin with two small items since we con-
sider the first condensation in the subsequence starting from σ j+3. In particular,
there cannot be a condensation of the original sequence starting in an odd position
between σ j+4 and σ j ′−1. If there was such a condensation, it would follow from
(i) and (ii) that there must be another even index j ′ < j + 4 starting a condensa-
tion in the subsequence starting with σ j+3 contradicting to j ′ being the first such
index. Hence, both Bf and Bf2 produce one additional bin with two small items for
σ̃ i = (σ1, . . . , σ j−1, σ j , σ j+1, σ j+2, . . . , σ j ′) as compared to σ i , and σ i could not
have been the longest possible first part among all splits of σ .

From (i), (ii), (iii), we know that in Bf2’s processing there is no bin with two small
items from σ j onwards, whereas Bf creates such a bin for (σ j , σ j+1). Hence, in order
to pack σ j+1 at the end of Bf2’s processing into an already open bin and to save a bin
as compared to Bf, we need an open bin with a large item only. This is the case if and
only if in the subsequence starting from σ j+3 at least one more large item exists, i.e.,
iv).

⇐: We have that for item sequence σ , there is an odd j ∈ N such that conditions
(i) to (iv) are fulfilled. In the sequel, a bin is called matched if it contains a large and
small item, otherwise it is called unmatched. From (ii) and (iii), we know thatBf2 will
not produce a bin with two small items from σ j onwards, whereas Bf creates such
a bin for (σ j , σ j+1). From iv), we conclude that the number of matched bins in Bf2
is two higher than in Bf. From the pigeonhole principle, it follows that the number
of unmatched bins in Bf is three higher than in Bf2. Thus, Bf[(σ j , σ j+1, . . . , σn)] −
Bf2[(σ j , σ j+1, . . . , σn)] = 1. (i) guarantees that in the bin configurations induced
both by Bf2 and Bf there is a matching small item for any large item such that there
is no bin with a large item only after (σ1, . . . , σ j−1) have been processed. Since
|(σ1, . . . , σ j−1)| is even, there is no bin with a small item only after (σ1, . . . , σ j−1)

has been packed. Hence, the initial position for processing (σ j , σ j+1, . . . , σn) is the
same for Bf2 and Bf and can be viewed as restarting with no bins used so far. In
particular, Bf[(σ1, σ2, . . . , σ j−1)] − Bf2[(σ1, σ2, . . . , σ j−1)] = 0. 
�

In Theorem 3.4, we characterize the number of item sequences of a given length
which yield a saving of one bin by applying Bf2 instead of Bf. To this end, we make
use of the notion of (recurring) unit-sloped paths (Michaels and Rosen 1991).
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1 2i

1

(a)

1 2i

1

(b)

Fig. 3 Recurring unit sloped paths. a General path and b Dyck path

Definition 3.3 ((Recurring) unit-sloped path). A unit-sloped path of length 2i is a path
in R

2 from (0, 0) to (2i, s2i ) consisting only of line segments between (k − 1, sk−1)

and (k, sk) for k = 1, 2, . . . , 2i where sk = sk−1 + 1 or sk = sk−1 − 1 and s0 = 0. A
recurring unit-sloped path of length 2i is a unit-sloped path of length 2i that ends in
(2i, 0), i.e., it has s2i = 0. 
�
Note that if we restrict sk ≥ 0 for all k = 0, 1, 2, . . . , 2i , this definition coincides
with that of the well-known Dyck path (see, e.g., Deutsch 1999; Deutsch and Shapiro
2001). Figure 3 shows an example for a recurring unit-sloped path and a Dyck path,
respectively.

The number of item sequences of length 2i without any condensation is equal to
the Catalan number Ci+1 as a consequence of the following Lemma 3.3.

Lemma 3.3 (a) The number of recurring unit-sloped paths of length 2i which have
sk ≥ 0 for all k = 0, 1, 2, . . . , 2i is Ci .

(b) The number of recurring unit-sloped paths of length 2i which have sk ≥ −1 for
all k = 0, 1, 2, . . . , 2i is Ci+1.

Proof See “Appendix A.1”. 
�
We are now in a position to provide an expression for the number of item sequences

of given length which lead to a a saving of one bin by applying Bf2 instead of Bf.

Theorem 3.4 (a) The number of item sequences σ of odd length |σ | = 2n + 1 for
n ∈ N with Bf[σ ] − Bf2[σ ] = 1 is given by

n−1∑
p=1

(
22(p−1) −

p−1∑
i=1

Ci · 22(p−1−i)
)(

22(n−p) −
n−p∑
i=1

Ci · 22(n−p−i) − Cn−p+1

)
.

(b) The number of item sequences σ of even length |σ | = 2n for n ∈ N with Bf[σ ] −
Bf2[σ ] = 1 is given by

n−1∑
p=1

(
22(p−1) −

p−1∑
i=1

Ci · 22(p−1−i)
)(

22(n−p)−1 −
n−p−1∑
i=1

Ci · 22(n−p−i)−1 − Cn−p

)
.

Proof (a) We compute the number of item sequences σ which can be brought into
the form σ = (σ1, . . . , σ j−1, σ j , σ j+1, σ j+2, σ j+3, . . . , σ2n+1) fulfilling (i) to
(iv) from Theorem 3.2 with odd j . We can choose j to be any odd number with
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|(σ j , σ j+1, σ j+2, . . . , σ2n+1)| ≥ 4. The largest j fulfilling this condition is j =
2(n − 1) − 1 such that five items (σ2(n−1)−1, σ2(n−1), σ2n−1, σ2n, σ2n+1) remain.
Hence, in the first sum, p runs from1 to n−1 indicating that j runs from2·1−1 = 1
to 2 · (n − 1) − 1 with even j’s omitted.
We first consider the first pair of parentheses: For fixed p, the number of item
(sub-) sequences of length 2(p − 1) satisfying condition (i) from Theorem 3.2,
i.e.,

nl((σ1, . . . , σ j−1)) = ns((σ1, . . . , σ j−1)
c) (1)

with j − 1 = 2(p − 1) is n0 = 22(p−1) − ∑p−1
i=1 Ci · 22(p−1−i) which can

be seen as follows: It holds that n0 = 22(p−1) − nviol where nviol is the num-
ber of sequences of length 2(p − 1) violating Equality 1. Since by definition
nl((σ1, . . . , σ j−1)) ≥ ns((σ1, . . . , σ j−1)

c), we have nviol = |�viol |with�viol :=
{(σ1, . . . , σ j−1) | nl((σ1, . . . , σ j−1)) > ns((σ1, . . . , σ j−1)

c)}. From the pigeon-
hole principle, we can only have nl((σ1, . . . , σ j−1)) = ns((σ1, . . . , σ j−1)

c) + d
where d = 2, 4, 6, . . . for (σ1, . . . , σ j−1) ∈ �viol because |(σ1, . . . , σ j−1)

c| is
even.
Thus, there will be a last pair of large items occurring at positions 2(p−1− i)+1
and 2(p − 1 − i) + 2 for some i ∈ {1, 2, . . . , p − 1} which leads to

nl((σ2(p−1−i)+1, . . . , σ j−1)) > ns((σ2(p−1−i)+1, . . . , σ j−1)
c), i.e.,

nl((σ2(p−1−i)+1, . . . , σ j−1)) = ns((σ2(p−1−i)+1, . . . , σ j−1)
c) + 2. (2)

In this case, the conditions

• nl((σ2(p−1−i)+3, . . . , σ2(p−1))) = ns((σ2(p−1−i)+3, . . . , σ2(p−1))
c) and

• ns((σ2(p−1−i)+3, . . . , σ2(p−1))) = ns((σ2(p−1−i)+3, . . . , σ2(p−1))
c)

have to hold regardless of σ1, . . . , σ2(p−1−i) . Thus, we can choose σ1, . . . ,

σ2(p−1−i) freely giving the factor 22(p−1−i). The two itemized conditions are
required in order to ensure that the two large items σ2(p−1−i)+1 and σ2(p−1−i)+2
represent the last pair of large items leading to Equality 2. In particular, if there
was a condensed pair of small items, then at least one pair of two large items would
follow which would lead to

nl((σ2(p−1−i ′)+1, . . . , σ j−1)) = ns((σ2(p−1−i ′)+1, . . . , σ j−1)
c) + 2

with i ′ < i . For fixed i , it remains to show that the number of item sequences of
length 2(i − 1) fulfilling the two itemized conditions is Ci .
To this end, we make use of the concept of (recurring) unit-sloped paths (cf.
Definition 3.3): In order to fulfill the two itemized conditions, observe the corre-
spondences between the appearance of a large item and an up-move (sk = sk−1+1)
and between the appearance of a small item and a down-move (sk = sk−1 − 1)
in a unit-sloped path. Because the number of large items equals the number of
small items and there are no condensations, this path is also recurring. The second
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itemized condition expresses that there are never two small items such that the
number of large items minus the number of small items up to an arbitrary position
in the item sequencewould drop down to−2. Hence, the number of item sequences
of length 2(i − 1) fulfilling both conditions is equal to the number of recurring
unit-sloped paths with sk ≥ −1 for all k. According to Lemma 3.3 b), this number
is Ci .
We now consider the second pair of parentheses: For fixed p, the number of item
sequences of length 2(n − p) which fulfill conditions (iii) and (iv) from Theorem
3.2, i.e.,

• ns((σ j+3, . . . , σ2n+1)) = ns((σ j+3, . . . , σ2n+1)
c) and

• nl((σ j+3, . . . , σ2n+1)) ≥ ns((σ j+3, . . . , σ2n+1)) + 1

with j = 2p−1 can be characterized as 22(n−p) −n1−n2 where n1 is the number
of item sequences of length 2(n − p) with at least one condensation and n2 is the
number of item sequences of length 2(n − p) without condensation that has the
same number of small and large items.
For n1, let i ∈ {1, . . . , n − p} be fixed such that the first condensation con-
sists of σ2(p+i) and σ2(p+i)+1, then we need to have nl(σ j+3, . . . , σ2(p+i)−1) =
ns(σ j+3, . . . , σ2(p+i)−1) and no condensation is allowed in (σ j+3, . . . , σ2(p+i)−1).
Structurally, we obtain the same two conditions as the two itemized conditions for
the first pair of parentheses, i.e.,

• nl((σ2(p+1), . . . , σ2(p+i)−1)) = ns((σ2(p+1), . . . , σ2(p+i)−1)) and
• ns((σ2(p+1), . . . , σ2(p+i)−1)) = ns((σ2(p+1), . . . , σ2(p+i)−1)

c)

regardless of σ2(p+i)+2, . . . , σ2n+1 because once a condensation occurs the rest is
irrelevant. Since σ2(p+i)+2, . . . , σ2n+1 are free, the factor 22(n−p−i) follows, and
from Lemma 3.3, the number of item sequences of length 2(i − 1) fulfilling the
two itemized conditions is Ci . Thus, we obtain n1 = ∑n−p

i=1 Ci · 22(n−p−i). Also
from Lemma 3.3, it follows that n2 = Cn−p+1 gives the number of item sequences
of length 2(n − p) where the number of large items equals the number of small
items and no condensations occur.

(b) The proof is analogous to part (a) with the only difference that the decompo-
sition into σ = (σ1, . . . , σ j−1, σ j , σ j+1, σ j+2, σ j+3, . . . , σ2n+1) now has odd
|(σ j+3, . . . , σ2n)|. Thus, for a given p ∈ {1, . . . , n − 1}, the subsequence
(σ j+3, . . . , σ2n) now only has 2(n− p)−1 elements, and the number of sequences
of (longest possible even) length 2(n− p−1) without condensation and balanced
number of small and large items is Cn−p. 
�

3.3 Counting distribution functions

We go on to establish exact expressions for the counting distribution functions of the
objective value and performance ratio related to algorithms Bf and Bf2. The analysis
illustrates how a comprehensive assessment of algorithm quality can be obtained for
the online bin packing setting under consideration. While the previous results on
the number of item sequences for which Bf2 incurs a bin saving over Bf cannot be
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used directly for the counting distribution functions, many proof ideas are reused
subsequently. The numbers an,k = k+1

n+1

(2n+2
n−k

)
with k, n ∈ N0, n ≥ k (cf. Deutsch and

Shapiro 2001) will be used in several of the following results leading to the counting
distribution functions for the objective value in Corollary 3.11 and for the performance
ratio in Corollary 3.13.

Lemma 3.5 (a) The number of item sequences σ of length 2n where Bf[σ ] = m is
given by

Bf(2n,m) =

⎧
⎪⎨
⎪⎩

n∑
k=m−n

an,k =
n∑

k=m−n

k + 1

n + 1

(
2n + 2

n − k

)
if n ≤ m ≤ 2n,

0 otherwise.

(b) The number of item sequences σ of length 2n + 1 where Bf[σ ] = m is given by

Bf(2n + 1,m) =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

2
n∑

k=m−n

an,k + an,m−1−n if n + 1 < m ≤ 2n + 1,

3
n∑

k=0

an,k − an,0 if m = n + 1,

0 otherwise.

Proof By reverse induction. See “Appendix A.2”. 
�
Wenowgive another formula to compute the numbersBf(2n,m) andBf(2n+1,m).

Theorem 3.6 (a) The number of item sequences σ of length 2n where Bf[σ ] = m is
given by

Bf(2n,m) =
{(2n+1

m+1

) = (2n
m

) + ( 2n
m+1

)
if n ≤ m ≤ 2n,

0 otherwise.

(b) The number of item sequences σ of length 2n + 1 where Bf[σ ] = m is given by

Bf(2n + 1,m) =

⎧
⎪⎨
⎪⎩

(2n+2
m+1

) = (2n+1
m

) + (2n+1
m+1

)
if n + 1 < m ≤ 2n + 1,(2n+3

n+2

) − (2n+1
n+1

)
if m = n + 1,

0 otherwise.

Proof By two-dimensional induction. See “Appendix A.3”. 
�
Theorem 3.7 The number of item sequences σ of length n where Bf[σ ] = m and
Bf2[σ ] = m − 1 is given by

( n
m+1

)
for m = � n

2 � + 1, . . . , n − 1.

Proof From Regev (2012), we have for 1 ≤ q ≤ p ≤ 2q −1 the following expression
for the binomial coefficient:

(p
q

) = ∑
i≥0 Ci

(p−1−2i
q−1−i

)
.
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For item sequence σ , assume that |σ | = 2n and that σ fulfills the conditions stated
in Theorem 3.2.We further decompose σ into three parts: For some i ∈ {1, . . . , n−1},
let (σ1, σ2, . . . , σ2(i−1)) correspond to a recurring unit-sloped path with sk ≥ −1 for
all k = 1, 2, . . . , 2(i − 1), let σ2i−1, σ2i be the first two small items which would be
condensed, and let (σ2i+1, σ2(i+1), . . . , σ2n) be the rest of σ . Note that σ2i−1, σ2i are
not necessarily responsible for the saving which can be accrued by Bf2 over Bf.

According to Lemma 3.3, the number of item sequences fulfilling the properties of
thefirst subsequence isCi . The number of item subsequences (σ2i+1, σ2(i+1), . . . , σ2n)

leading to overall m bins for Bf and overall m − 1 bins for Bf2 is
(2n−2i
m−i

)
which can

be seen as follows: For (σ1, σ2, . . . , σ2(i−1)), i − 1 bins were needed such that for
(σ2i−1, σ2i , . . . , σ2n), m − i + 1 and m − i additional bins will be needed by Bf
and Bf2, respectively. Since σ2i−1, σ2i are small items, m − i bins will be needed
by Bf for (σ2i+1, σ2(i+1), . . . , σ2n) and in addition, conditions (ii), (iii) and (iv)
of Theorem 3.2 have to hold for some j ≥ 2i − 1 to realize the saving of Bf2.
Because condition iv) of Theorem 3.2 has to hold, objective value m is attained by
Bf when m − i out of the 2n − 2i items (σ2i+1, σ2(i+1), . . . , σ2n) are large. How-
ever, this choice does not necessarily fulfill conditions (ii) and (iii) of Theorem
3.2 because it may be that (σ2i+1, σ2i+2) = (0.5 − ε, 0.5 + ε) or that conden-
sations can be found in (σ2i+2, σ2i+3, . . . , σ2n). These two cases are resolved as
follows: Whenever (σ2i+1, σ2i+2) = (0.5 − ε, 0.5 + ε), we find a bijective map-
ping from σ to some σ ′ where σ ′ is identical to σ except for (σ2i+1, σ2i+2) now
being (σ2i+1, σ2i+2) = (0.5 − ε, 0.5 − ε). Hereby, another condensation is estab-
lished which erases responsibility of the first condensation for the saving of Bf2 and
claims responsibility itself (by setting j = 2i + 1). Whenever we have another con-
densation in (σ2i+2, σ2i+3, . . . , σ2n), we recognize that it erases responsibility for the
saving of Bf2 of a previous condensation and claims responsibility itself (by setting
j accordingly). Thus, for some i such that (σ2i−1, σ2i ) is the first condensation, there
are

(2n−2i
m−i

)
item subsequences (σ2i+1, σ2(i+1), . . . , σ2n) fulfilling conditions (ii), (iii)

and (iv) of Theorem 3.2. The next lemma is needed to complete the proof for even
length 2n of σ .

Lemma 3.8 For n ≤ m ≤ 2n it holds that
∑

i≥1 Ci
(2n−2i
m−i

) = ∑
i≥1 Ci−1

(2n−2i+1
m−i+1

)
.

Proof See “Appendix A.4”. 
�
Using this result, the proof of Theorem 3.7 can be completed for even length 2n of

σ by

∑
i≥1

Ci

(
2n − 2i

m − i

)
=

∑
i≥1

Ci−1

(
2n − 2i + 1

m − i + 1

)
=

∑
i≥1

1

i

(
2i − 2

i − 1

)(
2n − 2i + 1

m − i + 1

)

=
∑
i≥0

1

i + 1

(
2i

i

)(
2n − 2i − 1

m − i

)
=

∑
i≥0

Ci

(
2n − 2i − 1

m − i

)

=
(

2n

m + 1

)
.
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where the last equality follows for n < m ≤ 2n − 1 from the proof of Lemma 9 in
Regev (2012) and condition iv) from Theorem 3.2. For odd length 2n + 1 of σ , the
proof is analogous with 2n − 2i replaced by 2n − 2i + 1. 
�
Corollary 3.9 The number of item sequences σ of length n with Bf[σ ] = m and
Bf2[σ ] = m is given by

(n
m

)
for m = � n

2 � + 1, . . . , n.

Proof See “Appendix A.5”. 
�
We now state the central relation between the objective values attained by Bf2 and

Bf.

Theorem 3.10 The number of item sequences σ of length n where Bf2[σ ] = m is
given by

Bf2(n,m) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if m = n,

Bf(n,m) + Bf(n,m + 1) − 2
( n
m+1

)
if m = � n

2 � + 1, . . . , n − 1,

Bf(n,m) + Bf(n,m + 1) − ( n
m+1

)
if m = � n

2 �,
0 if m ≤ � n

2 � − 1.

Proof Because of item sizes in {0.5− ε, 0.5+ ε}, at most two items can be packed in
a bin so that packing n items in less than � n

2 � bins is infeasible. Likewise, each item
of σ is packed separately if and only if each item is large, and there is only one such
item sequence σ .

The number of item sequences of length n for which Bf2 attains objective value
m can be computed as n1 + n2 − n3 − n4 where n1 is the number of item sequences
σ of length n with Bf[σ ] = m, n2 is the number of item sequences σ of length
n with Bf[σ ] = m + 1, n3 is the number of item sequences σ of length n with
Bf[σ ] = m, Bf2[σ ] = m − 1, and n4 is the number of item sequences σ of length n
with Bf[σ ] = m + 1, Bf2[σ ] = m + 1.

From Theorem 3.7, we have that the number of all item sequences σ of length n
with Bf[σ ] = m and Bf2[σ ] = m − 1 is n3 = ( n

m+1

)
for m = � n

2 � + 1, . . . , n − 1;
from Corollary 3.9, we have that the number of all item sequences σ of length n with
Bf[σ ] = m + 1 and Bf2[σ ] = m + 1 is n4 = ( n

m+1

)
for m = � n

2 �, . . . , n − 1, and the
result follows. 
�

From the previous results, we obtain expressions for the counting distribution func-
tions of the objective value FBf(v) and FBf2(v), respectively. We restrict ourselves to
item sequences of even length since analogous conclusions can be drawn immediately
in case of odd length.

Corollary 3.11 The counting distribution functions of the objective value FBf(v) and
FBf2(v) of Bf and Bf2 for item sequences of length 2n are given by

FBf(v) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if v < n,

2−2n
�v�∑
m=n

(2n+1
m+1

)
if n ≤ v < 2n,

1 if v ≥ 2n,
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and

FBf2(v) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if v < n,

2−2n
( �v�∑

m=n

((2n+1
m+1

) + (2n+1
m+2

) − 2
( 2n
m+1

)) + ( 2n
m+1

))
if n ≤ v < 2n,

1 if v ≥ 2n.

Proof Direct consequence of Theorems 3.6 and 3.10. 
�
Figure 2a exemplarily plots FBf(v) and FBf2(v) for all item sequences of length

n = 100. We observe a rather small lookahead effect as a result of the (relatively
restrictive) conditions in Theorem 3.2 which are collectively found only in a minor
fraction of all item sequences.

Part (a) of the following corollary expressesBf2’s dominance overBf. As seen from
Theorem 3.1, stochastic dominance of all orders is established. As a consequence of
part (b), knowing one additional item is worthless in the limit. Taking into account
Theorem 3.1, this result was to be expected. The reason for this ineffectiveness lies in
the total forfeiture of the power of the lookahead capability once a small item occurs
and occupies the lookahead set.

Corollary 3.12 (a) For item sequences of length 2n, we have FBf2(v) ≥ FBf(v) for
all v ∈ R and FBf2(v) − FBf(v) > FBf2(v + 1) − FBf(v + 1) for all v < 2n − 1.

(b) For item sequences of length 2n, we have supv∈R |FBf2(v) − FBf(v)| → 0 as
n → ∞.

Proof See “Appendix A.6”. 
�
We next derive an expression for the counting distribution function of the perfor-

mance ratio.

Corollary 3.13 The counting distribution function of the performance ratio FBf,Bf2(r)
of Bf relative to Bf2 for item sequences of length 2n is given by

FBf,Bf2 (r) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if r < 1,

1
2 +

1
2 (

2n
n )+( 2n

n+1)
22n

if 1 ≤ r < 2n−1
2n−2 = 1 + 1

2n−2 ,

1
2 +

1
2 (

2n
n )+( 2n

n+1)+
n−2−k∑
i=0

( 2n
2n−i)

22n
if n+k+1

n+k = 1 + 1
n+k ≤ r < n+k

n+k−1 = 1 + 1
n+k−1

for k = 1, . . . , n − 1,

1 else.

Proof According to Theorem 3.7, we have:

• ( 2n
n+2

)
is the number of sequences of length 2n with Bf[σ ] = n + 1, Bf2[σ ] = n

• ( 2n
n+3

)
is the number of sequences of length 2n withBf[σ ] = n+2,Bf2[σ ] = n+1

• . . .

• (2n
2n

)
is the number of sequences of length 2nwithBf[σ ] = 2n−1,Bf2[σ ] = 2n−2
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Apart from these item sequences, no other sequences change their objective due to
application of Bf2 instead of Bf. Thus, the performance ratio ranges in [1, n+1

n ] and
the number of item sequences of length 2n which leave the number of bins unchanged
in both algorithms is

22n − ( 2n
n+2

) − ( 2n
n+3

) − · · · − (2n
2n

)

= (2n
0

) + (2n
1

) + · · · + ( 2n
n+1

) = 22n−1 + 1

2

(2n
n

) + ( 2n
n+1

)
.

Exploiting this relation, we immediately get the given expression for the counting
distribution function of the performance ratio as FBf,Bf2(r). 
�

In Fig. 2b, an exemplary plot of FBf,Bf2(r) is given for n = 100 confirming that the
lookahead effect is also relatively small with respect to an instance-wise comparison.

4 Online traveling salesman problemwith lookahead

The traveling salesman problem (TSP) lies at the core of nearly every transportation
or routing problem as it seeks to find a round trip (also called tour) for a given set of
locations (also called requests) to be visited such that some cost function depending on
the total travel distance or travel time is minimized (Lenstra and Rinnooy Kan 1975).
The online TSP has been considered in several flavors for competitive analyses: A
typical objective is makespan minimization. For this problem, a 2-competitive algo-
rithm PlanAtHome is known (Ausiello et al. 1995) where the problem also involves
request release dates. In an online variant with lookahead, customer requests pop up
some time ahead of the earliest possible visit times. It is shown in Allulli et al. (2008)
that lookahead leaves the competitive factor at 2, i.e., no better algorithm with respect
to the optimal offline solution is found in competitive analysis. Another paper on the
online TSP with lookahead is due to Jaillet and Wagner (2006). Here, lookahead is
given by disclosure dates which differ from release dates. It is shown that the advanced
information leads to improved competitive ratios.

4.1 Problem setting and notation

The setting considered in this paper refrains from request release dates and applies
total distance as the objective criterion. We conduct an exact combinatorial analysis
and explain the improvements that can be achieved through lookahead on typical input
sequences. Hence, the TSP as considered in this paper is a pure sequencing problem.
For input sequence σ = (σ1, . . . , σn), let a request σi with i ∈ N correspond to a point
xi in a space M with metric d : M × M → R, then the TSP consists of visiting
the points of all requests – each one not before its release—with a server in a tour of
minimum length starting and ending in some distinguished origin o ∈ M.

A permutation π(σ) = (π1(σ ), π2(σ ), . . . , πn(σ )) of the set {σ1, σ2, . . . , σn} of
requests represents a tour (o, xπ1(σ ), xπ2(σ ), . . . , xπn(σ ), o), i.e., a feasible solution to
an instance of the TSP. The tour length of π(σ) is given by the value
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D(π(σ )) := d
(
o, xπ1(σ )) +

n−1∑
i=1

d(xπi (σ ), xπi+1(σ )

) + d
(
xπn(σ ), o

)
.

The online version without lookahead is trivial: Requests are served in their order
of appearance since no temporal aspects such as release dates are considered. In the
online version with request lookahead of size l, requests are served sequentially with
knowing l remaining requests (or all remaining requests if there are less than l of them);
in particular, requests do not need to be served in their order of appearance. Recall that
the case l = 1 coincides with the pure online setting without additional lookahead.
We now compare the pure online setting with the setting enhanced by lookahead:
Online algorithm FirstComeFirstServed has no choices, i.e., the server has to visit
the requests in their order of appearance in a first-come first-served manner. Online
algorithm NearestNeighborl with request lookahead l always moves the server to
the closest known point in terms of distance from its current location.

Under lookahead of one additional request (l = 2), we derive exact expressions for
the counting distribution functions of the objective value and the performance ratio
for the case of a metric space consisting of two points only, i.e., M = {0, 1} with
d(0, 1) = d(1, 0) = 1, d(0, 0) = d(1, 1) = 0 and o = 0. Thus, this version of the
TSP can also be recast as a 1-server problem on two points.

Fromnowon,we refer toFirstComeFirstServed asFcfs andNearestNeighbor2
as Nn. We use the following additional terminology:

• A pass is the transition between two successive requests (σi , σi+1); a pass pair is
a request subsequence (σi , σi+1, σi+2).

• A change (remain) pass is a pass (σi , σi+1) with xi �= xi+1 (xi = xi+1).
• A free point at a given time is a point which is not occupied by the server at that
time.

Note that because of the return to o, only even overall tour lengths are possible.
In contrast to bin packing, the analysis in this section will show significant reduc-

tions in overall tour lengths through lookahead. This becomes possible due to the
large and irrevocable effect on the objective function that the resequencing of requests
brings along. The major positive effect of lookahead in the TSP is seen in the plots
of the counting distribution functions in Fig. 4. As presented in a stringent analysis in
Sect. 4.2, the root cause for the advantage of Nn over Fcfs lies in its ability to crack
pass pairs (0, 1, 0) or (1, 0, 1) in order to build pass pairs (0, 0, 1) or (1, 1, 0).

4.2 Counting distribution functions

In this section, we derive expressions for the counting distribution functions of the
objective values attained by algorithmsFcfs andNn, respectively, aswell as an expres-
sion for the counting distribution function of the performance ratio of Fcfs and Nn.
The counting distribution functions thoroughly reflect the advantage of Nn over Fcfs
which lies in the ability of pooling requests on the same location. The analysis is rather
direct, i.e., we first provide a theorem giving the number of request sequences leading
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requests

to a specific objective value or performance ratio, respectively, and then conclude with
a corollary specifying the expression for the counting distribution function.

Counting distribution functions of the objective value

Theorem 4.1 (a) The number of request sequences σ of length n where Fcfs[σ ] = m
and m is even is given by Fcfs(n,m) = (n+1

m

)
.

(b) The number of request sequences σ of length n where Nn[σ ] = m and m is even
is given by

Nn(n,m) =
{( n+1

2m−2

) + (n+1
2m

)
if m > 0,

1 if m = 0.

Proof A sequence of n points starting and ending in o has n + 2 requests including
the two dummy requests at o and encounters n + 1 passes to either the current or the
free point.

(a) For Fcfs in order to result in objective value m, a request sequence has to exhibit
exactly m change passes out of the n + 1 passes.

(b) Form = 0, the formula obviously holds.Denote byσ the original request sequence
and by σ ′ the visiting order under Nn. For m > 0, first observe that each resulting
sequence σ ′ after being processed by Nn exhibits a last change from 0 to 1 and a
last change from 1 to 0 in the visiting order of requests which together contribute a
total of 2 to the objective value. We conclude that a contribution of max{0,m − 2}
is due to all previous passes that do not involve the 1 of the last change from 0
to 1. There are two cases how this 1 could be obtained: Either it was at the same
position originally and remained there also under processing of Nn (case 1), or it
had been shifted to that position as a result of the processing of Nn (case 2). For
n = 9 and m = 4, we give an example of case 1 by

• σ = ( 0 ,−→ 1 , 0 , 1 ,−→ 0 , 0 , 0 , 0 , 1 , 1 , 0 ),

• σ ′ = ( 0 , 0 , 1 ,←− 1 , 0 ,←− 0 , 0 , 0 , 1 , 1 , 0 )
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and of case 2 by

• σ = ( 0 ,−→ 1 , 0 , 1 ,−→ 0 , 0 ,−→−→
1 , 0 , 1 , 1 , 0 ),

• σ ′ = ( 0 , 0 , 1 ,←− 1 , 0 ,←− 0 , 0 , 1 ,←−←−
1 , 1 , 0 ).

For each of them−2 changes incurred byNn, of course, there must also have been
a corresponding change pass in the original sequence (right arrow). Additionally,
through the processing of Nn, this change pass can only be responsible for a
change if in the processing order of Nn the (potentially shifted) destination of the
original change pass is succeeded by another pass which has to be a remain-pass
(left arrow).
In the first case, m − 2 change passes along with their affirmative remain-passes
in the transformed sequence and two additional change passes (underlined) incur
changes, i.e., 2(m − 2) + 2 = 2m − 2 out of the n + 1 passes have to be chosen.
In the second case, because of the last change from 0 to 1, which resulted from
a shifted change pass (left double arrow), and its affirmative remain-pass (right
double arrow), m − 2 + 1 = m − 1 change passes along with their affirmative
remain-passes in the transformed sequence and two additional passes (underlined),
whereof the first one is a pass from 1 to 0 ensuring that the 1 will be shifted to the
right (cf. definition of case 2), incur changes, i.e., 2(m − 1) + 2 = 2m out of the
n + 1 passes have to be chosen. 
�

From the previous result, we immediately obtain expressions for the counting dis-
tribution functions of the objective value FFcfs(v) and FNn(v), respectively. Note that
Fcfs andNn have possible tour lengths in {0, 2, 4, . . . , 2� n

2 �} and {0, 2, 4, . . . , 2� n
4 }�,

respectively, for n + 2 requests including the first and last request to o (cf. proof of
Theorem 4.1).

Corollary 4.2 The counting distribution functions of the objective value FFcfs(v) and
FNn(v) of Fcfs and Nn for request sequences of length n + 2 (including the first and
last request to o) are given by

FFcfs(v) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if v < 0,
n′∑
i=0

(n+1
2i

) · 2−n if 2n′ ≤ v < 2n′ + 2 for n′ = 0, 1, . . . , � n
2 � − 1,

1 if v ≥ 2� n
2 �,

and

FNn(v) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if v < 0,
n′∑
i=0

((n+1
4i

) + ( n+1
4i−2

)) · 2−n if 2n′ ≤ v < 2n′ + 2 for n′ = 0, 1, . . . , � n
4 � − 1,

1 if v ≥ 2� n
4 �.
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Figure 4a exemplarily plots FFcfs(v) and FNn(v) for all item sequences of length
n = 100. We observe a significant lookahead effect as a result of permuting request
triples with two successive change passes such that these turn into one change pass
and one remain pass.

Counting distribution function of the performance ratio

Theorem 4.3 Let mNn(σ ) and mFcfs(σ ) denote the objective values of algorithms Nn
and Fcfs on request sequence σ , respectively, and let nNn,Fcfs(n, a, b) be the number
of request sequences σ of length n + 2 (including the first and last request to o) with
mNn(σ ) = a and mFcfs(σ ) = b for a = 0, 2, 4, . . . , 2� n

4 � and b = 0, 2, 4, . . . , 2� n
2 �,

then it holds that

nNn,Fcfs(n, a, b) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if b = a = 0
(n+3−a

a

)
if b = a �= 0

(n+1−a
2a

)
if b = 3a

(n+2−a
2a−1

) + (a − 1)
(n+1−a
2a−1

)
if b = 3a − 2

(a−2
b−a
2

)(n+3−a
a+b
2

) + ( a−2
b−a
2 −1

)(n+2−a
a+b
2

) + ( a−1
b−a
2 −1

)(n+1−a
a+b
2

)
if b = a + 2, a + 4, . . . ,

3a − 4

0 else.

Proof Notice that Nn can never be worse than Fcfs because whenever Nn changes
the order, a saving occurs without future drawbacks. Nn needs at least a third of the
distance of Fcfs as seen by (0, 1, 0, 1, 0, 1, 0) which requires two units from Nn
and six units from Fcfs. There are no sequences with a larger percentage of savings
because at the end of this sequence only two requests on 0 are seen byNn, i.e., there is
no value of lookahead in thismoment, andmodifying the above sequence by additional
requests cannot improve the advantage of Nn over Fcfs any further. Due to the return
to o, both Fcfs and Nn lead to an even objective value. Therefore, it is sufficient to
consider nNn,Fcfs(n, a, b) with a, b as even numbers and a

b ∈ [ 13 , 1]. For a request
sequence with n points (apart from the dummy requests at the beginning and end), b
can attain values up to 2� n

2 � as seen by the worst-case sequences for Fcfs: Sequences
of odd length consist only of change passes; sequences of even length consist only of
change passes except for one remain pass. For a request sequence with n points (apart
from the dummy requests at the beginning and end), a can attain values up to 2� n

4 � as
seen by the worst-case sequences for Nn as follows: In any visiting order under Nn,
defined as σ ′, an isolated 0 may only occur at the first and/or last request to o = 0;
likewise, the only possible isolated 1 is the last request to 1. Hence, apart from these
three requests, σ ′ consists of a series of subsequences with minimum length 2 with
requests on 1 only or 0 only. The largest objective value is incurred when the largest
number of such subsequences appears in σ ′ which is the case for subsequences in the
form of pairs. Input sequences σ ′ of this form result from (0, (1, 1, 0, 0)c, x, 0)with x
being a request subsequence of minimum length 1 and maximum length 4 containing
at least one 1 representing the last visit to 1.
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b = a = 0: The only sequence with b = a = 0 has σi = 0 for i = 1, . . . , n.
b = a �= 0: The visiting order of the points in σ is identical for Fcfs and Nn because

Nn has a lookahead of one additional request. In particular, we know
that the pass immediately following each of the first a − 2 change passes
has to be a remain pass since otherwise Nn would have reorganized the
order. (The last two change passes do not have to exhibit this structure
because these changes cannot be extinguished by Nn due to the forced
return to the origin.) Thus, since for a− 2 passes we know the type of the
immediate successor pass, we only have to choose a change passes out
of n + 1 − (a − 2) = n + 3 − a passes.

b = 3a: The largest possible advantage of Nn over Fcfs is achieved. A saving
through Nn over Fcfs is obtained whenever the lookahead holds both
a 0 and a 1 with the first request in the lookahead being different from
the current location. Moreover, this saving will lead to another saving if
the location of the first request in the lookahead is requested later again.
Clearly,Nn could not anticipate the second saving as it involves a request
not seen in the lookahead, but only got lucky that this request occurred.
Hence, each timeFcfs requires a distance of 3,Nn only requires a distance
of 1. Hence, it follows that the request sequence has to consist only of
disjunct subsequences of the form (0c0 , 1, 0c1 , 1c2 , 0, 1c3 , 0c4) with ci ∈
N for i = 0, 1, 2, 3, 4 where xc stands for a request on x ∈ {0, 1} for c
times in a row. The requests of each such subsequencewill be visited in the
order (0c0 , 0c1 , 1, 1c2 , 1c3 , 0, 0c4) by Nn producing two moves, whereas
Fcfs needs six. In particular, we know that in the original sequence after
the first pass from 0 to 1 a pass to 0 immediately follows and that the pass
from 0 to 1c3 is immediately preceded by a 1. Hence, for each pass in σ

that leads to one of the a moves of Nn, there is also another associated
pass known in σ . Thus, we choose out of n+ 1− a passes rather than out
of n + 1 passes. Within each such subsequence, we have to choose the
ends of 0c0 , 0c1 , 1c2 , 1c3 by selecting c0, c1, c2, c3. Since there are a

2 such
subsequences for objective value a, in total we have to choose 4 · a

2 = 2a
out of n + 1 − a passes.

In the sequel, we call a subsequence (0, 1, 0) or (1, 0, 1) a change-change pass pair
(c/c-pair) and a subsequence (0, 1, 1) or (1, 0, 0) a change-remain pass pair (c/r-pair).
Moreover, observe that for a difference of b− a in the outcome, one has to encounter
exactly b−a

2 non-overlapping c/c-pairs before the final return to o.

b = 3a − 2: We need 3a−2−a
2 = a − 1 non-overlapping c/c-pairs. Further, one

additional (isolated) change pass has to occur within σ because a − 1
is odd and the server has to return to o. For each of the a − 1 c/c-pairs
(0, 1, 0) or (1, 0, 1), we also have to specify the position until which
the sequence continues with 0 and 1, respectively. Hence, we have to
choose (a − 1) + 1 + (a − 1) = 2a − 1 passes. There are two cases
for the position of the isolated change pass:

Case 1: The isolated change pass occurs after all non-overlapping c/c-pairs.
Then we have to choose the first passes of the non-overlapping c/c-
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pairs and the isolated change pass out of n + 1− (a − 1) = n + 2 − a
passes. There are

(n+2−a
2a−1

)
possibilities to do so.

Case 2: The isolated change pass occurs prior to all or within the sequence
of non-overlapping c/c-pairs. Then we have to choose the first passes
of the non-overlapping c/c-pairs and the isolated change pass out of
n + 1 − (a − 1) − 1 = n + 1 − a passes because we know that the
isolated change pass is succeeded by a remain pass since otherwise it
would not be an isolated change pass. There are a − 1 positions to
locate the isolated change pass prior to all or within the sequence of
the a − 1 non-overlapping c/c-pairs. Hence, there are (a − 1)

(n+1−a
2a−1

)
possibilities to choose the isolated change pass and the first passes of
the non-overlapping c/c-pairs.

b = a + 2i
with i = 1, 2,
. . . , a − 2

: Exactly i non-overlapping c/c-pairs occur before the final return to o
because each such pair gives a saving of two. We conclude that at least
(a − 2) − i pairs have to be c/r-pairs and two additional change passes
are left over (which may come in an arbitrary form, i.e., as a c/c-pair or
as two c/r-pairs). There are three cases for the positions and forms of
the two left-over change passes:

Case 1: Both left-over change passes appear at the end of σ , i.e., when all of
the a − 2 c/c- and c/r-pairs have occurred. We choose the first passes
of the c/c- and c/r-pairs out of n + 1 − (a − 2) = n + 3 − a passes.
Recall that for a difference of b − a one has to encounter exactly b−a

2
non-overlapping c/c-pairs before the final return to o. In total, in order
to obtain objective value pair (a, b) one has to choose b−a

2 + a = a+b
2

change passes which are the first passes of the c/c- and c/r-pairs. Since
the two left-over change passes appear at the end of σ , we have that
the b−a

2 non-overlapping c/c-pairs appear somewhere among the a − 2
known c/c- and c/r-pairs, i.e., we have to choose b−a

2 out of a − 2.

Overall, there are
(a−2
b−a
2

)(n+3−a
a+b
2

)
possibilities to choose the first passes

of the non-overlapping c/c-pairs and the first passes of both the c/c- and
c/r-pairs.

Case 2: One additional c/r-pair (containing a left-over change pass) appears
before the last of the known a−2 c/c- and c/r-pairs, i.e., within the first
a − 1 c/c- and c/r-pairs. Then we have to choose a+b

2 change passes
(which are thefirst passes of the c/c- and c/r-pairs) out ofn+1−(a−1) =
n + 2− a passes. Due to the additional c/r-pair, there are only b−a

2 − 1
c/c-pairs among the first a−2 c/c- and c/r-pairs, i.e., we have to choose
b−a
2 − 1 first passes of the c/c-pairs out of a − 2 first passes of the c/c-

and c/r-pairs. Overall, there are
( a−2
b−a
2 −1

)(n+2−a
a+b
2

)
possibilities to choose

the first passes of the non-overlapping c/c-pairs and the first passes of
both the c/c- and c/r-pairs.

Case 3: Two additional c/r-pairs (each containing a left-over change pass)
appear before the last of the known a − 2 c/c- and c/r-pairs, i.e., within
the first a c/c- and c/r-pairs. Then we have to choose a+b

2 change passes
(which are the first passes of the c/c- and c/r-pairs) out of n + 1 − a
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passes. Due to the additional c/r-pairs, there are only b−a
2 −2 or b−a

2 −1
c/c-pairs among the first a−2 c/c- and c/r-pairs, i.e., we have to choose
b−a
2 −2 or b−a

2 −1 first passes of the c/c-pairs out of a−2 first passes of

the c/c- and c/r-pairs, i.e.,
( a−2
b−a
2 −2

)+ ( a−2
b−a
2 −1

) = ( a−1
b−a
2 −1

)
. Overall, there

are
( a−1
b−a
2 −1

)(n+1−a
a+b
2

)
possibilities to choose the first passes of the non-

overlapping c/c-pairs and the first passes of both the c/c- and c/r-pairs.

�

Corollary 4.4 With nNn,Fcfs(n, i, j) defined as in Theorem 4.3, the counting distri-
bution function of the performance ratio FNn,Fcfs(r) of Fcfs and Nn for request
sequences of length n + 2 (including the first and last request to 0) is given by

FNn,Fcfs(r) = 2−n ·
∑

j=0,2,...,2� n
2 �

∑

i=0,2,...,min{ j,2� n
4 �},

i
j ≤r

nNn,Fcfs(n, i, j).

In Fig. 4b, an exemplary plot of FNn,Fcfs(r) is given for n = 100 confirming that
the lookahead effect is also enormous with respect to an instance-wise comparison.

5 Conclusion

We analyzed special cases of bin packing and the TSP using the concept of counting
distribution functions. To the best of our knowledge, displaying exactly the algorithm
behavior over all possible input sequences has never been done before. The deriva-
tions of the analytical expressions revealed that exact analysis in combinatorial online
optimization is intertwined with the combinatorics of the problem setting (choice of
parameter values) and the processing rules of algorithms. This could obviously be
seen in bin packing with two item sizes where algorithm performance is described by
the Catalan numbers. Clearly, these structures are recognizable by cognitively only
when algorithms are simple and problems are elementary. However, even under this
assumption the analysis became involved. To the best of our knowledge, our analy-
sis is the first to give an exact image reproducing algorithm behavior over all input
sequences in the respective problems. As a byproduct, the proofs yielded explanations
for the magnitudes of the lookahead effects. For larger lookahead and general settings,
it will be virtually impossible to track the effects of lookahead in the processing of
an algorithm over all input sequences. Hence, we are led to conducting experimental
analysis. Empirical results in further academic online optimization problems and in
real world applications can be found in the author’s thesis (Dunke 2014). In particular,
we emphasize that applying the performance measurement approach based on count-
ing distribution functions has proven to be a powerful tool in the simulation-based
analysis of real world problems.

Since an exact analysis in the style of this paper is likely to be out of scope for
more complex settings, it has to be checked next which mathematical statements are
realistic to be elicited in future works. An exact analysis of other lookahead types,
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e.g., time lookahead, and a subsequent comparison to the results of request lookahead
represents a further step towards the general understanding of lookahead mechanisms.
Likewise, an exact distributional analysis in other basic online optimization problems
such as paging or scheduling is still missing.
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Appendix A: Additional proofs for sect. 3

A.1: Proof of Lemma 3.3

(a) See Michaels and Rosen (1991), chapter 7, pp. 115 and 116.
(b) The proof is a straightforward consequence of the fact that the number of recurring

unit-sloped paths of length 2i with sk ≥ −1 for k = 0, 1, 2, . . . , 2i is the number
of all recurring unit-sloped paths of length 2i minus the number of all recurring
unit-sloped paths of length 2i which hit the number −2 at least once. As a result
of the reflection principle, counting the paths from (0, 0) to (2i, 0) hitting −2 at
least once is the same as counting the paths from (0, 0) to (2i,−4) hitting −2 at
least once. But any such path must hit−2 at some point, i.e., we are computing the
total number of paths from (0, 0) to (2k,−4). In total, we obtain that the number
of recurring unit-sloped paths of length 2i with sk ≥ −1 for k = 0, 1, 2, . . . , 2i is
equal to the total number of paths from (0, 0) to (2i, 0) minus the total number of
paths from (0, 0) to (2i,−4) which is equal to

(
2i

i

)
−

(
2i

i + 2

)
= (2i)!

(i !)2 − (2i)!
(i + 2)!(i − 2)! = (2i)!

(i !)2
(
1 − i(i − 1)

(i + 1)(i + 2)

)

= (2i)!
(i !)2

(i + 1)(i + 2) − i(i − 1)

(i + 1)(i + 2)
= (2i)!

(i !)2
4k + 2

(i + 1)(i + 2)

= 1

i + 2

1

(i + 1)!
(2i)!(4i + 2)

i !
= 1

i + 2

1

(i + 1)!
(2i)!(4i + 2)(i + 1)

(i + 1)!
= 1

i + 2

1

(i + 1)!
(2i)!(4i2 + 6i + 2)

(i + 1)!
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= 1

i + 2

1

(i + 1)!
(2i)!(2i + 1)(2i + 2)

(i + 1)!
= 1

i + 2

(
2i + 2

i + 1

)
= Ci+1.

A.2: Proof of Lemma 3.5

(a) Since for 2n items at least n and at most 2n bins are needed, Bf(2n,m) = 0 for
m < n and m > 2n. For the remaining m, we perform a reverse induction on m.
The base case m = 2n is valid because the only item sequence which needs 2n
bins has 2n large items and it holds that

∑n
k=2n−n an,k = an,n = n+1

n+1

(2n+2
0

) = 1.
For the inductive step, let Bf(2n,m) = ∑n

k=m−n an,k be valid for some m with
2n ≥ m > n. We show that Bf(2n,m − 1) = ∑n

k=m−1−n an,k . Because of
m > n, there must be a pair of large items starting at an odd position for which
no matching small items follow in every item sequence with objective value m
since otherwise these large items could be matched with small items and would
fit into a bin contradicting m > n. Hence, we obtain for any item sequence with
objective valuem an item sequencewith objective valuem−1 by replacing the first
pair of large items starting at an odd position for which no matching small items
follow with a pair of small items which in turn lead to a condensation. As a result,
we have Bf(2n,m − 1) = Bf(2n,m) + |�add | where �add are the additional
item sequences leading to objective value m − 1 which have not resulted from
establishing a condensation in an item sequence with objective value m. These
item sequences can be mapped to a unit-sloped path of length 2n not going below
level −1 and ending at height 2(m − 1 − n).
The next lemma is needed to complete the proof for even length 2n of σ .

Lemma A.1 (a) The number an,k of unit-sloped paths of length 2n with sk′ ≥ −1 for
all k′ = 0, 1, 2, . . . , 2n which end at position (2n, 2k), i.e., at height 2k, is given
by an,k = k+1

n+1

(2n+2
n−k

)
.

(b) The number of item sequences σ of length 2n without condensations where
Bf[σ ] = m for m ∈ {n, n + 1, . . . , 2n} is given by an,m−n.

Proof (a) The proof is an immediate consequence of the bijection betweenDyck paths
of length 2n+2 and path pairs of length n given in Deutsch and Shapiro (2001) and
the included remark concerning the relaxation of the restriction of path pairs having
to end in the same point. To this end, we first modify the bijection by omitting the
appended u-step at the beginning and the appended d-step at the end of the Dyck
path in order to facilitate recurring unit-sloped paths that are allowed to hit the
level of−1. Moreover, since the number of path pairs of length n having endpoints
k
√
2 apart is an,k , it follows from the bijection that the number of unit-sloped paths

ending at height 2k is an,k .
(b) A total number ofm bins withm ∈ {n, n+1, . . . , 2n} is obtained when in an item

sequence without condensations m − n out of the n pairs of successive items are
pairs of large items for which no matching small items can be found afterwards.
Each such item sequence corresponds to a unit-sloped path of length 2n with
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sk ≥ −1 for k = 0, 1, 2, . . . , 2n ending at height 2(m − n) because each pair of
large items contributes an amount of 2 to the total height achieved at the end of
the path, and the result follows. 
�

From Lemma A.1, we have that |�add | = an,m−n−1. Together with the induction
hypothesis, we conclude that

Bf(2n,m − 1) = Bf(2n,m) + |�add | =
n∑

k=m−n

an,k + an,m−n−1 =
n∑

k=m−n−1

an,k .

(b) Since for 2n+ 1 items at least n+ 1 and at most 2n+ 1 bins are needed, Bf(2n+
1,m) = 0 for m < n + 1 and m > 2n + 1. Notice that whenever m > n + 1 for
an item sequence of length 2n + 1, we have m > n for the same item sequence
where the last item is deleted. Thus, there must be a pair of large items beginning
at an odd position in the truncated sequence from the same reasoning as in part (a)
of the proof. Objective value m with n + 1 < m ≤ 2n + 1 for an item sequence
of length 2n + 1 can be attained in two ways: First, Bf needed m − 1 bins after
2n items and the 2n + 1st item leads to the mth bin. Second, Bf needed m bins
after 2n items and the 2n + 1st item needs no new bin. In the first case, we have
Bf(2n,m−1) item sequences which must incur a new bin upon appending a large
item; appending a small item would leave the objective value at m because there
are at least two large items which could be matched with the small item. In the
second case, Bf(2n,m) item sequences will not incur a new bin upon appending
a small item as this item can be matched with one of the large items; appending a
large item would lead to objective valuem+1 since after 2n items there can never
be a bin with a small item only. We obtain

Bf(2n + 1,m) = Bf(2n,m − 1) + Bf(2n,m)

=
n∑

k=m−1−n

an,k +
n∑

k=m−n

an,k = 2
n∑

k=m−n

an,k + an,m−1−n .

Objective value n + 1 can be attained in three ways: First, Bf needed n bins after
2n items and the 2n + 1st item is large leading to the n + 1st bin. Second, Bf
needed n bins after 2n items and the 2n + 1st item is small leading to the n + 1st
bin. Third, Bf needed n + 1 bins after 2n items and the 2n + 1st item is small, but
does not lead to a new bin. The first case is trivial. In the second case, we seek for
the same item sequences because neither of them can exhibit a pair of large items
starting in an odd position. In the third case, we seek for the item sequences of
length 2n with objective value n + 1 which have at least one pair of large items
beginning at an odd position such that the appended small item does not incur a
new bin. These item sequences are counted by Bf(2n, n + 1). We obtain

Bf(2n + 1, n + 1) = Bf(2n, n) + Bf(2n, n) + Bf(2n, n + 1)
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=
n∑

k=0

an,k +
n∑

k=0

an,k +
n∑

k=1

an,k = 3
n∑

k=0

an,k − an,0.

A.3: Proof of Theorem 3.6

(a) We show by two-dimensional induction on n and m that
∑n

k=m−n an,k = (2n+1
m+1

)
.

Recall that n = 1, 2, . . . and m = n, n + 1, . . . , 2n. The base case n = 1 and
m = n = 1 is valid because it holds that

∑1
k=0 a1,k = a1,0 + a1,1 = 2 + 1 =

3 = (2·1+1
1+1

) = (3
2

) = 3. In the first inductive step (on n with fixed m = n),

we show that
∑n

k=0 an,k = (2n+1
n+1

)
holds. From Shapiro (1976), we know that

1
2

(2(n+1)
n+1

) = ∑n
k=0 an,k . The result follows from

1

2

(
2(n + 1)

n + 1

)
= 1

2

(2n + 2)!
(n + 1)!(n + 1)! = (2n + 2)(2n + 1)!

2(n + 1)n!(n + 1)! =
(
2n + 1

n + 1

)
.

In the second inductive step (onm with arbitrary n), we show that
∑n

k=m−n an,k =(2n+1
m+1

)
implies

∑n
k=m+1−n an,k = (2n+1

m+2

)
. This can be seen by the following cal-

culations:

n∑
k=m+1−n

an,k =
n∑

k=m−n

an,k − an,m−n =
(
2n + 1

m + 1

)
− m − n + 1

n + 1

(
2n + 2

2n − m

)

= (2n + 1)!(n + 1)(m + 2) − (m − n + 1)(2n + 2)!
(2n − m)!(m + 2)!(n + 1)

= (2n + 1)!
(m + 2)!(2n − m − 1)!

(n + 1)(m + 2) − (m − n + 1)(2n + 2)

(2n − m)(n + 1)

= (2n + 1)!
(m + 2)!(2n − m − 1)! · 1 =

(
2n + 1

m + 2

)
.

The result now immediately follows from the formula given in part (a) of Lemma
3.5.

(b) For m = n + 1, we have

3
n∑

k=0

an,k − an,0
a)= 3

(
2n + 1

n + 1

)
− 1

n + 1

(
2n + 2

n

)

= (2n + 1)!
(n + 2)!(n + 1)! (3n

2 + 7n + 4)

and

(
2n + 3

n + 2

)
−

(
2n + 1

n + 1

)
= (2n + 1)!

(n + 2)!(n + 1)! (3n
2 + 7n + 4).

123



F. Dunke, S. Nickel

which together yields the desired relation for m = n + 1.
For n + 1 < m ≤ 2n + 1, we have

2
n∑

k=m−n

an,k + an,m−n−1
a)= 2

(
2n + 1

m + 1

)
+ m − n

n + 1

(
2n + 2

2n − m + 1

)

= (2n + 2)!
(m + 1)!(2n − m + 1)!

(
2(2n − m + 1)

2n + 2
+ m − n

n + 1

)

= (2n + 2)!
(m + 1)!(2n − m + 1)!

(
2n + 2

2n + 2

)
=

(
2n + 2

m + 1

)
.

The result now immediately follows from the formula given in part (b) of Lemma
3.5.

A.4: Proof of Lemma 3.8

We show that
∑

i≥1 Ci
(2n−2i
m−i

) − ∑
i≥1 Ci−1

(2n−2i+1
m−i+1

) = 0. Notice that from the
definition of the binomial coefficient, i ranges in {1, 2, . . . , 2n − m} in both terms.
Hence,

∑
i≥1

Ci

(
2n − 2i

m − i

)
−

∑
i≥1

Ci−1

(
2n − 2i + 1

m − i + 1

)

= C1

(
2n − 2

m − 1

)
+ C2

(
2n − 4

m − 2

)
+ C3

(
2n − 6

m − 3

)
+ · · · + C2n−m

(
2m − n

2m − n

)

−
(
C0

(
2n − 1

m

)
+ C1

(
2n − 3

m − 1

)
+ C2

(
2n − 5

m − 2

)
+ · · · + C2n−m−1

(
2m − n + 1

2m − n + 1

))

= C1

(
2n − 3

m − 2

)
+ C2

(
2n − 5

m − 3

)
+ · · · + C2n−m−1

(
2m − n + 1

2m − 2n

)
+ C2n−m −

(
2n − 1

m

)

=
2n−m−1∑

i=1

Ci

(
2n − 2i − 1

m − i − 1

)
+ C2n−m −

(
2n − 1

m

)

=
2n−m−1∑

i=0

Ci

(
2n − 2i − 1

m − i − 1

)
−

(
2n − 1

m − 1

)
+ C2n−m −

(
2n − 1

m

)

=
2n−m∑
i=0

Ci

(
2n − 2i − 1

m − i − 1

)
− C2n−m

(
2m − 2n − 1

2m − 2n − 1

)
−

(
2n − 1

m − 1

)

+ C2n−m −
(
2n − 1

m

)

=
∑
i≥0

Ci

(
2n − 2i − 1

m − i − 1

)
− C2n−m −

(
2n − 1

m − 1

)
+ C2n−m −

(
2n − 1

m

)

=
(
2n

m

)
−

(
2n − 1

m − 1

)
−

(
2n − 1

m

)
=

(
2n

m

)
−

(
2n

m

)
= 0.
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A.5: Proof of Corollary 3.9

From Theorem 3.1, we know that Bf2[σ ] ∈ {m,m − 1} whenever Bf[σ ] = m; from
the previous Theorem 3.7, we know that |{σ | |σ | = n,Bf2[σ ] = m − 1,Bf[σ ] =
m}| = ( n

m+1

)
for m = � n

2 � + 1, . . . , n − 1. Hence, from Theorem 3.6 it immediately

follows for thesem that |{σ | |σ | = n,Bf2[σ ] = m}| = (n+1
m+1

)−( n
m+1

) = (n
m

)
.Clearly,

|{σ | |σ | = n,Bf[σ ] = n}| = |{σ | |σ | = n,Bf2[σ ] = n}| = 1.

A.6: Proof of Corollary 3.12

(a) For v < n and v ≥ 2n − 1, FBf(v) = FBf2(v). For n ≤ v < 2n − 1

FBf2(v) − FBf(v) =
( �v�∑
m=n

((2n+1
m+2

) − 2
( 2n
m+1

)) + ( 2n
n+1

)) · (2−2n)

=
( �v�∑
m=n

(( 2n
m+2

) − ( 2n
m+1

)) + ( 2n
n+1

)) · (2−2n)

= ( 2n
�v�+2

) · (2−2n) > 0.

The second part follows immediately from Pascal’s triangle as a result of
( 2n
v+2

)
>( 2n

v+3

)
for v = n, n + 1, . . . , 2n − 3.

(b) Using the formula of Stirling (n! ≈ √
2πn( ne )

n , Königsberger (2001)), we get for
n → ∞ that

FBf2(n) − FBf(n) =
(

2n

n + 2

)
· 2−2n

≈
√
4πn( 2ne )2n√

2π(n + 2)( n+2
e )n+2

√
2π(n − 2)( n−2

e )n−2
· 2−2n

=
√
n22nn2n√

π(n2 − 4)(n + 2)n+2(n − 2)n−2
· 2−2n ∈ �(

1√
n
).

In addition,
(2n

v

)
>

( 2n
v+1

)
for v ∈ N with v ≥ n, i.e., FBf2(v) − FBf(v)

monotonously decreases for v ≥ n. Since also FBf2(v) = FBf(v) for v < n
and v ≥ 2n − 1, the result follows.
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