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Kurzfassung

Luftverschmutzung, insbesondere hohe Konzentrationen von mikroskopischen Partikeln in
der Atmosphäre, sogenannte Feinstaubpartikel (PM), haben schwerwiegende Auswirkungen
auf die menschliche Gesundheit. Partikel mit einem aerodynamischen Durchmesser von
weniger als 10 µm (PM10) können in die Atemwege gelangen und bereits eine kurzzeitige
Exposition gegenüber hohen PM-Konzentrationen kann zu unmittelbaren negativen Auswirkungen
wie Asthmaanfällen führen. Sind Menschen über einen längeren Zeitraum erhöhten PM-
Konzentrationen ausgesetzt, kann die Lunge geschädigt werden und das Risiko von Herz-
Kreislauf-Erkrankungen und Diabetes steigt. Diese gesundheitlichen Auswirkungen können
die Lebenserwartung senken. Obwohl in den letzten Jahrzehnten ein rückläufiger Trend der
PM-Konzentrationen in Europa zu verzeichnen ist, liegen die aktuellen PM-Konzentrationen in
vielen Mitgliedsstaaten immer noch über den WHO-Empfehlungen, was zur Folge hat, dass
die derzeitigen PM-Konzentrationen in vielen Gebieten Europas mit hoher Wahrscheinlichkeit
für Menschen schädlich sind. Infolgedessen wurden bereits einige Maßnahmen gegen die
Luftverschmutzung umgesetzt, darunter städtische Umweltzonen und andere Einschränkungen für
den privaten Autoverkehr. Es sind jedoch weitere Anstrengungen erforderlich, um gesundheitlich
unbedenkliche PM-Konzentrationen zu ermöglichen. Um effizientere Strategien für eine bessere
Luftqualität zu entwickeln, müssen den Entscheidungsträgern zusammenhängende Informationen
über räumlich-zeitliche Muster der PM-Konzentrationen zur Verfügung stehen. Die sogenannte
Aerosol Optische Dicke (AOD), die aus satellitengestützten Messungen gewonnen wird, hat das
Potenzial, diese Informationen zu liefern. Die AOD stellt das Integral der Partikelbelastung in
einer Atmosphärensäule dar, die mit den bodennahen PM-Konzentrationen in Beziehung gesetzt
werden kann. Dies ist notwendig, da bodennahe PM-Konzentrationen von besonderer Relevanz
sind für die Bestimmung schädlicher Auswirkungen auf den Menschen. Die Verwendung der AOD
zur Annäherung der PM-Konzentrationen in Bodennähe bringt jedoch einige Herausforderungen
mit sich, da die Beziehung zwischen AOD und PM durch eine Reihe von meteorologischen
Parametern beeinflusst wird. Daher wird in dieser Arbeit das Potenzial satellitengestützter
AOD zur Bestimmung bodennaher PM-Konzentrationen analysiert und eine Grundlage für
die genaue Ableitung zusammenhängender Informationen zur bodennahen Luftverschmutzung
durch satellitengestützte AOD geschaffen. Darüber hinaus ist bekannt, dass verschiedene
Umweltfaktoren PM-Konzentrationen beeinflussen und die Luftverschmutzung verstärken können.
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Um die Wirksamkeit von Strategien zur Verbesserung der Luftqualität wissenschaftlich beurteilen
zu können, müssen die Auswirkungen von Umwelteinflüssen auf die PM-Konzentrationen
von anthropogenen Emissionen getrennt werden. In dieser Arbeit wird das wissenschaftliche
Verständnis der Umwelteinflüsse auf die PM-Konzentrationen und die Entwicklung von Phasen
starker Verschmutzung in Bezug auf die atmosphärischen Umgebungsbedingungen erweitert.
In dieser Arbeit werden drei zusammenhängende Studien vorgestellt, die sich jeweils mit einer
Hauptforschungsfrage befassen. Diese Hauptforschungsfragen zusammen mit den Hauptergebnis-
sen sind:

Wie beeinflussen die meteorologischen Bedingungen die statistische Beziehung zwischen AOD und
PM?
Eine für den Nordosten Deutschlands durchgeführte Studie zeigt einen nichtlinearen Zusam-
menhang zwischen AOD und PM10 in Bodennähe auf, was auf den Einfluss der mete-
orologischen Parameter relative Luftfeuchtigkeit (RH), Grenzschichthöhe (BLH), Windrich-
tung und Windgeschwindigkeit zurückzuführen ist. Wenn eine relativ trockene Atmosphäre
(30 % < RH≤ 50 %) mit einer mittelhohen BLH (600–1,200 m) zusammenfällt, sind die normal-
isierten Werte von AOD und PM10 bei Anwendung einer semiquantitativen Skala ähnlich. Dies
deutet auf eine Übereinstimmung von AOD und PM10 hin. Mit zunehmender Umgebungsfeuchte
(>80 %) erhöht sich die AOD durch die Feuchtigkeitsaufnahme der Partikel und dem dadurch
verursachten hygroskopischen Partikelwachstum. Dies führt zu einer relativen Überschätzung
der trockenen Partikelkonzentration in Bodennähe, wenn diese auf Basis der AD approximiert
wird. Dieser Effekt kann jedoch durch höhere PM10-Messwerte bei niedrigen Grenzschichten
(<600 m) kompensiert werden, was schließlich zu AOD- und PM10-Satellitenmessungen in
ähnlicher Größenordnung führt. Die Windrichtung beeinflusst die Beziehung zwischen AOD und
PM10 durch den Transport von Luftmassen mit unterschiedlichen Eigenschaften in das Unter-
suchungsgebiet. Unter Bedingungen, die von westlichen Luftmassen dominiert werden, ist die
Wahrscheinlichkeit vergleichsweise hoch, dass die AOD bei Anwendung einer semiquantitativen
Skala relativ höher ist als die PM10-Beobachtung. Dies deutet auf eine Überschätzung der PM10-
Konzentrationen auf Basis der AOD hin. Westliche Luftmassen sind häufig marinen Ursprungs
und haben damit tendenziell eine höhere RH und enthalten einen hohen Gehalt an Meersalzen.
Meersalze sind hydrophil und fördern das hygroskopische Wachstum von Partikeln, wodurch
wiederum die AOD erhöht wird.
Die Analyse des Zusammenhangs zwischen AOD und PM10 zeigt, dass die Berücksichtigung
der Parameter RH, BLH und Wind notwendig ist, wenn Schätzungen von PM10 auf Basis
von satellitengestützter AOD angestrebt werden. Das in dieser Studie vorgestellte Konzept
der Normalisierung der AOD / PM10-Datenpaare eignet sich für die Anwendung in anderen
Untersuchungsgebieten. Die Erkenntnisse dieser Studie haben das Potenzial, zukünftige
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Abschätzungen bodennaher PM-Konzentrationen auf Basis von Satelliten-AOD zu verbessern.

Was sind die bestimmenden Einflussfaktoren auf PM10-Konzentrationen, wenn diese auf Basis der
vorherrschenden Umweltbedingungen und AOD abgeschätzt werden?
Ein statistisches Modell wird zur Vorhersage in Deutschland gemessener PM10-Konzentrationen
auf Basis satellitengestützter AOD und unter Berücksichtigung der Umweltbedingungen aufge-
setzt. Sensitivitätsanalysen an diesem Modell zeigen, dass die wichtigsten Einflussfaktoren auf die
modellierten PM10-Konzentrationen die Ost-West-Windströmung, die BLH und die Temperatur
sind. Einströmung von Luftmassen aus östlichen Richtungen über mehrere Tage hinweg erhöht die
modellierten PM10-Konzentrationen im Durchschnitt um ∼10 µg/m3 im Vergleich zu Situationen,
die von westlichem Einstrom dominiert werden. Dies ist auf grenzüberschreitenden Partikeltrans-
port aus Ländern östlich von Deutschland zurückzuführen. Modellierte PM10-Konzentrationen für
niedrige BLHs (<800 m) erhöhen sich um durchschnittlich ∼10µg/m3 aufgrund der Akkumulation
von Partikeln in Bodennähe. Dieser Mechanismus erweist sich im Winter und Herbst als
besonders wichtig. Im Sommer zeigen die Modellergebnisse eine deutliche Erhöhung der
PM10-Vorhersagen (bis zu ∼12µg/m3 bei um 15 K erhöhten Temperaturen). Dies ist auf eine
verstärkte biogenene Aktivität und erhöhte Staubaufwirbelung aufgrund ausgetrockneter Böden
zurückzuführen. Im gleichen Modell-Setup zeigen Sensitivitätsanalysen, dass die AOD positiv mit
PM10 korreliert, aber BLH und die Ost-West-Windkomponente die Beziehung zwischen AOD und
PM10 wesentlich beeinflussen. AOD und PM10 korrelieren im Sommer schwächer, da dann die
Partikel innerhalb einer höheren Grenzschicht stärker verteilt sind und die AOD weitgehend von
den höher in der Atmosphäre befindlichen Partikeln bestimmt wird. Die Ergebnisse deuten darauf
hin, dass die AOD zur Beurteilung der Luftqualität am Boden verwendet werden kann, wenn
sie durch eine statistische Modellierung mit meteorologischen Umgebungsbedingungen verknüpft
wird. Darüber hinaus wird der starke Einfluss der meteorologischen Bedingungen auf die PM10-
Konzentrationen aufgezeigt.

Wie bestimmen atmosphärische Prozesse die Konzentration verschiedener chemischer Bestandteile
von PM1 auf lokaler Ebene?
Atmosphärische Einflussfaktoren auf Konzentrationen von Feinstaubpartikeln, die kleiner als 1 µm
(PM1) sind, und deren chemischen Hauptbestandteile, werden analysiert. Der Fokus liegt dabei auf
den Prozessen, die zu Phasen mit hoher Schadstoffbelastung führen. Ein statistisches Modell wird
aufgestellt, um die täglichen Schwankungen der PM1-Konzentrationen unter Berücksichtigung
der meteorologischen Bedingungen zu reproduzieren. Dafür werden Daten eines suburban-
geprägten Standorts südwestlich von Paris, Frankreich, verwendet. Sensitivitätsanalysen des
Modells deuten darauf hin, dass Spitzenkonzentrationen von PM1 im Winter durch die bodennahe
Partikelakkumulation bei niedrigen BLHs in Kombination mit der Bildung neuer Partikel und
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erhöhten Heizungsemissionen bei niedrigen Temperaturen (<∼5 ◦C) verursacht werden. Im
Sommer sind die Spitzenkonzentrationen von PM1 im Allgemeinen niedriger als im Winter.
Erhöhte PM1-Konzentrationen treten jedoch auf, wenn windstille Bedingungen mit hohen
Temperaturen zusammentreffen, die zu photochemisch induzierten Partikelbildungsprozessen
führen. Der Transport verschmutzter Luft aus der Pariser Region führt in beiden Jahreszeiten
zu einem deutlichen Anstieg der PM1-Konzentrationen.
Hochaufgelöste Fallstudien zeigen eine große Variabilität der Prozesse, die zu Phasen starker
Verschmutzung führen. Die Prozesse variieren nicht nur zwischen, sondern auch innerhalb
der Jahreszeiten. Die Modellergebnisse zeigen beispielsweise für eine Phase starker Luftver-
schmutzung im Januar 2016, dass diese durch einen Temperaturabfall verursacht wurde, was
die modellierten PM1 Konzentrationen um bis zu 11 µg/m3 erhöht. Dies wird auf eine
verstärkte Bildung von sekundären anorganischen Aerosolen (SIA) und einen Anstieg der
lokalen Heizungsemissionen zurückgeführt. Im Gegensatz dazu werden im Dezember 2016
hohe PM1-Konzentrationen hauptsächlich durch eine niedrige BLH und Partikeladvektion aus
dem Raum Paris verursacht. Ein beobachteter Rückgang der Schadstoffkonzentrationen während
dieser Phase hängt mit einer Änderung der Windrichtung zusammen, die weniger belastete,
maritime Luftmassen herantransportiert, was zu einem Rückgang der PM1-Konzentrationen
von ∼-4 µg/m3 führt. Obwohl sich diese Ergebnisse auf lokale Ereignisse beziehen, sind die
Ergebnisse verallgemeinerbar und auch für andere Regionen relevant. Dies betrifft beispielsweise
die Relevanz der Bildung neuer Partikel während kalter Temperaturen oder die Akkumulation
von Partikeln in bodennahen Atmosphärenschichten durch eine niedrige BLH. Der Einfluss
transportierter Partikel unterstreicht die Notwendigkeit großräumiger Maßnahmen zur Senkung
des atmosphärischen Partikelgehalts.

Diese Arbeit liefert ein quantitatives Verständnis der Beziehung zwischen AOD und PM10
und schafft damit eine Grundlage für Abschätzungen von PM auf Basis von AOD. Diese PM-
Abschätzungen sind von großem Nutzen für die Identifizierung von stark verschmutzten Gebieten
und zur langfristigen Beobachtung der Luftqualität auf großen räumlichen Skalen. Darüber
hinaus ist das wissenschaftliche Verständnis der Umweltprozesse, die PM-Konzentrationen
beeinflussen, wichtig, um atmosphärische Prozesse bei der Entwicklung von Strategien zur
Schadstoffminderung berücksichtigen zu können.
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Abstract

Air pollution, in particular high concentrations of suspended particles in the atmosphere, so-
called particulate matter (PM), has serious implications on human well-being. Particles with an
aerodynamic diameter below 10 µm (PM10) can enter the human respiratory system, and even
short-term exposures to high PM concentrations can lead to immediate negative effects such as
an increased numbers of asthma seizures. If humans are exposed to increased PM concentrations
for a longer period, the lungs can be damaged and the risk of cardiovascular diseases and diabetes
increases. These adverse health effects can lead to a loss in life expectancy. Although the last
decades showed a declining trend of PM concentrations in Europe, PM levels still remain above
WHO recommendations, meaning that there is a high probability of current PM concentrations
being harmful to humans in many areas of Europe. As a consequence, several measures against
air pollution have been proposed, including urban low emission zones or other partial driving
bans. Still, more efforts are needed to ensure PM levels are below harmful levels. To develop
more efficient plans towards better air quality, policymakers need to be provided with coherent
information on spatiotemporal patterns of PM concentrations. Aerosol optical depth (AOD)
retrieved from satellite-based measurements has the potential to provide this information. AOD
constitutes a columnar-integrated approximation of the atmospheric particle burden and can be
related to near-ground concentrations of PM, which is the more relevant quantity concerning
harmful effects on humans. However, using AOD to approximate PM concentrations at ground
level presents several challenges, as the relationship between AOD and PM is influenced by a
number of meteorological parameters. Hence, this thesis analyses the applicability of columnar,
satellite-based AOD to derive ground-level PM. Furthermore, it is known that environmental
conditions are important drivers of PM concentrations and can amplify high pollution situations.
For a scientifically sound assessment of the efficiency of strategies towards better air quality, the
effect of environmental influences on PM concentrations needs to be separated from anthropogenic
emissions. It is, therefore, a further goal of this thesis to advance the scientific understanding
of environmental drivers on PM concentrations and of how high pollution episodes evolve with
respect to ambient atmospheric conditions.
Based on these motivations, three studies are presented in this thesis, each addressing a main
research question. These main research question along with the main findings are:
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How do meteorological conditions influence the statistical relationship between AOD and PM?
For a study area in northeastern Germany, the relationship between AOD and PM10 is shown to
be highly nonlinear, which is attributed to the influence of the meteorological parameters relative
humidity (RH), boundary layer height (BLH), wind direction, and wind speed. Generally, when a
relatively dry atmosphere (30 % <RH≤ 50 %) coincides with a medium BLH (600–1200 m), AOD
and PM10 are in the same range on a semi-quantitative scale, indicating agreement of AOD
and PM10. AOD increases with increasing ambient RH (>80 %) due to hygroscopic particle
growth, leading to a relative overestimation of the dry particle concentration near the ground.
However, this effect can be compensated if a low boundary layer (<600 m) is present, which in
turn significantly increases PM10, eventually leading to satellite AOD and PM10 measurements
of similar magnitude. Wind direction influences the relationship between AOD and PM10 by
transporting air masses with varying characteristics to the study area. During conditions dominated
by western air masses, there is a relatively high probability that the satellite AOD is higher
than the PM10 observation on a semi-quantitative scale, indicating an overestimation of PM10
concentrations by AOD. Western air masses are more likely to be of marine origin, meaning that
they are wetter, i.e., tend to have a higher RH, and carry a high content of sea salts. Sea salts are
hydrophilic and promote the hygroscopic growth of particles, thus increasing the AOD.
The analysis of the relationship between AOD and PM10 shows that if estimates of PM10 from
AOD are targeted, the consideration of the parameters RH, BLH, and wind is necessary. The
concept presented in this research chapter can be generalized for use in other study areas. Insights
of this study have the potential to improve future estimations of near-ground PM concentrations
based on satellite AOD.

What are the main drivers of PM10 when environmental conditions and AOD are used to estimate
PM10 concentrations?
A statistical model is set up to predict hourly mean PM10 concentrations for measurement sites
in Germany, taking into account satellite AOD and ambient environmental conditions pertaining
to meteorology and the land surface. Sensitivity analyses on this model show that important
meteorological drivers of modeled PM10 concentrations include multi-day east-west wind flow,
BLH, and temperature. Multiday inflow from eastern directions increases PM10 concentrations
on average by ∼10 µg/m3 when compared to situations dominated by western inflow, indicating
trans-boundary particle transport from countries east of Germany. An increase of modeled PM10
concentrations for low BLHs (<800 m) is estimated to be on average ∼10µg/m3 due to confinement
of particles close to the ground. This mechanism is shown to be particularly important in winter
and autumn. An increase in de-seasonalised temperatures in summer causes a marked increase in
PM10 predictions (up to ∼12µg/m3 for a temperature increase of 15 K) due to enhanced biogenic
activity and increased dust resuspension due to dried-up soils. In the same modelling framework,

vi



sensitivity analyses show that AOD is positively related to PM10, but BLH and the east-west
wind component substantially influence the relationship between AOD and PM10. AOD and
PM10 are weaker correlated in summer when particles are more dispersed within a well-mixed
boundary layer, and the AOD is largely determined by particles higher up in the atmosphere. These
results suggest that AOD can be used to assess air quality at ground level in a statistical modelling
framework that links it with meteorological conditions. Furthermore, the strong influence of
meteorological conditions on variations of PM10 concentrations is shown.

How do atmospheric processes drive concentrations of different PM1 species at a local scale?
Atmospheric drivers of concentrations of speciated fine-mode particles, i.e., particles smaller
than 1 µm (PM1), and processes leading to high-pollution episodes are analysed. A statistical
model is set up to predict day-to-day variations of PM1 concentrations under consideration of
meteorological conditions using data from a suburban site southwest of Paris, France. Sensitivity
analyses on the model suggest that the particle accumulation effect of low BLHs in combination
with the formation of new particles and increased heating emissions during low-temperatures
(<∼5 ◦C) drive peak PM1 concentrations in winter. Summer peak PM1 concentrations are
generally lower than in winter. Still, elevated PM1 concentrations in summer occur when
calm conditions coincide with high temperatures that lead to photochemically-induced particle
formation processes. Advection of polluted air from the Paris region cause substantially increased
PM1 concentrations in both seasons. High-resolution case studies show a large variability of
processes that can lead to the development of high pollution events. Processes vary between and
even within seasons. A high pollution episode in January 2016 is shown to be driven by a drop
in temperature, increasing PM1 predictions by up to 11 µg/m3. This is attributed to enhanced
formation of secondary inorganic aerosols (SIA) and an increase in local wood-burning emissions.
In contrast, during December 2016, high PM1 concentrations are caused mainly by a shallow BLH
and particle advection from the Paris area. It is shown that an observed decrease in pollution levels
is linked to a change in wind direction, advecting cleaner, maritime air to the PM measurement
site, leading to a decrease of ∼-4 µg/m3. Although these results refer to local events, the results
are generalizable and relevant for other regions as well. This concerns for example the relevance
of new particles formation processes during cold conditions, or the accumulation of particles in
near-ground layers of the atmosphere during shallow BLHs. The influence of transported particles
underlines the need for large-scale measures to reduce atmospheric PM concentrations.

This thesis provides a quantitative understanding of the relationship between AOD and PM10,
which constitutes a valuable basis for future efforts to accurately estimate PM from AOD. These
PM estimates are highly beneficial for the identification of pollution hotspots and the long-
term monitoring of air quality over a large spatial scale. Furthermore, the advancement of the
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scientific understanding of environmental processes driving PM concentrations is crucial for the
development of pollution mitigation strategies and to scientifically test the efficiency of these
measures.

viii



Contents

Kurzfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

List of Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

1 Introduction and general motivation . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Small particles, large impact: atmospheric PM . . . . . . . . . . . . . . . . . . 1

1.2 PM in the atmosphere – sources, composition and environmental controls . . . . 5

1.3 In situ measurements and satellite-based approximation of PM concentrations . . 12

1.3.1 In situ measurements of PM . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3.2 Remote sensing measurements of atmospheric aerosols . . . . . . . . . . . 14

1.3.3 AOD – concept, application and challenges for PM approximations . . . . . 16

1.4 Overview of applied data sets . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.5 Scientific aims and outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2 Meteorological influences on the relationship between PM10 and AOD . . . . 30
2.1 On the need for a quantitative analysis of conditions for deriving PM from AOD 30

2.2 Study domain, data and methods . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.3.1 Nonlinearity of the relationship between AOD and PM10 . . . . . . . . . . 35

2.3.2 Meteorological conditions of AOD-PM10 agreement and divergence . . . . 36

2.3.3 The role of RH and BLH . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.3.4 The role of wind direction and wind speed . . . . . . . . . . . . . . . . . 40

2.4 Specific conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

ix



Contents

3 Mapping and understanding PM10 patterns using AOD and environmental
conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.1 Benefits of using machine learning models to derive PM from AOD . . . . . . . 47

3.2 Data and methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.3.1 Model performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.3.2 Information content of input features . . . . . . . . . . . . . . . . . . . . 59

3.3.3 Model sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.3.4 Determinants of the relationship between AOD and PM10 . . . . . . . . . . 72

3.4 Specific conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4 Meteorology-driven, local-scale variability of PM1 . . . . . . . . . . . . . . . . 78
4.1 A case study on drivers of air pollution in suburban Paris . . . . . . . . . . . . . 78

4.2 Data and methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.3.1 Model performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.3.2 Sensitivity of PM1 species concentrations to changes in meteorology . . . . 85

4.3.3 Meteorological conditions of high-pollution events . . . . . . . . . . . . . 92

4.3.4 Day-to-day variability of selected high pollution events . . . . . . . . . . . 96

4.4 Specific conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5 Concluding discussion and outlook . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.1 Concluding discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

Scientific appendix of chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

Further appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
Original publication: Stirnberg et al. (2018) . . . . . . . . . . . . . . . . . . . . . . . 161

Original publication: Stirnberg et al. (2020) . . . . . . . . . . . . . . . . . . . . . . . 179

Original manuscript: Stirnberg et al. (ready for peer review) . . . . . . . . . . . . . . 214

Eidesstattliche Versicherung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

x



List of Figures

1.1 Location of PM measurement sites of the UBA and area covered assuming a spatial
representativity of 5 km . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Schematic example of particle number and particle mass size distribution for a
characteristic aerosol population. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Processes affecting atmospheric PM composition on different scales . . . . . . . . . 10
1.4 Important radiative processes and sources of radiation seen by a satellite . . . . . . . 17
1.5 Influence of the surface albedo on TOA reflectances at 670 nm for different AODs . . 18
1.6 Comparison of AOD retrieved by MAIAC versus AOD retrieved by DB and DT at

0.47 µm on March 31st, 2020 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.7 PM10 and MAIAC AOD monthly distributions for the PO valley, Italy . . . . . . . . 22
1.8 Schematic illustration of the three research chapters of this thesis. . . . . . . . . . . 29

2.1 Geographical extent of the study area for chapter 2 . . . . . . . . . . . . . . . . . . 32
2.2 Overview of the work flow of chapter 2 . . . . . . . . . . . . . . . . . . . . . . . . 34
2.3 2D-histograms of AiRDI, AODrank and AiRDI, PM10rank . . . . . . . . . . . . . . 36
2.4 Determination of factors influencing AiRDI . . . . . . . . . . . . . . . . . . . . . . 37
2.5 Relationship between AiRDI, AODrank , PM10rank , RH and BLH . . . . . . . . . . . 39
2.6 Relationship between the AiRDI, wind direction and wind speed . . . . . . . . . . . 41
2.7 Relationship between AODrank , wind direction and wind speed . . . . . . . . . . . . 42
2.8 Relationship between PM10rank , wind direction and wind speed . . . . . . . . . . . 43
2.9 Relationship between RH, wind direction and speed . . . . . . . . . . . . . . . . . . 44
2.10 Relationship between BLH, wind direction and speed . . . . . . . . . . . . . . . . . 45

3.1 Conceptual design of potential influences on variations in hourly PM10 concentrations 48
3.2 Framework of chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.3 Scatter plot showing the full-year model predictions for hourly PM10 concentrations 60
3.4 Scatter plot showing seasonal model predictions for hourly PM10 concentrations . . 61
3.5 Relative importance of input features based on repeated permutation . . . . . . . . . 62
3.6 Partial Dependence plot showing the mean model response to changes in 3-day mean

east-west wind component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

xi



List of Figures

3.7 PD plot showing the mean model response to changes in east-west wind component . 65
3.8 PD plot showing the mean model response to changes in BLH . . . . . . . . . . . . 66
3.9 Two-way PD of umean and BLH . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.10 PD plot showing the mean model response to changes in temperature anomalies . . . 69
3.11 PD plot showing the mean model response to changes in instantaneous temperature . 70
3.12 PD plot showing the mean model response to changes in RH . . . . . . . . . . . . . 71
3.13 Two-way PD of RH and BLH, full-year model . . . . . . . . . . . . . . . . . . . . 72
3.14 PD plot showing the mean model response to changes in AOD . . . . . . . . . . . . 73
3.15 Two-way PD of AOD and BLH . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.16 Two-way PD of AOD and umean . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.17 Schematic representation of different processes driving high pollution situations in

winter and summer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.1 Location of the SIRTA supersite southwest of Paris . . . . . . . . . . . . . . . . . . 80
4.2 Conceptual figure illustrating the interaction of SHAP values and model output . . . 83
4.3 Performance indicators for ten model iterations . . . . . . . . . . . . . . . . . . . . 84
4.4 Ranked median SHAP values of the model input features . . . . . . . . . . . . . . . 85
4.5 Contribution of air temperature to the prediction of species and total PM1

concentrations (i.e., SHAP values) vs. absolute air temperature . . . . . . . . . . . . 87
4.6 Contribution of BLH to the prediction of species and total PM1 concentrations (i.e.,

SHAP values) vs. absolute BLH . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.7 Contribution of wind direction to the prediction of species and total PM1

concentrations (i.e., SHAP values) vs. absolute wind direction . . . . . . . . . . . . 91
4.8 BLH vs. time since last precipitation and BLH vs. maximum wind speed,

respectively, colored by the SHAP interaction values for the respective features. . . . 92
4.9 Mean SHAP values for situations with low total PM1 concentrations and situations

with high pollution, respectively, during winter (December, January, February) . . . 94
4.10 Mean SHAP values for situations with low total PM1 concentrations and situations

with high pollution, respectively, during summer (July, June, August) . . . . . . . . 96
4.11 SHAP values for winter pollution episode in January 2016 . . . . . . . . . . . . . . 98
4.12 SHAP values for winter pollution episode in December 2016 . . . . . . . . . . . . . 100
4.13 SHAP values for summer pollution episode in June 2017 . . . . . . . . . . . . . . . 102
4.14 SHAP values for spring pollution episode in March 2015 . . . . . . . . . . . . . . . 104

5.1 Contribution of maximum wind speed to the prediction of species and total PM1 for
each data instance (i.e., SHAP values) vs. absolute wind speed . . . . . . . . . . . . 116

xii



List of Figures

5.2 Regimes characterizing the influence of absolute air temperatures on total PM1
concentrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

A.1 Spatial distribution, type, and representativeness of UBA PM measurement stations
in Germany . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

A.2 Altitude of UBA PM measurement stations in Germany . . . . . . . . . . . . . . . . 123
A.3 Mean PM10 concentrations for measurement stations. . . . . . . . . . . . . . . . . 123
B.1 Spatial distribution of R2 of the model set up. . . . . . . . . . . . . . . . . . . . . . 124
B.2 Spatial distribution of the RMSE of the model set up. . . . . . . . . . . . . . . . . . 125
C.1 PD plot showing the mean model response to changes in SSRD for the full-year

model and each season separately . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
C.2 PD plot showing the mean model response to changes in time since last precipitation

for the full-year model and each season separately . . . . . . . . . . . . . . . . . . 127
D.1 Two-way PD of RH and BLH, full-year model and seasonal models . . . . . . . . . 128
D.2 Two-way PD of AOD and BLH, full-year model and seasonal models . . . . . . . . 129
D.3 Two-way PD of AOD and umean, full-year model and seasonal models . . . . . . . 130

xiii



List of Tables

1.1 Overview of EU legal thresholds and WHO recommendations for maximum PM10,
PM2.5, and PM1 concentrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Overview of data sets used in this thesis . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1 List of input features stating data origin, data representation and abbreviations used
in chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2 Original labels and aggregation of corine land cover classes used in this study . . . . 52
3.3 List of hyperparameters and parameter grid that is applied during the grid search . . 56

xiv



List of Acronyms

ACSM Aerosol chemical speciation monitor

ACTRIS Aerosols, Clouds and Trace gases Research Infrastructure

AERONET Aerosol Robotic Network

AiRDI Air quality rank difference index

AirPres Air pressure

AOD Aerosol optical depth

BC Black carbon

BCff Black carbon from fossil-fuel burning

BCwd Black carbon from wood burning

BLH Boundary layer height

BRDF Surface bidirectional reflectance distribution function

BVOCs Biogenic volatile organic compounds

CABAM Characterising the atmospheric boundary layer based on automatic lidar and ceilometer
measurements

CALIOP Cloud-Aerosol Lidar with Orthogonal Polarization

CALIPSO Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations

CAPE Convective available potential energy

CLC Coordination of information on the environment land cover

Conti Continentality

CPA Change point analysis

CTM Chemical transport model

DB Deep blue

DEM Digital elevation model

xv



List of Acronyms

DOY Day of the year

DT Dark target

DWD Deutscher Wetterdienst

ECMWF European Centre for Medium-Range Weather Forecasts

EEA European Environment Agency

Elev Elevation

ERA ECMWF Re-Analysis

GBRT Gradient boosted regression trees

GOES Geostationary Operational Environmental Satellite

ICE Individual conditional expectation

LUTs Look-up tables

MAIAC Multi-angle implementation of atmospheric correction

MISR Multiangle Imaging Spectroradiometer

ML Machine learning

MODIS Moderate Resolution Imaging Spectroradiometer

MSG Meteosat Second Generation

NDVI Normalized difference vegetation index

NIR Near infrared

NO3_frac NO3 fraction of the previous day

NRMSE Normalized RMSE

Org Organic matter

PD Partial dependence

PDF Probability density function

PM Particulate matter

PM1 Particulate matter below 1 µm

PM10 Particulate matter below 10 µm

PM10em Annual emission of PM10

PM2.5 Particulate matter below 2.5 µm

xvi



POLDER Polarization and Directionality of the Earth’s Reflectance

Precip_tsince Time since last precipitation

Precip_magn Magnitude of last precipitation

Precip_acc Cumulative precipitation last 24h

RADOLAN Radar Online Adjustment Project

RF Random forests

RH Relative humidity

RMSE Root mean squared error

SEVIRI Spinning Enhanced Visible and Infrared Imager

SIA Secondary inorganic aerosols

SIRTA Site Instrumental de Recherche par Télédétection Atmosphérique

SOA Secondary organic aerosols

SRCs Spectral regression coefficients

SSRD Surface solar radiation downward

SWIR Shortwave infrared

T Air temperature

Tan Air temperature anomaly

TISR Total incoming solar radiation

TOA Top of the atmosphere

TPI Topographic position index

u u wind vector

UBA Umweltbundesamt

umean Mean u wind vector

v v wind vector

VIIRS Visible Infrared Imaging Radiometer Suite

vmean Mean v wind vector

VOCs Volatile organic compounds

WHO World Health Organisation

ws Wind speed

xvii





1 Introduction and general motivation

1.1 Small particles, large impact: atmospheric PM

Air pollution has serious implications on human well-being. In particular, high concentrations of
microscopic particles in the atmosphere, so-called particulate matter (PM1), are known to have
adverse effects on human health. Especially particles with an aerodynamic diameter below 10 µm
(PM10) can enter the human respiratory system, causing short-term effects such as increased
numbers of asthma seizures (Hughes et al., 2018) and an exacerbation of chronic obstructive
pulmonary diseases (Sinharay et al., 2018). Furthermore, the lungs can be damaged due to
inflammation, cytotoxicity, and emphysema (Atkinson et al., 2001; Pope et al., 2002; Huang et al.,
2012; Badyda et al., 2016). Chronic exposure to increased levels of PM poses an important risk
factor by increasing the chance of cardiovascular diseases (Hennig et al., 2018; Lelieveld et al.,
2019) and possibly diabetes (Weaver et al., 2019).
Adverse effects on human health can be quantified by coupling risk estimations for the
population from large-scale and long-term cohort studies with PM concentration data from in situ
measurements (Pope et al., 2002) or atmospheric chemistry models (Lelieveld et al., 2015, 2019).
Based on the number of civilians that are exposed to air pollution, an estimation of premature
deaths and loss in life expectancy due to ambient PM concentrations can be provided. Lelieveld
et al. (2015), estimated ambient air pollution to cause 3.3 million premature deaths worldwide per
year. Estimates for Europe amount to 790,000 premature deaths per year (Lelieveld et al., 2019).
For Germany, the German Federal Environment Agency (Umweltbundesamt, UBA) has quantified
47,000 premature deaths per year (Kallweit and Wintermeyer, 2013). The use of premature deaths
as an index for adverse health effects of PM has recently attracted methodological criticism in the
scientific community, with Morfeld and Erren (2019) now proposing to quantify the disease burden
in terms of loss of life expectancy. In Europe, the estimated number of premature deaths would
be equivalent to a reduction of the average life expectancy of 2.2 years (Lelieveld et al., 2019),
while for Germany, the estimation is given as loss of longevity of 10 years per 1,000 inhabitants
per year in Kallweit and Wintermeyer (2013). Assuming a life expectancy of 80 years, this would
correspond to an overall loss in life expectancy of 0.8 years per capita. People living in urban
areas are particularly affected by poor air quality (see Izquierdo et al., 2020) and with ongoing
1 Note that the terms "PM" and "aerosol" are treated as synonyms in this thesis and both refer to particles suspended in the
atmosphere.
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urbanization, the number of urban dwellers is projected to grow (Baklanov et al., 2016; Li et al.,
2019b). In addition to the negative effects on human well-being, it is known that the increase in
morbidity rates has negative effects on national economies by reducing the number of the available
working population and placing a burden on the health system (Turnock et al., 2016; Bayat et al.,
2019; Jenniches and Worrell, 2019).
In order to protect European citizens against the harmful effects of air pollution, the EU has
introduced a legal framework requiring its member states to comply with certain thresholds of
atmospheric particle concentrations. The thresholds are regulated in the directive 2008/50/EC
of the European Parliament and of the Council (see Tab. 1.1) for particles smaller than 10 µm
and particles smaller than 2.5 µm (PM2.5). Regarding PM10, the limit of 50 µg/m3 may not
be exceeded more than 35 times a year and the annual average may not exceed 40 µg/m3. For
PM2.5, the annual threshold was set to 25 µg/m3 as of 2015 and was decreased to 20 µg/m3

as of January 2020 (EU, 2008). Presumably, this framework has motivated European states to
intensify their efforts towards cleaner air, as PM concentrations have been decreasing in the last
decades (Turnock et al., 2016; Stafoggia et al., 2017; Grange et al., 2018). Political changes have
led to stricter standards for road transport, energy, and industrial sectors, in particular in eastern
European countries, and, together with technological advances, have caused a decrease of annual
mean PM2.5 concentrations in Europe of ∼35 % between 1970 and 2010 (Turnock et al., 2016).
Annual mean PM10 and PM2.5 concentrations have also been declining in Germany and have
largely complied with EU regulations in recent years (Umweltbundesamt, 2019). While this is
undoubtedly an enormous success, it is important to note that the thresholds imposed by the EU
are the result of political decision making processes and hence represent the lowest threshold
concentrations possible in the context of capabilities, public health priorities, and political
willingness (see World Health Organization, 2006). There is no body of evidence suggesting that
below these thresholds no adverse health effects are to be expected. The World Health Organisation
(WHO) argues that the concentration level at which adverse health effects are to be expected is very
close to the natural background concentration (World Health Organization, 2006). Following this
argumentation, the WHO has set much stricter thresholds as a recommendation for policymakers
(see Tab. 1.1). The WHO recommendation for the PM2.5 annual average concentration is set at a
maximum of 10 µ/m3. This threshold was exceeded at 93 % of all measurement sites in Germany
in 2018 (Umweltbundesamt, 2019). Furthermore, the WHO recommends that daily average PM2.5
concentrations do not exceed 25 µ/m3 more than 3 times a year. This recommendation was not met
at any measurement site in 2018. Concerning PM10, the WHO recommendation for the annual
average concentration (10 µ/m3) was missed at 23 % of all sites (Umweltbundesamt, 2019). No
legal threshold or WHO recommendation exists for PM1 particles, although studies show that
particles with a diameter smaller than 1 µm (PM1) are particularly dangerous to human health
(Chen et al., 2017; Yang et al., 2018).
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1.1 Small particles, large impact: atmospheric PM

Table 1.1: Overview of EU legal thresholds and WHO recommendations for maximum PM10, PM2.5, and PM1 concentrations.
Numbers taken from World Health Organization (2006), EU (2008), and Umweltbundesamt (2019),

PM10 PM2.5 PM1

EU
threshold

Annual average:
40 µg/m3

Daily average:
50 µg/m3,

35 times a year

Annual average:
20 µg/m3

Daily average:
no threshold

Annual average:
no threshold

Daily average:
no threshold

WHO
recommen-

dation

Annual average:
20 µg/m3

Daily average:
50 µg/m3,

3 times a year

Annual average:
10 µg/m3

Daily average:
25 µg/m3,

3 times a year

Annual average:
no threshold

Daily average:
no threshold

This thesis acknowledges the adverse effects of increased PM concentrations to human well-
being and the challenges that accompany efforts towards cleaner air. To develop efficient plans
towards cleaner air, policymakers need to be provided with coherent information on spatiotemporal
patterns of PM concentrations. Aerosol optical depth (AOD) retrieved from satellite-based
measurements has the potential to provide this kind of information. Providing columnar-integrated
approximations of atmospheric particle burdens, AOD measurements pose a key parameter for
aerosol studies (Sogacheva et al., 2020). Satellite-based AOD has the potential to provide spatially-
coherent information on PM concentrations, which is necessary because of the limited number
of PM measurement sites that have been put up in Germany cover only a small fraction of
the national territory (see Fig. 1.1). The importance of spatially coherent information on PM
concentrations has been furthermore emphasized by the European Court of Justice, which ruled
in 2019 that thresholds must be met at any site and that averaging over several measurement sites
is an invalid procedure (Euopean Court of Justice, 2019). This means that the assessment of air
quality currently relies heavily on the choice of the measurement sites, as it is referring to point
measurements and not to agglomerated areas (e.g., cities). To overcome this problem, the European
Directive 2008/50 on ambient air quality and cleaner air for Europe specifically mentions that
fixed measurements should be supplemented by further techniques indicative for the geographical
distribution of concentrations (EU, 2008). Satellite measurements have the potential to fulfill this
task.
Furthermore, the effect of environmental influences on particle transport and on the emission,
formation, and depletion of particles need to be separated from anthropogenic emissions to
scientifically assess the efficiency of political measures. For example, it is known that, although
anthropogenic emissions play an important role for PM concentrations in the atmosphere,
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1 Introduction and general motivation

Figure 1.1: Location of PM measurement sites of the UBA and area covered assuming a spatial representativity of 5 km. In total,
only ∼18 % of the national territory are covered by PM measurements. Note that the availability of measurements
varies as some sites were abandoned, meaning that in reality, the percentage covered might be substantially smaller.

meteorological conditions related to large-scale circulation patterns as well as local-scale boundary
layer processes are important drivers of PM concentrations. Therefore, it is a further goal of this
thesis to advance the scientific understanding of how high pollution episodes evolve with respect
to ambient atmospheric conditions. Given that there is a number of proposed efforts to reduce
anthropogenic particle emissions, such as the setting up of low emission zones or other driving
restrictions in Berlin (Berlin Senate, 2013; Bonn et al., 2016), Munich (Qadir et al., 2013; Fensterer
et al., 2014), or London (Ellison et al., 2013), it is mandatory to develop a more quantitative
understanding of drivers of air pollution. Eventually, this would enable a scientific assessment of
the efficiency and the usefulness of plans to ensure improved air quality.
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This thesis is structured in five main parts. An introductory chapter describes the current state of
knowledge of processes related to the formation and depletion of PM, with regard to meteorology
and land surface parameters (section 1.2). A technical description of in situ PM measurements and
of AOD and the associated challenges of the application of AOD within the context of on-site air
pollution are given in section 1.3. In the first research chapter, different atmospheric conditions
that influence the suitability of columnar, satellite-based AOD to derive ground-level PM are
analysed and a basis to accurately derive coherent information on near-ground air pollution from
satellite-based AOD is set (chapter 2). The subsequent research chapter builds on these insights
to quantitatively link satellite AOD and PM measurements under consideration of environmental
conditions (chapter 3). In the final research chapter, site-specific meteorological drivers of PM are
quantified, allowing a detailed analysis of conditions that lead to high-pollution events (chapter 4).
The findings are concluded and contrasted with the current state of knowledge in a final discussion
(chapter 5). The study areas are northeastern Germany (chapter 2), the whole German territory
(chapter 3), and suburban Paris (chapter 4).

1.2 PM in the atmosphere – sources, composition and
environmental controls

Atmospheric concentrations of PM are often the result of complex interactions between natural
and anthropogenic particle sources and sinks. The atmospheric boundary layer usually contains
a mixture of particles that differ in terms of characteristics such as chemical constituents, size,
lifetime, and hygroscopicity, to name a few. The major chemical constituents of PM include
mineral dust, sea salt, organic matter (Org), black carbon (BC), and inorganic ions such as nitrate
(NO−

3 ), sulfate (SO2−
4 ), and ammonium (NH+

4 ) (Putaud et al., 2004, 2010; Fuzzi et al., 2015).
The typical size of atmospheric particles ranges from some nanometers to some micrometers
(see Fig. 1.2, Fuzzi et al., 2015). In the following subsections, PM sources and transformation
processes, typical size distributions, and important environmental controls of PM concentrations
are highlighted.

Primary sources and transformation processes of PM

Suspended atmospheric particles are either directly emitted to the atmosphere as primary particles
or formed as secondary particles by gas-particle conversion processes such as nucleation and
subsequent condensation (Kanakidou et al., 2005; Hallquist et al., 2009; Fuzzi et al., 2015). Human
activity influences the atmospheric concentration of particles by providing a net particle source
(Klimont et al., 2017). Still, the bulk amount of PM is emitted by natural sources.
Large natural emitters of primary particles are the oceans, deserts, wildfires, volcanoes, and the
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biosphere (Dentener et al., 2006; de Leeuw et al., 2011; Fuzzi et al., 2015). Primary marine
aerosols emitted from the ocean surfaces constitute one of the largest particle source to the
atmospheric particle budget. These particles reach the atmosphere when water bubbles burst due
to breaking waves on the water surface. These particles either consist purely of sea salt or but
can also contain substantial amounts of organic matter (de Leeuw et al., 2011; Fuzzi et al., 2015).
Deserts are strong particle emitters due to the vast areas of bare soil, which allow an efficient,
wind-driven transport of mineral dust (Fuzzi et al., 2015). Saharan dust events, for example, can
have substantial impact on PM concentrations in Europe (Knippertz and Todd, 2012; Hande et al.,
2015). Wildfires frequently occur during the dry seasons and emit large quantities of BC and
Org (Dentener et al., 2006). Primary particles emitted by the biosphere can be comprised of
very heterogeneous constituents including microorganisms, pollen, spores, and other biological
fragments (Möhler et al., 2007; Fuzzi et al., 2015).
Anthropogenic emissions are related to transport and agriculture as well as residential heating.
Transport-related particle emissions can be due to exhaust or non-exhaust sources. Non-exhaust
emissions due to the abrasion of tyres, breaks, and roads or due to dust resuspension are of growing
importance as transport activities generally increase in Europe. Conversely, exhaust emissions
have been decreasing during the last two decades due to cleaner technologies (Fuzzi et al., 2015).
Agricultural activities such as tillage operations (Funk et al., 2008) or grazing (Hoffmann et al.,
2008) are known to deteriorate air quality, in particular during dry summer episodes (Hoffmann
and Funk, 2015). Overall, primary particles emitted by agricultural activities account for around
25 % of global dust emissions (Ginoux et al., 2012). Residential heating based on wood or coal
combustion is still a widespread source of BC not only in developing countries, but also in Europe.
Due to ineffective combustion, residential heating based on solid fuels can be also an important
source of organic compounds (Chafe et al., 2015).
Emissions of precursor gases from natural and anthropogenic sources indirectly contribute to the
atmospheric particle budget after being transformed to secondary aerosols in the atmosphere.
Important precursor gases are sulfur dioxide (SO2), nitrogen oxides (NOx), ammonia (NH3),
and volatile organic compounds (VOCs). Natural emitters of SO2 are volcanoes and wildfires
(Dentener et al., 2006). NOx is emitted during microbial decomposition processes in soils (Hall
et al., 1996) and, in conjunction with NH3, by agricultural activities due to the deployment
of fertilizer (Bertram et al., 2005; Petetin et al., 2014). VOCs emitted from biogenic sources
(Biogenic Volatile Organic Compounds, BVOCs) have been identified as a major precursor for
secondary organic aerosols (SOA), which in turn contribute substantially to the organic particle
fraction (Atkinson, 2000; Kanakidou et al., 2005; Li et al., 2020). Anthropogenic sources of the
precursors gases SO2 and NOx are mainly the combustion of fuels and fossil fuels (Chafe et al.,
2015; Fuzzi et al., 2015; Li et al., 2017). Anthropogenic sources of VOCs include diesel engines
or gasoline vehicles (Gentner et al., 2012).
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Transformation processes that form secondary inorganic aerosols (SIA) based on NH3, NOx and
SO2 are relatively well understood (see Pay et al., 2012; Fuzzi et al., 2015; Alanen et al., 2017)
and the availability of NH3, NOx, and SO2 in the atmosphere is known to substantially impact
PM2.5 concentrations (Megaritis et al., 2013). The formation of SIA is a two-step process, starting
with the oxidation of gaseous NOx or SO2 to form nitric acid (HNO3) or sulfuric acid (H2SO4),
respectively. Subsequently, HNO3, H2SO4, and NH3 partition between the gas and particle phase
in a thermodynamic equilibrium, which is determined by ambient temperature and humidity.
Based on the availability of SO2−

4 or NO−
3 , either (NH4)2SO4 or NH4NO3 is then formed (Pay

et al., 2012). Secondary formation pathways through heterogeneous aqueous reactions have been
observed during haze conditions (Wang et al., 2012). Given an abundance of SO2, NOx, and NH3,
an uptake of these precursor gases is facilitated, allowing the formation of droplet-mode NO−

3 and
SO2−

4 . The importance of this formation pathway for the total SIA formation rates increases with
increasing relative humidity (RH). Given a combination of low temperatures and high RH, the
droplet-mode formation of SIA can be the dominating formation pathway (Wang et al., 2012).
SOA are formed when VOCs such as isoprene, terpene, and aromatic species, are oxidized to form
semi-volatile or low volatility organic species (Hoffmann et al., 1997; Carlton et al., 2007). The
oxidized VOCs are transformed to particulate SOA either by condensation on existing (organic)
particles or formation of new particles via nucleation (Hallquist et al., 2009; Perraud et al., 2012;
Fuzzi et al., 2015). Gaseous VOCs are degraded via oxidation reactions with hydroxyl (OH)
radicals, ozone (O3), NO−

3 radicals or via photolysis. With progressing oxidation states, the
carbon chains are fragmented. The formation of SOA is also known to be effective in aqueous
environments (clouds, fog, or wet aerosols). Water-soluble organics are dissolved and undergo
oxidation processes in the aqueous environment. After the subsequent evaporation of water,
aqueous SOA particles are added to the atmospheric concentration (Blando and Turpin, 2000;
Ervens et al., 2011). In contrast to SIA formation processes, SOA gas-particle transformation
processes are still not well understood, owing to an estimated number of 10,000–100,000 different
VOCs occurring in the atmosphere (Goldstein and Galbally, 2007; Hallquist et al., 2009).

Size distribution and particle characteristics on different scales

Typical size distributions of atmospheric particle numbers and particle mass of aerosol populations
are shown in Fig. 1.2. Several modes of high particle numbers or particle concentrations exist,
which are largely the consequence of the particle sources and secondary formation pathways
presented in the previous section. Particles are shifted along the size distribution towards larger
particle modes by coagulation of and condensation on existing particles or towards smaller particle
modes by abrasion or evaporation. Although smaller particles occur in higher numbers, they make
up only a small part of the particle mass (Fuzzi et al., 2015).
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Figure 1.2: Schematic example of particle number and particle mass size distribution for a characteristic aerosol population. Size-
dependent processes governing particle number and mass are outlined in the top part of the figure. Processes that cause
particles to grow or shrink, thus shifting them along the size distribution axis are marked with an arrow. In the bottom
part, example particle types are given. Adapted from Fuzzi et al. (2015) and Deutscher Wetterdienst (2020).

Ultrafine particles, i.e., particles with a size of a few nanometers, are formed in large numbers from
condensable vapors such as H2SO4 or HNO3, which start to form critical clusters and condense
(Curtius, 2006; Hallquist et al., 2009; Fuzzi et al., 2015). These particles make up the nucleation
mode (see Fig. 1.2). Newly-formed particles quickly grow by coagulation or condensation, hence
the shift of the size distribution towards the Aitken mode (Curtius, 2006; Fuzzi et al., 2015).
Further condensation of vapors (e.g., H2SO4, HNO3, NH3, VOCs) on existing particles effectively
increases the particle mass (Hallquist et al., 2009). This way, particles from the smaller-sized
modes eventually contribute to the accumulation mode. Particles from the larger-sized modes
shrink by abrasion processes and can thus also contribute to the accumulation mode. In the
coarse mode, the emission of primary particles dominates. For particles with a size of hundreds of
nanometers or some micrometers, mass becomes increasingly important and deposition becomes
the most important removal mechanism. Particles can be removed from the atmosphere by
dry deposition, which requires particles to be transported towards the surface by atmospheric
turbulence and gravitation. For particles to interact with the surface, they have to overcome a
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1.2 PM in the atmosphere – sources, composition and environmental controls

quasi-laminar sub-layer that forms over all surface elements. For small particles (<100 nm), the
only possible process to achieve this is by random motion, i.e., Brownian diffusion, while coarser
particles overcome this layer by gravitation. The interception of particles with the surface mainly
takes place on vegetation (Fuzzi et al., 2015). A further, more effective removal mechanism
is the wet deposition, which includes rainout, washout, and nucleation scavenging. Rainout
refers to in-cloud processes in which PM is incorporated. Washout describes the interception
of particles by falling precipitation. Nucleation scavenging refers to the activation of particles as
cloud condensation nuclei (Garland, 1978; Fowler et al., 2009; Fuzzi et al., 2015). Larger particles
act as cloud droplet activators more effectively as they reduce the magnitude of supersaturation
needed to form droplets (Andreae and Rosenfeld, 2008).
Following the particle mass distribution shown in Fig. 1.2, the majority of studies in this field
use the indicators PM10, PM2.5, and PM1. PM10 represents the quasi-total particle mass and
includes coarse (particle size between 2.5 µm and 10 µm) and fine particles (size <2.5 µm). On
the contrary, the size fraction PM2.5 does not include the fraction of coarse particles. The size
fraction PM1 includes only the finest particles.
Not only the size distribution, but also the distribution of PM concentrations in space is influenced
by the occurrence of particle sources and formation processes. Lenschow et al. (2001) introduced
a conceptual differentiation of regional background, urban increment and kerbside increment
particles. The concept is based on the observation that secondary aerosols, which constitute
the major fraction to the regional background, are relatively homogeneously distributed as their
concentration is less source-dependant (see Fig. 1.3, Lenschow et al., 2001; Fuzzi et al., 2015).
The urban increment (or urban background) is defined as the increase in concentrations in urban
areas relative to its rural surroundings. At the kerbside, an additional increase due to high traffic
emissions is to be expected (Lenschow et al., 2001). This concept has been widely accepted and
also confirmed by measurements (Putaud et al., 2010). However, there is some evidence that the
effect of the urban increment is rather low and that urban background concentrations often do not
differ substantially from the regional background at least for European cities (see Crippa et al.,
2013; Keuken et al., 2013; Petetin et al., 2014; Fuzzi et al., 2015). Still, an increase at the kerbside
due to traffic emissions and dust resuspension results in impaired air quality (Fuzzi et al., 2015).
Expanding the concept of Lenschow et al. (2001) by the factor time allows to conceptually describe
the processes altering the particle composition and their size distribution (see Fig. 1.3). Close to
the source, particles maintain the corresponding source characteristics. With progressive residence
time in the atmosphere, the transformation of particles tends to make them more homogeneous.
This is because new particles that enter the atmosphere are coated by sulfates, secondary organics,
nitrates, and therefore become increasingly similar, at least on the outside (Fuzzi et al., 2015). At
local scales, both primary and secondary particles are important while at large spatiotemporal
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scales, the fraction of secondary aerosols dominates as the importance of primary sources is
decreased.
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Figure 1.3: Processes affecting atmospheric PM composition on different scales. On the y-axis, the relative importance of primary
(high importance on the top) and secondary particles (high importance at the bottom) is indicated and typical sources
are given. Green reflects the importance of PM sources for the corresponding spatiotemporal scale (x-axis), while grey
colors indicate the absence of PM sources. The grey shading reflects the increasing spatiotemporal scale. Relevant
processes altering the particle composition are shown as blue arrows. Adapted from Fuzzi et al. (2015).

PM data gathered at more than 60 rural, urban, and kerbside sites over the European continent
indicate that in general, the main constituents of both PM10 and PM2.5 are Org, SO2−

4 , and
NO−

3 . Sea salt can also be a major constituent for the coarse PM fraction for stations closer to
the oceans, while mineral dust can dominate at kerbside sites due to dust resuspension (Putaud
et al., 2004, 2010). Moving from rural to urban to kerbside stations, the relative contributions
of SO2−

4 and NO−
3 are decreasing, while the fraction of carbonaceous particles increases (Putaud

et al., 2010). This observation follows the scale-dependant PM concentration patterns that were
described previously, since carbonaceous particles are mainly associated with primary emissions
close to the source (traffic and other combustion processes), while secondary particles dominate
background concentrations due to the transformation processes in the atmosphere (Putaud et al.,
2004). Typical PM annual average concentrations in central Europe for PM10 (PM2.5) at kerbside
sites are ∼40–55 µg/m3 (∼22–39 µg/m3). Concentrations of ∼25–45 µg/m3 (∼18–40 µg/m3) are
reported for urban stations, concentrations of ∼11–23 µg/m3 (∼8–20 µg/m3) for rural stations.
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Natural continental background concentrations are in the range of ∼5–8 µg/m3 (∼3–5 µg/m3)
(Putaud et al., 2004).

Environmental controls of PM concentrations

While atmospheric PM concentrations are largely governed by the interaction of the outlined
sources, sinks, and atmospheric transformation processes, PM concentrations are also substantially
influenced by meteorological conditions. These conditions impact the transport of particles and
local-scale processes in the boundary layer, e.g., by changing the vertical distribution of particles
in the atmosphere, the effectiveness of deposition processes, or the effectiveness of transformation
processes (Cermak and Knutti, 2009; Rost et al., 2009; Pearce et al., 2011; Bressi et al., 2013;
Megaritis et al., 2014; Dupont et al., 2016; Petäjä et al., 2016; Yang et al., 2016; Li et al., 2017).
In addition, land surface characteristics can influence emissions of natural primary particles and
precursor gases, as well as dry deposition rates (De Meij et al., 2015; Fuzzi et al., 2015; Bonn
et al., 2016; Zhao et al., 2016). An overview of important environmental variables and how they
impact PM concentrations is given in the following.
The boundary layer height (BLH) determines the height up to which particles are distributed in the
atmosphere (Gupta and Christopher, 2009b; Schäfer et al., 2012). Limiting the vertical exchange
of air masses, it regulates the vertical component of the volume of air in which particles typically
disperse. A lower BLH typically increases near-ground PM concentrations as particles are not
mixed into higher atmospheric levels and accumulate near the ground (Gupta and Christopher,
2009b; Schäfer et al., 2012; Liu et al., 2018), although some argue that BLH cannot be related
directly to concentrations of pollutants and that other meteorological parameters and local sources
need to be considered (Geiß et al., 2017). Higher BLHs in combination with high wind speeds
increase atmospheric ventilation processes, thus decreasing near-surface particle concentrations
(Sujatha et al., 2016; Wang et al., 2018). Wind generally regulates particle transport and turbulent
mixing away from the surface (Li et al., 2017).
Depending on the location, air masses from certain wind directions can be affected by major
emission sources and carry an increased amount of particles (Lenschow et al., 2001; Petetin et al.,
2014; Li et al., 2015; Petit et al., 2015; Srivastava et al., 2018). Wind speed and direction also
govern the type of particles in the atmosphere (Adamopoulos et al., 2007; Levy and Hanna, 2011;
Chudnovsky et al., 2013a; Zheng et al., 2017). Air temperature can influence PM concentrations
in multiple ways. While some authors suggest that PM concentrations generally decrease with
increasing temperatures (Li et al., 2015; Wang and Ogawa, 2015), the influence of temperature on
PM concentrations depends on the chemical composition of a PM population, as PM species react
differently to changes in temperature (Megaritis et al., 2013, 2014). Air temperature modifies the
emission of biological secondary PM precursors such as VOCs (Fowler et al., 2009; Megaritis
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et al., 2013). Furthermore, increased oxidation rates of SO2, which were found for rising
air temperatures, again increase the SO2−

4 formation rates (Dawson et al., 2007). Decreasing
temperatures, on the other hand, enhance the condensation of high saturation vapour pressure
compounds, such as nitric acid and sulfuric acid, also leading to increasing formation of new
particles (Hueglin et al., 2005; Pay et al., 2012; Bressi et al., 2013; Megaritis et al., 2014). Solar
irradiation is a prerequisite for many transformation processes of SOA (Guenther et al., 1993;
Petetin et al., 2014) and SIA particles (e.g., for the oxidation of SO2 to form SO2−

4 , Dawson et al.,
2007; Pay et al., 2012; Gen et al., 2019). Precipitation is know to remove particles (see section
1.2, Radke et al., 1980; Rost et al., 2009; Bressi et al., 2013; Li et al., 2015) and their gaseous
precursors from the atmosphere (Megaritis et al., 2014). However, as mentioned previously, under
increasingly wet atmospheric conditions, the importance of secondary particle formation through
aqueous reactions increases (Ervens et al., 2011; Wang et al., 2012).
Furthermore, land-surface characteristics are an important control of PM concentrations. Various
land cover types can act as sinks or sources for particles (Bonn et al., 2016; Churkina et al., 2017;
Beloconi et al., 2018). For example, vegetation can both enhance (Churkina et al., 2017) and
decrease PM concentrations (see Bonn et al., 2016), depending on the type of vegetation and other
meteorological conditions. In addition, topography can be of importance for PM concentrations as
particles tend to accumulate in valleys (Emili et al., 2011b). This is because stagnant conditions,
which lead to the accumulation of particles in the atmosphere, are more likely to occur in basins
(Wang et al., 2018).
These environmental conditions and processes have been identified as drivers of local PM
concentrations, and it is the complex interaction of the physical and chemical processes related to
the environmental conditions that govern atmospheric PM concentrations (e.g., Petit et al., 2015;
Dupont et al., 2016).

1.3 In situ measurements and satellite-based approximation of
PM concentrations

1.3.1 In situ measurements of PM

The analyses conducted in the scope of this thesis rely on in situ measurements of hourly mean
concentrations of PM10 (chapters 2 and 3) and PM1 (chapter 4). In the following, a description of
the principles behind these measurements is provided.
PM10 concentrations can be determined either by measuring the attenuation of β -radiation by
a dust-coated filter (Umweltbundesamt, 2004) or by the principle of oscillating micro weighing
(TÜV Rheinland, 2012). For the former measurement principle, a constant airflow is channeled
through a strip of filter paper, on which particles accumulate. The particles are irradiated by β -
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radiation from a radioactive source. The PM concentration is then determined by applying a linear
regression on the change of the measured radiation signal divided by the time steps. A moving
average is applied for 60 individual measurements to avoid noisy measurements. Filter strips are
automatically changed when the maximum particle accumulation is reached (Umweltbundesamt,
2004). The principle of oscillating micro weighing is a continuous gravimetric procedure, i.e.,
it determines particle mass deposited on a filter. The weighing of the particle mass works by
measuring the change in frequency of oscillation of a cantilever element within the detection
system, which holds the filter. The particle mass is related to a predefined and continuous
volume of sampled air, thereby the particle concentration is computed (TÜV Rheinland, 2012).
To avoid condensation, particle inlets of the measurement devices are heated permanently. Thus,
measurements are largely uninfluenced by temperature and humidity (Umweltbundesamt, 2004).
The uncertainty of the measurements varies between measurement devices, but should not be
larger than 25 % of the measured particle concentration (VDI, 2002; Bundesministerium der Justiz
und für Verbraucherschutz, 2010). The locations of the measurement sites are chosen following
EU prescriptions. Site locations are classified as background, industrial, or traffic and can be
representative for urban, rural, or suburban areas. Traffic sites are generally situated relatively
close to main roads or intersections, while industrial stations are close to strong emitters. Urban
background sites are assumed to capture the contribution of all sources near the site without
one particular source dominating. Suburban background stations need to be placed downwind
(referring to the main wind direction) of emission sources. Rural background stations should not
be influenced by agglomerations or industrial sites closer than five kilometres. All site locations
exclude micro-scale effects (EU, 2008). The German PM monitoring network is maintained and
quality-checked by the German federal environmental agencies and collected by the UBA.
Speciated PM1 concentrations can be determined with an aerosol chemical speciation monitor
(ACSM). The ACSM provides continuous, near real-time and artifact-free measurements of the
major chemical composition of non-refractory submicron PM1 (Ng et al., 2011; Petit et al., 2014,
2015). It allows differentiating PM in its chemical constituents, including organic compounds,
NH+

4 , SO2−
4 , NO−

3 , and chloride (Cl−). The ACSM sucks in air at a constant rate and larger
particles are cut off. Non-refractory particles are then flash-vaporized and ionized. Ions are
then detected by a mass spectrometer (Ng et al., 2011; Petit et al., 2014). Complementary to
the ACSM, BC can be monitored with a seven-wavelength aethalometer (Petit et al., 2015), which
measures light extinction on a collecting filter. A differentiation into black carbon from fossil
fuels (BCff) and black carbon from wood burning (BCwd) is achieved using differences in the
absorption spectrum (Favez et al., 2009; Sciare et al., 2010; Healy et al., 2012; Petit et al., 2014).
For the data set used here, the consistency of ACSM and aethalometer measurements is cross-
checked by comparing the sum of all monitored species with a nearby tapered element oscillating
microbalance with a filter dynamic measurement system. While there is some inconsistency,
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in particular at low PM1 concentrations, the measurements are considered to be robust (Petit
et al., 2014). PM1 data used in this thesis is measured at the Site Instrumental de Recherche
par Télédétection Atmosphérique (SIRTA) supersite in the framework of the Aerosols, Clouds and
Trace gases Research Infrastructure (ACTRIS) project.

1.3.2 Remote sensing measurements of atmospheric aerosols

While in situ measurements provide data with high accuracy and high temporal resolution, they
suffer from limited horizontal and vertical coverage and are time-, cost-, and labour-intensive in
maintenance. By contrast, ground-based remote sensing techniques have the potential to provide
information on the vertical distribution of particles within the atmosphere and allow continuous
measurements with relatively little effort. Available instruments use both active and passive remote
sensing techniques to approximate atmospheric PM concentrations. Active sensors provide their
own source of energy, e.g., a lidar beam, while passive remote sensing sensors rely on the sun
as an energy source. For example, a single-wavelength lidar signal is used by a ceilometer to
provide information on the aerosol backscatter coefficient and to detect aerosol layers below ∼5 km
height (Wiegner et al., 2014). Lidar pulses are emitted upwards in the near infrared (NIR) between
0.9 µm and 1.1 µm and the reflected light is measured by the instrument at a temporal resolution
of up to 1 min−1 (Wiegner et al., 2014). More advanced lidar-systems such as Raman lidars can
derive information on aerosol properties by measuring the frequency shift of backscattered light
after being affected by the lidar signal (Ansmann et al., 1990, 1992; Wiegner et al., 2014). Sun
photometers, on the other hand, measure the atmospheric transmittance of solar radiation (Hoff
et al., 2009). The instrument orientates itself towards the sun and measures the radiation at a
certain wavelength (between 0.34 µm–1.02 µm). The measured solar radiation is modified by the
distance between the Earth and the sun, the optical air mass, the AOD, and gaseous absorption,
which needs to be corrected for to derive an aerosol signal. In addition to direct sun measurements,
measurements of the clear sky allow retrievals of the aerosol optical properties or size distributions.
This measurement principle is used within the Aerosol Robotic Network (AERONET), which
provides AOD measurements from automatically-operating sunphotometers on a global basis
(Holben et al., 1998).
Active and passive satellite-based remote sensing instruments provide large-scale and spatially
coherent estimates of the atmospheric particle characteristics, particle concentrations, and also on
the vertical distribution of particles within the atmosphere. Since the launch of the Cloud-Aerosol
Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite in 2006, the Cloud-
Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument provides lidar measurements
from space. CALIOP is a nadir-looking, two-wavelength lidar, which is sensitive to different
polarization states. The instrument sends out light pulses at 0.532 µm and 1.064 µm wavelengths
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simultaneously. The lidar backscatter is captured by a receiver telescope. Retrieved aerosol
properties include aerosol layer height (base and top), aerosol extinction profile, AOD, and aerosol
type. As the satellite is constantly moving forward, the retrieved signals provide a curtain-like
snapshot of the troposphere (Winker et al., 2009). Aside from the active CALIOP sensor, a
wide range of passive, satellite-based instruments conduct measurements mostly in the visible
to NIR spectrum and potentially allow for an AOD retrieval. Some of these instruments are briefly
presented here. The Moderate Resolution Imaging Spectroradiometer (MODIS) instruments
onboard the NASA polar-orbiting twin-satellites Terra and Aqua make two measurements per day -
one during the morning hours (Terra, local solar Equatorial crossing time at 10:30), and one during
the afternoon (Aqua, local solar Equatorial crossing time at 1:30) (Sayer et al., 2014). The MODIS
instrument provides observations with a broad swath width of 2330 km, enabling each instrument
to provide near-global coverage of radiance measurements on a daily basis (Levy et al., 2007,
2013; van Donkelaar et al., 2016). The Multiangle Imaging Spectroradiometer (MISR) instrument
onboard the Terra satellite has nine different viewing angles, which allows for the retrieval of
aerosol properties. However, MISR has a smaller swath of ∼380 km and therefore takes about
a week to achieve global coverage (Bruegge et al., 2007; Zhang and Reid, 2010; van Donkelaar
et al., 2016). Complementary to MODIS and MISR retrievals, AOD retrievals are available based
on measurements from the Visible Infrared Imaging Radiometer Suite (VIIRS, Hsu et al., 2019)
and the Polarization and Directionality of the Earth’s Reflectance radiometer (POLDER, Dubovik
et al., 2019). Furthermore, AOD can be retrieved from sensors onboard geostationary platforms,
e.g., from the Geostationary Operational Environmental Satellite (GOES)-West and GOES-East
imagers (Zhang et al., 2013) or from the Spinning Enhanced Visible and Infrared Imager (SEVIRI)
onboard the Meteosat Second Generation (MSG) satellites (Clerbaux et al., 2017). Recently, a
merged AOD product based on multiple satellite-based AOD retrievals has been introduced by
Sogacheva et al. (2020), with the goal to provide a long-term climatology of mean monthly AOD.
The research conducted in this thesis relies on AOD retrieved from MODIS measurements.
MODIS AOD retrievals have been shown to be of high quality when validated against AERONET
(Lyapustin et al., 2018; Jethva et al., 2019) and offer a large spatial coverage with a continuous,
almost 20 year long time series. Because both Aqua and Terra carry the MODIS instrument, two
retrievals per day are possible over the same region resulting in a large and valid data basis. The
concept of the AOD, the basics behind the MODIS AOD retrieval algorithms, and challenges when
approximating PM based on satellite-based AOD will be discussed in the following sections.
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1.3.3 AOD – concept, application and challenges for PM approximations

The concept of AOD

As solar radiation passes through the atmosphere, parts of its spectrum are attenuated along the
way towards the satellite sensor by interaction with particles and gases. The simplest case of the
radiative transfer in the visible spectrum is described by Beer’s Law:

I(λ ) = I0(λ )e−α(λ )z (1.1)

where I is the measured radiance at a specific wavelength λ after the passing of the source radiance
I0 (here, it refers to the radiation emitted by the sun) through the atmospheric path z. α is the
extinction coefficient of the atmosphere [m−1]. The optical depth τ of the atmosphere at a certain
wavelength is the integral of the atmospheric extinction coefficient down to height z:

τλ =
∫

∞

z
α(λ ,z)dz (1.2)

where z = 0 at the surface and τ = 0 at the top of the atmosphere (TOA). The AOD is the total
columnar optical depth of the atmosphere corrected for absorption of gases in the atmosphere
(e.g., water vapour or ozone) and hence accounts only for scattering and absorption by atmospheric
particles (Hoff et al., 2009; Sogacheva et al., 2020). The transmittance of the atmosphere that can
be derived from the difference between I and I0 in Equ. 1.1, is directly related to the one-way
optical depth (I3 in Fig. 1.4) as measured by sunphotometers from the ground (Holben et al., 1998;
Hoff et al., 2009). For a satellite to retrieve AOD, solar radiation scattered in the field of view of
the satellite by aerosols (term I2 as shown in Fig. 1.4) needs to be related to the reflected radiation
from the Earth’s surface (I4), taking into account the attenuation of the radiance reflected from the
surface after scattering and absorption in the atmosphere (I5) (Hoff et al., 2009).
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Figure 1.4: Important radiative processes and sources of radiation seen by a satellite. I0 denotes the incoming solar radiation at
the TOA, I1 is the scattered radiation in the atmosphere away from the satellite, I2 is the scattered radiation into the
field of view of the satellite. I3 is the radiation that is transmitted through the atmosphere towards the Earth’s surface.
I4 denotes the reflected radiation from the Earth’s surface, which is further attenuated by scattering and absorption in
the atmosphere and then reaches the satellite (I5). Adapted from Hoff et al. (2009).

Satellite-based AOD retrievals from MODIS measurements

Deducing AOD based on multispectral radiance signals of the satellite poses an inverse problem. It
requires the radiance signal to be separated into atmospheric and surface contributions. The basic
assumption is that in a clear, i.e., non-cloudy situation, the atmospherically backscattered solar
radiation scattered by aerosols can be differentiated from the Earth’s surface backscatter utilizing
information on surface albedo in the retrieval algorithm (see Fig. 1.5, Levy et al., 2013). Therefore,
assumptions need to be made about surface characteristics and the size- and shape-distribution of
particles (Holzer-Popp et al., 2002; Hoff et al., 2009). In short, aerosol retrievals have to address
the main tasks of surface reflectance determination, the modelling of aerosol microphysical and
optical properties, atmospheric correction of gas absorption, cloud screening, and identification of
snow- or ice-covered surfaces.
AOD retrieval algorithms usually focus on the measured reflectance in the visible range spectrum
(0.4-0.7 µm) where the radiative transfer is dominated by aerosol extinction with only a few gases
having absorption features. The wavelength-dependent extinction efficiency is highest for particles
of size just below ∼1 µm, which coincides with the particle accumulation mode. Hence, a large
mass of particles of this size is present and because Mie-scattering is strongest where particle size
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and wavelength are equal (Hoff et al., 2009), the extinction is enhanced and the largest AOD signal
can be expected (Hsu et al., 2013).

Figure 1.5: Influence of the surface albedo on TOA reflectances at 670 nm for different AODs. TOA reflectances at 670 nm are
simulated for an aerosol population as a function of AOT at 670 nm for different surface albedo values ranging from
0.005 (lowest curve) to 0.095 (uppermost curve) with albedo steps of 0.005. Connecting values of TOA reflectance with
boundary layer AOD strongly depends on the surface albedo (Holzer-Popp et al., 2002).

The inversion process from the multispectral signal measured by the satellite is approached based
on precomputed, so-called look-up tables (LUTs). LUTs summarize simulated reflectances for a
range of expected gases as well as aerosol sizes, forms, and optical properties and allow a quick
approximation of the solution that fits best to the observed radiance. LUTs are calculated using
radiative transfer algorithms with specified surface, aerosol, and atmospheric properties. Once a
pixel is identified as cloud-free and passes initial quality checks, AOD is retrieved from the the
multispectral radiances obtained by the satellite based on the LUTs, taking into the account solar
zenith angle, viewing angle, and single scattering albedo (Levy et al., 2007; Hoff et al., 2009; Hsu
et al., 2013; Levy et al., 2013; Sayer et al., 2014). Since different retrieval schemes are necessary
depending on the Earth’s surface parameter, various algorithms have been developed to retrieve
AOD based on calibrated and geolocated MODIS radiance measurements (Levy et al., 2013).
The MODIS dark target (DT) algorithm, for example, retrieves AOD over dark land surfaces
(e.g., vegetation, Kaufman et al., 1997; Levy et al., 2007, 2013) and over the oceans (Tanré et al.,
1997; Levy et al., 2013). The DT algorithm over land builds upon spectral relationships between
measured radiances in the shortwave infrared (SWIR) at 2.1 µm in the visible wavelengths at
0.47 µm and 0.66 µm, respectively (Levy et al., 2007; Sayer et al., 2014; Gupta et al., 2016).
The surface reflectance can be derived from the SWIR channel, which is then correlated to
radiances measured in the 0.47 µm and 0.66 µm channels. Applying a variable, angle- and
surfarce-type dependent correlation factor, the surface reflectance in the visible can be derived
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and separated from the atmospheric signal (Levy et al., 2007). After separating the surface
from the atmosphere, TOA spectral reflectances are matched to location- and season-dependant
aerosol models, representing atmospheric optical properties for a set of likely aerosol conditions
as prescribed in the LUTs (Levy et al., 2013; Sayer et al., 2014). Various aerosol types are
characterized by their size distribution, which in turn influences the spectral response. Aerosol
types are categorized into several aerosol-type models, which may be fine-dominated or coarse-
dominated (Levy et al., 2013). The DT algorithm only works over dark surfaces (i.e., low
reflectance in the visible wavelengths), where a stark contrast to the aerosol signal is given (Levy
et al., 2013) and the spectral relationship between the SWIR and visible channels is valid (Levy
et al., 2007).
The deep blue (DB) algorithm is used to retrieve AOD over bright land surfaces, i.e., surfaces
with high reflectances in the visible wavelengths (Sayer et al., 2014). The DB algorithm uses,
amongst others, the near-ultraviolet band at 0.41 µm wavelength, where the reflectance of the
bright surfaces (relating to wavelengths in the visible range) is actually relatively low, enabling the
detection of an aerosol retrieval signal (Hsu et al., 2013; Levy et al., 2013). For the latest overhaul
of the DB algorithm, a hybrid approach was invented to determine the surface reflectance. It is
either determined by applying a geolocation-based static surface reflectance database (e.g., over
bright desert areas), by a dynamic surface reflectance method including information on vegetation
(also over areas with changing vegetation cover), or by a combination of the former two methods
(e.g., over urban and other built-up areas, Hsu et al., 2013).
In this thesis, AOD data retrieved by the multi-angle implementation of atmospheric correction
(MAIAC) algorithm based on MODIS measurements are used (Lyapustin et al., 2011a,b, 2012,
2018). The MAIAC algorithm builds upon concepts used in the DT and DB algorithms, but
has a different workflow. First, MODIS level 1 data (i.e., calibrated and geolocated reflectances,
Levy et al., 2007) are regridded to a fixed, pseudo-geostationary 1 km grid. Before the actual
AOD retrieval, the columnar atmospheric water vapour content is determined and corrected for
using the MODIS NIR (0.94 µm), and a cloud-screening process is executed (Lyapustin et al.,
2018). Based on the fixed grid, a time series of each pixel allows to observe the same grid cell
over time, using multi-angle observations from different orbits. This procedure improves the
discrimination of atmospheric and surface contributions and enables an accurate computation of
the surface bidirectional reflectance distribution function (BRDF), which describes the anisotropic
spectral surface reflectance (Shell, 2004; Lyapustin et al., 2018). The calculation of the AOD relies
on the assumption that the surface BRDF remains largely constant over time (considering a time
series of 16 consecutive days), allowing the MAIAC algorithm to more accurately approximate
the radiatve transfer through the atmosphere (Lyapustin et al., 2011b). MAIAC determines the
BRDF in the MODIS SWIR channel (2.1 µm), which is normally relatively transparent in non-
cloudy atmospheric situations. Assuming a similar-shaped BRDF between the MODIS SWIR and
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blue bands (0.47 µm), the BRDF for the blue band is determined based on the SWIR band using
so-called spectral regression coefficients (SRCs), which dynamically describe the spectral ratios
between the MODIS SWIR and blue bands (Lyapustin et al., 2011b). The most recent version
of MAIAC determines the SRCs using the minimum ratio of surface reflectance for the blue and
SWIR bands for a 2-month period. The idea behind this approach is that unaccounted aerosols in
the blue band would increase the reflectance, whereas most surfaces are dark at this wavelength.
Thus, the minimum ratio is assumed to represent the most reliable SRC estimate (Lyapustin et al.,
2018). AOD at 0.47 µm and 0.55 µm wavelength is then determined by matching measured
reflectance with precomputed LUT-values. MAIAC LUTs are based on regional AERONET AOD
climatologies (Holben et al., 1998) and a seperate dust model (Lyapustin et al., 2018). AOD
retrievals based on MAIAC provide a high-resolution (1x1 km2 pixel size) and robust estimate of
the atmospheric columnar aerosol content. The high resolution of AOD retrievals is valuable as
the high-resolution AOD is representative for a smaller area and therefore more strongly correlated
to in situ PM measurements, which represent local conditions. Validation studies also have shown
that MAIAC can provide increased coverage (see Fig. 1.6, Superczynski et al., 2017) and has
comparable or better accuracy when compared to the DT and DB algorithms (Lyapustin et al.,
2018; Jethva et al., 2019). For these reasons, MAIAC AOD retrievals are used for the analyses of
this thesis.
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Figure 1.6: Comparison of AOD retrieved by MAIAC (left panel) versus AOD retrieved by both DB and DT (right panel) at 0.47 µm
on March 31st, 2020 (NASA, 2020). The MAIAC retrieval has a higher resolution of 1 km compared to the AOD retrieved
by DB and DT, which has a resolution of 10 km. MAIAC AOD covers most of the cloud-free areas over Switzerland, the
Benelux and northeast France, where the DB and DT algorithms do not retrieve AOD.
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1.3 In situ measurements and satellite-based approximation of PM concentrations

Approximating near-ground PM concentrations based on satellite AOD

The AOD provides a measure of the atmospheric aerosol loading and can be used to estimate
PM concentrations near the ground, which is the most relevant quantity concerning harmful
effects on humans. However, the use of AOD to approximate PM concentrations at ground
level presents several challenges. As outlined in the previous sections, AOD retrievals from
satellite-based measurements and in situ measurements of PM concentrations represent different
scales and different types of measurements. AOD reflects the extinction of radiation by aerosols
in a vertical column influenced by ambient atmospheric conditions, while PM measurements
reflect a localized dry mass concentration of particles of a certain size distribution measured
near ground under relatively stable conditions (see Wang, 2003). Generally, it is known that
ambient weather conditions can exert a strong influence on the relationship between AOD and PM,
superimposing small-scale effects that occur at PM measurement sites (Gupta and Christopher,
2009b). The relationship between these two entities is therefore highly variable and often non-
linear (Wang, 2003; Barnaba et al., 2010; Kloog et al., 2011; Chudnovsky et al., 2013b). As a
consequence, relying on satellite-based AOD observations as proxy for near-ground air pollution
can be misleading in some situations. On a seasonal scale, the relationship can even be inverse
(Koelemeijer et al., 2006; Arvani et al., 2016). This is illustrated in Fig. 1.7, which shows monthly
distributions of measured PM10 concentrations near ground and MAIAC AOD for the Po Valley,
Italy. The yearly courses of PM10 and AOD differ considerably: PM10 concentrations peak
in winter, while retrieved AOD is highest during summer months. The main reason for these
contrasting seasonal cycles is the varying vertical distribution of aerosols within the atmosphere:
in situations with a high boundary layer, particles dissipate in the atmosphere, decreasing PM
concentrations near ground. During low-BLH-situations, vertical exchange is limited and particles
are confined in the lower atmosphere, which leads to an increase in near-ground PM concentrations.
BLH tends to be higher in summer due to pronounced turbulence (Koelemeijer et al., 2006; Gupta
and Christopher, 2009b; Geiß et al., 2017).
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1 Introduction and general motivation

25 µg/m³

Figure 1.7: PM10 (left panel) and MAIAC AOD (right panel) monthly trends for the PO valley, Italy. PM10 concentrations are
based on data from the Italian Regional Agency for Environmental Protection (ARPA) monitoring stations (Arvani
et al., 2016). Boxplot whiskers show the 10th and 90th percentile, respectively. Outliers out of this range are not shown
for visual clarity. The light grey box shows the 25th to 50th percentile. The median (mean) is shown as black (red)
horizontal lines. The yearly course of PM10 and AOD is inverse: while PM10 concentrations peak in winter, retrieved
AOD is highest during summer months. Adapted from Arvani et al. (2016).

Therefore, information about the vertical distribution of aerosols, approximated for example by
the BLH, is necessary for understanding variations in the relationship between AOD and PM
(van Donkelaar et al., 2006; Gupta et al., 2006; Boyouk et al., 2010). Furthermore, moisture in
the atmosphere, e.g., approximated by ambient RH measurements, exerts influence on the AOD.
With increasing RH levels, hygroscopic growth of particles (aerosol swelling) is triggered, which
enhances the scattering coefficient and consequently increases the AOD (Wang, 2003; Gupta et al.,
2006; Gupta and Christopher, 2009b). The magnitude of hygroscopic growth depends on the size
and chemical species of particles (Wang and Martin, 2007; Zieger et al., 2013; Titos et al., 2014).
Because in situ PM measurements usually refer to dry conditions, they are not directly affected
by ambient relative humidity (see section 1.3.1). Furthermore, the source of emissions changes
with wind direction, influencing the relationship between AOD and PM by determining important
particle characteristics such as the size distribution or the hygroscopy (Zieger et al., 2013).
Since the publication of MODIS AOD products, widespread efforts have been made to analyse and
apply systematic links between satellite AOD and PM concentrations, contributing to a growing
body of literature (see Wang, 2003; Engel-Cox et al., 2004; Wang and Martin, 2007; Gupta and
Christopher, 2009a,b; van Donkelaar et al., 2010; Chudnovsky et al., 2013b; Stafoggia et al., 2020).
A large variety of methods has been applied for this task. In Koelemeijer et al. (2006), for example,
a physical description of AOD as a function of RH, idealized aerosol extinction coefficients, and
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1.4 Overview of applied data sets

BLH is proposed, assuming the latter is well-mixed, aerosols have similar optical properties and
the sky is cloud-free:

AOD = PM2.5 BLH f (RH)
3Qext,dry

4ρre f f
(1.3)

where f(RH) is the ratio of ambient and dry extinction coefficients, ρ is the aerosol mass density,
Qext,dry is the dry Mie extinction efficiency, and re f f is the particle effective radius. The results
by Koelemeijer et al. (2006) are encouraging with a spatial correlation (R) between yearly average
PM10 and AOT of 0.6 for European rural background stations. The approach has been further
advanced by Emili et al. (2010). Still, it requires many assumptions and produces reliable PM
estimates only if a longer period is analysed, e.g., monthly mean PM concentrations. While
Koelemeijer et al. (2006) based their study on previously conducted measurements of aerosol
characteristics, a study by van Donkelaar et al. (2010) used a chemical transport model (CTM) to
retrieve information on aerosol size, aerosol type, RH, and the vertical distribution of the aerosol
extinction. The information was then used to calculate a local conversion factor that relates AOD
to PM2.5 on a global basis. This approach has been further extended including additional satellite
retrievals in van Donkelaar et al. (2016). A common approach is to first establish statistically-
derived, empirical relationships between AOD and PM and then to extend these relationships
to areas not covered by PM measurements. This way, estimates of PM based on AOD can be
produced. Several studies have trained statistical models on the relationship between AOD and
PM, accounting for a range of additional parameters (see reviews by Rybarczyk and Zalakeviciute,
2018; Shin et al., 2020). Methods include linear regression models (Arvani et al., 2016), multiple-
additive regression models (Gupta and Christopher, 2009b; Zhang et al., 2018), land-use regression
models (Kloog et al., 2011; Nordio et al., 2013) or a combination of the latter two (Kloog et al.,
2012; Chudnovsky et al., 2014; Hu et al., 2014; Lee, 2019). With increasing data availability and
computational power, machine learning (ML) methods, e.g., artificial neural networks (Gupta and
Christopher, 2009a; Di et al., 2016), random forest (RF, Brokamp et al., 2018; Chen et al., 2018a;
Grange et al., 2018; Stafoggia et al., 2020), or a combination of multiple ML methods (Yazdi
et al., 2020) have been successfully produced PM estimates in recent years. ML models proved
to be beneficial as they efficiently reproduce the variable relationship between AOD and PM and
interactions of input features (Elith et al., 2008; Brokamp et al., 2017) and can thus produce high-
accuracy estimates of PM concentrations, given the input data are of adequate quality.

1.4 Overview of applied data sets

The analyses conducted in the context of this thesis span different scales, ranging from regional
(Germany, chapter 3), sub-regional (parts of Germany, chapter 2), to local scales (suburban
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1 Introduction and general motivation

Paris, chapter 4). Therefore, different requirements are placed on the applied data sets. For the
sub-regional and regional scale analyses, data from satellite sensors (MODIS, VIIRS), in situ
measurements from the German Meteorological service (Deutscher Wetterdienst, DWD) and the
UBA, and ECMWF Re-Analysis (ERA) data are assimilated and collocated in time and space.
The local scale analysis focuses on in situ measurements from the SIRTA supersite. In general, the
choice of the data sets is motivated by the data accuracy, its spatiotemporal coverage, and by the
addressed research questions. An overview of the data sets used is given in Tab. 1.2 while further
information on the meteorological and land surface data are provided in the respective chapters.

Table 1.2: Overview of data sets used in this thesis. See also Tab. 3.1 for more information on the data basis of chapter 3. NDVI
stands for normalized difference vegetation index, CLC stands for coordination of information on the environment land
cover, EEA stands for European Environment Agency, DEM stands for digital elevation model.

Data set Parameter Chapter

MODIS MAIAC AOD 2, 3

MODIS NDVI 3
DWD meteorological

measurements
Air pressure, RH

Continentality factor, precipitation 2, 3

Copernicus CLC Land cover types 3

EEA EU-DEM, v1.1 Elevation 3

ERA-Interim
Wind vectors u & v, BLH, temperature,

convective available potential energy
Surface solar radiation downwards

2, 3

EEA emission data base
Annual mean emission

of NH3, PM10, SO2, NOx
3

VIIRS earth at night Lights at night 3
UBA air quality
measurements PM10 2, 3

SIRTA air quality
measurements Speciated PM1 4

SIRTA meteorological
measurements

Temperature, RH, BLH
air pressure, wind vectors u & v, precipitation,

total incoming solar radiation
4

1.5 Scientific aims and outline

As outlined in section 1.3, the application of AOD for air quality studies is promising and provides
information on the atmospheric particle loading with large spatial coverage and long, continuous
time series (Gupta et al., 2016; de Hoogh et al., 2018; Lyapustin et al., 2018), also in remote
areas with no ground measurements available (Edwin and Mölders, 2020). However, there are
still challenges in current techniques to estimate PM from AOD. Therefore, the quantification
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1.5 Scientific aims and outline

of the influence of meteorological conditions on the relationship between AOD and PM10 is
targeted in this thesis. Furthermore, it is known that environmental factors are major drivers of
PM concentrations and need to be considered for reliable PM estimates (see e.g., Pearce et al.,
2011; Megaritis et al., 2014; De Meij et al., 2015; Li et al., 2017). The determination of the type and
magnitude of the influence of important environmental factors on atmospheric PM concentrations
is a further objective of this thesis. Finally, atmospheric processes governing PM concentrations
will be analysed with a particular focus on the development of high-pollution episodes. These are
of particular scientific and public interest, as even short phases of exposure to elevated particle
concentrations can have damaging effects on the human health (Stieb et al., 2017; Hughes et al.,
2018). The outlined objectives are covered by three research chapters:

(1) Meteorological influences on the relationship between PM10 and AOD

(2) Mapping and understanding PM10 patterns using AOD and environmental conditions

(3) Meteorology-driven, local-scale variability of PM1

The research questions and the underlying hypotheses for each research chapter are presented in
the following and also shown in Fig. 1.8.

(1) Meteorological influences on the relationship between PM10 and AOD

Possible influences on the relationship between AOD and PM are described in chapter 1.3.3, along
with physical and empirical approaches to derive PM concentrations based on AOD. Although the
influence of BLH (Boyouk et al., 2010; Emili et al., 2010; Arvani et al., 2016) and RH (Arvani
et al., 2016; Dupont et al., 2016; Zheng et al., 2017) is largely established, current literature
lacks a quantitative understanding of how meteorological conditions influences the relationship
and in which situations AOD is a reliable proxy for PM. Gupta et al. (2006) and Zheng et al.
(2017), for example, reported a strong linear correlation between AOD and PM2.5 for low-BLH-
situations, while Chudnovsky et al. (2013a) found low correlations between AOD and PM2.5
for similar conditions. In Arvani et al. (2016), the authors reported that correcting for different
BLHs substantially improves the correlation between AOD and PM10. Concerning the influence
of RH, Emili et al. (2010) and Chudnovsky et al. (2013a) did not find a significant influence on
the relationship between AOD and PM. Others reported that water uptake by particles can lead
to hygroscopic growth, thus increasing AOD (see Barnaba et al., 2010; Crumeyrolle et al., 2014;
Dupont et al., 2016). Further studies indicated an influence of wind speed (Zheng et al., 2017) and
wind direction (Zieger et al., 2013) on the relationship between AOD and PM. An advancement
of the scientific understanding of influences on the relationship between instantaneous AOD and
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1 Introduction and general motivation

hourly mean PM10 concentrations is targeted and motivated by the main research question:

How do meteorological conditions influence the statistical relationship between AOD and PM?
The guiding hypothesis is that the relationship between AOD and PM varies with respect to
hygroscopic particle growth and the vertical distribution of particles in the atmosphere. Both of
these aspects are largely governed by ambient meteorological conditions, such as BLH, RH, and
wind.

The main research question gives rise to the following, more specific research questions:

• What are typical numerical characteristics of the relationship between AOD and PM?

• What meteorological conditions have an increased probability to cause an overestimation
or underestimation of PM by AOD?

Agreement or divergence of PM10 and AOD measurements cannot be determined directly, as
the variables represent different quantities. Therefore, a semi-quantitative, comparative index
is introduced, which normalizes AOD and PM10 values before comparison and enables an
assessment of whether AOD and PM10 agree. Situations in which these parameters are of similar
magnitude can be identified under consideration of ambient meteorological conditions. This way,
the capability of satellite AOD observations to map and monitor surface PM concentrations is
assessed and a basis is set to increase the accuracy of PM estimations from AOD. The study area
covers a sub-regional scale (∼12,000 km2) around the cities of Berlin and Potsdam in northeastern
Germany. Choosing a relatively small study area helps to put the focus on meteorological drivers,
as the area is expected to be relatively homogeneous in terms of terrain and climatology. Satellite-
based AOD retrievals, PM observations, and meteorological data from reanalysis and ground
measurements are used for the analysis.

(2) Mapping and understanding PM10 patterns using AOD and
environmental conditions

Building upon the scientific understanding gained within the first research chapter, empirical links
between AOD and environmental conditions are established to map hourly PM10 concentrations
using a multivariate statistical modelling framework. Besides meteorological parameters, the
considered parameters used to predict PM10 concentrations cover characteristics of the land
surface, which have been found to influence PM concentrations in previous studies (Bonn et al.,
2016; Beloconi et al., 2018). Sensitivity analysis conducted within the statistical modelling
framework allow identifying and quantifying important drivers of PM10 concentrations. In the
same modelling setup, the capability of satellite AOD observations for air quality studies is
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1.5 Scientific aims and outline

assessed. The research is conducted following the main research question:

What are the main drivers of PM10 when environmental conditions and AOD are used to estimate
PM10 concentrations?
The guiding hypothesis is that using a statistical modelling framework, hourly PM10 con-
centrations can be estimated from satellite AOD retrievals with high accuracy if land surface
characteristics in the vicinity of the PM measurement sites and meteorological conditions at the
time of the AOD acquisition are taken into account. It is hypothesized that changes in these
environmental conditions drive variations of PM10 concentrations.

On that basis, the following specific questions are addressed:

• In such a multivariate statistical prediction framework, are meteorological or land surface
parameters of higher importance to determine PM10 concentrations?

• How does satellite-retrieved AOD interact with other parameters in the multivariate
statistical prediction framework?

While previous studies showed that ML models are powerful tools for the prediction of PM
concentrations from AOD under consideration of environmental conditions, (van Donkelaar et al.,
2010; Kloog et al., 2015; Hu et al., 2017; Stafoggia et al., 2017; Zhang et al., 2018; Stafoggia
et al., 2020), the potential of these models to provide insights into physical processes involved has
been largely neglected. Only recently, studies have approached this idea for air quality surveys
(Hu et al., 2017; Grange et al., 2018; Park et al., 2019), without fully exploiting its potential.
Here, the multivariate influences on the statistical model are quantitatively analysed by isolating
the influence of individual parameters (see Cermak and Knutti, 2009; Andersen et al., 2017; Fuchs
et al., 2018). The study merges satellite-based AOD retrievals, measurements of the German PM-
network, meteorological measurements, reanalysis data, and other satellite measurements of land-
surface characteristics.

(3) Meteorology-driven, local-scale variability of PM1

As pointed out in previous studies, not only anthropogenic emissions but also meteorological
conditions exert a strong influence on PM concentrations (see also section 1.2 Rost et al.,
2009; Pearce et al., 2011; Bressi et al., 2013; Megaritis et al., 2014). Still, much remains
unknown concerning the meteorological processes driving PM concentrations because an
analysis of influences of individual meteorological parameters is complicated due to their highly
interconnected nature and also their synchronous effect on various, partly contradicting processes
(e.g., temperature might influence formation as well as destruction of particles). This is particularly
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1 Introduction and general motivation

true for high pollution situations, which can vary substantially in terms of timing, processes, and
sources (Petit et al., 2017). It is the objective of this research chapter to quantify the contribution
of critical atmospheric variables to day-to-day variations of PM concentrations at a local scale,
i.e., without the use of AOD. The focus is on particles in the fine mode fraction (PM1) with
individual analyses for different chemical constituents. By excluding the coarse particle fraction,
transformation processes and new particle formation processes can be analysed with higher
accuracy. The following main research question is targeted:

How do atmospheric processes drive concentrations of different PM1 species at a local scale?
The guiding hypothesis is that particle transport from other regions and local-scale processes in the
boundary layer govern the main fraction of variations of local PM1 concentrations. The amount of
advected particles is determined by the particle loading of air masses, which can be approximated
by the direction of inflow. Changes of local meteorological conditions, e.g., temperature, BLH,
and humidity initiate processes pertaining to particle formation, particle accumulation, or changes
in natural emissions. It is further hypothesized that different PM1 species show varying responses
to changes in meteorological conditions.

Specific questions addressed in this study are:

• What are season-specific characteristics of high-pollution situations?

• How do different meteorological parameters contribute to the development of specific high-
pollution situations?

Mean afternoon PM1 concentrations from the SIRTA supersite southwest of Paris (Haeffelin et al.,
2005) are analysed. Data from an ACSM and an aethalometer are combined with meteorological
measurements from the same site, allowing processes to be resolved at a high degree of detail. The
study area has been chosen as the metropolitan area of Paris is one of the most densely populated
and industrialised areas in Europe and air quality is a recurring issue. Several studies focused on
this area in the past years (Bressi et al., 2014; Petetin et al., 2014; Petit et al., 2015; Dupont et al.,
2016; Petit et al., 2017; Srivastava et al., 2018). Based on the results of these studies, a better
scientific understanding of the complex and varying mechanisms leading to high pollution events
is approached. Valuable insights are generated that help to tackle the problem of harmful levels of
PM for the Paris region and other areas suffering from severe air pollution. Building upon the ideas
presented in the previous research chapter, the research questions are approached using explainable
ML techniques. A further statistical model is set up, linking meteorological conditions with hourly
mean PM1 species concentrations. Given that the statistical model explains a satisfying amount of
occurring variability of PM1 concentrations (see Grange et al., 2018), empirical patterns extracted
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from the statistical model can be related to physical processes. High-resolution case studies
are conducted by quantifying the contribution of the meteorological variables to high pollution
situations using SHapley Additive exPlanation (SHAP) regression values (Lundberg and Lee,
2017; Lundberg et al., 2020).

Figure 1.8: Schematic illustration of the three research chapters of this thesis. The first research chapter analyses meteorological
influences the relationship between satellite-based AOD (grey box in the background) and near-ground PM
concentrations (brown region). Building upon the insights gained in the first research chapter, the second research
chapter establishes links between AOD and PM taking into account meteorological and land surface parameters on
a regional scale. The third research chapter provides insights on atmospheric controls of PM at a local level without
including AOD observations.

The research questions and underlying hypotheses outlined here constitute the frame of this thesis.
The main structure of this thesis, the hypotheses, and the methodology are schematically illustrated
in Fig. 1.8. The studies presented in chapters 2–4 are set up to test the hypotheses and answer
the open research questions. An overarching discussion in chapter 5 merges the results of the
individual research chapters. The research presented in this thesis has already been published or is
ready for peer-reviewing in scientific journals. The original publications are attached at the end of
this thesis.



2 Meteorological influences on the relationship
between PM10 and AOD

2.1 On the need for a quantitative analysis of conditions for
deriving PM from AOD

The availability of accurate, extensive, and spatially continuous information on PM concentrations
is important for the development of measures against air pollution, epidemiological exposure
studies, and the information of the public. However, this information is not readily available as
networks of PM monitoring stations are not dense enough to, e.g., reflect interactions between
urban areas and their surroundings. In addition, measuring stations are much more frequent in
urban areas than in rural areas (see Fig. 1.1), so that there is often no estimation of PM exposure
for rural areas. In this regard, satellite-based AOD has the potential to fill in the blanks.
The challenges of deriving ground-level PM concentrations based on AOD retrieved from satellite
measurements have been highlighted in chapter 1.3.3, and include, amongst others, the unknown
vertical distribution of particles in the atmosphere (van Donkelaar et al., 2006; Gupta et al., 2006;
Boyouk et al., 2010) and the hygroscopic growth of particles (Crumeyrolle et al., 2014). AOD has
frequently been used as a proxy for PM with varying success (Gupta et al., 2006; Kloog et al.,
2011; Nordio et al., 2013; Arvani et al., 2016; Stafoggia et al., 2017). Studies that analysed the
relationship between AOD and PM pointed out the importance of including RH (Wang, 2003;
Gupta et al., 2006; Wang and Martin, 2007) and BLH (Gupta et al., 2006; Zheng et al., 2017) when
approximating PM based on AOD. Still, a thorough and detailed treatment of the specific roles
of meteorological conditions in determining the relationship between AOD and PM is missing.
Accordingly, the aim of this study is to analyse meteorological influences on the relationship
between AOD and PM, with the ultimate goal of constraining conditions under which satellite
AOD observations can be used to reliably approximate PM. These conditions are contrasted with
conditions that have a higher probability to cause an underestimation or overestimation of ground
PM concentrations. Knowledge of these conditions could potentially improve the accuracy of air
quality estimates based on AOD, in particular over remote areas that lack a dense network of in
situ PM measurement stations. Using MAIAC AOD and PM10 measurements in combination
with ERA-Interim reanalysis and station data from the DWD, numerous collocated data pairs are
analysed in an area around Berlin, Germany. A novel approach is introduced, which includes a
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monthly ranking of AOD and PM10 observations for the period 2001–2015. Ranked AOD/PM10
data pairs are linked to surrounding meteorological parameters. This allows to characterise the
relationship between AOD and PM10 for each data pair individually and to perform in-depth
analyses.

2.2 Study domain, data and methods

Study domain

The study focuses on a rectangular area (∼12,000 km2) around the cities of Berlin and Potsdam
in northeastern Germany. The area Berlin is chosen as a study site because of its continental
location in flat terrain and excellent data availability. It is dominated by the cities in its centre and
is surrounded by agricultural land and large vegetated areas to the north and south (see Fig. 2.1).
A great number of PM10 measurements in the city area and its surroundings are available. The
area is mainly characterized by continental climate with only sparse, episodic maritime influence
when advection of air masses from northern and northwestern directions occurs. Thus, the area is
suitable for studying the influence of wind direction to discriminate between these regimes.
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2 Meteorological influences on the relationship between PM10 and AOD

Figure 2.1: Geographical extent of the study area. Different land cover classes are colored, positions of meteorological stations
and PM10-measurement sites are indicated.

Local PM10 sources dominate in the region, with traffic the major contributor. Vegetated areas
surrounding Berlin influence the mixture of particles in and around the urban area. Agricultural
areas can have pollution levels similar to the urban background (Bonn et al., 2016). It has
been argued that particle transport from the east can markedly contribute to overall pollution
levels (Kerschbaumer, 2007; Bonn et al., 2016). In general, two different air mass regimes can
be discriminated. Western air masses tend to transport lower particle concentrations, whereas
continental, eastern air masses accumulate particles and thus carry elevated particle concentrations
(Zieger et al., 2014).

Materials

PM-measurements

PM10 is analysed in this study instead of PM2.5 due to a greater availability of data for the study
region. PM10 measurements might be more adequate for the analysis, as larger particles are less
easily transported and more representative of local conditions. Additionally, PM2.5 excludes the
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fraction of larger particles, which are nevertheless accountable for light extinction and are thus
measured by the satellite. Hourly mean concentrations [µg/m3] of PM10 measured by the UBA
are used.
The locations of PM measurement sites and station types are shown in Fig. 2.1. Traffic sites, which
are generally close to main roads or busy intersections (EU, 2008), are excluded from the analysis
as they are by design not representative for conditions beyond the specific traffic situation and thus
the area covered by a satellite pixel.

Satellite AOD data

High-resolution AOD computed by application of the MAIAC technique is used (Lyapustin et al.,
2011a,b, 2012, 2018). Uncertainty estimates as included in the product are applied for filtering
here. Pixels with an uncertainty larger 0.4 were discarded. For valid daytime AOD data used in
this study, Aqua and Terra satellite overpass times range from ∼ 9 am UTC to ∼ 1 pm UTC.

Meteorological data

To represent regional-scale meteorological conditions, ERA-Interim reanalysis data generated by
the European Centre for Medium-Range Weather Forecasts (ECMWF) are used with a resolution
of 0.125◦ (Dee et al., 2011). These include BLH [m] and wind speed [m/s] in u and v direction
(10 m height). Wind speed and wind direction [◦] are calculated using u and v wind components.
BLH data are employed as a proxy for the vertical concentration of aerosols in the lower
troposphere, assuming particles are well-mixed within the boundary layer (Ansmann et al., 2000;
Gupta and Christopher, 2009b) and AOD mostly represents attenuation in the boundary layer
(Schäfer et al., 2008). Depending on the closest satellite overpass time, ERA-Interim data at 9 am
UTC, 12 noon UTC or 3 pm UTC are used.
Ground measurements were obtained from the DWD. One hour mean values of RH [%]
measured in 2 m height are used (DWD Climate Data Center (CDC), 2017). The locations of
DWD measurement sites are given in Fig. 2.1 as blue dots. This study uses near-ground RH
measurements, as these are more widely available than measurements of the vertical distribution of
water vapour. Under dry conditions (RH < 55 %), near-ground RH measurements show reasonable
agreement with vertically resolved measurements. This might not be the case at higher RH
(Crumeyrolle et al., 2014).

Methods

UBA PM station coordinates are used as spatial reference, i.e., AOD pixels, ERA-Interim pixels
and meteorological station data coordinates are collocated with the position of these stations. Only
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the nearest pixels below a threshold of 0.015◦ (∼ 1 km) distance from the PM measurement were
collocated with the corresponding closest UBA station. The relatively small distance threshold was
chosen to ensure that the MAIAC AOD reflects the situation in close vicinity of the UBA station.
Terra/Aqua satellite overpass time is used as temporal reference for the PM10 and meteorological
data, i.e., values closest to the overpass time are used. The work flow of this study is summarized
in Fig. 2.2.

Figure 2.2: Overview of the work flow of this study. Methods are shown in curved boxes, inputs and outputs in rectangular boxes.

For the analysis of factors influencing the relationship between AOD and PM10, this study
introduces the air quality rank difference index (AiRDI). The AiRDI allows for a direct, semi-
quantitative assessment of whether AOD and PM10 agree, or whether the satellite qualitatively
over- or underestimates PM10. Accordingly, situations in which these parameters are of similar
magnitude can be identified systematically. The AiRDI is dimensionless and is computed for each
spatially and temporally collocated AOD-PM10 data pair. First, AOD and PM10 values are sorted
from lowest to highest on a monthly basis. The sorting is performed for each month individually to
eliminate seasonal effects as outlined in the introduction. The sorted AOD (PM10) values are then
assigned ranks corresponding to their positions on a scale from 0 to the number of AOD (PM10)
observations per month (n), yielding AODranked and PM10ranked . The rank of AOD (PM10) within
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each month is then divided by n and multiplied by 100, yielding normalized ranks greater than 0
and up to 100 (see equ. 2.1 and equ. 2.2). Finally, the AiRDI is computed by subtracting PM10rank

from AODrank (see equ. 2.3).

AODrank(month) =
AODranked

n(month)
∗100 (2.1)

PM10rank(month) =
PM10ranked

n(month)
∗100 (2.2)

AiRDI(month) = AODrank(month)−PM10rank(month) (2.3)

Positive AiRDI means that AODrank is higher than PM10rank . In other words, the satellite
observation is relatively higher than the PM10 concentration, indicating a relative overestimation
of PM10 by the MAIAC AOD. The opposite is true for a negative AiRDI; in this case, lower
AODrank coincide with higher PM10rank , indicating an underestimation of PM10 by the MAIAC
AOD. In cases where the AiRDI is close to zero, AOD and PM10 are in the same range.

2.3 Results and discussion

2.3.1 Nonlinearity of the relationship between AOD and PM10

Several studies report a robust linear correlation between daily means of AOD and PM, e.g., for the
southern U.S. (Wang, 2003), the Po Valley in Italy (Arvani et al., 2016) or selected cities worldwide
(Gupta et al., 2006). In the Berlin study area, the relationship between AOD and PM10 is highly
nonlinear. This is suggested by patterns shown in Figs 2.3a and 2.3b, which depict AiRDI in
relation to AOD and PM10. A strong positive linearity would result in a slope of zero, as increasing
AOD would coincide with increasing PM10, resulting in a constant AiRDI. In fact, the Figs show
an almost linear increase (decrease) of AiRDI for increasing AODrank (PM10rank). Higher (lower)
AOD is likely to overestimate (underestimate) PM10 concentrations; AiRDI is more likely to be
positive for high AOD, but more likely to be negative for low AOD. The pattern is inverse for the
comparison of PM10 and AiRDI.
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2 Meteorological influences on the relationship between PM10 and AOD

Figure 2.3: 2D-histograms of AiRDI, AODrank (a) and AiRDI, PM10rank (b). The frequency of occurrence of associated data pairs
is color-coded.

2.3.2 Meteorological conditions of AOD-PM10 agreement and
divergence

In this section, meteorological factors governing the relationship between AOD and PM10 are
identified and connected to the AiRDI. An in-depth analysis concerning the role of RH and BLH
is conducted. Wind speed and direction is investigated to determine the role of weather conditions
and the prevailing inflow direction. AiRDI patterns related to wind are partly driven by the
redistribution of RH and BLH.
To identify possible factors influencing AiRDI, data was split in positive (AiRDI >25), negative
values (AiRDI < -25) and AiRDI values close to zero (25≥AiRDI≥ -25). Subsequently, the
median of each parameter for each season was calculated. Then, the relative deviation of each data
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point from this median for each AiRDI-class was determined, resulting in the distribution shown
in Fig. 2.4.

Figure 2.4: Determination of factors influencing AiRDI including RH, BLH, wind velocity in u and v direction (u/2,v/2), AOD and
PM10 (shown here as PM). Data are split on a seasonal basis and divided in positive (a–d), negative values (e–h)
and AiRDI values close to zero (i–l). Winter months are denoted as DJF, spring months as MAM, summer months as
JJA, fall months as SON. Box plots show the relative deviation of each parameter observation to the seasonal mean.
Deviations for u and v were multiplied by a factor of 0.5 to prevent a distortion of the y-axes. The box plots extend from
the lower to the upper quartile value, with a red line at the median. Whiskers show the range with outliers marked as
short, horizontal black lines. The number of observations for each class is denoted as n.

The class AiRDI >25 is characterized by strong positive deviations of BLH and slightly positive
RH deviations. This is consistent with what was introduced above: a higher BLH tends to decrease
PM10 concentrations near ground because particles disperse within the atmospheric column, while
elevated ambient RH tends to initiate hygroscopic growth, increasing AOD (Wang, 2003; Gupta
and Christopher, 2009b). Both effects combined result in a positive AiRDI. Additionally, a high
BLH might increment the number of particles distributed in the lower troposphere due to enhanced
turbulence. Subsequently, AOD would also increase (Barnaba et al., 2010). BLH does not show
a marked deviation in summer, pointing to a decreased importance of BLH during the summer
months.
Patterns of the class AiRDI < -25 display almost inverse characteristics. Here, BLH and RH
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show negative deviations. Negative AiRDI values result from low BLHs, which increase PM10
concentrations near ground, whereas low ambient RHs decrease the influence of hygroscopic
growth. PM10 concentrations appear to have very high positive deviations in winter months,
when particles are often confined to layers close to the ground (Barnaba et al., 2010). The frequent
occurrence of stable stratification situations along with low turbulent atmospheric exchange during
stagnant synoptic situations could lead to very high particle concentrations (Rost et al., 2009).
Parameters in the class 25≥AiRDI≥ -25 do not show strong deviations of any parameter. The
best agreement between AOD and PM10 is achieved when RH and BLH are near their seasonal
median values.
In summary, AOD observations coinciding with high (low) ambient RH and high (low) BLH have
a higher probability to cause an overestimation (underestimation) of PM10. Patterns are largely
constant throughout the year. Wind speed and direction also play an important role. But like RH
and BLH, the relationship is complex and is treated in more detail in the following sections.

2.3.3 The role of RH and BLH

This section quantifies the interconnected effects of RH and BLH on the relationship between AOD
and PM10. To this end, a multivariate analysis was conducted using ranges of RH and BLH. These
were related to AODrank , PM10rank and AiRDI.
Three AiRDI-regimes can be discriminated in Fig. 2.5a. Low RH coinciding with low BLH leads
to negative AiRDI values, relatively high RH coinciding with high BLH leads to positive AiRDI
values. A curved area of near-zero AiRDI values separates negative and positive AiRDI patterns,
indicating meteorological conditions where the magnitudes of AOD and PM10 match closely.
The shape of this patch emphasizes the dependency of the AiRDI on both RH and BLH. With
decreasing BLH, the near-zero values are shifted towards higher RH. Obviously, the effects on
AiRDI of both parameters can compensate each other, leading to a AiRDI close to zero.
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Figure 2.5: a: Relationship between AiRDI (AODrank - PM10rank), RH and BLH. BLH is gridded in steps of 60 m, RH in steps of
2 %, each grid cell represents the median AiRDI.
b: Relationship between AODrank , RH and BLH, same grouping of RH and BLH as (a).
c: Relationship between PM10rank , RH and BLH, same grouping of RH and BLH as (a).
d: Standard deviation of AiRDI for each class, same grouping of RH and BLH as (a).
e: Number of observations for each grid cell, same grouping of RH and BLH as (a).

Fig. 2.5b highlights the effect of hygroscopic growth on AOD, with increased RH leading to higher
AODrank . Furthermore, the data suggest that AODrank is positively correlated not only to RH, but
also to BLH (Fig. 2.5b). Relatively high AODrank coincides with relatively high BLH. This effect
might be due to convection processes, which increase the BLH and cause particles to be lifted up
into the atmosphere more easily. In these situations, the deposition of particles would be prevented
and particles would remain in the atmosphere, causing the AOD to increase. Low BLH, as an
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indicator of low turbulence, would lead to reduced particle release and thus relatively low AOD.
Additionally, when particles are confined in a shallow boundary layer, a reduced path length for
satellite measurements might reduce the sensitivity to AOD (Gupta and Christopher, 2009a).
PM10rank is elevated for BLH <600 m (Fig. 2.5c) owing to limited dissipation of particles into
higher atmospheric layers and subsequent accumulation of particles near the ground. At very
high BLH (>2,400 m), PM10rank is also slightly elevated. Around 3 % of all observations are
related to this pattern. PM10rank at these high BLH values should be interpreted with care: For
mid-latitudes, BLH >2,400 m appears to be very high (Von Engeln and Teixeira, 2013) and might
not properly reflect real conditions. A weak dependence of PM10rank on RH exists: PM10rank

decreases with increasing RH. This might be due to the fact that RH is elevated when precipitation
influenced the atmosphere prior to the measurement, leading to increased RH and decreased
particle concentrations due to wet deposition of particles (Rost et al., 2009). Another possible
reason might be that the influence of maritime air is overrepresented in situations with high RH.
These air masses are humid and clean, i.e., carry fewer particles. Finally, this pattern could be
due to measurement errors of the UBA PM sites caused by condensation on the particle inlet of
the PM sensors, despite the heating of the sensor inlet. This way, fewer particles would reach the
sensor, decreasing reported particle concentrations. When BLH is greater than 600 m, the AiRDI
is mostly driven by RH. In a very moist atmosphere (RH >90 %), the median AiRDI is near zero
only at very low BLH. The influence of hygroscopic growth on AOD is apparent when AiRDI
approaches positive values. In these situations, AOD is increased while PM10 remains unaffected.
This effect can be seen from about RH >40 %, depending on BLH. Previous studies report that
hygroscopic growth starts at RH∼ 50 % (Lee and Kim, 2007).
Results presented in this section partly contradict earlier studies, which identify situations with
low BLH and low RH as favorable to derive PM estimates based on AOD (Gupta et al., 2006).
Fig. 2.5a suggests that a very low BLH tends to cause an underestimation of PM10 concentrations
by the satellite (negative AiRDI). RH and BLH clearly have an interconnected influence on the
relationship between AOD and PM10, which emphasizes the need to examine both parameters
simultaneously. Generally, AOD and PM10 match best when the atmosphere is relatively dry
(40 % < RH≤ 70 %) and BLH is at medium levels (600–1,200 m). High ambient RH, on the other
hand, can be compensated by a low BLH, leading to a good agreement of AOD and PM10. RH
measurements used in this study only capture near-ground ambient RH. Nevertheless, Fig. 2.5a
suggests that near-ground RH has a large influence on the relationship between AOD and PM10.

2.3.4 The role of wind direction and wind speed

In this section, patterns of AiRDI, AODrank and PM10rank in relation to large scale patterns of
wind speed and wind direction are analysed and connected to results of previous chapters. Patterns
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of wind speed and direction give hints on particle origins. Knowledge on the direction of origin of
air masses, for example, helps characterize particle species and concentrations (Zieger et al., 2013;
Titos et al., 2014). Wind speeds help to distinguish between the dominance of local sources or
particles originating further away. To distinguish between the effects of wind speed and direction,
wind speed data are split in four classes 0–3 m/s, >3–5 m/s, >5–7 m/s and >7 m/s. The resulting
polar plots are comprised of 16 wind direction classes with a range of 22.5◦, starting from 0◦. Each
class is colored with the corresponding median AiRDI value, computed of all associated AODrank

and PM10rank that appear in the corresponding class. Radii of the polar bars indicate the frequency
of occurrence.

Figure 2.6: Relationship between the AiRDI (AODrank - PM10rank), wind direction and wind speed for the study area. Panels a–d
represent a wind speed class as shown on the upper left of each panel. Polar bars enclose a wind direction class, each
22.5◦ in range. Colors indicate the mean AiRDI for each polar bar, the radius of each bar indicates the frequency of
occurrence.

A clear AiRDI pattern can be identified in Fig. 2.6. Air masses from northwestern or western
direction tend to cause a positive AiRDI, while air masses from the east and south-east tend to
coincide with negative AiRDI values. This pattern is most distinctive for wind speed classes > 3–
5 m/s and > 5–7 m/s. For lower wind speeds (0–3 m/s), the pattern is less clearly defined. This is
likely due to the dominance of local particle sources, superimposing the effects of large-scale air
mass transports. Results suggest that satellite AOD tends to overestimate particle concentrations
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near the ground when strong northwestern or western winds prevail, whereas an underestimation
occurs when eastern and southeastern winds dominate. There is a higher chance of AiRDI close to
zero at lower wind speeds, as local emissions can be captured more easily by both ground stations
and the satellite.

Figure 2.7: Relationship between AODrank , wind direction and wind speed. Setup of panels a–d is identical to previous plot.
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Figure 2.8: Relationship between PM10rank , wind direction and wind speed. Setup of panels a–d is identical to previous plot.
PM10rank is generally higher when continental, i.e., easterly air masses dominate.

PM10rank (Fig. 2.8a–d) is generally highest during conditions with low wind speeds (0–3 m/s).
This is not surprising, as transport of pollutants takes place less effectively and particles from local
sources inside the urban area of Berlin accumulate in the atmosphere. Additionally, dry deposition
of particles might take place more effectively, as particles reach the surface more easily due to
decreased vertical winds. This might lead to increased PM10 concentrations at the measurement
sites. Winds from eastern directions show elevated PM10rank , indicating advection of continental
air masses with high particle numbers near the ground. Air masses from the west, possibly of
maritime origin, tend to be cleaner than continental air, because particles are scavenged by wet
deposition (Rost et al., 2009; Zieger et al., 2013). At higher wind speeds, this pattern is most
distinct.
Generally, patterns for AODrank are less pronounced (Figs 2.7a–d). In contrast to PM10rank ,
AODrank is slightly elevated when high wind speeds occur from the west. The inverse pattern
of AODrank versus PM10rank in terms of wind speed and wind direction demonstrates that satellite
derived AOD is not suited for directly deriving ground-based PM10 in all situations.
Several explanations for these observations are possible. Advection of western air masses
transports higher amounts of moisture to the Berlin study area, indicated by higher values of RH in
Fig. 2.9. Increased availability of moisture in the atmosphere could promote particle water uptake

43



2 Meteorological influences on the relationship between PM10 and AOD

and cause hygroscopic swelling of particles. Increased particle sizes would lead to rising AODrank

but not affect PM10rank , which ultimately leads to positive AiRDI. Eastern winds, on the other
hand, transport continental air masses with a potentially larger particle loading (Kerschbaumer,
2007; Bonn et al., 2016). This might increase PM10 concentrations.
A further possible explanation might be the varying hygroscopicity of particles carried by different
air masses. Western air masses are thought to carry a higher amount of hydrophilic particles (e.g.,
sea salts) which tend to be more prone to hygroscopic growth due to more effective water uptake
(Zieger et al., 2013; Titos et al., 2014; Granados-Muñoz et al., 2015). The opposite might be true
for air masses from eastern and northeastern origins carrying anthropogenic and industrial aerosols.
For the measurement station Melpitz, located around 130 km south of Berlin, it was found that the
scattering enhancement of particles was lowest when air masses were advected from the east and
northeast (Zieger et al., 2013, 2014). Thus, these particles are less likely to increase the AOD by
hygroscopic growth (Zieger et al., 2013; Titos et al., 2014). Finally, eastern wind directions might
indicate a stable atmospheric situation with lower BLH (see Fig. 2.10), causing pollution levels
to increase near the ground (Gupta and Christopher, 2009b; Geiß et al., 2017). As can be seen in
Fig. 2.10, advection of air masses from the west at higher wind speeds tends to increase BLH.

Figure 2.9: Relationship between RH, wind direction and speed. Setup of panels a–d is identical to previous plot.
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Figure 2.10: Relationship between BLH, wind direction and speed. Setup of panels a–d is identical to previous plot.

In summary, advection of western air masses tends to increase RH and BLH, coinciding with
slightly elevated AODrank and low PM10rank . Eastern and southeastern air masses tend to show
lower RH and BLH, coinciding with slightly decreased AODrank and elevated PM10rank . These
patterns are generally more pronounced for higher wind speeds, whereas dependence on wind
direction decreases with lower wind speeds. To conclude, the following statements summarize the
findings of this chapter:

• Western air masses with higher wind speeds establish a relatively high probability that the
satellite AOD overestimates PM10.

• The opposite is true for eastern direction of origin. In these cases, a higher probability of
the satellite AOD underestimating PM10 levels exists.

• Differences in RH and BLH patterns seem to be the main drivers behind the dependence of
AiRDI on wind direction besides the transport of pollutants and varying hygroscopicity of
particles.

• Agreement between AOD and PM10 is more likely to occur when wind speeds are low.
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Information on RH, BLH, wind direction and speed proved to be of importance, driving the
relationship between AOD and PM10. Generally, AOD serves as a good proxy for PM10
concentrations near ground when a very dry atmosphere (30 % < RH≤ 50 %) coincides with a
high BLH (>1,200 m), when moderate ambient RH (50–80 %) coincides with moderate BLH
(600–1,200 m) or when humid conditions (RH >80 %) coincide with a shallow BLH (<600 m).
In case of a dry atmosphere, AOD is not influenced by hygroscopic growth and thus relatively low.
This can be compensated by low PM10 levels, which appear more frequently in situations with
a high BLH. When ambient RH is high, satellite-derived AOD tends to overestimate street-level
PM10 concentrations. This effect can be compensated by a low BLH, which tends to increase
PM10 levels near the ground. In combination, these effects can lead to an AiRDI close to zero,
indicating a good match of satellite-retrieved AOD and ground-based PM10 measurements. When
moderate RH and BLH prevail, AOD is only marginally affected by hygroscopic growth due to
limited availability of moisture, and particle concentrations in the boundary layer seem to agree
well with particle concentrations near the ground. These results suggest that it might be misleading
to examine RH and BLH separately.
In terms of wind speed and wind direction, it was found that situations with prevailing western
direction of origin have a higher probability to cause a positive AiRDI, whereas winds from the
east tend to cause a negative AiRDI. The AiRDI is more likely to be near-zero in situations with
low wind speeds
The AiRDI proved to be a useful approach to a perform semi-quantitative comparison of
the parameters AOD and PM10 and to better understand their interactions with surrounding
meteorological conditions. Knowledge of the effect of these conditions can help future approaches
to derive high-quality PM estimates based on AOD. The AiRDI approach can be generalized for
application in other study areas. Still, this study did not account for some sources of uncertainties,
for example effects of cloud contamination or aerosol layers above the BLH (Crumeyrolle et al.,
2014; Bourgeois et al., 2018). Future analyses could further focus on the role of different aerosol
species or the role of precipitation events on the relationship between AOD and PM.



3 Mapping and understanding PM10 patterns
using AOD and environmental conditions

3.1 Benefits of using machine learning models to derive PM
from AOD

As shown in chapter 2, PM can be estimated with higher accuracy from satellite-based AOD,
if environmental conditions are explicitly considered. Environmental conditions are not only
expected to influence the relationship between AOD and PM10, but also to also to directly
influence PM concentrations near ground (see section 1.2, conceptual study design in Fig. 3.1).
In this chapter, PM10 concentrations are estimated using a ML model, which is trained to predict
PM10 under consideration of AOD and environmental conditions. In previous studies, ML models
have been successfully leveraged to predict PM from AOD, accounting for a range of additional
parameters and mostly with a focus on accurately predicting PM concentrations (van Donkelaar
et al., 2010; Kloog et al., 2015; Hu et al., 2017; Stafoggia et al., 2017; Rybarczyk and Zalakeviciute,
2018; Zhang et al., 2018). ML models are powerful statistical models, which efficiently reproduce
non-linear relationships and interactions of input features (Elith et al., 2008; Brokamp et al., 2017).
Furthermore, in contrast to physical models, machine learning approaches do not require extensive
prior process knowledge and rely on empirical relationships (Knüsel et al., 2019). This means that
ML models have the potential to reveal or quantify processes that are as yet undetermined. A ML
model extracts empirical patterns between input features and the target variable during the training
process. Depending on how well this training process is conducted, the model can transfer the
extracted patterns to unseen data and predict an unknown target variable. The model’s ability to
transfer its learnings on unseen data determines the generalizability of the extracted patterns.
Only recently, air quality studies approached the idea of analysing the information content of
explanatory variables in statistical models to infer processes (e.g., Hu et al., 2017; Grange et al.,
2018; Park et al., 2019). Here, these approaches are expanded and an in-depth analysis of model-
inherent relationships is provided and related to physical processes. Multivariate processes are
investigated by isolating certain variables and studying inputs and responses for dominant patterns
(see Cermak and Knutti, 2009; Andersen et al., 2017; Fuchs et al., 2018). Based on the predictions
of hourly PM10 concentrations by a gradient boosted regression trees (GBRT) model, important
drivers of PM10 concentrations are identified. Furthermore, the capability of satellite observations
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Figure 3.1: Conceptual design of potential influences on variations in hourly PM10 concentrations. The Machine Learning model
is set up to reproduce these variations.

to map and monitor surface air pollution is assessed by investigating the relationship between AOD
and PM10 in the same modelling setup.

3.2 Data and methods

The data basis of this study is comprised of 8 years (2007–2015) including satellite observations
from MODIS and others, model output from the ECMWF and station data from the German
Meteorological Service DWD and the UBA. AOD observations are based on the MAIAC
algorithm. A statistical model is set up to predict hourly PM10 concentrations based on a variety
of input features, which are summarized in Tab. 3.1. Data with high temporal resolution are
selected to reflect the atmospheric situation close to the satellite overpass times. Generally, station
measurements were preferred for parameters, which have adequate coverage and which are not
expected to vary on small scales (e.g., air pressure).
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Table 3.1: List of input features stating data origin, data representation and abbreviation used in chapter 3.

Data set Variable Abbreviation

Input Features

MODIS MAIAC Aerosol optical depth AOD

MODIS Normalized difference NDVI

vegetation index

NASA Earth at night lights at night Nightlights

EU-DEM, v1.1 Elevation [m], Elev,

Topographic Position Index [m] TPI

CORINE Land Cover Land cover types 1CLC, 2CLC,

3CLC, 4CLC

5CLC, 6CLC

DWD meteorological Air pressure (sea level) [hPa] AirPres

measurements Relative humidity [%] RH

Continentality Conti

RADOLAN Time since last precip. [h], Precip_tsince,

Magnitude of last precip. [mm/h], Precip_magn,

Cumulative precip. last 24 h [mm], Precip_acc

ERA-Interim wind vectors u,v [m/s], u,v

mean wind vectors of umean,

previous hours [m/s] vmean

Boundary layer height [m] BLH

Temperature [◦], T

temperature anomalies [K], Tan

Convective available CAPE

potential energy [J/kg]

Surface solar radiation SSRD

downwards [J/m2]

EEA emission data base Annual emission of NH3, NH3, PM10em,

PM10, SO2, NOx [t/year] SO2, NOx

other Day of year DOY

Day of week Weekday

Model Outcome

UBA air quality measurements PM10 concentrations [µg/m3] PM10
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Satellite data

MAIAC AOD

MAIAC Collection 6 AOD is used (Lyapustin et al., 2011b,a,b, 2018). Quality flags are applied for
filtering. Pixels were only incorporated when clear conditions are reported, i.e., no contamination
of the data due to clouds is to be expected (Lyapustin et al., 2018). An additional filter was set up
to exclude AOD close to clouds to avoid increased AOD near cloud fringes due to aerosol swelling
effects (Várnai et al., 2013; Schwarz et al., 2017). Therefore, the distance to the nearest cloud
as classified by the MAIAC algorithm (Lyapustin et al., 2018) was calculated and a threshold of
0.1 ◦ was set, which corresponds to ∼7 km. This is in the range of what previous studies used as
threshold (Koren et al., 2007; Emili et al., 2011a). Terra or Aqua satellite overpass times were used
as temporal reference for data collocation, i.e., other input feature values closest to the overpass
times were used. Valid daytime AOD acquisition times as used in this study range from ∼9 UTC
to ∼1 UTC. AOD is an important input to the statistical model as it provides implicit information
on the total aerosol loading in the atmosphere, reflecting natural as well as anthropogenic sources.

MODIS NDVI

16-day NDVI averages obtained from the MODIS MOD13Q1 Version 6 product are used (DOI:
10.5067/MODIS/MOD13Q1.006) to approximate photosynthetically active vegetation (Tucker,
1979). The NDVI was found to influence PM concentrations in several previous works
(Chudnovsky et al., 2014; Stafoggia et al., 2017; Beloconi et al., 2018). Vegetation acts as a sink by
increasing the aerodynamic roughness and available surface for mechanical deposition (Fuzzi et al.,
2015). On the other hand, vegetation can increase background particle concentrations by emitting
pollen in spring (Fuzzi et al., 2015) and by enhancing the formation of SOA Churkina et al. (2017).
Around each PM station coordinate, a window with an edge size of 20 km is established to reflect
the local contribution of vegetation to the total particle concentration. An edge size of 20 km is
comparable to the mean representativeness of the PM stations (EU, 2008). The mean NDVI of
each window was used as a predictor.

NASA night lights

The NASA night lights data set is included as a surrogate for population density. Based on data
from the VIIRS, the night-time lights product is available at 500 m resolution (Román et al., 2018).
Population density is an important factor contributing to PM10 concentrations as it reflects human
activity (Beloconi et al., 2018; Park et al., 2019). The mean night light intensity of a 20 km-window
around each PM station was used as a predictor.
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EEA DEM

Topography can have a marked influence on the accumulation of particles (Emili et al., 2011a).
Here, the v1.1 EU-DEM is used, which is a hybrid product produced by the EEA based on
SRTM and ASTER GDEM fused by a weighted averaging approach. It has a spatial resolution
of 25*25 m (more information and download at https://land.copernicus.eu/imagery-in-situ/eu-
dem/eu-dem-v1.1?tab=metadata). Station altitude and the dominant topography around each PM
station are incorporated as predictors. A Topographic Position Index (TPI) is computed to provide
information on the topography of a pixel relative to its surrounding pixels. It employs the station
altitude and subtracts the mean altitude of surrounding pixels in its vicinity. Positive values indicate
a summit position, whereas negative values indicate a valley position (Egli et al., 2018). Again, a
window size of 20 km was chosen.

EEA Corine Land Cover (CLC)

Data from the CLC inventory for the years 2006 and 2012 are used (Bossard et al., 2000),
accessed via https://land.copernicus.eu/pan-european/corine-land-cover/view. In its finest thematic
accuracy, the CLC data set consists of 44 classes. For this study, a more simplistic classification
in 6 land cover types was chosen, which represent the most relevant land cover types influencing
air quality (see Tab. 3.2). The data has a spatial resolution of 250 m. Because the CLC data are
categorical, a window of 20 km edge size was set up and the number of occurrences of each type
in that window was calculated. The number of occurrences of each feature is used as predictor for
the model.

Reanalysis data

The Era-Interim reanalysis data by the ECMWF provides full spatial coverage for the whole study
period with an interpolated spatial resolution of 0.125 ◦ (Dee et al., 2011). The data set has been
successfully used in previous air quality studies (Stafoggia et al., 2017; Zheng et al., 2017; Chen
et al., 2018b). To capture regional transport of particles, ERA-Interim reanalysis wind components
[m/s] in east-west and north-south direction (10 m height) are used. Wind direction and speed can
influence both particle concentrations (Chudnovsky et al., 2013b; Li et al., 2015; Beloconi et al.,
2018) and the relationship between AOD and PM10 (Zheng et al., 2017; Stirnberg et al., 2018).
Wind direction and speed are included as instantaneous values and as the mean of precedent days
(72 h). BLH data are employed to approximate the vertical distribution of aerosols in the lower
troposphere, implying that particles are well-mixed within the boundary layer (Ansmann et al.,
2000; Gupta and Christopher, 2009b). Dispersion of particles within a high and well-mixed
boundary layer leads to reduced particle numbers near ground. If the BLH is low, particles
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Table 3.2: Original labels and aggregation of corine land cover classes used in this study.

Code Label Original Labels Included

1 Artificial surfaces continuous urban fabric, discontinuous urban fabric,

industrial or commercial units, road and rail networks

and associated land, port areas, airports, mineral extraction

sites, dump sites, construction sites, green urban areas

2 Agricultural areas non-irrigated arable land, permanently irrigated land,

rice fields, vineyards, fruit trees and berry plantations,

olive groves, pastures, annual crops associated with

permanent crops, complex cultivation patterns, land

principally occupied by agriculture with significant

areas of natural vegetation, agro-forestry areas

3 Forest and semi natural areas broad-leaved forest, coniferous forest, mixed forest,

natural grasslands, moors and heathland, sclerophyllous

vegetation, transitional woodland-shrub, beaches &

dunes & sands, bare rocks, sparsely vegetated areas,

burnt areas, glaciers and perpetual snow

4 Wetlands inland marshes, peat bogs, salt marshes, salines,

intertidal flats

5 water bodies water courses, water bodies, coastal lagoons, estuaries,

sea and ocean

6 Nodata, unclassified nodata, unclassified land surface, unclassified water

bodies, unclassified

accumulate and increase PM concentrations near ground as they are constrained to a smaller
volume (Gupta and Christopher, 2009b; Wagner and Schäfer, 2017). Era-Interim temperature in
2 height is included as instantaneous values and as temperature anomaly. Temperature anomalies
are determined as the deviation of the expected value for each day of the year. Expected values are
calculated by averaging daily values over 30 years, then calculating a running mean over 30 days
to achieve a smooth sequence of the expected temperature. In addition to temperature, surface
solar radiation downward (SSRD) and convective available potential energy (CAPE) are included
to capture potential secondary aerosol formation based on photochemical transformation processes
(Wang and Martin, 2007) and to capture convective mixing in the atmosphere (Chudnovsky et al.,
2013b).
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Ground-based data

UBA PM10

The focus here is on PM10 rather than PM2.5 because the latter excludes the fraction of larger
particles, which are nevertheless accountable for light extinction and thus contribute to AOD
measured by the satellite (Emili et al., 2011b). In addition, PM10 measurements are more widely
available. The PM stations are maintained by the UBA and measure the hourly mean PM10
concentration. The spatial distribution of station types and their altitudes are shown in the scientific
appendix, Fig. A.1 and Fig. A.2. UBA PM station coordinates are used as spatial reference for data
collocation, i.e., pixels from continuous data grids are collocated with the position of these stations
if below a distance threshold of 0.01 ◦ (∼0.7 km). Urban industrial stations are not considered in
this study, as they are primarily influenced by local emissions from point sources that cannot be
adequately represented with the available data. PM10 concentrations were checked for sudden
peaks, which could be due to localized events. These are filtered out by eliminating situations,
where the PM10 concentration was more than double the mean of the previous and following
hours.

DWD meteorological data

Air pressure and RH data were obtained from the DWD (DWD Climate Data Center (CDC), 2017).
Both parameters potentially influence PM10 concentrations (see section 1.2). and the relationship
bewteen AOD and PM10 (see section 1.3.3).

Continentality factor

The relationship between AOD and PM10 as well as driving factors of PM10 concentrations may
vary in different climatic regions (Di et al., 2016). This is accounted for by the inclusion of a
dimensionless continentality factor k, which is calculated following the formula by Conrad (1946):

k = (1.7∗A/sin(φ +10◦))−14, (3.1)

where A corresponds to the difference between the hottest and coldest mean monthly temperature
and φ to the latitude in decimal degree. Here, k was calculated using the mean temperature of July
(1980–2010) and the mean temperature of January (1980–2010). Temperature data are provided
by the DWD (DWD Climate Data Center (CDC), 2018).
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DWD Radolan precipitation

The influence of precipitation on PM10 concentrations includes wash-out effects and the limitation
of movement of particles after precipitation events (Rost et al., 2009; Fuzzi et al., 2015; Li et al.,
2015). In this study, data from the Radar Online Adjustment Project (RADOLAN) are used.
The dataset is produced by the DWD and merges radar measurements with rain gauge data,
also including orographic correction (Bartels et al., 2004; Weigl, 2017). The data are available
with high spatial coverage and are expected to be better suited for the present analysis than the
Era-Interim precipitation product, which has some known biases (de Leeuw et al., 2015). In the
statistical model, the time since the last precipitation event [h] and its magnitude [mm/h] as well
as the accumulated precipitation of the last 24 h [mm] are included. Hourly means of precipitation
around each PM-Station are averaged within a window of edge size 5 km. The chosen window size
is smaller than the previous ones, as precipitation effects typically vary on small scales.

Other input data

EEA emission database

Annual emissions of NOx, PM10, SO2, and NH3 (in tonnes, based on the year 2008) are included
to approximate background pollution levels. The data are gathered by the EEA and described
in Theloke et al. (2009). Diffuse air releases from traffic, agricultural, industrial, and residential
sources are covered. Strong emitters that fall under the European Pollutant Release and Transfer
Register are not included in this data set.

Spatiotemporal information

Seasonality was shown to be an important factor in previous studies (Grange et al., 2018). Here,
DOY is used as seasonal proxy. To mirror the seasonal cycle, DOY was converted to a sine curve
with +1 representing summer solstice and -1 representing winter solstice (Stolwijk et al., 1999;
Park et al., 2019). To further approximate variability in emission strengths based on human activity,
day of the week is included.

Gradient Boosted Regression Trees

Model specifications

GBRT as implemented in python’s scikit-learn module are used (Friedman, 2002; Pedregosa
et al., 2012). GBRT merge several statistical approaches found in machine learning applications:
decision trees (1.) and boosting (2.) with gradient descent (3.).
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1. Decision trees use decision nodes to split the predictor space in subsets, which provide the
most homogeneous distribution, i.e., the subsets‚ variance is minimized. For each subset,
regression trees fit the mean response of the observations that go into the model (Elith et al.,
2008).

2. Similar to the RF method, GBRT consist of an ensemble of decision trees. In GBRT
models, however, the construction of the ensemble is different, as decision tree regressors
are sequentially added to the ensemble (Friedman, 2001; Elith et al., 2008; Rybarczyk and
Zalakeviciute, 2018). Each new tree that is added to the ensemble boosts its predecessor
with the goal to minimize a loss function and existing trees are not changed when new trees
are added. The trees are fitted on a subset of the complete data set, which induces a random
component to the model to reduce overfitting (Friedman, 2001; Elith et al., 2008).

3. Each new predictor is fitted to the predecessor’s previous residual error using gradient
descent (Friedman, 2001; Elith et al., 2008).

GBRT capture complex interactions and interactive effects between individual predictors (Elith
et al., 2008; Brokamp et al., 2017), which nevertheless need to be considered when interpreting the
model outcome. An advantage of tree-based methods such as RF or GBRT is that, compared to
deep learning methods, model decisions can be retraced and dependencies of the model outcome
to input features can be quantified, allowing for conclusions regarding physical processes. This
makes GBRT an interpretable machine learning method. GBRT theoretically produce results more
effectively than the RF method, as trees are built systematically and less iterations are required
(Elith et al., 2008). GBRT have shown to have good predictive power in previous studies (Elith
et al., 2008; Fuchs et al., 2018; Just et al., 2018). The general framework of setting up the model is
shown in Fig. 3.2 and includes input feature selection, hyperparameter tuning, model training, and
model validation.

Feature selection: recursive feature elimination

Redundant input features lack information and potentially degrade model performance by inducing
misleading information, thus weakening the target orientation of the model (Meyer et al., 2018).
Therefore, a feature selection is conducted to eliminate redundant predictors. A base model
is initialized with a fixed number of trees (500), a fixed learning rate (0.1) and all other
hyperparameters on default settings. One feature is then excluded and the data set is randomly split
into a training data set (2/3) and a test data set (1/3) fifty-fold. After fifty repetitions, the decrease
in model performance on the test data set due to the exclusion of the feature was determined using
R2 as indicator. In the final model, the magnitude of the last precipitation event, the accumulated
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Table 3.3: List of hyperparameters and parameter grid that is applied during the grid search. Hyperparameters determine the
architecture of the GBRT model.

Hyperparameter Description Parameter grid

loss loss function to be optimized fixed: least

squares regression

learning_rate contribution of trees to ensemble [0.08,0.05,0.01]

n_estimators number of boosting iterations [800,1800,2500,4000]

subsample fraction of samples used for individual tree [0.6,0.8]

min_samples_split minimum number of samples used to split [6,10,14]

a decision node

min_samples_leaf minimum number of samples [14,18,20]

required for a leaf node

max_depth maximum depth for individual tree, [6,10,14]

i.e., maximum number of node layers

max_features fraction of features to be considered when [0.5,0.8]

searching for best split

rainfall of the last 24 hours and the annual mean emission of SO2 are excluded, as their exclusion
did not lead to a decrease in model performance.

Hyperparameter tuning, model training, and model evaluation

Hyperparameters refer to the model architecture, e.g., the number of trees or the number of decision
nodes. The determination of adequate model hyperparameters is essential to avoid overfitting of
the model, but at the same time ensure that the model is able to generalize. A grid search is
executed, where several parameter combinations are tested. A list of tested parameters is provided
in Tab. 3.3.
There are trade-offs between max_depth, n_estimators, and learning_rate. A lower learning_rate
requires a higher number of trees, as the contribution of each tree is decreased. The contribution of
each tree is effectively the step size of the gradient descent. Thus, if learning_rate is too large, the
model cannot adapt to the training data. The number of decision nodes in a tree (max_depth) also
affects n_estimators: increasing max_depth reduces the number of necessary trees but increases
the risk of overfitting.
The model penalizes erroneous predictions to improve accuracy. The calculation of the penalty
value is determined by the loss function. In this study, a least squares loss function is chosen. The
least squares loss function is sensitive to very high (low) values as it strongly penalizes large
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Figure 3.2: Framework of chapter 3: from input feature selection (i.e., separating important features from noise), hyperparameter
tuning, model training, and model evaluation to the interpretation of the results.

deviations between predictions and observations and will adjust the model accordingly. This
is desirable, as the model should be able to reproduce high concentrations of PM10. Model
performance is validated using two kinds of validation strategies. The integrated scikit-learn split
function creates a random training (2/3) and test data set (1/3), ensuring a comparable distribution
of both data sets. To test the spatial generalizability of the model, a leave-location-out approach is
conducted. Therefore, one third of randomly chosen stations are restrained for validation. If the
model performance is lower compared to the random approach, the spatial generalizability of the
model is limited (Meyer et al., 2018).
For further analysis, four seasonal models are trained on seasonal subsets of the data (see also
Fig. 3.2) using the hyperparameters determined in the full-year grid search. One input feature set
representative for all seasonal models and the full-year model is used to ensure their comparability.
The only exception is the EEA emission data set, which is only included in the yearly model, since
it represents yearly emissions.
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Model interpretation: isolation of feature contributions

Feature importance

The relative feature importance reflects the explanatory power a feature provides to the model.
Assuming that the model is able to capture physical processes well, the feature importance
represents a valuable qualitative measure to determine the relative magnitude of the influence of
input features to predicted PM10 concentrations. The feature importance is calculated by repeated
permutation of one feature (Strobl et al., 2007).

Partial dependence

To quantify the influence of input features on the model, the partial dependence (PD) of modelled
PM10 concentrations on input features is calculated. PDs express the average effect of one input
feature on the modelled PM10 outcome while accounting for average effects of complement input
features (Friedman, 2001; Elith et al., 2008; Goldstein et al., 2015). The investigated input
feature is gridded and the corresponding average PM10 prediction is calculated with respect
to complement features, which are varied over their marginalized distributions (e.g., 1st–99th
percentile). Thus, PD plots reflect the mean change of average predicted PM10 concentrations
based on one input feature. The isolated effects of input features on the model response can be
evaluated and put into context regarding their significance to physical and chemical processes
determining PM10 concentrations (Grange et al., 2018).

Individual conditional expectation

PD plots reflect the mean model response and neglect model heterogeneity. Model responses
to single data instances (i.e., one set of input features related to one PM10 observation) can be
unwrapped and bundled in one plot using the individual conditional expectation (ICE) approach.
ICE plots reflect individual predicted responses as a function of one data instance depending on
correspondent feature observations. Model responses are computed by keeping the complement
features constant while the investigated feature varies, thus creating new data instances and
predictions from the model. The average over all ICE lines yields the PD plot, allowing model
heterogeneity and mean model response to be depicted simultaneously (Goldstein et al., 2015).

3.3 Results and discussion

3.3.1 Model performance

The overall model performance is shown in Fig. 3.3, depicting observed PM10 vs. predicted
PM10 for the validation data. The full-year model explains 77 % of the variance. The slope (0.76)
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shows a slight overestimation of low PM10 concentrations as well as an underestimation of high
PM10 concentrations. Presumably, the underestimation is due to processes not captured by the
input features, i.e., street-scale processes not covered by AOD observations but still influencing
PM10 observations, such as increased PM10 emissions due to traffic jams or localized dust
resuspension. In addition, the model possibly tends to underestimate higher PM10 observations,
because most valid data points are available for medium to low PM10 concentrations. Thus,
the model is optimized to best reproduce these observations. This tendency was reduced by the
choice of the least squares loss function as described in section 3.2, but likely still continues to
affect the model accuracy. The model performance is comparable to similar studies, also in its
underestimation of PM (Hu et al., 2017; Stafoggia et al., 2017; Grange et al., 2018; Zhang et al.,
2018). Tenfold random train/test splits were conducted, resulting in ten models. Validation of these
models revealed very similar performances, which is why only one model is shown and used for
subsequent model analysis. Applying the leave-location-out split approach slightly deteriorated
model performance. Depending on the restrained stations, R2 ranged from 0.5-0.7. The model is
considered as adequate to be used for further investigations. Nevertheless, note that high PM10
values tend to be underestimated by the model (see Fig. 3.3). The spatial distribution of the model
skill is shown in the scientific appendix B (Fig. B.1 and Fig. B.2).
Model performances vary seasonally (see Fig. 3.4). The model performs best in winter and spring
with high R2 values (0.77) and low NRMSEs (0.32 and 0.3), while R2 is lowest in summer with
an R2 of 0.63 and a slightly increased NRMSE of 0.34. PM10 concentrations generally show less
variance in summer, which reduces the RMSE, but possibly provides the model less variance to
learn from and deteriorates its skill (i.e., R2). Obviously, processes governing PM10 concentrations
in summer are not as well captured by the model. This will be further addressed in the following
chapters.

3.3.2 Information content of input features

Temperature (anomaly and absolute), AOD, 3-day mean east-west wind component, DOY and
BLH are of high importance to the model (see Fig. 3.5). The importance of the DOY suggests that
the model captures the seasonality of PM10 concentrations, which are higher in winter and lower
in summer. The relatively high importance of AOD and the good model performance emphasize
the suitability of AOD to infer on PM10 concentrations when additional parameters are taken into
account. A comparison to similar studies, e.g., by Grange et al. (2018); Park et al. (2019), reveals
comparable relative feature importances of AOD, solar radiation (Park et al., 2019), DOY and BLH
(Grange et al., 2018; Park et al., 2019). The high importance of the 3-day mean of the east-west
wind component found in this study aligns with the high importance of the back trajectory clusters
in the study by Grange et al. (2018). Both parameters reflect regional particle transport. However,

59



3 Mapping and understanding PM10 patterns using AOD and environmental conditions

Figure 3.3: Scatter plot showing the full-year model predictions for hourly PM10 concentrations. Also shown are coefficient of
determination (R2), slope (red dotted line) and root mean squared error (RMSE). The color range from black (high) to
orange (low) indicates the frequency of occurrence. The relatively high R2 shows that the model covers the majority of
occurring variance. However, an underestimation of higher PM10 concentrations leads to a lower slope.

there is a discrepancy regarding the importance of wind speed and temperature. Wind speed is
considered as instantaneous wind components in this study, which have limited importance. While
the importance of absolute air temperature is comparable, the high importance of temperature
anomalies found here shows that the approach of splitting temperature information into absolute
values and anomalies as pursued in this study provides additional information to the model. Since
comparing feature importance values can provide only limited insights into processes behind air
pollution patterns, further quantitative analyses are presented in the following chapters using the
ICE approach.
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3.3 Results and discussion

Figure 3.4: Scatter plot showing seasonal model predictions for hourly PM10 concentrations. Also shown are seasonal R2 , slope
(red dotted line), normalised RMSE (NRMSE) and RMSE. The NRMSE was calculated by dividing the RMSE by the
mean of the corresponding seasonal subgroup of PM10 observations. Colors as in Fig. 3.3.
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Figure 3.5: Relative importance of input features based on repeated permutation (see section 3.2). The range represents the
standard deviation. Abbreviations correspond to those shown in Tab. 3.1.

3.3.3 Model sensitivity

Mesoscale wind information

The PD of the 3-day mean east-west wind component shows a consistent pattern throughout
all seasons. Positive values (i.e., prevailing western direction of inflow) are associated with
reduced concentrations of PM10, whereas a negative east-west wind component (i.e., winds from
the east) is associated with increased model PM10 concentrations (Fig. 3.6). For the full-year
model the maximum difference in mean PM10 predictions is ∼10 µg/m3, while in winter, the
maximum difference is ∼20 µg/m3. These numbers agree well with results from van Pinxteren
et al. (2019), who quantified the influence of eastern air-masses on eastern Germany. They found
the contribution of trans-boundary transport from eastern European countries to be 13 µg/m3 on
average, depending on meteorological conditions. Air masses from continental eastern Europe tend
to transport higher amounts of particles, whereas western, more maritime air tends to be cleaner
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due to precipitation along the trajectories of air masses. Source regions of PM10 include industrial
and residential areas in Poland and the Czech Republic with heavy industries or extensive usage of
solid fuels for residential heating (Kiesewetter et al., 2015; Reizer and Juda-Rezler, 2016; Beloconi
et al., 2018; van Pinxteren et al., 2019). Results by Grange et al. (2018) also show increased values
of PM10 for northern and northeastern wind directions, although to a lesser extent. In winter, the
effect of particle transportation is strongest, presumably due to increased emissions from domestic
heating in eastern Europe (Reizer and Juda-Rezler, 2016; van Pinxteren et al., 2019). A slight
increase in modelled PM10 at low values of instantaneous east-west wind components is visible
(see Fig. 3.7). This could indicate insufficient mixing of the atmosphere, which would lead to
an accumulation of particles near ground (Chudnovsky et al., 2013b). Overall, instantaneous
wind information has little influence on the model, causing the PD to remain relatively constant.
The relatively constant PD of instantaneous wind information implies little influence on PM10
predictions. This suggests that wind information needs to be extended to a longer time scale
to influence PM predictions. As shown in Grange et al. (2018), wind speed aggregated for a
daily period can substantially influence PM10 concentrations, with lower speeds causing higher
concentrations. Park et al. (2019) also found the maximum wind speed of previous three hours to
be of importance for their statistical predictions of PM10. The north-south wind component PDs
(instantaneous and 3-day) do not provide clear trends.

BLH and CAPE

The PD of BLH shows that the model is able to reproduce the pattern of decreasing particle
concentrations with increasing BLH (Gupta and Christopher, 2009b; Wagner and Schäfer, 2017).
The shape of the full-year PD of BLH shown in Fig. 3.8d is similar to that provided by Grange
et al. (2018) for observations in Switzerland. They found a reduction of ∼8 µg/m3 for daily PM10
predictions. A reduction in mean PM10 predictions of ∼10 µg/m3 for situations with higher BLH
can be seen in Fig. 3.8a. This similarity is encouraging and proves the robustness of the modelling
approach, since both studies use ERA-Interim BLH in a comparable geographic setting.
For BLH values above ∼800 m, the PD remains constant, i.e., the influence of the boundary
layer on PM concentrations stagnates (Liu et al., 2018). Mean modelled PM10 concentrations
increase slightly in conditions with very high BLH (>2,000 m). This pattern could be related to
the formation of a deep, convective boundary layer coinciding with high temperatures, enhancing
the formation of secondary aerosols (Grange et al., 2018). The abundance of radiation, high
temperatures, and precursor gases at excess concentrations would be needed therefore (Fuzzi et al.,
2015). Indeed, the pattern is most prominent in summer, when these prerequisites are most likely
to be met. The PD of BLH in summer is almost constant, i.e., little information is provided to
the model. Fig. 3.8d reflects a shift of the frequency of occurrence of data points towards higher
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Figure 3.6: Partial Dependence plot showing the mean model response to changes in 3-day mean east-west wind component [m/s]
as bold lines for the full-year model (a) and each season separately (b–e, DJF, MAM, JJA, SON). Shaded areas show
the range of the Individual Conditional Expectation (ICE) lines (10th to 90th percentiles). The horizontal distance of
dots on the bold line indicates the distribution of valid data points. Negative (positive) values represent dominant inflow
of eastern (western) air masses.

BLH: during summer months, medium to high BLHs are more likely to occur due to enhanced
convection. As mentioned before, a BLH above 800 m provides only little information to the
model, thus reducing its predictive ability. The accumulation effect of a lower BLH is most
pronounced in winter with increased mean PM10 predictions of almost 20 µg/m3. In addition,
PM10 emissions are expected to be higher in wintertime due to combustion of solid fuels for
domestic heating. This has been shown for Eastern European countries (Reizer and Juda-Rezler,
2016; van Pinxteren et al., 2019), and likely influences PM10 concentrations in Germany. Thus,
with higher locally produced or advected PM10 emissions, the accumulation effect of a low BLH is
more distinct in winter than in summer, where reduced emissions are expected and an accumulation
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Figure 3.7: PD plot showing the mean model response to changes in east-west wind component [m/s] as bold lines for the full-
year model (a) and each season separately (b–e, DJF, MAM, JJA, SON). Negative (positive) values represent dominant
inflow of eastern (western) air masses. Description as in Fig. 3.6.

of particles is not expected (Wagner and Schäfer, 2017). A dependence of model PM10 on CAPE
could not be identified using the PD approach.

Two-way PD: umean and BLH

Depicting the PD of BLH and the 3-day mean east-west wind component simultaneously allows
for the quantification of particularly high-polluted situations, considering combined effects of both
features. A probability density function (PDF) using Gaussian kernel density estimates is added
to provide a qualitative estimate of the frequency of occurrence of PD values. Values outside
the PDF-estimation as shown in Fig. 3.9 are extrapolated based on the trained model and do not
represent observed data.
The two-way PD suggests mean modelled PM10 concentrations double due to changes in BLH and
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Figure 3.8: PD plot showing the mean model response to changes in instantaneous BLH [m] for the full-year model (a) and each
season separately (b–e, DJF, MAM, JJA, SON). Description as in Fig. 3.6.

wind flow, referring to the full-year model. Highest mean predictions (∼35 µg/m3) are modelled
when eastern winds coincide with shallow boundary layers, whereas lowest mean predictions
occur during medium BLH and western winds (∼17 µg/m3). Note that due to the tendency of the
model to underestimate high PM10 levels, concentrations could be higher in reality. Patterns differ
seasonally. In winter, highest mean PM10 predictions surpass 45 µg/m3 during shallow BLH-
conditions and wind flow from the east. In summer, this is not the case. As mentioned in chapter
3.3.3, there is indication of elevated PM10 concentrations during very high BLH (∼>2,000 m)
conditions, coinciding with eastern wind flow. Highest mean predictions in summer do not surpass
∼22 µg/m3 (within the limits of the PDF estimation).
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Figure 3.9: Two-way PD of umean and BLH, full-year model (a) and seasonal models (b–e, DJF, MAM, JJA, SON). Similar to the
previously shown PD, the two-way PD shows the mean modelled PM10 (color-coded from light orange to black) to the
isolated effects of umean and BLH. On top of the PD-isolines, a probability density function (PDF) using Gaussian
kernel density estimates is added to indicate the qualitative frequency of occurrence of values from high (yellow) to low
(dark blue).
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Thermal influence on PM10

In spring, summer, and autumn, positive temperature anomalies cause a marked increase of mean
model PM10 predictions (Fig. 3.10). Presumably, higher temperatures in spring and summer
(Figs 3.10c, 3.10d) reflect enhanced biogenic activity, as vegetation is generally more active at
higher temperatures. Consequently, emissions of primary particles such as debris or pollen and
the emission of BVOCs are stimulated (Laothawornkitkul et al., 2009). With higher BVOC
emission, an enhancement of secondary SOA formations is leveraged (Megaritis et al., 2013;
Churkina et al., 2017). In addition to increased biogenic activities, higher temperatures cause
the soil to dry up more quickly, thus increasing dust emissions (Hoffmann and Funk, 2015). In
winter, positive anomalies have very little effect on predicted PM10 concentrations (Fig. 3.10b).
This supports these hypotheses, since neither increased biogenic activity nor dried-up soils are
to be expected in winter. Higher temperatures could reflect increased photochemical oxidation
processes, which trigger photochemical reactions leading to new particle formation processes
(Birmili and Wiedensohler, 2000; Größ et al., 2018). However, there was no trend in the partial
dependence of SSRD, which shows a weak influence of SSRD on PM10 predictions (see scientific
appendix C, Fig. C.1). Note however that the lacking influence of SSRD could also be due to
the fact that this study is confined to cloud-free situations due to the availability of AOD. The
variation of SSRD would be higher when including cloudy days, which would likely improve the
information content provided to the model by including SSRD. Another possible explanation for
increased PM10 concentrations at higher temperatures could be that these situations are associated
with stable synoptic conditions (at least in spring, summer, and autumn), causing particles to
accumulate in the atmosphere. PD trends for instantaneous temperature (Fig. 3.11) are inverse
to those described for temperature anomalies. The full-year model PD shows a decrease in
predicted PM10 concentrations for higher temperatures. Presumably, instantaneous temperature
reflects the annual cycle of PM10 (similar to DOY), which is why the seasonal PDs show no
trends. PD of air temperature as presented in Grange et al. (2018) reveal a different pattern. In
their study, temperatures below freezing are associated with high PM10 concentrations, medium
temperature in the range of 0–15 ◦C with low PM10 concentrations and temperature above 15 ◦C
with high PM10 concentrations. However, when combining the effects of temperature anomalies
and temperature presented in Figs 3.10 and 3.11, the emerging pattern would be similar. This
suggests that the model presented in this study is able to discriminate between the seasonal
component of temperature and the immediate effect of temperature on particle emissions, e.g.,
due to new particle formation (Birmili and Wiedensohler, 2000; Bressi et al., 2013; Petetin et al.,
2014; Größ et al., 2018).

68



3.3 Results and discussion

Figure 3.10: PD plot showing the mean model response to changes in temperature anomalies [K] for the full-year model (a) and
each season separately (b–e, DJF, MAM, JJA, SON). Description as in Fig. 3.6.

RH, precipitation

Increased RH is associated with higher PM10 predictions (see Fig. 3.12). This is likely related to
an increase in AOD due to aerosol swelling in humid conditions (Wang, 2003; Crumeyrolle et al.,
2014)
Other than increasing AOD, the importance of RH could also be related to a correlation between
BLH and RH (see PDF-estimate in Fig. 3.13). Higher RH reduces the magnitude of turbulent
vertical flux and subsequently reduces the BLH (Adamopoulos et al., 2007; Petäjä et al., 2016),
which in turn could increase PM10 predictions. On the other hand, vertical transport of water vapor
is impeded by a low BLH, which increases RH and stimulates formation of aqueous secondary
aerosols (Liu et al., 2018). To analyse the influences of BLH and RH on predicted PM10, the two-
way PD of RH and BLH is calculated (see Fig. 3.13). It shows a changing pattern with increasing
RH, visible in a change of line structure orientation from vertical to more horizontal in the two-
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Figure 3.11: PD plot showing the mean model response to changes in instantaneous temperature [◦C] for the full-year model (a)
and each season separately (b–e, DJF, MAM, JJA, SON). Description as in Fig. 3.6.

way PD plot. While BLH dominates during shallow boundary layer conditions (vertical lines), the
influence of RH is more prominent at higher BLH values (horizontal lines). This pattern points to
an influence of RH on PM10 predictions, which is decoupled from the BLH, as the influence of
BLH above 800 m is marginal. A similar pattern is found for all seasons except for summer. In
summer, the model outcome does not show any response to changes in BLH, as there are rarely
any BLH values below 800 m (see scientific appendix D, Fig. D.1). A study by Belle et al. (2017)
conducted in the United States found RH to have positive impact on PM2.5 concentrations during
cloud-free conditions due to an increase in sulfate and nitrate masses. However, they found PM2.5
to decrease with increasing RH during cloudy conditions.
The more time passed since the last precipitation event, the higher the PM10 prediction tends to
be, reflecting the accumulation of local emissions in the atmosphere. The influence of this effect
on the model is not pronounced and stagnates from about 100 hours (see scientific appendix C,
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Figure 3.12: PD plot showing the mean model response to changes in RH [%] for the full-year model (a) and each season separately
(b–e, DJF, MAM, JJA, SON). Description as in Fig. 3.6.

Fig. C.2). The magnitude of the last precipitation event and accumulated precipitation of last 24 h
were not included in the model due to lacking importance as determined in the feature selection
(see chapter 3.2). Note however that the low importance of precipitation could be related to the
consideration of only cloud-free days in this study. Thus, the immediate effect of rainfall on
particles in the atmosphere cannot be investigated. In addition, possible effects of precipitation
along the trajectories of advected air masses are not covered.

NDVI, Corine Land Cover and spatiotemporal factors

The NDVI was of minor importance for the prediction of PM10 concentrations. No trends or
seasonal differences were found by application of the PD approach. However, with increasing
number of pixels in the vicinity of a PM station classified as agricultural areas (2CLC), PM10
concentrations tend to be higher. Likely, this is related to primary emission of dust from arable
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3 Mapping and understanding PM10 patterns using AOD and environmental conditions

Figure 3.13: Two-way PD of RH and BLH, full-year model. Description as in Fig. 3.9.

lands and the application of fertilizers (NH3), which constitute important precursors for secondary
particle formation (Hoffmann and Funk, 2015; Wagner et al., 2015). For the other land cover
classes, no trends were found using the PD approach. Lower PM10 concentrations are predicted
on Saturdays and Sundays, indicating that reduced anthropogenic activity (less traffic, reduced
industrial production) has an immediate effect on PM10 concentrations. Increasing altitude
slightly reduces the mean PM10 prediction, possibly due to lower population density and more
effective pollution dispersion processes (Hu et al., 2014; Beloconi et al., 2018). The PDs of NH3,
continentality, PM10 mean annual emissions and of the TPI do not show a distinct trend. SO2 was
excluded from the model during the feature selection process.

3.3.4 Determinants of the relationship between AOD and PM10

The full-year model and the seasonal models associate increasing AOD with increasing PM10 (see
Fig. 3.14). This pattern is less distinct in summer (except for very high AOD) when particles are
generally more dispersed within a well-mixed boundary layer and the AOD is largely determined
by particles higher up in the atmosphere, thus weakening the relation between AOD and PM10.
The relationship between AOD and PM10 is not bivariate and can be modified by ambient
meteorology (Guo et al., 2009; Gupta and Christopher, 2009b; Sorek-Hamer et al., 2017; Stirnberg
et al., 2018). A quantification of this effect is approached here by using the two-way PD method.
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3.3 Results and discussion

Figure 3.14: PD plot showing the mean model response to changes in AOD for the full-year model (a) and each season separately
(b–e, DJF, MAM, JJA, SON). Description as in Fig. 3.6.

The two-way PD of AOD and BLH reveals a dependence of the model on both AOD and BLH
(see Fig. 3.15). The importance of interactive effects of these features can be illustrated by the
following example: assume an AOD of 0.2 and BLH of 2,000 m versus an AOD of 0.2 and BLH
of 200 m. In the latter case, the mean predicted PM10 concentration is ∼10 µg/m3 higher as the
aerosol content determining AOD is closer to the ground and thus more relevant for the PM10
prediction. In other words, a prediction based on AOD (assuming that AOD is largely determined
by attenuation in the boundary layer (Schäfer et al., 2008)) alone would lead to erroneous PM10
predictions, as AOD does not fully capture the particle accumulation effect of a shallow boundary
layer (Stirnberg et al., 2018). Similar effects can be observed for the two-way PD of AOD and
the 3-day mean east-west wind component (see Fig. 3.16) and for the two-way PD of AOD and
temperature anomalies (plot not shown). The two-way PD of AOD and BLH shows only a minor
seasonal pattern, which is mostly driven by BLH (see scientific appendix D, Fig. D.2).
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3 Mapping and understanding PM10 patterns using AOD and environmental conditions

Figure 3.15: Two-way PD of AOD and BLH, full-year model. Description as in Fig. 3.9.

Figure 3.16: Two-way PD of AOD and umean, full-year model. Description as in Fig. 3.9.
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3.4 Specific conclusions

Westerly wind flow (positive umean) leads to substantially lower PM10 predictions when
compared to similar AOD values in situations dominated by easterly wind flow (negative umean).
The two-way PD suggests this effect to be as large as ∼8 µg/m3 (see Fig. 3.16). Air masses
from the east possibly carry a higher amount of near-ground particles (Bonn et al., 2016; Reizer
and Juda-Rezler, 2016; Beloconi et al., 2018), affecting PM10 observations more strongly than
AOD. Another reason for the observed effect could be that western air masses carry a relatively
large amount of sea salts with a high hygroscopic growth factor. By effectively taking up
water, these constituents enhance light scattering, thus increasing AOD without increasing PM10
measurements (Zieger et al., 2013, 2014; Stirnberg et al., 2018). The seasonality for the two-way
PD of AOD and umean is weak (see scientific appendix D, Fig. D.3)

3.4 Specific conclusions

A machine learning model is used to advance the understanding of drivers of near-ground PM10
and the capability to use satellite AOD to infer on PM10. Parameters pertaining to meteorology,
land cover, and satellite-based AOD are considered and related to hourly PM10 concentrations.
The model performs well (overall R2 of 0.77, RMSE = 7.44 µg/m3) and provides a basis to assess
sensitivities. These allow for the isolation and quantification of effects of ambient conditions
on PM10. Overall, the model is more sensitive to meteorological conditions than to land cover
parameters. BLH, east-west winds, DOY, temperature, and RH are identified as the important
driving factors of PM10 variations. Representing regional particle transport, the 3-day mean of
the east-west wind component substantially modifies PM10 concentrations, depending on the
direction of inflow. Eastern inflow generally increases PM10 concentrations. Modelled PM10
concentrations were also increased during higher than average temperatures. Possibly, this is due
to stimulated vegetation activity, increasing primary particle and precursor gas emissions. The
influence of BLH is most prominent at very low (∼<500 m) values. However, there is indication
that very high BLH values (∼<2,500 m) influence PM10 concentrations as well. While the former
threshold marks the effects of particle accumulation within a shallow boundary layer, the latter
threshold could indicate the formation of a deep boundary layer with stimulated formation of
secondary aerosols as suggested by Grange et al. (2018). If BLH is between these thresholds, its
explanatory power is limited. In these situations, other processes determine PM10 concentrations.
Overall, the model outcome suggests that there are different meteorological boundary conditions
that potentially cause elevated PM10 concentrations in winter and summer (Fig. 3.17).
In winter, very shallow boundary layers, coinciding with multi-day easterly wind flow cause
highest mean PM10 predictions (>30 µg/m3). Mean PM10 predictions for these conditions are
as high as 40 µg/m3 (see Fig. 3.9). This is probably related to higher anthropogenic emissions in
winter and frequently low BLH.
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Figure 3.17: Schematic representation of different processes driving high pollution situations in winter (left) and summer (right).

In summer, higher temperatures associated with increased formation of secondary aerosols and
coinciding with multi-day easterly wind flow lead to mean predicted PM10 concentrations
>27 µg/m3 (plot not shown). High PM10 concentrations in summer appear to be largely uncoupled
from changes in BLH (see Fig. 3.8d). The model R2 decreases in summer, suggesting that the
statistical model does not as well resolve these processes. In addition, the relationship between
AOD and PM10 is weaker in summer.

Results presented in this study suggest that meteorology plays a substantial role in the development
of high pollution situations. This has potential implications for plans towards better air quality in
high-polluted areas, as meteorological conditions need to be taken into account, e.g., for temporary
traffic bans. In addition, there is a need to introduce measures to reduce air pollution on a regional
scale. Measures limited to city scales can only decrease pollution levels associated with local
emission sources, which can be superimposed by transported particles.
The importance of AOD for the statistical model highlights the suitability of AOD for air quality
studies. However, potential implications and limitations for the use of satellite AOD for air quality
studies are described. This study has shown that satellite-derived AOD can be used to infer street-
level PM10 concentrations, if ambient meteorological conditions are taken into account explicitly.
In particular, temperature anomalies, the east-west regional wind component and BLH modify
the relationship between PM10 and AOD. A drawback of including AOD is the restriction to
cloud-free situations, which potentially introduces a bias due to non-random data gaps (Belle
et al., 2017). Depending on the situation and location, both an over- or underestimation of PM10
could be the consequence (Belle et al., 2017). In addition, the influence of certain meteorological
variables could be underestimated due to important processes under cloudy conditions, which are
not covered (Belle et al., 2017; Brokamp et al., 2018).



3.4 Specific conclusions

The use of GBRT proved fruitful to understand interconnected processes and the approach
presented here can be potentially expanded to other research questions focusing on the
understanding multivariate processes. Future efforts will further address the determination of
mechanisms leading to high pollution events using machine learning not only for total PM10
concentrations, but for individual aerosol species.
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4 Meteorology-driven, local-scale variability of
PM1

4.1 A case study on drivers of air pollution in suburban Paris

In chapter 3 it is shown that meteorology is a major driver of PM10 concentrations on a regional
scale. In this chapter, an advancement of the scientific understanding of processes leading to high
pollution events is targeted. The scale is narrowed to a case-study setup, allowing to resolve
atmospheric processes at a high level of detail. Fine-mode particle concentrations (PM1) are
related to local meteorological conditions, and differences between the main chemical constituents
are shown. Excluding the coarse particle fraction, the importance of transformation processes and
new particle formation processes can be analysed with high accuracy under various atmospheric
conditions, as these are more relevant for the fine-mode fraction (see section 1.2).
Measurements at the SIRTA supersite southwest of Paris are used for the analysis. The site provides
both meteorological and PM-data and is representative for suburban conditions (Haeffelin et al.,
2005). The metropolitan area of Paris is one of the most densely populated and industrialised
areas in Europe. Thus, air quality is a recurring issue and has been at the focus of studies in
the past years (Bressi et al., 2014; Petetin et al., 2014; Petit et al., 2015; Dupont et al., 2016;
Petit et al., 2017; Srivastava et al., 2018). Results indicate that the Paris metropolitan region is
often affected by mid- to long-range transport of pollutants, as due to the city’s flat terrain, an
efficient horizontal exchange of air masses is frequent (Bressi et al., 2013; Petit et al., 2015).
High-pollution events often occur in late autumn, winter, and early spring. Often, these episodes
are characterised by stagnant atmospheric conditions and a combination of local contributions,
e.g., traffic emissions, residential emissions, or regionally transported particles, e.g., nitrates from
manure spreading, or sulfates from point sources (Petetin et al., 2014; Petit et al., 2014, 2015;
Srivastava et al., 2018). Air masses originating from continental Europe (Belgium, Netherlands,
western Germany) generally enhance particle concentrations, especially of SIA (Bressi et al., 2013;
Srivastava et al., 2018). Hence the variability between high-pollution episodes in terms of timing,
sources and meteorological boundary conditions is considerable (Petit et al., 2017).
A GBRT model is set up to predict PM1 and localised and individualised attributions of feature
contributions are performed using SHapley Additive exPlanation regression (SHAP) values
(Lundberg and Lee, 2017; Lundberg et al., 2018a, 2020). With the use of SHAP values, a

78



4.2 Data and methods

detailed insight to the decisions of the statistical model can be provided (Lundberg et al., 2018a).
The attribution of situation-based statistical feature contributions enables quantitative estimates
of drivers of PM concentrations and allows to infer on processes driving PM concentrations
at high temporal resolution. Building on existing literature, the contribution of meteorological
parameters to high PM1 concentrations are quantified and different processes driving peak particle
concentrations are highlighted. Although the analysis is conducted on a local scale, the results are
also relevant for other regions and have implications for large-scale studies, e.g., by improving the
description of meteorology-dependent variations of PM concentrations in physical models.

4.2 Data and methods

Data sets

Seven years (2012–2018) of meteorological and air quality data from the Site Instrumental de
Recherche par Télédétection Atmosphérique (SIRTA, Haeffelin et al., 2005) supersite are the
basis of this study. The SIRTA Atmospheric Observatory is located about 25 km southwest of
Paris (48.713 ◦N and 2.208 ◦E, Fig. 4.1). This study focuses on day-to-day variations of total and
speciated PM1. To separate diurnal effects e.g., the development of the boundary layer during
morning hours (Petit et al., 2014; Dupont et al., 2016; Kotthaus and Grimmond, 2018a) from day-
to-day variations of PM1, mean concentrations of total and speciated PM1 for the afternoon period
12–15 UTC are considered. The diurnal cycle of PM concentrations is thus not included in the
data. In section 4.2, the PM1 and meteorological data and preprocessing steps before setting up
the machine learning model are described. A description of the applied machine learning model
and data analysis techniques follows.

Submicron particle measurements

Aerosol chemical speciation monitor (ACSM, Ng et al., 2011) measurements are conducted at
SIRTA. Species measured include Org, NH+

4 , SO2−
4 , NO−

3 , and Cl−. In addition, BC is monitored
by a seven-wavelength Magee Scientific aethalometer (model AE31, Petit et al., 2015), which
provides measurements of BC, divided into BCff and BCwd. As an additional input to the machine
learning model, the fraction of NO−

3 of the previous day is added (NO3_frac). Pollution events
dominated by NO−

3 are often linked to regional-scale events, which depend on anthropogenically-
influenced processes in the source regions of NO−

3 precursors (Petit et al., 2017). This is
approximated by the inclusion of the fraction of NO−

3 of the previous day.
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4 Meteorology-driven, local-scale variability of PM1

Figure 4.1: Location of the SIRTA supersite southwest of Paris. © OpenStreetMap contributors 2020. Distributed under a Creative
Commons BY-SA License.

Meteorological data

Meteorological variables included in this study are air temperature (in 2 m height, T), relative
humidity (RH), air pressure (AirPres), precipitation, wind speed (ws), wind direction (u, v) and
total incoming solar radiation (TISR). Data are taken from a quality-controlled and 1 h averaged
dataset. Further information on the instrumentation used for the acquisition of these variables
is provided in Chiriaco et al. (2018). BLH is derived from automatic lidar and ceilometer
measurements of a Vaisala CL31 ceilometer using the CABAM algorithm (characterising the
atmospheric boundary layer based on automatic lidar and ceilometer measurements, Kotthaus
and Grimmond, 2018a,b). Due to an instrument failure, during the period July to mid-November
2016, SIRTA ALC measurements had to be replaced with measurements conducted at the Paris
Charle de Gaulle Airport, which is located northeast of Paris.
Meteorological factors are chosen as input features for the statistical model based on findings
of previous studies (see section 1.2). Meteorological observations are converted to suitable input
information for the statistical model (see section 4.2). Wind speed (ws) is calculated from the u and
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v components [m/s] and the maximum wind speed of the afternoon period is included in the model.
U and v wind components are then normalised to values between 0 and 1, thus only depicting the
direction information. To reduce the impact of short-term fluctuation in wind direction, the 3-day
mean wind direction is calculated based on the normalised u and v wind components (umean and
vmean). Hours since the last precipitation event (Precip_tsince) are counted and used as input to
capture the particle accumulation effect between precipitation events (Rost et al., 2009; Petit et al.,
2017).

Methods

Machine learning model: technique and application

GBRT (used in a python 3.6.4 environment with the scikit-learn module, Friedman, 2002;
Pedregosa et al., 2012) are applied to predict daily total and speciated PM1 concentrations. A
detailed description of the functionally of GBRT models is provided in section 3.2.
Characteristics of the meteorological training data set with respect to observed total and speciated
PM1 concentrations are conveyed to the statistical model. The learned relationships are then used
for model interpretation and to produce estimates of PM1 based on unseen meteorological data
to test the model. Model hyperparameters are tuned by executing a grid search, systematically
validating testing previously defined hyperparameter combinations and determining the best
combination via a three-fold cross validation. Note that PM1 data are not normally distributed,
i.e., there is more data available for mid-range concentrations. To avoid that the model primarily
optimizes its predictions on these values, a least-squares loss function was chosen, which is more
sensitive to higher PM1 values (i.e., outliers of the PM1 data distribution).
For each PM species, a specific GBRT model is set up and used for the analysis of meteorological
influences on individual PM1 species (see section 4.3.2). Additionally, a quasi-total PM1 model
is used to predict the sum of all species at once, which is used for an analysis of meteorological
drivers of high-pollution events (see sections 4.3.3 and 4.3.4). Train and test data sets to evaluate
each model are created by randomly splitting the full data set. These splits, however, are the
same for the species models and the full PM1 model to ensure comparability between the models.
Three quarters of the data are used for training and hyperparameter tuning with cross-validation
(n=1086), and one quarter for testing (n=363). In addition, the robustness of the model results is
tested by repeating this process ten times, resulting in ten models with different train- / test-splits
and different hyperparameters.
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Explaining model decisions: SHapley Additive exPlanation (SHAP) values

While being powerful predictive models, tree-based machine learning methods also have a high
interpretability (Lundberg et al., 2020). In order to understand physical mechanisms on the
basis of model decisions, the contributions of the meteorological input features to the model
outcome are analysed. Feature contributions are attributed using SHAP values, which allow for
an individualised, unique feature attribution for every prediction (Shapley, 1953; Lundberg and
Lee, 2017; Lundberg et al., 2018a, 2020). SHAP values provide a deeper understanding of model
decisions than the relatively widely used partial dependence plots (Friedman, 2001; Goldstein
et al., 2015; Fuchs et al., 2018; Lundberg et al., 2018a; McGovern et al., 2019; Stirnberg et al.,
2020). Partial dependence plots show the global mean effect of an input feature to the model
outcome, while SHAP values quantify the feature contribution to each single model prediction,
accounting for multicollinearity. Feature contributions are calculated from the difference in model
predictions with that feature present, versus predictions for a retrained model, without the feature.
Since the effect of withholding a feature depends on other features in the model due to interactive
effects between the features, differences are computed for all possible feature subset combinations
of each data instance (Lundberg and Lee, 2017).
Summing up SHAP values for each input feature at a single time step yields the final model
prediction. SHAP values can be negative since SHAP values are added to the base value, which
is the mean prediction when taking into account all possible input feature combinations. Negative
(positive) SHAP values reduce (raise) the prediction below (above) the base value. The higher
the absolute SHAP value of a feature, the more distinct is the influence of that feature on the
model predictions. The sum of all SHAP values at one time step yields the final prediction of
PM1 concentrations. An example of breaking down a model prediction into feature contributions
using SHAP values is shown schematically in Fig. 4.2. The computation of traditional Shapley
Regression values is time consuming, since a large number of all possible feature combinations
have to be included. The SHAP framework for tree-based models allows a faster computation
compared to full shapley regression values while maintaining a high accuracy (Lundberg and Lee,
2017; Lundberg et al., 2018a) and is therefore used here. The shap python implementation is used
for the computation of SHAP values (https://github.com/slundberg/shap).
Pairwise interactive effects between input features can be estimated using the SHAP approach.
Interactive effects are defined as the difference between the SHAP values for one feature when a
second feature is present and the SHAP values for the one feature when the other feature is absent
(Lundberg et al., 2018a). SHAP values are a novel tool to better understand multivariate natural
systems, in particular when applied in state-of-the-art machine learning models as GBRT. So far,
SHAP values have been used in the field of medical science (Lundberg et al., 2018b; Li et al.,
2019a; Lundberg et al., 2020), but have yet to be applied to study environmental systems.
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Figure 4.2: Conceptual figure illustrating the interaction of SHAP values and model output. Starting with a base value, which
is the mean prediction if all data points are considered, positive SHAP values (blue) increase the final prediction
of total and speciated PM1 concentrations, while negative SHAP values (red) decrease the prediction. The sum
of all SHAP values for each input feature yields the final prediction. Depending on whether positive or negative
SHAP values dominate, the prediction is higher or lower than the base value (Lundberg et al., 2018b). Adapted from
https://github.com/slundberg/shap.

4.3 Results and discussion

4.3.1 Model performance

The performance of the ten model iterations is assessed by comparing the coefficient of
determination (R²) and normalised root mean square error (NRSME) for independent test data
(Fig. 4.3). While the models for BCwd, BCff and total PM1 show small spread, Cl− and NO−

3

exhibit larger variations between model runs (indicated by horizontal and vertical lines in Fig. 4.3).
This suggests that while drivers of BCff concentration variations are well covered by the model,
this is less so in the case of Cl− and NO−

3 . Possible reasons for this are that no explicit information
on anthropogenic emissions or chemical formation pathways are included in the models. Still,
the model performance indicators highlight that a large fraction of the variations in particle
concentrations are explained by the meteorological variables used as model inputs. Performances
of model iterations of the species-specific and total PM1 are generally similar, suggesting a robust
model outcome.
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Figure 4.3: Performance indicators for ten model iterations: coefficient of determination R2 against normalised Root Mean Squared
Error (NRMSE) for the separate species models and the total PM1 model. Vertical and horizontal lines indicate the
maximum spread in R2 and NRMSE, respectively.

The mean input feature importance, ordered from high to low, of the total PM1 model run by means
of the SHAP feature attribution values is shown in Fig. 4.4, The NO−

3 fraction of the previous day
has the highest impact on the model, followed by temperature, wind direction information, and
BLH. Hence, the impact of these meteorological variables on model decisions is analysed in more
detail in the following.
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Figure 4.4: Ranked median SHAP values of the model input features, i.e., the average absolute value that a feature adds to the
final model outcome, referring to the total PM1 model [µg/m3] (Lundberg et al., 2018b). Horizontal lines indicate the
variability between model runs.

4.3.2 Sensitivity of PM1 species concentrations to changes in
meteorology

To gain insights on relevant processes governing particle concentrations in the Paris region,
the contribution of input features on species and total PM1 concentration predictions from the
statistical model, i.e., the SHAP values, are plotted as a function of absolute feature values (Figs
4.5–4.7). The contribution of an input feature to each prediction of the species or total PM1
concentrations is shown while taking into account intra-model variability. Intra-model variability
of SHAP values, i.e., different SHAP value attributions for the same feature value within one
model, is shown by the vertical distribution of dots for absolute input feature values. Intra-model
variability is caused by interactions of the different model input features.

Contribution of temperature

The impact of ambient air temperature on modelled species concentrations is highly non-linear
(Fig. 4.5). All species show increased contributions to predictions at temperatures below
∼4 ◦C while the contribution of high temperatures on model predictions differs substantially
between species. The statistical model is able to reproduce well-known characteristics of species
concentration variations related to temperature. For example, sulfate formation is enhanced with
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increasing temperatures (Fig. 4.5d) due to an increased oxidation rate of SO2 (Dawson et al.,
2007; Li et al., 2017) and strong solar irradiation due to photochemical oxidation (Gen et al.,
2019). Dawson et al. (2007) reported an increase of 34 ng/m3K for PM2.5 concentrations using a
CTM. The increase in sulfate at low ambient temperatures is not reported in this study. It is likely
linked to increased aqueous phase particle formation in cold and foggy situations (Rengarajan
et al., 2011; Petetin et al., 2014; Cheng et al., 2016). Considerable local formation of nitrate at low
temperatures (Fig. 4.5b) is consistent with results from a previous study in the area by Petetin et al.
(2014). Enhanced formation of ammonium nitrate at lower temperatures (Fig. 4.5c) by the shifting
gas-particle equilibrium has been previously reported by Clegg et al. (1998); Pay et al. (2012);
Bressi et al. (2013); Petit et al. (2015). The increase in organic matter and BCwd concentrations
at low temperatures (Fig. 4.5g) is likely related to human behaviour, as biomass burning is often
used for domestic heating in the study area (Favez et al., 2009; Sciare et al., 2010; Healy et al.,
2012; Jiang et al., 2019). In addition, organic matter concentrations are linked to the condensation
of semi-volatile organic species at low temperatures (Putaud et al., 2004; Bressi et al., 2013).
The sharp increase in modelled concentrations of organics above 25 ◦C (Fig. 4.5a) could be due to
enhanced biogenic activity leading to a rise in biogenic emissions and secondary aerosol formation
(Guenther et al., 1993; Churkina et al., 2017; Jiang et al., 2019).
The contribution of temperature on modelled total PM1 concentrations (Fig. 4.5h) is consistent
with the response patterns to changes in temperatures described for the individual species in
panels 4.5a–g, with positive contributions at both low (<4 ◦C) and high air temperatures (>25 ◦C).
For temperatures below freezing, the model allocates maximum contributions to modelled total
PM1 concentrations of up to 12 µg/m3. The spread of SHAP values between model iterations
is generally higher for low temperatures (vertical grey bars in Fig. 4.5), where absolute values
are of greater magnitude, but in all cases the signal contained in the feature contributions far
exceeds the spread between model runs. The inter-model variability of the feature contribution
depends to some extent on the distribution of the different training data sets. This effect is
particularly pronounced for BCff, which shows very high variability at low temperatures. As
BCff concentrations depend on anthropogenic emissions, BCff predictions highly depend on the
diversity of emissions included in the training data.
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Figure 4.5: Air temperature SHAP values (contribution of temperature to the prediction of species and total PM1 concentrations
[µg/m3] for each data instance) vs. absolute air temperature [◦C]. Inter-model variability of allocated SHAP values
is shown as the variance of predicted values between the ten model iterations and plotted as vertical grey bars. The
dotted horizontal line indicates the transition from positive to negative SHAP values.

Contribution of BLH

Variations in BLH can have a substantial impact on near-surface particle concentrations, as
the mixed layer is the atmospheric volume in which the particles are dispersed (Klingner and
Sähn, 2008; Dupont et al., 2016; Wagner and Schäfer, 2017). The effect of BLH variations on
modelled particle concentrations is highly nonlinear for all species (Fig. 4.6), with the magnitude
of the contribution varying by species. Possible reasons for this will be discussed in the
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following. Similar to the pattern observed for temperature SHAP values, the inter-model variation
of predictions is highest for low BLHs since predicted particle concentrations then have the
highest variation. Contributions of BLH to predicted particle concentrations are highest for very
shallow mixed layers due to the accumulation of particles close to the ground under shallow BLH
conditions (Dupont et al., 2016; Wagner and Schäfer, 2017). A relatively distinct transition from
positive contributions during shallow boundary layer conditions (∼0–800 m) towards negative
contributions at high BLHs is evident for all species except SO2−

4 . Modelled SO2−
4 concentrations

(Fig. 4.6d) show a less distinct response to low BLHs as they are largely driven by point sources
and thus susceptible to particle advection, independent of BLH (Pay et al., 2012; Petit et al., 2014,
2015). The accumulation effect under low BLH conditions is hence less important. Furthermore,
an increase of SO2−

4 concentrations with higher BLHs (>∼ 1,500 m) could be due to a more
effective transport of SO2−

4 and its precursor SO2 under high BLH conditions (Pay et al., 2012).
In agreement with results from previous studies focusing on PM10 (Grange et al., 2018; Stirnberg
et al., 2020) or PM2.5 (Liu et al., 2018), SHAP values do not change much for BLH above
∼800–900 m, i.e., boundary layer height variations above this level do not strongly influence
submicron particle concentrations. Positive contributions for BLHs above ∼800–900 m have
been previously reported by Grange et al. (2018), who relate this pattern to enhanced secondary
aerosol formation in a very deep and dry boundary layer. The positive contributions of high BLHs
on SO2−

4 and organics could be explained following this argumentation. Processes driving the
positive contribution of high BLHs on BCff, however, remain inconclusive. For predicted total
PM1 concentrations, the maximum positive contribution of the BLH is as high as 5.5 µg/m3 while
negative contributions can amount to -2 µg/m3. While the maximum contribution by BLH is lower
than the maximum contribution determined for air temperature, the frequency of shallow BLH is
far greater than that of the minimum temperatures that have the largest effect (Figs 4.5d and 4.6d).
In addition to causing particles to accumulate near the surface, low BLH can also provide effective
pathways for local new particle formation. Secondary pollutants, such as nitrate and ammonium,
are increased at low BLHs as conditions favorable to the formation of nitrate usually coincide with
shallow BLH conditions (i.e., low temperatures, often in combination with high RH, Pay et al.,
2012; Petetin et al., 2014; Dupont et al., 2016; Wang et al., 2016). BC concentrations, however, are
mainly associated with primary emissions, as is a substantial fraction of organic matter (Petit et al.,
2015). Hence, the accumulation of these particles during low turbulence conditions can explain
the strong influence of BLH on BCwd and BCff.
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Figure 4.6: As Fig. 4.5 for BLH SHAP values (contribution of BLH to the prediction of species and total PM1 for each data instance)
vs. absolute BLH values [m].

Contribution of wind direction

To analyse the contribution of wind direction to predicted particle concentrations, SHAP values of
normalised 3-day mean u and v wind components were added up and transformed to degrees
(Fig. 4.7). Generally, contributions of wind are highest when winds from the northern to
northeastern sectors prevail, while negative values are evident for southwesterly directions. Given
the location of the measurement site, this pattern undoubtedly reflects the advection of particles
emitted in the urban area of Paris and from continental Europe versus cleaner marine air masses
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during southwestern inflow (Bressi et al., 2013; Petetin et al., 2014; Petit et al., 2015; Srivastava
et al., 2018). Increased concentrations of organic matter are predicted for northerly, northeasterly
and easterly winds (Fig. 4.7a). These patterns suggest a significant contribution of advected organic
particles from a specific wind sector. This is in agreement with the findings of Petetin et al.
(2014) who estimated that 69 % of the PM2.5 organic matter fraction is advected by northeasterly
winds, which is related to advected particles from wood burning sources in the Paris area and
SOA formation along the transport trajectories. While Petit et al. (2015) did not find a wind
direction dependence of organic matter measured at SIRTA using wind regression, they reported
the regional background of organic matter to be of importance. Comparing upwind rural stations
to urban sites, Bressi et al. (2013) concluded organic matter is largely driven by mid- to long-range
transport. Contributions to the SO2−

4 -model (Fig. 4.7d) are highest for northeastern and eastern
wind direction, which aligns with previous findings by Pay et al. (2012); Bressi et al. (2014);
Petit et al. (2017), who identified the Benelux region and western Germany as strong emitters of
sulfur dioxide (SO2). SO2 can be transformed to particulate SO2−

4 (Pay et al., 2012) while being
transported towards the measurement site. A further possible source is the Orly Airport to the
east of SIRTA as jet exhausts also contain SO2 (Kapadia et al., 2016). Nitrate concentrations are
affected by long-range transport from continental Europe (Benelux, western Germany), which are
imported towards SIRTA from northeastern directions (Petetin et al., 2014; Petit et al., 2014). It
is to be expected that the influence of mid- to long-range transport on the particle observations
at SIRTA is rather substantial, with most high pollution days affected by particle advection from
continental Europe (Bressi et al., 2013). As shown by Petetin et al. (2014), SIA species like NO−

3 ,
SO2−

4 or NH+
4 are rarely formed within the Paris city area, but advected from further away, at

least during the spring and summer months. Concerning BCff and BCwd, model results suggest
a dependence on wind direction during northwestern to northeastern inflow (Figs 4.7f and g).
Although BC concentrations are expected to be largely determined by local emissions (Bressi
et al., 2013), e.g., from local residential areas, a substantial contribution of imported particles from
wood burning and traffic emissions from the Paris region (Laborde et al., 2013; Petetin et al., 2014)
and continental sources is likely (Petetin et al., 2014).
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Figure 4.7: As Fig. 4.5 for wind direction SHAP values (contribution of 3-day mean wind direction to the prediction of species and
total PM1 for each data instance) vs. absolute wind direction [◦].

Contribution of feature interactions

Pairwise interactive effects between BLH vs. time since last precipitation and BLH vs. maximum
wind speed are investigated in Figs 4.8a and 4.8b. SHAP interaction effects between BLH and
time since last precipitation are most pronounced for BLHs below ∼ 500 m (Fig. 4.8a). Interaction
values are negative for low BLHs paired with time since last precipitation close to zero hours.
With increasing time since last precipitation, interaction effects become positive, thus increasing
the contribution of Precip_tsince and BLH to the model outcome. An explanation of this pattern
concerning underlying processes could be that due to the lack of precipitation, a higher number
of particles is available in the atmosphere for accumulation, hence increasing the accumulation
effect of a shallow BLH. In case of recent precipitation, the accumulation effect of a shallow BLH
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is weakened. For higher BLHs, interactive effects with time since the last precipitation event are
marginal. Interactive effects between BLH and wind speed are shown in Fig. 4.8b. Positive SHAP
values for maximum wind speeds below ∼2 m/s reflect stable situations, favoring the accumulation
of particles, whereas high wind speeds enhance the ventilation of particles (Sujatha et al., 2016).
This can also be deduced from Fig. 4.8b, which shows increased SHAP values for low wind speeds
in combination with a low BLH. Low wind speeds combined with a high BLH (>∼1,000 m), on
the other hand, result in decreased SHAP values. Similarly, low BLHs combined with higher wind
speeds (>∼2 m/s) also decrease predictions of total PM1 concentrations.

Figure 4.8: BLH vs. a) time since last precipitation and BLH vs. b) maximum wind speed, respectively, colored by the SHAP
interaction values for the respective features.

4.3.3 Meteorological conditions of high-pollution events

To further identify conditions that favor high pollution episodes, the data set is split into
situations with exceptionally high total PM1 concentrations (>95th percentile) and situations with
typical concentrations of total PM1 (interquartile range, IQR) for the meteorological summer and
winter seasons. Mean SHAP values refer to the total PM1 model, corresponding input feature
distributions and species fractions for the two subgroups are aggregated seasonally. This allows
for a quantification of seasonal feature contributions to average or polluted situations. Figs 4.9 and
4.10 show mean SHAP values for typical (left) and high-pollution (right) situations in the upper
panel. The distribution of SHAP values are shown as box plots for each feature. Absolute feature
value distributions are given in the bottom of the figure. In the lowest subpanel, the chemical
composition of the total PM1 concentration for each subgroup is shown. The largest contributor
to high pollution situations in winter is air temperature (Fig. 4.9). SHAP values for temperature
are substantially increased during high pollution situations, when temperatures are systematically
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lower. Further contributing factors to high pollution situations are the BLH, wind speed, NO−
3

fraction of the previous day, and the wind direction components. In winter, the PM1 composition
shows a relatively large fraction of nitrates, which is increased during high pollution situations
(Fig. 4.9, lower panel). High concentrations of nitrate in winter can be linked to advection
or to enhanced formation due to the temperature-dependent low volatility of ammonium nitrate
(Petetin et al., 2014). The organic matter fraction is slightly decreased during high pollution
situations. BLH and maximum wind speed contributions to high pollution situations are linked
to low ventilation conditions which are very frequent in winter (Dupont et al., 2016). Positive
contributions of wind direction for inflow from the northern and eastern sectors are dominant
during high pollution situations while inflow from the southern and western sectors prevails during
average pollution situations (see Fig. 4.7, Bressi et al., 2013; Petetin et al., 2014; Srivastava et al.,
2018). Note that the time since the last precipitation is increased during high pollution situations,
but the effects on the model outcome is weak. This suggests that lacking precipitation is not a
direct driver of modelled total PM1 concentrations, but increases the contribution of other input
features (see Fig. 4.8a) or is a meaningful factor in only some situations.
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Figure 4.9: Mean feature contributions (i.e., SHAP values) for situations with low total PM1 concentrations (left) and situations
with high pollution (right), respectively, during winter (December, January, February). Respective range of SHAP
values by species are shown as box plots, with median (bold line), 25–75th percentile range (boxes), and 10–90th
percentile range (whiskers). Both training and test data are included. Absolute feature value distributions (given as
normalised frequencies) as well as the chemical composition of the total PM1 concentration are shown in the subpanels.
Colors of the box plots correspond to colors in the feature distribution subpanels. SHAP values of the input features
u_norm_3d and u_norm as well as v_norm_3d and v_norm were merged to u_norm, merged and v_norm, merged to
achieve better transparency.
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Summer total PM1 composition (Fig. 4.10) is characterised by a larger fraction of organics
compared to the winter season (Fig. 4.9). As a considerable fraction of organic matter is formed
locally (Petetin et al., 2014), the increased proportion of organics could be due to more frequent
stagnant synoptic situations that may limit the advection of transported SIA. In addition, the
positive SHAP values of solar irradiation and temperature highlight that the solar irradiation
stimulates transformation processes and increases the number of biogenic SOA particles (Guenther
et al., 1993; Petetin et al., 2014). As mean temperatures are highest in summer, positive
temperature SHAP values are associated with increased organic matter concentrations (Fig. 4.5).
The higher importance (i.e., higher SHAP values) of time since the last precipitation event during
high pollution situations points to an accumulation of particles in the atmosphere. Dry situations
can also enhance the emission of dust over dry soils (Hoffmann and Funk, 2015). The negative
contribution of BLH during both typical and high pollution situations reflects seasonality, as
afternoon BLHs in summer are usually too high to have a substantial positive impact on total PM1
concentrations (see Fig. 4.6). BLH is thus not expected to be a driver of day-to-day variations
of summer total PM1 concentrations. Note that the average BLH is higher during high pollution
situations, which likely points to increased formation of SO2−

4 (see Fig. 4.6).
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Figure 4.10: As Fig. 4.9 for mean feature contributions (i.e., SHAP values) for situations with low total PM1 concentrations (left)
and situations with high pollution (right), respectively, during summer (July, June, August).

4.3.4 Day-to-day variability of selected high pollution events

Analysing the combination of SHAP values of the various input features on a daily basis allows for
direct attribution of the respective implications for modelled total PM1 concentrations (Lundberg
et al., 2020). Here, four particular pollution episodes are selected to analyse the model outcome
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with respect to physical processes (Figs 4.11–4.14). The examples highlight the advantages but
also the limitations of the interpretation of the statistical model results. The high pollution episodes
took place in winter 2016 (10th–30th January and 25th November–25th December), spring 2015
(11th–31st March) and summer 2017 (8th–28th June). The upper panels in Figs 4.11–4.14 indicate
the total PM1 prediction as horizontal black line with vertical black lines denoting the range of
predictions of all 10 models. The observed species concentrations are shown in the corresponding
colors. The subsequent panels show absolute values and SHAP values for the most relevant
meteorological input features.

January 2016

Prior to the onset of the high-pollution episode in January 2016 (Fig. 4.11), the situation is
characterised by BLHs in the range of 1,000 m, temperatures above freezing (∼5–10 ◦C), frequent
precipitation and winds from the southwest. The organic matter fraction dominates the particle
speciation. The episode itself is reproduced well by the model. According to the model results, the
event is largely temperature-driven, i.e., SHAP values of temperature explain a large fraction of
the total PM1 concentration variation (note the adjusted y-axis of the temperature SHAP values).
On 18th January, temperatures drop below freezing, coupled with a decrease in BLH. As a
consequence, both modelled and observed PM1 concentrations start to rise. A further increase
in total PM1 concentrations is driven by a sharp transition from stronger southwestern to weaker
northeastern winds (strong negative u component, weak negative v component) on January 19th.
The combined effects of these changes lead to a marked increase in total PM1 concentrations,
peaking at ∼37 µg/m3 on 20th January. On the following days, temperatures increase steadily,
thus the contribution of temperature decreases. At the same time, although values of BLH remain
almost constant, the contribution of BLH drops substantially from ∼5 µg/m3 to ∼2 µg/m3. This
is due to interactive effects between BLH and the features wind speed, time since last precipitation
and normalised v-wind-component. All of these features increase the contribution of BLH on 20th
January, but decrease its contribution on 21st–23rd January. The high pollution episode ceases
after a shift to southeastern winds and the increasing temperatures. The pollution episode is
characterised by a relatively large fraction of NO−

3 and NH+
4 , which explains the strong feature

contribution of temperature to the modeled total PM1 concentration, as the abundance of these
species is temperature dependent (see Fig. 4.5) and points to a large contribution of locally
formed inorganic particles. Still, the contribution of wind direction and speed also suggests that
advected secondary particles and their build-up in the boundary layer are relevant factors during
the development of the high pollution episode (Petetin et al., 2014; Petit et al., 2014; Srivastava
et al., 2018).
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Figure 4.11: Winter pollution episode in January 2016. (a): predicted total PM1 and observed PM1 species concentrations, with
absolute input feature values and corresponding SHAP values of (b) BLH, (c) temperature, (d) hours after rain, (e)
maximum wind speed (f) normalised u wind, and (g) normalised v wind component.
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December 2016

A high-pollution episode with several peaks of total PM1 is observed in November and December
2016. The first peak on 26th December is followed by an abrupt minimum in total PM1
concentrations on 28th November, and a build-up of pollution in a shallow boundary layer towards
the second peak on 2nd December with total PM1 concentrations exceeding 40 µg/m3. In the
following days, total PM1 concentrations continuously decrease, eventually reaching a second
minimum on 11th December. A gradual increase in total PM1 concentrations follows, resulting in
a third (double-)peak total PM1 concentration on 17th December. Total PM1 concentrations drop
to lower levels afterwards. Throughout the 3.5 week-long episode, high pollution is largely driven
by shallow BLH (<∼500 m), and weak north-northeasterly winds, i.e., a regime of low ventilation
and advection of continental air. During the brief periods with lower total PM1 concentrations,
these conditions are disrupted by a higher BLH (∼28th November), or a change in prevailing
winds (∼11th December). In contrast to the pollution episode in January 2016, this December
2016 episode is not driven by temperature changes. Temperatures range between ∼5–12 ◦C and
have a minor contribution to predicted total PM1 concentrations (see also Fig. 4.5), emphasizing
the different processes causing air pollution in the Paris region. The large contributions of wind
direction and speed to the modeled total PM1 concentration highlight the importance of advected
particles during this period that continuously build-up in the shallow boundary layer to produce
these highly polluted conditions. Note that the model is not able to fully reproduce the pollution
peak on 2nd December, which may be indicative of missing input features in the model. Judging
from the PM1 species composition during this time (relatively high fraction of NO−

3 and BC), it
seems likely that missing information on particle emissions may be the reason for the difference
between modeled and observed total PM1 concentration.
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Figure 4.12: As Fig. 4.11 for a further winter pollution episode in December 2016.
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June 2017

A period of above average total PM1 concentrations occurred in June 2017. The episode
is very well reproduced by the model, suggesting a strong dependence of the observed total
PM1 concentration to meteorological drivers. Although absolute total PM1 concentrations are
substantially lower than during the previously described winter pollution episodes, the event is still
above average for summer pollution levels. Organic matter particles dominate the PM1 fraction
throughout the episode, with a relatively high SO2−

4 fraction. Conditions during this episode are
characterised by strong solar irradiation (positive SHAP values) and high BLHs (mostly negative
SHAP values), which show low day-to-day variability and reflect characteristic summer conditions.
A lack of precipitation (no rain for a period of more than 2 weeks) and high temperatures
also contribute to the total PM1 concentrations during this episode. While solar irradiation and
time since last precipitation are associated with positive SHAP values throughout this period, air
temperature only has a positive contribution when exceeding ∼25 ◦C. This aligns with patterns
shown in Fig. 4.5, where increased concentrations of organic matter and SO2−

4 are identified for
high temperatures. Peak total PM1 concentrations of ∼17 µg/m3 are observed on June 20th and
21st. A change in the east-west wind component from western to eastern inflow directions in
conjunction with an increase in temperatures to above 30 ◦C are the drivers of the modeled peak
in total PM1 concentrations. BLH is also increased with values ∼2,000 m, which are associated
with slightly positive SHAP values. This observation fits with findings described previously and is
likely linked to enhanced secondary particle formation (Megaritis et al., 2014; Jiang et al., 2019).
As suggested by response patterns of species to changes in BLH shown in Fig. 4.6, this effect is
linked to an increase in SO2−

4 concentrations. The main fraction of the peak total PM1 values,
however, is linked to an increase in organic matter concentrations due to the warm temperatures
(see Fig. 4.5).
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Figure 4.13: As Fig. 4.11 for an exemplary summer pollution episode in June 2017.
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March 2015

High particle concentrations are measured in early March 2015 with high day-to-day variability.
This modelled course of the pollution episode is chosen to compare results to previous studies
focusing on the evolution of this episode (Petit et al., 2017; Srivastava et al., 2018). The episode
is of particular interest, since it also shows some limitations of the statistical model setup. The
episode is characterised by high fractions of SIA, in particular SO2−

4 , NH+
4 and NO−

3 (Fig. 4.14,
upper panel) and similar concentrations observed at multiple measurement sites in France (Petit
et al., 2017). Contributions of local sources are low and much of the episode is characterised
by winds blowing in from the northwest, advecting aged SIA towards SIRTA (Petit et al., 2017;
Srivastava et al., 2018). A widespread scarcity of rain probably enhanced the large-scale formation
of secondary pollution across western Europe (in particular western Germany, the Netherlands,
Luxemburg, Petit et al., 2017), which were then transported towards SIRTA. This is reflected
by the SHAP values of the u and v wind components, which are positive throughout the episode
(see Figs 4.14g and 4.14h). Concentration peaks of total PM1 are measured on 18th and 20th
March. Both peaks are characterised by a rapid development of total PM1 concentrations. As
described in Petit et al. (2017), these strong daily variations of total PM1, which are mainly driven
by the SIA fraction, could be due to varying synoptic cycles, especially the passage of cold fronts.
The contribution of BLH and temperature is relatively small, which is consistent with the high
influence of advection on total PM1 concentrations during the episode. The exceptional character
of the episode (see Petit et al., 2017) partly explains the bad performance of the model in capturing
total PM1 variability during the event. Unusual rain shortage is observed in large areas of western
Europe prior to the episode (Petit et al., 2017). While time since precipitation at the SIRTA-site is a
large positive contributor to the model predictions (see Fig. 4.14d), it is not driving the day-to-day
variations. The unusual nature of this event and lacking information on emission in the source
regions and formation processes along air mass trajectories in the model likely explain why the
model has difficulties in reproducing this pollution episode. While this has implications for the
application of explainable machine learning models for rare events, this is not expected to be an
issue for the other cases and seasonal results presented here.
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Figure 4.14: As Fig. 4.11 for an exemplary spring pollution episode in March 2015.

104



4.4 Specific conclusions

4.4 Specific conclusions

In this study, dominant patterns of drivers of PM1 species and total PM1 concentrations are
identified and analysed using a novel, data-driven statistical approach. A machine learning model
is set up to predict measured speciated and total PM1 concentrations based on meteorological
measurements from the SIRTA supersite, southwest of Paris. The statistical model is able to
reproduce daily variability of particle concentrations well, and is used to analyse and quantify
the atmospheric processes causing high-pollution episodes during different seasons using a SHAP-
value framework. Comparison of the results based on the statistical model with findings of previous
studies on air quality patterns in the Paris region shows good agreement. Peak concentrations of
total PM1 in winter are mainly driven by shallow BLHs, low temperatures and low wind speeds.
These conditions are often amplified by northeastern wind inflow. A detailed analysis revealed
different drivers of high-pollution episodes in winter. For an episode in January 2016, model results
show a strong contribution of temperature to the elevated PM1 concentrations during this episode
(up to 11 µg/m3 are attributed to temperature), suggesting enhanced local, temperature-dependant
particle formation. During a different, prolonged pollution episode in December 2016, temperature
levels were relatively stable and had no influence. Here, contributions of BLHs (<500 m) were
quantified to be the main driver of PM1 peaks with contributions up to ∼6 µg/m3, along with
wind direction contributions of also ∼6 µg/m3. Total PM1 concentrations in spring can be as high
as 50 µg/m3. These peaks in spring are not as well reproduced by the model as winter episodes
and are likely due to new particle formation processes along the air mass trajectories, in particular
of nitrate. Summer PM1 concentrations are lower than in other seasons. Model results suggest
that summer peak concentrations are largely driven by high temperatures, particle advection from
Paris and continental Europe with low wind speeds and prolonged periods without precipitation.
For an example episode in June 2017, temperatures above 30 ◦C contribute ∼3 µg/m3 to the total
PM1 concentration. On site scarcity of rain increases air pollution, but does not appear to be a
main driver of strong day-to-day variations in particle concentrations. Main drivers of day-to-day
variability of predicted PM1 concentrations are changes in wind direction, air temperature, and
BLH. These changes often superimpose the influence of time without precipitation. Individual
PM1 species are shown to respond differently to changes in temperature. While SO2−

4 and
organic matter concentrations are increased during both high and low temperature situations, NH+

4

and NO−
3 are substantially increased only at low temperatures. Model results indicate that SIA

formation is enhanced during shallow BLH conditions.
Many of the results presented here hold true for regions other than suburban Paris and are thus
beneficial for the general understanding of drivers of air pollution. This includes the importance
of formation processes of secondary pollutants as well as the dominant role of the BLH for PM1
concentrations. The contribution of wind direction furthermore highlights the role of advected
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pollution and emphasizes the need for large-scale measures against air pollution. The GBRT
approach in combination with the SHAP regression values presented here provides an intuitive
tool to assess meteorological drivers of air pollution and to advance the understanding of high
pollution events by uncovering different physical mechanisms leading to high-pollution episodes.
To our knowledge, this is the first time that the SHAP-framework for explainable machine learning
is extensively applied in atmospheric sciences. The results of this study are highly relevant
for policy makers, e.g., by providing a basis for future clean air programs or by providing the
potential of a statistically-based early warning system for high pollution episodes. Statistical
models such as the one developed in the present study can be used to attribute changes in air
quality to policy measures (Cermak and Knutti, 2009), and may help political decision makers
develop and implement effective clean-air policies. This study could be extended in the future,
e.g., by including information on anthropogenic emissions or further stations down- and upwind
of SIRTA, which would allow further analysis of dominant advection patterns.
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5.1 Concluding discussion

Air pollution continues to impact the lives of numerous people across Europe and poses a major
health issue. Therefore, it is essential to improve the scientific understanding of patterns of air
quality to develop efficient mitigation strategies. The results of this thesis contribute to this goal
by improving the applicability of satellite-based AOD for estimating regional-scale patterns of
PM concentrations and by providing new insights on environmental processes that amplify air
pollution. In this context, three main scientific topics have been explored in this work:

• (1) Meteorological influences on the relationship between PM10 and AOD (chapter 2)
Deriving accurate estimations of near-ground PM concentrations from satellite-based AOD
is challenging, as influences on the relationship between AOD and PM, in particular
pertaining to meteorology, are not yet fully understood. In this study, a quantitative analysis
of these meteorological influences was provided, setting a basis to accurately estimate near-
ground PM from satellite-based AOD.

• (2) Mapping and understanding PM10 patterns using AOD and environmental
conditions (chapter 3)
Based on the results of chapter 2, links were established between PM10 concentrations,
AOD, and ambient environmental conditions using a statistical modelling framework.
Analyses of PM10 patterns were provided in this study by identifying and quantifying its
major drivers.

• (3) Meteorology-driven, local-scale variability of PM1 (chapter 4)
Approaching the complex mechanisms leading to high pollution episodes is challenging,
as the effects of interacting meteorological variables are not easy to separate and quantify.
In-depth analyses of local-scale atmospheric processes that cause high concentrations of
fine-mode PM were performed in chapter 4 based on a statistical modelling framework.
Differences between the main chemical PM1 constituents are highlighted.

Based on the existing literature, three main open research questions were identified and addressed
in chapters 2–4:
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How do meteorological conditions influence the statistical relationship between AOD and PM?

What are the main drivers of PM10 when environmental conditions and AOD are used to estimate
PM10 concentrations?

How do atmospheric processes drive concentrations of different PM1 species at a local scale?

The results of this thesis under the guidance of these questions are discussed in the following.

(1) Meteorological influences on the relationship between PM10 and AOD

In a sub-regional study in northeastern Germany, satellite-based AOD retrievals were collocated
with hourly, near-ground PM10 measurements. The dimensionless AiRDI is introduced, which
allows for a pairwise, in-depth characterisation of the relationship between AOD and PM10. The
AiRDI provides a semi-quantitative estimation of the agreement of each AOD-PM10 data pair
under consideration of ambient meteorological conditions. A positive (negative) AiRDI indicates
a relative overestimation (underestimation) of PM10 by the AOD.
AiRDI-patterns, as shown in Fig. 2.3 on page 36 suggest that the relationship between AOD and
PM10 is highly nonlinear. Low AODs (∼<0.15) have a relatively high chance to underestimate
PM10 concentrations, while there is a higher chance of PM10 concentrations to be overestimated
from high AODs (∼>0.2). It follows that a linear association between these parameters cannot be
the best statistical representation to accurately estimate PM from AOD as suggested by previous
studies (cf. Wang, 2003; Gupta et al., 2006; Dinoi et al., 2010; Harbula and Kopacková, 2011;
Arvani et al., 2016). The findings of this thesis suggest that the nonlinearity of the relationship is
caused by the influences of meteorological parameters, which are discussed in the following.
Positive AiRDI-values are more likely to occur when above average RH coincides with above
average BLHs (see Fig. 2.4a–d on page 37). This pattern agrees with previous observations
that under humid atmospheric conditions, i.e., a high RH, hygroscopic particle growth increases
satellite-derived AOD without influencing PM10 measurements (see Fig. 2.5b, Barnaba et al.,
2010; Crumeyrolle et al., 2014). Conversely, AiRDI patterns suggest an underestimation of PM10
by AOD when below average RH coincides with below average BLH (see Fig. 2.4i–l). Less
hygroscopic growth is to be expected during these conditions. In addition, near-ground PM10
concentrations tend to be increased under low-BLH-conditions, when particles are confined to
lower atmospheric layers and accumulate (see Fig. 2.5c, Gupta and Christopher, 2009b). During
average atmospheric conditions, i.e., when ambient RH (50–80 %) coincides with a moderate
BLH (600–1,200 m, see Fig. 2.5a), the AiRDI has an increased probability of being close to zero,
indicating good agreement of ranked AOD and PM10 data pairs. Furthermore, it was found that the
influences of RH and BLH on the relationship between AOD and PM10 can cancel each other out

108



5.1 Concluding discussion

(see Fig. 2.5), which is indicated by an AiRDI close to zero. This is, for example, the case when
a dry atmosphere (RH<50 %) coincides with a high BLH (>1,200 m) or when humid atmospheric
conditions (RH>80 %) coincide with a shallow BLH (<600 m). A relatively high number of the
AOD-PM10-data pairs that were analysed in this study fall in the AiRDI-range close to zero (good
agreement of ranked AOD and PM10), but there are nonetheless many observations in the positive
AiRDI-range, indicating a relative overestimation of PM10 from AOD (see Fig. 2.5a and 2.5e on
page 39).
Although BLH and RH appear to be the main governing factors of the relationship between AOD
and PM10, wind direction also influences the relationship between AOD and PM10 (Fig. 2.6 on
page 41) by transporting air masses with varying characteristics to the study area (Figs 2.9 and
2.10). It was shown that western air masses establish a higher probability of an overestimation
of PM10 concentrations by AOD. This fits well with previous observations, which showed that
western, marine air masses are generally cleaner (i.e., carry a smaller particle burden) and wetter
(i.e., have a higher RH) (Zieger et al., 2013). These air masses are thus more likely to increase the
AOD by hygroscopic growth, while at the same time carrying less particles (see Zieger et al., 2013;
Titos et al., 2014). In addition, particles within maritime air masses have a higher content of sea
salts, which are hydrophilic and further promote hygroscopic growth of particles (Titos et al., 2014;
Granados-Muñoz et al., 2015). On the contrary, air masses from eastern and southeastern wind
sectors have a higher probability of the satellite AOD underestimating PM10 concentrations. These
air masses generally carry more anthropogenic and industrial aerosols, which are less hydrophilic
(Zieger et al., 2014) and thus less likely to induce hygrosopic particle growth. Patterns shown in
Fig. 2.6 indicate that there is a higher chance of an AiRDI close to zero at lower wind speeds, when
local sources dominate both AOD and PM10.
Previous studies have indicated the nonlinearity of the relationship between AOD and PM10
and emphasized the day-to-day variability of this relationship (Gupta et al., 2006; Nordio et al.,
2013; Chudnovsky et al., 2014) due to changes in atmospheric RH and BLH (Gupta et al., 2006;
Gupta and Christopher, 2009b). Concerning the influence of RH, Barnaba et al. (2010) and
Crumeyrolle et al. (2014) demonstrated the positive influence of hygroscopic growth on AOD
using in situ measurements in the Po valley, Italy, and Baltimore, U.S.A., respectively. Gupta
et al. (2006) approached the relationship between AOD and PM2.5 in a case study in Texas,
collocating AOD and PM2.5 data pairs and binning the data in different ranges of meteorological
parameters. Computing linear correlation coefficients for the subgroups, they found a higher
correlation coefficient between PM2.5 and MODIS AOD for BLHs below 200 m. They proposed
that during low BLH-conditions, the amount of particles observed by the in situ instrument will be
similar as observed by the satellite, i.e., AOD better represents near-ground PM concentrations. On
the contrary, Chudnovsky et al. (2013a) found only minor influence of the BLH on the relationship
between AOD and PM2.5 over the Boston area, U.S.A., when values were between 250–500 m.
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Furthermore, for a study conducted in the southeast U.S.A., Gupta and Christopher (2009b) set up
a multiple regression approach taking into account temperature, RH, BLH, wind speed, and cloud
fraction. They found the model to perform best when a well-mixed boundary layer (∼2,000 m)
coincides with high temperatures and a dry RH (40–50 %). Zheng et al. (2017) emphasize the
influence of both RH and BLH on the relationship between PM2.5 concentrations and AOD for
the Bejing area, China. A conversion factor η is introduced, which they defined as the quotient
of PM2.5 divided by AOD. They showed that the quotient η decreases with increasing RH, which
indicates an increase in AOD. η also decreases with increasing BLH, which suggests increased
PM2.5 concentrations.
Overall, the previous literature agrees that RH and BLH influence the relationship between AOD
and PM, the former by increasing the scattering coefficient via hygroscopic growth, the latter
by changing the vertical distribution of particles in the atmosphere,. This appears to be largely
independent of the geographic location and was observed in studies covering Europe (Barnaba
et al., 2010), U.S.A. (Gupta et al., 2006; Gupta and Christopher, 2009b; Crumeyrolle et al.,
2014), and China (Zheng et al., 2017). However, conclusions on the best conditions to derive
near-ground PM concentrations from satellite-based AOD differ. One possible reason therefore
could be differences in methodology. Approaching the relationship between AOD and PM with
linear correlations on binned parameter ranges (see Gupta et al., 2006; Chudnovsky et al., 2014)
relies strongly on the bin sizes and limits. Furthermore, as indicated by Zheng et al. (2017),
the influences of BLH and RH need to be considered simultaneously to determine agreement
or divergence of PM and AOD. In this regard, the AiRDI provides new insights as it offers a
coherent view on meteorological influences on the relationship between AOD and PM10, and
allows to pinpoint conditions of relative agreement between AOD and PM. The application of
such an approach to remote areas that lack a dense network of in situ PM measurement stations
would be highly beneficial. For example, combining satellite-based AOD with globally available
meteorological reanalysis data would possibly provide more accurate PM estimates than relying
solely on AOD for estimating PM concentration exposure. Still, depending on the area, other
factors would have to be taken into account, e.g., desert dust transport (Yahi et al., 2013). In areas
with good availability of PM measurement sites, the use of statistical methods to estimate PM from
AOD under consideration of ambient environmental conditions is a further option. Such models
require a large amount of data to establish empirical relationship between the model inputs and PM
concentrations, but showed promising results in the past (Stafoggia et al., 2017; Brokamp et al.,
2018; Chen et al., 2018a; Stafoggia et al., 2020). Such an approach was taken in chapter 3 and will
be discussed in the next section.
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(2) Mapping and understanding PM10 patterns using AOD and environmental
conditions

On the basis of the findings presented within chapter 2, it was hypothesized that PM10
can be estimated with higher accuracy from satellite-based AOD, if environmental conditions
are explicitly considered. Therefore, links between PM10 concentrations and AOD under
consideration of ambient environmental conditions were established using a statistical model. This
model was set up to predict hourly PM10 concentrations measured in Germany and to analyse
model sensitivities with regard to environmental conditions.
The meteorological parameters temperature, BLH, and east-west winds proved to be highly
relevant to accurately predict PM10 (see Fig. 3.5 on page 62). Multiday inflow from eastern
directions, for example, generally increases PM10 concentrations, while a decrease was found
for situations dominated by inflow from western directions (see Fig. 3.6). The difference in
PM concentrations that can be appointed to changes in east-west wind direction was on average
∼10 µg/m3. This number agrees well with results by van Pinxteren et al. (2019), who determined
the contribution of trans-boundary particle transport from countries east of Germany to be
13 µg/m3 on average. That number was determined by comparing PM10 concentrations during
western and eastern air mass inflow under similar meteorological conditions for sites in eastern
Germany. In van Pinxteren et al. (2019), it is highlighted that trans-boundary particle transport
from eastern European countries increases in winter due to higher emissions from domestic
heating, which is in agreement with patterns shown in Fig. 3.6b. Furthermore, the confining effect
of shallow BLHs, which causes particles to accumulate near ground (see Gupta and Christopher,
2009b; Wagner and Schäfer, 2017), is of major importance to PM10 predictions. An average
increase of PM10 concentrations of ∼5–10 µg/m3 was quantified for BLHs below 800 m (see
Fig. 3.8 on page 66). This effect was found to be stronger in winter (up to ∼15 µg/m3), while
it is largely absent in summer. The influence of the boundary layer on PM concentrations
stagnates between 800–2,000 m as the dilution effect of an increased boundary layer reaches its
maximum. A similar pattern was found by Grange et al. (2018), who applied a RF-model on PM10
measurements and computed the partial dependence of BLH for a site in Zurich, Switzerland.
Furthermore, in a study by Liu et al. (2018), extreme haze conditions over Bejing, China, were
analysed, with peak PM2.5 concentrations of ∼400 µg/m3. Still, the relationship between PM
and the BLH seems to be comparable: the dilution of particles with increasing BLHs effectively
reduces PM2.5 concentrations up to 800 m. Above this height, only a minor influence of BLH
on PM2.5 concentrations is shown. In this thesis and in Grange et al. (2018), BLH is based
on ECMWF reanalysis, while Liu et al. (2018) used a micro-pulse lidar to determine the BLH.
Hence, the quantification of the influence of the BLH on PM10 concentrations appears to be
robust and generalizable to other regions. An exception was pointed out by Grange et al. (2018):
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if a measurement site is intermittently above the boundary layer due to topography, different
mechanisms need to be considered.
Mean modelled PM10 concentrations increase slightly during conditions with very high BLHs
(>2,000 m), which could be related to enhanced formation of secondary aerosols in summer (e.g.,
SO2−

4 ,) due strong solar irradiation and high temperatures (Dawson et al., 2007; Pay et al., 2012;
Fuzzi et al., 2015; Grange et al., 2018). Indeed, the pattern is most prominent in summer, when
these prerequisites are most likely to be met, but overall, the increase is weak, which suggests
that the photochemistry-driven formation of new particles is not an important driver of PM10
concentrations. Still, this pattern is consistent with an observed increase of PM10 predictions
(up to 12 µg/m3) when de-seasonalised temperatures rise above average levels. High summer
temperatures can also be related to enhanced biogenic activity (Laothawornkitkul et al., 2009) and
increased dust resuspension due to dried-up soils (Hoffmann and Funk, 2015).
Precipitation has been identified as an important driver for PM concentrations in previous studies
(Radke et al., 1980; Dawson et al., 2007; Rost et al., 2009; Li et al., 2015), but largely lacks
influence on the statistical model’s predictions. Possibly, this is related to the fact that only cloud-
free days were considered in this study, as AOD is limited to these situations. Thus, the immediate
effect of rainfall on particles in the atmosphere could not be investigated. A further analysis on the
influence of precipitation on the fine-mode particle fraction is provided in chapter 4.
Results pertaining to the influence of AOD on PM10 predictions suggest that AOD is closely
related to PM10 (see Fig. 3.14 on page 73), which highlights the general suitability of AOD for
air quality studies when meteorological conditions are explicitly considered. AOD and PM10 are
weaker correlated in summer when particles are more dispersed within a well-mixed boundary
layer, and the AOD is largely determined by particles higher up in the atmosphere. The influence
of BLH and the east-west wind component on the relationship between AOD and PM10 was
quantified (see Figs 3.15 and 3.16 on page 74). Comparing PM10 predictions under conditions
with low BLHs (200 m) with conditions with high BLHs (2,000 m) at a constant AOD, an average
difference of ∼10 µg/m3 is shown. The use of AOD without considering the BLH would not
account for this difference. For the east-west wind flow, the average difference at a constant AOD
between predictions under multi-day inflow from the west and predictions under multi-day inflow
from the east was ∼8 µg/m3.
The statistical model used in this study is more sensitive to meteorology than to land-surface
parameters (see section 3.3.3). Of the analysed land cover types, only agricultural areas were found
to positively influence PM10 predictions, using the partial dependence approach. The more pixels
in the vicinity of a station are classified as agricultural area, the higher the PM10 predictions tend
to be on average. Agriculture is known to be an important particle source by primary emissions
of dust from arable lands and the application of fertilizers, which constitute important precursors
for secondary particle formation (Hoffmann and Funk, 2015; Wagner et al., 2015). Only minor
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influence of the NDVI data on the statistical model is found. MODIS-based NDVI data are
frequently considered in comparable studies, but its importance was shown to be relatively low
for different geographic settings, e.g., the U.S.A. (Hu et al., 2017), the UK (Yazdi et al., 2020), or
Sweden (Stafoggia et al., 2020). The overall insensitivity of the model to land-surface parameters
is in part related to the relatively coarse resolution of 250 m (for the CLC-classes and the MODIS
NDVI), which might not be precise enough to adequately represent the conditions in in the vicinity
of a measurement site. In addition, land surface parameters vary only in time but not in space and
are thus of less use to the model to predict variations of PM10 concentrations. This may make it
necessary to use different strategies for the determination of the importance of land use parameters
in such a ML-framework, e.g., by comparing different sites during comparable meteorological
conditions.
In general, results of the sensitivity analyses on the ML-framework with regard to environmental
conditions agree well with other studies, also outside the field of ML (e.g., Gupta and Christopher,
2009b; Hoffmann and Funk, 2015; Wagner and Schäfer, 2017; Grange et al., 2018; Liu et al.,
2018; van Pinxteren et al., 2019). This highlights the applicability of such a framework to derive
physical processes and shows the robustness of the statistical analysis. Still, a direct comparison
with ML-approaches used in other studies shows that results can somewhat vary with respect to
differences in the model setups. In particular, studies may use similar parameters, but handle
these differently, which complicates a comparison. For example, Grange et al. (2018) used
instantaneous temperature as an input, while here, temperature was separated into instantaneous
and de-seasonalised temperature, i.e., temperature anomalies. If this is taken into account, patterns
pertaining to temperatures in Grange et al. (2018) agree well with those found here (see section
3.3.3). Different spatial or temporal resolutions of parameters can also lead to different results.
Wind speed, for example, is considered here implicitly as instantaneous u and v components of the
ERA-Interim data set, showing only minor relevance for the model. Grange et al. (2018) and also
Yazdi et al. (2020), who conducted a statistical modelling study to predict PM2.5 over the greater
London area, found a high relevance of wind speed. Wind speed data used in Grange et al. (2018)
and Yazdi et al. (2020) are taken from nearby station measurements, which was possible due to
a very dense network. These data more accurately describe local conditions and have a higher
information content to the model.
Another important source of uncertainty when comparing the results of statistical sensitivity
analyses is that methods to determine a feature’s relevance to the model can differ. For example,
Hu et al. (2017) predicted PM2.5 concentrations over the U.S.A. using a RF-model. Feature
importances were approached by calculating the increase in mean squared error when a feature was
permuted, and by the increase in node purities, i.e., the similarity of responses at the regression tree
nodes. The methods provide very different results, which makes it difficult to decide which method
is more reliable. Futhermore, Strobl et al. (2007) showed that the standard feature importance
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provided by RF-models (used e.g., by Park et al., 2019; Stafoggia et al., 2020) is particularly
unreliable because of biases in the subsampling process of the decision trees and biases introduced
by categorical data. Hence, the comparison of ML-based sensitivity analyses should rely on
in-depth analyses of the model’s response to individual features, using e.g., partial dependence
functions (Friedman, 2001) or SHAP regression values (Lundberg et al., 2020). These methods
are preferable as they provide more insights and allow a robust analysis, which is not possible
solely based on a number that represents a feature’s importance.
The statistical modelling framework used here proved to be a powerful tool to infer on near-ground
PM10 concentrations from satellite-based AOD if ambient environmental conditions, in particular
meteorology, are considered. Furthermore, sensitivity analyses on the model produced relevant
new insights regarding environmental drivers of PM10. With regard to the model’s applicability to
produce spatially coherent estimates of PM10, results of this study indicate that the performance
of predictions on unseen locations is worse. This was tested by withholding a set of stations from
the training data set, resulting in R2 of 0.5–0.7, depending on the stations withheld, compared to
R2 of 0.77 if the training and test data were randomly split. This suggests that the statistical model
is not always able to generalize to previously unseen locations. A more drastic reduction in R2 was
recently reported by Yazdi et al. (2020), who showed that their overall model is well able to capture
the day-to-day variability of PM2.5 (R2 of 0.882). For the model’s ability to capture the spatial
variability, however, a R2 of 0.396 is reported. Similarly, in Hu et al. (2017), a reduction from 0.8
(overall R2) to 0.7 (spatial R2), and in Stafoggia et al. (2020), a reduction from 0.64 (overall R2) to
0.5 (spatial R2) was reported for ML-models predicting PM2.5. While this is not expected to affect
the results of the sensitivity analysis presented here, it has implications for the reliability of the
results of studies that train statistical models and extend predictions to areas where measurements
are not available. The conventional performance metrics computed by randomly splitting train-
and test-data sets might be over-optimistic in this regard (e.g., Hu et al., 2014; Park et al., 2019).
The problem of spatial over-fitting of statistical models can be related to misleading geolocation
variables, e.g., coordinates of the measurement sites or elevation (Meyer et al., 2018, 2019). These
geolocation variables are highly autocorrelated in space and can be misinterpreted by statistical
models. Furthermore, the unique combination of these geolocation variables provides a quasi-ID
to the model, which improves the training score, but counteracts the model’s ability to generalise
(Meyer et al., 2018). Therefore, prediction frameworks that target spatially coherent maps of PM
concentrations need to be engineered in a particular way, e.g., by allocating measurements from
particular stations either to the train- or the test-data set. Incorporating such an approach also in
the feature-selection-process would ensure that only features, which allow for predictions beyond
the locations of the training samples, are used (Meyer et al., 2019).
As a next step, an in-depth, process-oriented study was conducted, focusing on how the interaction
of meteorological conditions amplifies high concentrations of PM.

114



5.1 Concluding discussion

(3) Meteorology-driven, local-scale variability of PM1

Meteorology was identified as a major driver of PM10 concentrations in chapter 3. Meteorology-
driven variations in day-to-day PM concentrations were targeted in chapter 4, with a particular
emphasis on local-scale processes leading to high-pollution events. Focusing on the fine-mode
particle fraction (PM1), particle formation and transformation processes of the most important
chemical constituents, i.e., the particle species, were analysed. A statistical model was set up to
predict daily variations of mean PM1 concentrations for the afternoon period (12–15 UTC), using
meteorological parameters as input. The analysis of the model results is conducted with situation-
based and individualised feature contributions using SHAP regression values (Lundberg and Lee,
2017; Lundberg et al., 2018b, 2020). These enable quantitative estimates of the contribution of
each meteorological parameters to the final PM1 prediction.
The mean annual PM1 concentration at the measurement site were 8.84 µg/m3. Shallow BLHs
(below 500 m) drastically increase PM1 predictions by up to 5.5 µg/m3 (see Fig. 4.6 on page
89), underscoring the validity of the results of chapter 3 pertaining to the influence of BLH on
PM concentrations also for the fine particle fraction. The confining effect under shallow-BLH-
conditions affects all species, which suggests the absence of major chemical feedbacks (see also
Dawson et al., 2007). On the contrary, SO2−

4 , Org, NH+
4 , and BCff exhibit a positive contribution

for BLHs above ∼2,000 m. In the case of SO2−
4 , Org, and NH+

4 , this is likely related to the
previously suggested enhanced oxidation rates due to high temperatures and strong solar irradiation
under high-BLH-conditions, leading to increased formation rates of secondary particles (Dawson
et al., 2007; Pay et al., 2012; Grange et al., 2018; Gen et al., 2019). Since BCff is not expected to
be formed secondarily, the positive contribution of high BLHs on BCff concentrations must be due
to different processes, e.g., increased vertical turbulence distributing BCff in the atmosphere.
Air masses from the northeast carry a higher particle burden to the site due to the high emissions
in the Paris area (Bressi et al., 2013; Petetin et al., 2014; Petit et al., 2015; Srivastava et al.,
2018). Here, the contribution of air masses from the northeastern wind sector to PM1 predictions
was quantified to be ∼5–6 µg/m3 on average. Wind speed increases PM1 predictions by ∼2–
4 µg/m3 under calm conditions (see Fig. 5.1). The relevance of wind speed supports the previous
argumentation that information on wind speed is indeed an important driver of PM concentrations,
but needs to represent local conditions (see Grange et al., 2018; Yazdi et al., 2020). Wind
speed influences the contribution of other features to the model prediction, e.g., by increasing
the contribution of shallow BLHs (see Fig. 4.8b on page 92). This empirical pattern in the model
is likely related to the physical effect of reduced atmospheric ventilation due to the combination of
low wind speeds and a shallow BLH, enhancing the accumulation of particles in the atmosphere
near the ground. This is not a site-specific finding and is in agreement with results by Sujatha
et al. (2016), who found atmospheric BC concentrations to negatively correlate with atmospheric
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ventilation (defined as the product of BLH and wind speed) for measurements in southern India.
Furthermore, Wang et al. (2018) pointed out the importance of stagnant conditions (defined based
on 10-m wind speed, BLH, and the occurrence of precipitation) for recurring high-pollution events
in China.
On site scarcity of rain increases PM1 predictions of the model. Results of chapter 4 suggest
that the lack of rain is a prerequisite of peak PM1 concentrations, as the absence of wet
deposition allows particles to accumulate in the atmosphere (Rost et al., 2009; van Pinxteren et al.,
2019). This is also reflected in the model, since a lack of precipitation is shown to increase the
contribution of low BLHs (see Fig. 4.8a on page 92), as the lack of wet deposition amplifies the
accumulation effect of shallow BLHs. Petit et al. (2017) furthermore propose that particularly
high PM concentrations are often associated with large-scale droughts, which enhance regional-
scale formation of SIA. These large-scale phenomena are, however, not covered in this study and
leave room for future analyses.

Figure 5.1: As Fig. 4.5 on page 87 for the contribution of maximum wind speed to the prediction of total PM1 (i.e., SHAP values)
vs. absolute wind speed values [m/s].

Changes in instantaneous air temperature have shown a strong, nonlinear effect on PM1 species
in this study (see Fig. 4.5 on page 87). The sensitivity of PM concentrations to temperature is
already indicated in chapter 3, but using the information on the chemical constituents of PM,
new insights are provided here. During low temperatures, temperature SHAP values, i.e., the
contribution of temperatures to modelled PM1 concentrations, show a strong, positive influence
on PM1 concentrations. Low temperatures stimulate new particle formation processes related to
SO2−

4 , NH+
4 , and NO−

3 by shifting the gas-particle equilibrium (Clegg et al., 1998; Pay et al., 2012;
Bressi et al., 2013; Petit et al., 2015). In addition, it is likely that the increasing signal for Org and
BCwd is due to enhanced local anthropogenic biomass burning for residential heating (Favez et al.,
2009; Sciare et al., 2010; Healy et al., 2012; Jiang et al., 2019). The effect of these processes on
PM1 concentrations ceases at medium temperatures and PM1 concentrations become increasingly
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insensitive to changes in temperature. At high temperatures, however, a temperature increases have
a positive effect on SHAP values, leading to an increase in total PM1 predictions. This increase
is driven by SO2−

4 and Org. Enhanced oxidation rates of SO2 (Dawson et al., 2007) at higher
temperatures lead to higher concentrations of SO2−

4 , while the increase in modelled concentrations
of Org can be attributed to enhanced biogenic activity causing to a rise in biogenic emissions
and secondary aerosol formation (Guenther et al., 1993; Megaritis et al., 2014; Churkina et al.,
2017; Jiang et al., 2019). To enable an objective identification of important turning points in
the relationship between air temperature and PM1 concentrations, a change-point analysis (CPA,
Cermak et al., 2010; Andersen et al., 2016; Truong et al., 2020) was conducted on the data series
of the temperature SHAP values sorted by absolute temperatures. The CPA pinpoints changes of
statistical properties in the embedded signal by minimizing a radial basis cost function, and is able
to identify discontinuities in a data series (Truong et al., 2020). Two turning points at ∼5 ◦C and
∼24 ◦C are identified, revealing three temperature-dependent PM1-regimes (see Fig. 5.2). For the
low-temperature-regime (<5 ◦C), a linear regression reveals a trend of -1.36 µg/K. Between 24 ◦C–
5 ◦C, only a very weak trend is found. The high-temperature-regime (>24 ◦C) shows an increase
of 0.36 µg/K. The effect of temperature increases on PM concentrations has been previously
indicated, e.g., in Dawson et al. (2007), who conducted a CTM-based study over the U.S.A. It was
found that an increase of temperatures in winter effectively reduces PM2.5 concentrations due to
the evaporation of NO−

3 and Org at higher temperatures. In summer, increases in SO2−
4 production

counteract this effect. In a further CTM-based study by Megaritis et al. (2014), these findings
were confirmed also for Europe. Megaritis et al. (2014) furthermore pointed out the role of higher
biogenic emissions, leading to an increase in Org concentrations with increasing temperatures. The
application of SHAP regression values allowed to expand this findings, and to present a coherent
picture of how temperatures drive PM1 concentrations. Knowledge on the turning points in the
relationship between temperature and PM1 concentrations as presented in Fig. 5.2 is essential to
understand not only the development of high pollution episodes, but also how PM concentrations
react with respect to climate change.
Overall, it is a complex combination of the described meteorological influences on PM1 that
lead to the development of high pollution events, and processes vary substantially between and
within seasons. While winter high pollution events were shown here to be frequently driven by
temperatures below 5 ◦C and shallow BLHs, summer peak concentrations are generally lower
and influenced by the high-temperature-regime above 24 ◦C and stagnant conditions with low
wind speeds. The advection of particles from the highly polluted Paris area is a major driver
of PM1 concentrations in all seasons. A detailed look on high pollution episodes is provided in
Figs 4.11–4.14. A winter pollution episode in January 2016 with peak PM1 concentrations of
37 µg/m3 (see Fig. 4.11 on page 98) was tested for its main contributors on a daily basis. Model
results show a strong contribution of temperature to the predicted PM1 concentrations during this
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Figure 5.2: Regimes characterizing the influence of air temperatures [◦C] on total PM1 concentrations. Absolute air temperatures
[◦C] are plotted against temperature SHAP values [µg/m3]. In addition, important turning points in the data series as
identified by a CPA are indicated as vertical dotted lines. For each regime, the trends are shown, which are calculated
using a linear regression.

episode (up to 11 µg/m3), suggesting enhanced local, temperature-dependant particle formation
as temperatures fell below freezing. In the case of another winter pollution episode in December
2016 with a main PM1 concentration peak >40 µg/m3 and several PM1 peaks >27 µg/m3 (see
Fig. 4.12), temperatures remain relatively stable (5–10 ◦C) and the contribution of temperature to
the PM1 predictions are low. BLHs (<500 m) and northeastern wind directions were quantified to
be the major contributors to the PM1 peaks during this episode with contributions up to 6 µg/m3.
A further highly polluted episode happened in March 2013, with peak concentrations surpassing
50 µg/m3 (see Fig. 4.14). These peaks are not as well reproduced by the model and are likely
due to particle formation processes along the air mass trajectories, in particular of NO−

3 (Petit
et al., 2017). The analysis of a summer pollution episode in June 2017 (see Fig. 4.14) with peak
PM1 concentrations of 17 µg/m3 suggests that temperatures above 30 ◦C contribute ∼3 µg/m3

to the total PM1 concentration along with particle advection from Paris and continental Europe
(∼3 µg/m3) and low wind speeds (∼2 µg/m3).
These findings relate to localized events, but the results are nevertheless highly relevant for other
regions as well. For example, the importance of temperature-induced particle formation processes
has been shown for the U.S.A. (Dawson et al., 2007), Europe (Megaritis et al., 2014), and China
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(Wang et al., 2016). Hence, it is likely that the insights gained on the turning points governing the
relationship between temperature and PM1 hold for other regions as well. Furthermore, the impact
of BLH on PM1 concentrations found in this local study is similar to results presented in chapter 3
on a regional scale, which emphasizes that the dominant role of BLH on PM concentrations. The
importance of wind direction highlights the role of advected pollution from highly polluted urban
or industrial hotspots, indicating that urban surroundings can be severely affected by the urban
pollution footprint. The diversity of processes leading to high pollution episodes emphasizes the
need to develop a set of PM mitigation strategies that tackle both local and regional sources of
particles and precursor gases.

The new insights on the highly variable relationship between AOD and PM10 provided in this
thesis are a sound basis for improving the accuracy of future efforts to estimate PM concentrations
based on satellite AOD retrievals, in particular for regions that lack an extensive network of in
situ PM measurement sites. Accurate, spatially coherent PM estimates are beneficial as they allow
for the identification of pollution hotspots and the long-term monitoring of air quality over a large
spatial scale. This is an important step towards a reliable data basis on air pollution, which is also
important for large-scale epidemiological studies. These studies depend on reliable air quality data
to produce risk assessments for the population and to quantify health risks. Eventually, this would
constitute a powerful tool for policymakers to develop the right measures towards better air quality.
Furthermore, the results presented in this thesis advance the scientific understanding of
environmental processes driving PM concentrations, contributing not only to the scientific
progress, but are also important to the general public and policymakers. It is crucial to take
atmospheric processes into account for the development of pollution mitigation strategies and
to test the efficiency of these measures. The detailed knowledge on processes leading to high
pollution also allows to identify pollution sources, e.g., by separating the contribution of advected
particles from locally formed particles. The rate of locally-formed particles, for example, could be
decreased by reducing the availability of precursor gases, e.g., SO2 and NOx, which are emitted
in great quantities by anthropogenic sources (Pay et al., 2012). The results of this thesis, in
particular the new insights gained on the influence of air temperature on PM concentrations, also
have implications for the understanding of how PM concentrations might be affected by climate
change. While this question has already been tackled by several modelling studies (Dawson et al.,
2007; Megaritis et al., 2013, 2014; Sá et al., 2016; Doherty et al., 2017), the insights provided here
regarding the response of PM concentrations to changes in air temperature, BLH, precipitation,
wind, and RH advance the system understanding from an empirical perspective and might increase
the confidence in PM estimations under climate change.
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In the concluding outlook section, promising developments in the field of scientific air quality
research are presented along with ideas on how the findings of this thesis could be put into practice.

5.2 Outlook

Future developments of PM estimates from satellite-based AOD

Estimates of PM concentrations from satellite-based AOD will very likely continue to play a major
role in the field of air quality research. Future efforts may profit from the introduction of new
data sets, e.g., the recently published ERA5 reanalysis data set, which provides more accurate
information on meteorological conditions (Olauson, 2018; Tarek et al., 2019; Jiang et al., 2020). In
addition, the applicability of geostationary satellites, e.g., the upcoming Meteosat Third Generation
satellites for AOD retrievals is currently being discussed (Ceamanos et al., 2019). These have the
potential to provide large spatial and temporal coverage, which would be of great value to further
advance the scientific understanding of air quality patterns. Advances in ML techniques, e.g.,
deep learning approaches such as convolutional neural networks, have the potential to improve
estimates of PM. These networks could, for example, leverage spatial information pertaining
to pressure fields, wind fields, or terrain. In Soh et al. (2018), such an network was used to
forecast PM concentrations, informing the public in Taiwan. A further promising development
is the distribution of low-cost PM-sensors, which can be coupled with satellite-based AOD. These
devices are easy to handle, but do not reach the accuracy of professional PM measurement devices.
Still, they give some indication on PM concentrations and by distributing such devices to the
public, a large coverage can be achieved. Malings et al. (2020), for example, suggest to link the
PM measurements of those devices with satellite-based AOD, similar to the approach presented in
chapter 3. This would be particularly beneficial for remote regions that lack conventional ground-
based monitoring stations.

Putting the scientific understanding of PM into practice

The approach described in chapter 4 offers several conceivable practical applications. For example,
the effect of measures towards better air quality could be analysed by setting up two statistical
models: one model trained to predict PM concentrations before mitigation measures were taken
and another model trained on PM concentrations after the measures come into effect. Both
models would have to consider the same meteorological parameters as input. The difference
of the PM predictions of both models would then provide a robust estimation of the effect of
the mitigation measure under consideration of the meteorological conditions. Furthermore, the
statistical approach could be coupled with weather forecasts to establish a short-term warning
system. If high concentrations are to be expected due to the forecasted meteorological conditions,
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a warning of air pollution could be issued to the public by local authorities. Furthermore, the
importance of meteorological conditions for PM concentrations raises questions regarding air
pollution thresholds such as the EU legal thresholds. These limits are fixed, but exceedances of
PM values may not always be due to high emissions, but due to specific meteorological conditions.
Since an exceedance of the EU thresholds has serious legal consequences for affected EU
states, moving away from fixed limits to a dynamic perspective, which considers meteorological
conditions during exceedances of air pollution thresholds might provide a level playing field for
all member states.
In the light of recent events related to the global outbreak of SARS-CoV-2, air pollution could
become even more the centre of the public attention. Preliminary studies suggest that air pollution
might be a key factor in the virus’ spreading. Although a thorough treatment of this question is
still needed, the transmission by virus-laden aerosols is discussed and is considered as a possible
spreading mechanism (Contini and Costabile, 2020). Further preliminary studies by Xiao et al.
(2020) and Yongjian et al. (2020) indicate that long-term exposure to high levels of PM might
increase mortality rates related to the COVID-19 disease that is triggered by SARS-CoV-2.
Looking forward, new ideas in the highly dynamic field of air quality research are very likely to
emerge, which will help to pursue the continuous goal of ensuring good living conditions for all.
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Scientific appendix of chapter 3

A Information on UBA PM10 stations

The spatial distribution of PM10 measurement stations is shown in Fig. A.1. Overall, stations are
distributed relatively homogeneously over the area of Germany. The number of stations is higher
in urban agglomerations. The majority of stations are classified as "urban" or "suburban". "Rural"
stations are relatively rare. Most stations are labelled as representative for background conditions
by the data provider. Station altitudes [m.a.s.l.] are shown in Fig. A.2. Altitudes range from 0 to
970 m.a.s.l.
Furthermore, mean PM10 concentrations of all stations for the study period 2007–2015 are shown
in Fig. A.3. Mean concentrations are highest in the Rhine-Ruhr area (north-west) and other urban
areas such as Munich to the south, Berlin to the northeast and Hamburg to the north.

Figure A.1: Spatial distribution, type, and representativeness of UBA PM measurement stations in Germany
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Figure A.2: Altitude [m.a.s.l.] of UBA PM measurement stations in Germany

Figure A.3: Mean PM10 concentrations for measurement stations.
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Scientific appendix of chapter 3

Figure B.1: Spatial distribution of R2 of the model set up.

B Spatial distribution of model skill

Figs B.1 and B.2 show the spatial distribution of the coefficient of determination (R2 ) and the
RMSE, respectively. In the southwest and the northeast, R2 tends to be higher and RMSE tends to
be lower. In the Rhine-Ruhr region (northwest), performance seems to be generally worse. These
stations generally have high mean PM10 concentrations (see Appendix A, Fig. A.3). However, it
appears that other urban areas, which also have high mean PM10 concentrations can be modelled
quite well (e.g. Berlin, in the northeast or Hamburg in the north).

C Further Individual Conditional Expectation plots

Solar radiation (Fig. C.1) and time since the last precipitation (Fig. C.2) were analysed using the
ICE method as described in chapter 2.6.3. Both input features show only minor influence on mean
PM10 predictions. The ICE functions for time since last precipitation show particularly large
variability of model responses of the individual data instances (shown by the shaded areas beneath
the bold lines), indicating strong interactions with other features.
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Figure B.2: Spatial distribution of the RMSE of the model set up.

D Seasonal two-way partial dependence plots

In addition to Fig. 3.13 on page 72, which shows the full-year model two-way partial dependence
of RH and BLH, Fig. D.1 additionally depicts the two-way partial dependence of the seasonal
models. Similarly, Figs D.2 and D.3 show the seasonal two-way partial dependence of AOD and
BLH and AOD and umean, respectively.
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Figure C.1: PD plot showing the mean model response to changes in SSRD [W/m2s] for the full-year model (a) and each season
separately (b-e, DJF, MAM, JJA, SON). Description as in Fig. 3.6
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Figure C.2: PD plot showing the mean model response to changes in time since last precipitation [h] for the full-year model (a)
and each season separately (b-e, DJF, MAM, JJA, SON). Description as in Fig. 3.6
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Figure D.1: Two-way PD of RH and BLH, full-year model (a) and seasonal models (b-e, DJF, MAM, JJA, SON). Description as in
Fig. 3.9
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Figure D.2: Two-way PD of AOD and BLH, full-year model (a) and seasonal models (b-e, DJF, MAM, JJA, SON). Description as
in Fig. 3.9
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Figure D.3: Two-way PD of AOD and umean, full-year model (a) and seasonal models (b-e, DJF, MAM, JJA, SON). Description
as in Fig. 3.9
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Abstract: Air pollution can endanger human health, especially in urban areas. Assessment of air
quality primarily relies on ground-based measurements, but these provide only limited information
on the spatial distribution of pollutants. In recent years, satellite derived Aerosol Optical Depth
(AOD) has been used to approximate particulate matter (PM) with varying success. In this study,
the relationship between hourly mean concentrations of particulate matter with a diameter of
10 micrometers or less (PM10) and instantaneous AOD measurements is investigated for Berlin,
Germany, for 2001–2015. It is found that the relationship between AOD and PM10 is rarely linear and
strongly influenced by ambient relative humidity (RH), boundary layer height (BLH), wind direction
and wind speed. Generally, when a moderately dry atmosphere (30% < RH≤ 50%) coincides with
a medium BLH (600–1200 m), AOD and PM10 are in the same range on a semi-quantitative scale.
AOD increases with ambient RH, leading to an overestimation of the dry particle concentration near
ground. However, this effect can be compensated if a low boundary layer (<600 m) is present, which
in turn significantly increases PM10, eventually leading to satellite AOD and PM10 measurements of
similar magnitude. Insights of this study potentially influence future efforts to estimate near-ground
PM concentrations based on satellite AOD.

Keywords: Aerosol Optical Depth; PM10; MAIAC; MODIS; air quality; boundary layer height;
ambient relative humidity

1. Introduction

The adverse health effects of Particulate Matter (PM) on the human respiratory and cardiovascular
system are well known and include asthma, emphysema, and lung cancer [1–3]. Although measures to
reduce ambient PM concentrations are mandatory in many countries once legal thresholds are exceeded,
the most effective approach to reduce PM concentrations is still a matter of debate. Low emission
zones (LEZ) pertaining to automotive traffic or other driving restrictions have been set up in cities
worldwide, for example in Berlin [4,5], Munich [6], London [7], Tokyo or Mexico City [8]. One fact that
makes it hard for policy makers to choose the right measures is that the processes leading to excessive
particulate concentrations in urban regions are not yet fully understood. For example, vegetation can
both enhance [9] and decrease PM concentrations [4], depending on the type of vegetation, the primary
pollutant, and the size of green spaces.

To better constrain the processes driving PM distribution, extensive and spatially continuous data
are required; however, this information is not readily available. In general, networks of PM monitoring
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stations are not dense enough to reflect interactions between urban areas and their surroundings.
Moreover, measurement stations are much more common in urban areas than in rural areas. Satellite
data have the potential to fill in the blanks.

Satellite-based AOD observations have been used as a tool for air quality assessment with
varying success [10–12]. However, relying on satellite AOD observations as proxy for near-ground
air pollution can be misleading in some situations. AOD is defined as the extinction of radiation
in an atmospheric column at a certain wavelength, while particulate matter concentrations reflect a
dry mass concentration of particles of a certain size distribution at a specific measurement site [10].
The relationship between these two entities is influenced by numerous factors and is therefore highly
variable and often non-linear [10,13–15]. On a seasonal scale, the relationship can even be inverse,
because AOD tends to peak in summer, while PM usually peaks during the winter months [13,16,17].
The main reason therefore is the varying vertical distribution of aerosols within the atmosphere:
in situations with a high boundary layer, the number of particles near ground decreases as they
dissipate in the atmosphere, whereas a low BLH tends to increase near-ground particle numbers as the
particles are confined in the lower atmosphere. BLH tends to be higher in summer due to pronounced
turbulence [12,17,18]. Information about the vertical distribution of aerosols, approximated for example
by the BLH, is therefore necessary for understanding variations in the relationship between AOD and
PM [19–21]. Furthermore, moisture in the atmosphere, in this study approximated by ambient RH
measurements, exerts influence on the AOD. Increasing RH will usually lead to hygroscopic growth of
particles (aerosol swelling), enhancing the scattering coefficient and thus increasing the AOD [10,12,20].
The magnitude of hygroscopic growth depends on size and chemical species of particles [22–24].
In situ PM measurements, on the other hand, are usually carried out under dry conditions [25] and are
not directly affected by ambient relative humidity. Additional meteorological factors influencing the
relationship between AOD and PM include wind speed and wind direction. Generally, it is known that
ambient weather conditions can exert strong influence on this relationship, superimposing small-scale
effects of PM measurement sites [12,26]. Wind speed and direction govern the amount and type of
particles in the atmosphere [27–30].

With regard to determinants of the relationship between AOD and PM, previous studies have
identified favorable meteorological boundary conditions to derive near-ground PM from satellite AOD,
often with varying conclusions. Although frameworks differ, some of these are presented here briefly.
Gupta et al. (2006) [20] report a strong linear correlation between AOD and particulate matter with a
diameter of 2.5 micrometer or less (PM2.5) for situations with low BLH. They conclude that when a low
BLH is present, the satellite observes a very similar amount of particles as detected by ground-based
measurements. In another study, Chudnovsky et al. (2013) [28] argue that in winter conditions in the
Boston area, U.S.A., a shallow BLH would rather lead to low correlations between AOD and PM2.5.
In these situations, particle concentrations are low in the upper parts of the atmosphere as particles
are mostly confined within the shallow boundary layer. This might limit the path length for satellite
measurements and decrease the sensitivity of AOD [31]. The role of RH has been controversially
discussed in recent studies. While some do not find a significant influence of RH on the correlation
of AOD and PM2.5 [28], others report that AOD is more representative of PM2.5 mass concentration
under dry conditions, i.e., RH < 50% [12]. Results of a field campaign conducted in northeastern U.S.
suggest that water uptake by particles can indeed play a major role in the relationship between AOD
and PM2.5 [32].
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While AOD has sometimes been used as a proxy for PM, a thorough and detailed treatment of
the specific roles of meteorological conditions in determining the link between both parameters is
not available. Accordingly, the aim of this study is to identify a range of meteorological conditions
under which AOD can be reliably used to approximate PM, and to constrain under which conditions
satellite AOD observations underestimate or overestimate ground PM concentrations. Knowledge of
these conditions is a prerequisite for generating reliable spatial estimates of PM. Based on the literature
reviewed above, the guiding hypothesis is that for a continental mid-latitude location BLH, RH and
wind are of the greatest importance for inferring PM10 from satellite-based AOD.

The data basis of this study is comprised of almost 15 years of data including satellite
observations from the Moderate Resolution Imaging Spectroradiometer (MODIS), model output
from the European Centre for Medium-Range Weather Forecasts (ECMWF) and station data from the
German Meteorological Service (Deutscher Wetterdienst, DWD). Using the recent, high-resolution
Multi-Angle Implementation of Atmospheric Correction (MAIAC) AOD algorithm and ground-based
PM10 measurements, numerous collocated data pairs were analyzed in an area around Berlin, Germany.
Berlin was chosen as a study site because of its continental location in flat terrain and excellent data
availability. A novel approach is introduced, which includes a monthly ranking of AOD and PM10
observations and allows for a direct comparison of the magnitude of paired values. In this way, it was
possible to characterize the relationship between AOD and PM10 for each data pair individually and to
perform in-depth analyses. Ranked AOD/PM10 data pairs were linked to surrounding meteorological
parameters. The approach presented in this study can be generalized for the use in other study areas.

2. Materials and Methods

2.1. Study Domain

The study focuses on a rectangular area (∼12,000 km2) around the cities of Berlin and Potsdam
in northeastern Germany. A relatively small area was chosen to properly quantify and interpret
influencing factors of the relationship between AOD and PM10. The area is dominated by the cities
in its center and is surrounded by agricultural land and large vegetated areas to the north and south
(see Figure 1). A great number of PM10 measurements in the city area and its surroundings are
available. The area is mainly characterized by continental climate with only sparse, episodic maritime
influence when advection of air masses from northern and northwestern directions occurs. Thus,
the area is suitable for studying the influence of wind direction to discriminate between these regimes.

Local PM10 sources dominate in the region, with traffic the major contributor [4]. Vegetated areas
surrounding Berlin influence the mixture of particles in and around the urban area. The emission of
Biogenic Volatile Organic Compounds (BVOCs, e.g., isoprene and monoterpenes) leads to secondary
aerosol formation. Depending on the vegetation type, this effect can vary significantly; agricultural
areas, for example, can have pollution levels similar to the urban background. It has been argued that
particle transport from the east can markedly contribute to overall pollution levels [4,33]. In general,
two different air mass regimes can be discriminated. Western air masses tend to transport lower
particle concentrations, whereas continental, eastern air masses accumulate particles and thus carry
elevated particle concentrations [34].
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Figure 1. Geographical extent of the study area. Different land cover classes are colored, positions of
meteorological stations and PM10-measurement sites are indicated.

2.2. Materials

2.2.1. PM-Measurements

PM10 is analyzed in this study instead of PM2.5 due to a greater availability of data for the study
region. PM10 measurements might be more adequate for the analysis, as larger particles are less easily
transported and more representative of local conditions. Additionally, PM2.5 excludes the fraction
of larger particles, which are nevertheless accountable for light extinction and are thus measured by
the satellite. The stations are run by the German Federal Environmental Agency (UBA) and consist of
hourly mean concentrations [µg /m3]. PM concentrations are determined by measuring the attenuation
of β-radiation by a dust-coated filter. Measurements are largely uninfluenced by ambient temperature
and relative humidity. To avoid condensation, the particle inlet is heated permanently [25].

The locations of PM measurement sites and station types are shown in Figure 1. Instructions by
the European Union prescribe measurement sites to be sited in such a way that micro-environment
effects can be avoided. Stations can be of type background or traffic and be representative for urban,
rural or suburban areas. Traffic sites are generally close to main roads or busy intersections [35]. These
sites are excluded from the analysis as they are by design not representative for conditions beyond the
specific traffic situation and thus the area covered by a satellite pixel. PM concentrations within the
city area reach their maximum in the morning hours (∼ 7–8 a.m.) and in the evening (∼ 9–11 p.m.) [36].
Urban background sites capture the integrated contribution of all sources near the site without one
particular source dominating. These stations are representative for some km2. Suburban stations
need to be placed downwind (referring to the main wind direction) of emission sources and ensure
a representativeness of some dozends km2. Rural background stations may not be influenced by
agglomerations or industrial sites closer than five kilometers. These stations may be located in small
settlements, given a representativeness of some hundred km2 [35].
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2.2.2. Satellite AOD Data

High-resolution (1 × 1 km) AOD computed by application of the MAIAC technique is used [37–40].
The product is based on data from MODIS, Collection 6, aboard the Terra and Aqua satellites. The MAIAC
algorithm makes use of look-up tables, explicitly taking into account surface bidirectional reflectance
factors (BRF). The calculation of AOD relies on the assumption that surface BRFs remain largely constant
over time, considering a time series of 16 consecutive days. This assumption might not be true in case of
rapid surface changes, e.g., green-up events over bright surfaces [37,38]. To avoid these pixels, uncertainty
estimates as included in the product are applied for filtering here. Pixels with an uncertainty larger 0.4
were discarded. For valid daytime AOD data used in this study, Aqua and Terra satellite overpass times
range from ∼9 a.m. UTC to ∼1 p.m. UTC.

2.2.3. Meteorological Data

To represent regional-scale meteorological conditions, ERA-Interim reanalysis data generated by
the ECMWF are used with a resolution of 0.125◦ [41]. These include BLH [m] and wind speed [m/s] in
u and v direction (10 m height). Wind speed and wind direction [◦] are calculated using u and v wind
components. BLH data are employed as a proxy for the vertical concentration of aerosols in the lower
troposphere, assuming particles are well-mixed within the boundary layer [12,42] and AOD mostly
represents attenuation in the boundary layer [43]. Depending on the closest satellite overpass time,
ERA-Interim data at 9 a.m. UTC, 12 noon UTC or 3 p.m. UTC are used.

Ground measurements were obtained from the DWD. One hour mean values of RH [%] measured
in 2 m height are used [44]. The locations of DWD measurement sites are given in Figure 1 as blue dots.
This study uses near-ground RH measurements, as these are more widely available than measurements
of the vertical distribution of water vapour. Under dry conditions (RH < 55%), near-ground RH
measurements show reasonable agreement with vertically resolved measurements. This might not be
the case at higher RH [32].

2.3. Methods

UBA PM station coordinates are used as spatial reference, i.e., AOD pixels, ERA-Interim pixels
and meteorological station data coordinates are collocated with the position of these stations. Only the
nearest pixels below a threshold of 0.015◦ (∼1 km) distance from the PM measurement were collocated
with the corresponding closest UBA station. The relatively small distance threshold was chosen to
ensure that the MAIAC AOD reflects the situation in close vicinity of the UBA station. Terra/Aqua
satellite overpass time is used as temporal reference for the PM10 and meteorological data, i.e., values
closest to the overpass time are used. The work flow of this study is summarized in Figure 2.

For the analysis of factors influencing the relationship between AOD and PM10, this study
introduces the Air Quality Rank Difference Index (AiRDI). The AiRDI allows for a direct,
semi-quantitative assessment of whether AOD and PM10 agree, or whether the satellite qualitatively
over- or underestimates PM10. Accordingly, situations in which these parameters are of similar
magnitude can be identified systematically. The AiRDI is dimensionless and is computed for each
spatially and temporally collocated AOD-PM10 data pair. First, AOD and PM10 values are sorted
from lowest to highest on a monthly basis. The sorting is performed for each month individually to
eliminate seasonal effects as outlined in the introduction. The sorted AOD (PM10) values are then
assigned ranks corresponding to their positions on a scale from 0 to the number of AOD (PM10)
observations per month (n), yielding AODranked and PM10ranked. The rank of AOD (PM10) within each
month is then divided by n and multiplied by 100, yielding normalized ranks greater than 0 and up to
100. Finally, the AiRDI is computed by subtracting PM10rank from AODrank (see Equation (3)).

AODrank(month) =
AODranked
n(month)

∗ 100 (1)
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PM10rank(month) =
PM10ranked
n(month)

∗ 100 (2)

AiRDI(month) = AODrank(month)− PM10rank(month) (3)

Positive AiRDI means that AODrank is higher than PM10rank. In other words, the satellite
observation is relatively higher than the PM10 concentration, indicating a relative overestimation of
PM10 by the MAIAC AOD. The opposite is true for a negative AiRDI; in this case, lower AODrank
coincide with higher PM10rank, indicating an underestimation of PM10 by the MAIAC AOD. In cases
where the AiRDI is close to zero, AOD and PM10 are in the same range.

AiRDI

RH

German 
Meteorological 
Service DWD

PM10

German Federal 
Environment 
Agency UBA

MAIAC AOD

Terra/Aqua 
Satellites

Wind Speed & 
Direction, BLH

ECMWF ERA-
Interim

AODrank

Characterization of 
the relationship AOD 

and PM10

spatial collocation temporal collocation

monthly 

ranking

subtraction

Collocated

Aerosol 
information

aerosol 
information

meteorological 
information

monthly 

ranking

PM10rank

Figure 2. Overview of the work flow of this study. Methods are shown in curved boxes, inputs and
outputs in rectangular boxes.

3. Results

3.1. Nonlinearity of the relationship between AOD and PM10

Several studies report a robust linear correlation between daily means of AOD and PM, e.g., for the
southern U.S. [10], the Po Valley in Italy [16] or selected cities worldwide [20]. In the Berlin study area,
the relationship between AOD and PM10 is highly nonlinear. This is suggested by patterns shown in
Figures 3a,b, which depict AiRDI in relation to AOD and PM10. A strong positive linearity would result
in a slope of zero, as increasing AOD would coincide with increasing PM10, resulting in a constant
AiRDI. In fact, the figures show an almost linear increase (decrease) of AiRDI for increasing AODrank
(PM10rank). Higher (lower) AOD is likely to overestimate (underestimate) PM10 concentrations; AiRDI
is more likely to be positive for high AOD, but more likely to be negative for low AOD. The pattern is
inverse for the comparison of PM10 and AiRDI.

167



Remote Sens. 2018, 10, 1353 7 of 17

0.1 0.2 0.3 0.4 0.5
AOD

100

50

0

50

100

Ai
RD

I (
AO

D r
a
n
k
-P

M
10

ra
n
k
)

(a)

0

20

40

60

80

100

120

140

160

180

200

Fr
eq

ue
nc

y

10 20 30 40 50 60 70 80
PM10 [µg/m3]

100

50

0

50

100

Ai
RD

I (
AO

D r
a
n
k
-P

M
10

ra
n
k
)

(b)

0

20

40

60

80

100

120

140

160

180

200

Fr
eq

ue
nc

y

Figure 3. 2D-histograms of AiRDI, AODrank (a) and AiRDI, PM10rank (b). The frequency of occurrence
of associated data pairs is color-coded.

3.2. Meteorological Conditions of AOD-PM10 Agreement and Divergence

In this section, meteorological factors governing the relationship between AOD and PM10 are
identified and connected to the AiRDI. An in-depth analysis concerning the role of RH and BLH is
conducted. Wind speed and direction is investigated to determine the role of weather conditions and
the prevailing inflow direction. AiRDI patterns related to wind are partly driven by the redistribution
of RH and BLH.

To identify possible factors influencing AiRDI, data was split in positive (AiRDI > 25), negative
values (AiRDI <−25) and AiRDI values close to zero (25≥AiRDI≥−25). Subsequently, the median of
each parameter for each season was calculated. Then, the relative deviation of each data point from
this median for each AiRDI-class was determined, resulting in the distribution shown in Figure 4.

The class AiRDI > 25 is characterized by strong positive deviations of BLH and slightly positive
RH deviations. This is consistent with what was introduced above: a higher BLH tends to decrease
PM10 concentrations near ground because particles disperse within the atmospheric column, while
elevated ambient RH tends to initiate hygroscopic growth, increasing AOD [10,12]. Both effects
combined result in a positive AiRDI. Additionally, a high BLH might increment the number of particles
distributed in the lower troposphere due to enhanced turbulence. Subsequently, AOD would also
increase [13]. BLH does not show a marked deviation in summer, pointing to a decreased importance
of BLH during the summer months.

Patterns of the class AiRDI <−25 display almost inverse characteristics. Here, BLH and RH
show negative deviations. Negative AiRDI values result from low BLHs, which increase PM10
concentrations near ground, whereas low ambient RHs decrease the influence of hygroscopic growth.
PM10 concentrations appear to have very high positive deviations in winter months, when particles
are often confined to layers close to the ground [13]. The frequent occurrence of stable stratification
situations along with low turbulent atmospheric exchange during stagnant synoptic situations could
lead to very high particle concentrations [26].

Parameters in the class 25≥AiRDI≥−25 do not show strong deviations of any parameter.
The best agreement between AOD and PM10 is achieved when RH and BLH are near their seasonal
median values.
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Figure 4. Determination of factors influencing AiRDI including relative humidity (RH), boundary layer
height (BLH), wind velocity in u and v direction (u/2,v/2), aerosol optical depth (AOD) and PM10
(PM) . Data are split on a seasonal basis and divided in positive (a–d), negative values (e–h) and AiRDI
values close to zero (i–l). Winter months are denoted as DJF, spring months as MAM, summer months
as JJA, fall months as SON. Box plots show the relative deviation of each parameter observation to
the seasonal mean. Deviations for u and v were multiplied by a factor of 0.5 to prevent a distortion
of the y-axes. The box plots extend from the lower to the upper quartile value, with a red line at the
median. Whiskers show the range with outliers marked as short, horizontal black lines. The number of
observations for each class is denoted as n.

In summary, AOD observations coinciding with high (low) ambient RH and high (low) BLH
have a higher probability to cause an overestimation (underestimation) of PM10. Patterns are largely
constant throughout the year. Wind speed and direction also play an important role. But like RH and
BLH, the relationship is complex and is treated in more detail in the following sections.

3.3. The Role of RH and BLH

This section quantifies the interconnected effects of RH and BLH on the relationship between
AOD and PM10. To this end, a multivariate analysis was conducted using ranges of RH and BLH.
These were related to AODrank, PM10rank and AiRDI.
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Three AiRDI-regimes can be discriminated in Figure 5a. Low RH coinciding with low BLH leads
to negative AiRDI values, relatively high RH coinciding with high BLH leads to positive AiRDI values.
A curved area of near-zero AiRDI values separates negative and positive AiRDI patterns, indicating
meteorological conditions where the magnitudes of AOD and PM10 match closely. The shape of
this patch emphasizes the dependency of the AiRDI on both RH and BLH. With decreasing BLH,
the near-zero values are shifted towards higher RH. Obviously, the effects on AiRDI of both parameters
can compensate each other, leading to a AiRDI close to zero.

Figure 5b highlights the effect of hygroscopic growth on AOD, with increased RH leading to
higher AODrank. Furthermore, the data suggest that AODrank is positively correlated not only to RH,
but also to BLH (Figure 5b). Relatively high AODrank coincides with relatively high BLH. This effect
might be due to convection processes, which increase the BLH and cause particles to be lifted up
into the atmosphere more easily. In these situations, the deposition of particles would be prevented
and particles would remain in the atmosphere, causing the AOD to increase. Low BLH, as an
indicator of low turbulence, would lead to reduced particle release and thus relatively low AOD.
Additionally, when particles are confined in a shallow boundary layer, a reduced path length for
satellite measurements might reduce the sensitivity to AOD [31].

PM10rank is elevated for BLH < 600 m (Figure 5c) owing to limited dissipation of particles into
higher atmospheric layers and subsequent accumulation of particles near the ground. At very high
BLH (>2400 m), PM10rank is also slightly elevated. Around 3% of all observations are related to
this pattern. PM10rank at these high BLH values should be interpreted with care: For mid-latitudes,
BLH > 2400 m appears to be very high [45] and might not properly reflect real conditions. A weak
dependence of PM10rank on RH exists: PM10rank decreases with increasing RH. This might be due to
the fact that RH is elevated when precipitation influenced the atmosphere prior to the measurement,
leading to increased RH and decreased particle concentrations due to wet deposition of particles [26].
Another possible reason might be that the influence of maritime air is overrepresented in situations
with high RH. These air masses are humid and clean, i.e., carry fewer particles. Finally, this pattern
could be due to measurement errors of the UBA PM sites caused by condensation on the particle inlet
of the PM sensors, despite the heating of the sensor inlet. This way, fewer particles would reach the
sensor, decreasing reported particle concentrations.

When BLH is greater than 600 m, the AiRDI is mostly driven by RH. In a very moist atmosphere
(RH > 90%), the median AiRDI is near zero only at very low BLH. The influence of hygroscopic growth
on AOD is apparent when AiRDI approaches positive values. In these situations, AOD is increased
while PM10 remains unaffected. This effect can be seen from about RH > 40%, depending on BLH.
Previous studies report that hygroscopic growth starts at RH∼ 50% [46].

Results presented in this section partly contradict earlier studies, which identify situations with
low BLH and low RH as favorable [20]. Figure 5a suggests that a very low BLH tends to cause an
underestimation of PM10 concentrations by the satellite (negative AiRDI). RH and BLH clearly have an
interconnected influence on the relationship between AOD and PM10, which emphasizes the need to
examine both parameters simultaneously. Generally, AOD and PM10 match best when the atmosphere
is relatively dry (40% < RH≤ 70%) and BLH is at medium levels (600–1200 m). High ambient RH, on
the other hand, can be compensated by a low BLH, leading to a good agreement of AOD and PM10.
RH measurements used in this study only capture near-ground ambient RH. Nevertheless, Figure 5a
suggests that near-ground RH has a large influence on the relationship between AOD and PM10.
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Figure 5. (a) Relationship between AiRDI (AODrank − PM10rank), RH and BLH. BLH is gridded in
steps of 60 m, RH in steps of 2%, each grid cell represents the median AiRDI. (b) Relationship between
AODrank, RH and BLH, same grouping of RH and BLH as (a). (c) Relationship between PM10rank, RH
and BLH, same grouping of RH and BLH as (a). (d) Standard deviation of AiRDI for each class, same
grouping of RH and BLH as (a). (e) Number of observations for each grid cell, same grouping of RH
and BLH as (a).

3.4. The Role of Wind Direction and Wind Speed

In this section, patterns of AiRDI, AODrank and PM10rank in relation to large scale patterns of
wind speed and wind direction are analyzed and connected to results of previous chapters. Patterns of
wind speed and direction give hints on particle origins. Knowledge on the direction of origin of air
masses, for example, helps characterize particle species and concentrations [23,24]. Wind speeds help
to distinguish between the dominance of local sources or particles originating further away.

To distinguish between the effects of wind speed and direction, wind speed data are split in
four classes 0–3 m/s, >3–5 m/s, >5–7 m/s and >7 m/s. The resulting polar plots are comprised of
16 wind direction classes with a range of 22.5◦, starting from 0◦. Each class is colored with the
corresponding median AiRDI value, computed of all associated AODrank and PM10rank that appear in
the corresponding class. Radii of the polar bars indicate the frequency of occurrence.
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A clear AiRDI pattern can be identified in Figure 6. Air masses from northwestern or western
direction tend to cause a positive AiRDI, while air masses from the east and south-east tend to coincide
with negative AiRDI values. This pattern is most distinctive for wind speed classes >3–5 m/s and
>5–7 m/s. For lower wind speeds (0–3 m/s), the pattern is less clearly defined. This is likely due to
the dominance of local particle sources, superimposing the effects of large-scale air mass transports.
Results suggest that satellite AOD tends to overestimate particle concentrations near the ground when
strong northwestern or western winds prevail, whereas an underestimation occurs when eastern and
southeastern winds dominate. There is a higher chance of AiRDI close to zero at lower wind speeds,
as local emissions can be captured more easily by both ground stations and the satellite.
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Figure 6. Relationship between the AiRDI (AODrank − PM10rank), wind direction and wind speed for
the study area. Figures (a–d) represent a wind speed class as shown on the upper left of each panel.
Polar bars enclose a wind direction class, each 22.5◦ in range. Colors indicate the mean AiRDI for each
polar bar, the radius of each bar indicates the frequency of occurrence.

PM10rank (Figure 7a–d) is generally highest during conditions with low wind speeds (0–3 m/s).
This is not surprising, as transport of pollutants takes place less effectively and particles from local
sources inside the urban area of Berlin accumulate in the atmosphere. Additionally, dry deposition of
particles might take place more effectively, as particles reach the surface more easily due to decreased
vertical winds. This might lead to increased PM10 concentrations at the measurement sites. Winds
from eastern directions show elevated PM10rank, indicating advection of continental air masses with
high particle numbers near the ground. Air masses from the west, possibly of maritime origin, tend to
be cleaner than continental air, because particles are scavenged by wet deposition [23,26]. At higher
wind speeds, this pattern is most distinct.

Generally, patterns for AODrank are less pronounced (Figure 8a–d). In contrast to PM10rank,
AODrank is slightly elevated when high wind speeds occur from the west . The inverse pattern of
AODrank versus PM10rank in terms of wind speed and wind direction demonstrates that satellite
derived AOD is not suited for directly deriving ground-based PM10 in all situations.
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Figure 7. Relationship between PM10rank, wind direction and wind speed. Setup of figures (a–d)
is identical to previous plot. PM10rank is generally higher when continental, i.e., easterly air
masses dominate.
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Figure 8. Relationship between AODrank, wind direction and wind speed. Setup of figures (a–d) is
identical to previous plot.

Several explanations for these observations are possible. Advection of western air masses
transports higher amounts of moisture to the Berlin study area, indicated by higher values of RH in
Figure 9. Increased availability of moisture in the atmosphere could promote particle water uptake
and cause hygroscopic swelling of particles. Increased particle sizes would lead to rising AODrank
but not affect PM10rank, which ultimately leads to positive AiRDI. Eastern winds, on the other hand,
transport continental air masses with a potentially larger particle loading [4,33]. This might increase
PM10 concentrations.
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Figure 9. Relationship between RH [%], wind direction and speed. Setup of figures (a–d) is identical to
previous plot.

A further possible explanation might be the varying hygroscopicity of particles carried by
different air masses. Western air masses are thought to carry a higher amount of hydrophilic particles
(e.g., sea salts) which tend to be more prone to hygroscopic growth due to more effective water
uptake [23,24,47]. The opposite might be true for air masses from eastern and northeastern origins
carrying anthropogenic and industrial aerosols. For the measurement station Melpitz, located around
130 km south of Berlin, it was found that the scattering enhancement of particles was lowest when
air masses were advected from the east and northeast [23,34]. Thus, these particles are less likely to
increase the AOD by hygroscopic growth [23,24]. Finally, eastern wind directions might indicate a
stable atmospheric situation with lower BLH (see Figure 10), causing pollution levels to increase near
the ground [12,18]. As can be seen in Figure 10, advection of air masses from the west at higher wind
speeds tends to increase BLH.
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Figure 10. Relationship between BLH [m], wind direction and speed. Setup of figures (a–d) is identical
to previous plot.
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In summary, advection of western air masses tends to increase RH and BLH, coinciding with
slightly elevated AODrank and low PM10rank. Eastern and southeastern air masses tend to show lower
RH and BLH, coinciding with slightly decreased AODrank and elevated PM10rank. These patterns are
generally more pronounced for higher wind speeds, whereas dependence on wind direction decreases
with lower wind speeds. To conclude, the following statements summarize the findings of this chapter:

• Western air masses with higher wind speeds establish a relatively high probability that the satellite
AOD overestimates PM10.

• The opposite is true for eastern direction of origin. In these cases, a higher probability of the
satellite AOD underestimating PM10 levels exists.

• Differences in RH and BLH patterns seem to be the main drivers behind the dependence of AiRDI
on wind direction besides the transport of pollutants and varying hygroscopicity of particles.

• Agreement between AOD and PM10 is more likely to occur when wind speeds are low.

4. Conclusions

Information on RH, BLH, wind direction and speed proved to be of importance, driving the
relationship between AOD and PM10. Generally, AOD serves as a good proxy for PM10 concentrations
near ground when a very dry atmosphere (30% < RH≤ 50%) coincides with a high BLH (>1200 m),
when moderate ambient RH (50–80%) coincides with moderate BLH (600–1200 m) or when humid
conditions (RH > 80%) coincide with a shallow BLH (<600 m). In case of a dry atmosphere, AOD
is not influenced by hygroscopic growth and thus relatively low. This can be compensated by low
PM10 levels, which appear more frequently in situations with a high BLH. When ambient RH is
high, satellite-derived AOD tends to overestimate street-level PM10 concentrations. This effect can be
compensated by a low BLH, which tends to increase PM10 levels near the ground. In combination,
these effects can lead to an AiRDI close to zero, indicating a good match of satellite-retrieved AOD and
ground-based PM10 measurements. When moderate RH and BLH prevail, AOD is only marginally
affected by hygroscopic growth due to limited availability of moisture, and particle concentrations
in the boundary layer seem to agree well with particle concentrations near the ground. These results
suggest that it might be misleading to examine RH and BLH separately.

In terms of wind speed and wind direction, it was found that situations with prevailing western
direction of origin have a higher probability to cause a positive AiRDI, whereas winds from the east
tend to cause a negative AiRDI. The AiRDI is more likely to be near-zero in situations with low
wind speeds.

The AiRDI proved to be a useful approach to a perform semi-quantitative comparison of
the parameters AOD and PM10 and to better understand their interactions with surrounding
meteorological conditions. Knowledge of the effect of these conditions can help future approaches
to derive high-quality PM estimates based on AOD. The AiRDI approach can be generalized for
application in other study areas. Still, this study did not account for some sources of uncertainties,
for example effects of cloud contamination or aerosol layers above the BLH [32,48]. Future analyses
could further focus on the role of different aerosol species or the role of precipitation events on the
relationship between AOD and PM.
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Abbreviations

The following abbreviations are used in this manuscript:

AiRDI Air Quality Rank Difference Index
AOD Aerosol Optical Depth
BLH Boundary Layer Height
BRF Bidirectional Reflectance Factor
BVOC Biogenic Volatile Organic Compounds
DWD German Meteorological Service
ECMWF European Center for Medium-Range Weather Forecasts
LEZ Low Emission Zones
MAIAC Multi-Angle Implementation of Atmospheric Correction
MODIS Moderate Resolution Imaging Spectroradiometer
PM Particulate Matter
RH Relative Humidity
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Abstract The quantification of factors leading to harmfully high levels of particulate matter (PM)
remains challenging. This study presents a novel approach using a statistical model that is trained to
predict hourly concentrations of particles smaller than 10 𝜇m (PM10) by combining satellite-borne aerosol
optical depth (AOD) with meteorological and land-use parameters. The model is shown to accurately
predict PM10 (overall R2 =0.77, RMSE=7.44𝜇g/m3) for measurement sites in Germany. The capability of
satellite observations to map and monitor surface air pollution is assessed by investigating the relationship
between AOD and PM10 in the same modeling setup. Sensitivity analyses show that important drivers of
modeled PM10 include multiday mean wind flow, boundary layer height (BLH), day of year (DOY), and
temperature. Different mechanisms associated with elevated PM10 concentrations are identified in winter
and summer. In winter, mean predictions of PM10 concentrations >35𝜇g/m3 occur when BLH is below
∼500m. Paired with multiday easterly wind flow, mean model predictions surpass 40𝜇g/m3 of PM10. In
summer, PM10 concentrations seemingly are less driven by meteorology, but by emission or chemical
particle formation processes, which are not included in the model. The relationship between AOD and
predicted PM10 concentrations depends to a large extent on ambient meteorological conditions. Results
suggest that AOD can be used to assess air quality at ground level in a machine learning approach linking
it with meteorological conditions.

PlainLanguage Summary In this study, factors leading to severe air pollution are determined
using machine learning. In addition, it is tested, to what extent, that the use of satellite data is adequate to
derive information on air quality near ground. It is shown that besides human emissions, concentrations of
particles in the air are to a large extent driven by meteorological factors such as wind direction, state of the
atmospheric boundary layer, and season.

1. Motivation and Research Questions
Extensive research has been conducted in recent years on the adverse health effects of particulate matter
(PM) on the human cardiovascular system and the lungs. Cohort studies show that negative effects include
emphysema, lung cancer, diabetes, and hypertension (Lelieveld et al., 2019; Lim et al., 2012; Pope et al.,
2002;Wichmann et al., 2000), which cause a large number of premature deaths (Lelieveld et al., 2019, 2015).
Although these risks are largely known and confirmed, discussions on effectivemeasures to reduce exposure
to air pollution are ongoing. Suggested measures range from traffic bans for certain vehicle types (Ellison
et al., 2013; Qadir et al., 2013) over a reduced or more efficient use of solid fuel-based residential heating
(Chafe et al., 2015) to the expansion of urban vegetation (Bonn et al., 2016). However, the actual effects
of those measures are not always evident as not only local emissions but also ambient conditions such as
meteorology, vegetation, and other land cover can play a substantial role in determining local PM concen-
trations. Therefore, understanding and quantifying drivers of PM concentrations is necessary to improve
the efficiency of measures toward better air quality. The influence of meteorological conditions on partic-
ulate matter concentrations are diverse (see Figure 1) and have been described, for example, by Rost et al.
(2009), Reizer and Juda-Rezler (2016), Dupont et al. (2016), Li et al. (2017), and Fuzzi et al. (2015). Boundary
layer height (BLH) determines the height up to which particles are distributed in the atmosphere (Gupta &
Christopher, 2009a; Schäfer et al., 2012). Precipitation leads to a substantial reduction in PM concentrations
by wet scavenging (Li et al., 2015; Rost et al., 2009). Wind regulates particle transport and turbulent mixing
away from the surface (Li et al., 2017). Depending on the location of the measuring point, air masses from
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Figure 1. Conceptual design of potential influences on variations in hourly PM10 concentrations. The machine
learning model is set up to reproduce these variations.

certain wind directions transport particles and lead to elevated concentrations (Lenschow et al., 2001; Li
et al., 2015). Temperature can regulate the particle number in the atmosphere by stimulating photochemi-
cal reactions, which transform precursor gases to secondary aerosols (Gupta & Christopher, 2009a; Wang &
Martin, 2007) or by causing partitioning of condensed precursor gases (Petit et al., 2014). Various land cover
types can act as sinks or sources for particles (Beloconi et al., 2018; Bonn et al., 2016; Churkina et al., 2017).
Topography can be of importance for PM concentrations, for example, as particles accumulate in valleys
(Emili et al., 2011; Emili et al., 2011).

Satellite AOD provides information on atmospheric particle concentrations and can expand information
to areas where station measurements are sparse (Emili et al., 2011), revealing hotspots and spatiotemporal
variations of pollution (Cermak & Knutti, 2009; Gupta et al., 2006). However, relying on satellite AOD as
a proxy for near-ground air pollution can be misleading, as AOD reflects the extinction of radiation in an
atmospheric column, while particulate matter concentrations reflect a highly localized dry mass concentra-
tion of particles of a certain size distribution typically measured near ground (Wang & Christopher, 2003).
Several studies have trained statistical models on the relationship between AOD and PM, accounting for a
range of additional parameters, and mostly with a focus on applications (see review by Rybarczyk, 2018).
Methods include linear regression models (Arvani et al., 2016), multiple-additive regression models (Gupta
& Christopher, 2009a; Zhang et al., 2018), land-use models (Kloog et al., 2011; Nordio et al., 2013), or a com-
bination of the latter two (Chudnovsky et al., 2014; Hu et al., 2014; Kloog et al., 2012). With increasing data
availability and computational power, machine learning methods, for example, artificial neural networks
(Gupta & Christopher, 2009b; Di et al., 2016) and random forests (RF) (Brokamp et al., 2017; Chen et al.,
2018; Grange et al., 2018) have been applied frequently in recent years. These machine learning models are
beneficial as they efficiently reproduce nonlinear relationships and interactions of input features (Brokamp
et al., 2017; Elith et al., 2008). In contrast to physical models, machine learning approaches do not require
extensive prior process knowledge and thus have the potential to reveal or quantify processes that are as yet
undetermined (Knüsel et al., 2019). Multivariate processes can be investigated by isolating certain variables
and studying inputs and responses for dominant patterns (Andersen et al., 2017; Cermak & Knutti, 2009;
Fuchs et al., 2018).

While numerous air pollution studies apply statistical models mainly to accurately predict PM concentra-
tions (Hu et al., 2017; Kloog et al., 2015; Stafoggia et al., 2017; van Donkelaar et al., 2010; Zhang et al.,
2018), recent studies additionally analyzed feature importances and the information content of explanatory
variables in the statistical models to infer processes. For example, Park et al. (2019) used a RF model to pre-
dict PM10 in South Korea and found large influence of AOD, day of the year (DOY), wind speed, and solar
radiation on the modeled PM concentrations. Similarly, Grange et al. (2018) obtained high feature impor-
tances for wind speed, back trajectory cluster, DOY, and air temperature, using the RF approach for PM10
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Table 1
List of Input Features Stating Data Origin, Data Representation, and Abbreviation

Data set Variable Abbreviation
Input features

MODIS MAIAC Aerosol optical depth AOD
MODIS Normalized difference NDVI

Vegetation index
NASA Earth at night Lights at night Nightlights
EU-DEM, v1.1 Elevation (m), Elev,

Topographic position index (m) TPI
CORINE land cover Land cover types 1CLC, 2CLC,

3CLC, 4CLC
5CLC, 6CLC

DWDmeteorological Air pressure (sea level) (hPa) AirPres
measurements Relative humidity (%) RH

Continentality Conti
RADOLAN Time since last precip. (hr), Precip_tsince,

Magnitude of last precip. (mm/hr), Precip_magn,
Cumulative precip. last 24h (mm), Precip_acc

ERA-Interim wind vectors u,v (m/s), u,v
mean wind vectors of umean,
previous hours (m/s) vmean

Boundary layer height (m) BLH
Temperature (◦), T

temperature anomalies (K), Tan
Convective available CAPE
potential energy (J/kg)
Surface solar radiation SSRD
downwards (J/m2)

EEA emission data base Annual emission of NH3, NH3, PM10em,
PM10, SO2, NOx (t/year) SO2, NOx

Other Day of year DOY
Day of week Weekday

Model outcome
UBA air quality measurements PM10 concentrations (𝜇g/m3) PM10

measurements in Switzerland. The present study builds upon the approaches applied in these studies but
provides a more in-depth analysis of model-inherent relationships. To this end, gradient boosted regression
trees (GBRT) are used to understand and quantify the conditions driving air quality, as well as determinants
of the relationship between AOD and PM10. GBRT have been successfully applied to study sensitivities of
aerosol processes before (cf. Fuchs et al., 2018). Thus, a basis is set for targeted satellite-based analyses of
spatial patterns of air quality.

2. Data andMethods
The data basis of this study is comprised of 8 years (2007–2015) including satellite observations from the
moderate resolution imaging spectroradiometer (MODIS) and others, model output from the European
Centre for Medium-RangeWeather Forecasts (ECMWF), and station data from the GermanMeteorological
Service (Deutscher Wetterdienst, DWD) and the German Federal Environmental Agency (Umweltbunde-
samt, UBA). AOD observations are based on the multi-angle implementation of atmospheric correction
(MAIAC) algorithm. A statistical model is set up to predict hourly PM10 concentrations based on a vari-
ety of input features, which are summarized in Table 1. Data with high temporal resolution are selected to
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reflect the atmospheric situation close to the satellite overpass times. Generally, station measurements were
preferred for parameters, which have adequate coverage and which are not expected to vary on small scales
(e.g., air pressure).

2.1. Satellite Data
2.1.1. MAIAC AOD
Satellite-borne, high-resolution (1*1 km) MAIAC Collection 6 AOD is used (Lyapustin et al., 2011a; Lya-
pustin, Martonchik, et al. 2011; Lyapustin et al. 2011b; Lyapustin et al., 2018). The product is based on data
from the MODIS sensor aboard the Terra and Aqua satellites. The MAIAC algorithm makes use of look-up
tables, explicitly taking into account surface bidirectional reflectance factors (BRF). The calculation of AOD
relies on the assumption that surface BRFs remain largely constant over time, considering a time series of 16
consecutive days (Lyapustin et al., 2011a; Lyapustin, Martonchik, et al. 2011). Quality flags are applied for
filtering. Pixels were only incorporated when clear conditions are reported, that is, no contamination of the
data due to clouds is to be expected (Lyapustin et al., 2018). An additional filter was set up to exclude AOD
close to clouds to avoid increased AOD near cloud fringes due to aerosol swelling effects (Schwarz et al.,
2017; Várnai et al., 2013). Therefore, the distance to the nearest cloud as classified by the MAIAC algorithm
(Lyapustin et al., 2018) was calculated and a threshold of 0.1◦ was set, which corresponds to ∼7 km. This is
in the range of what previous studies used as threshold (Emili et al., 2011; Koren et al., 2007). Terra or Aqua
satellite overpass times were used as temporal reference for data collocation, that is, other input feature val-
ues closest to the overpass times were used. Valid daytime AOD acquisition times as used in this study range
from ∼9 to ∼1UTC. AOD is an important input to the statistical model as it provides implicit information
on the total aerosol loading in the atmosphere, reflecting natural as well as anthropogenic sources.
2.1.2. MODIS NDVI
Sixteen-day NDVI averages obtained from the MODIS MOD13Q1 Version 6 product are used (DOI:
10.5067/MODIS/MOD13Q1.006) to approximate photosynthetically active vegetation (Tucker C. J., 1979).
The NDVI was found to influence PM concentrations in several previous works (Beloconi et al., 2018;
Chudnovsky et al., 2014; Stafoggia et al., 2017). Vegetation acts as a sink by increasing the aerodynamic
roughness and available surface for mechanical deposition (Fuzzi et al., 2015). On the other hand, vegeta-
tion can increase background particle concentrations by emitting pollen in spring (Fuzzi et al., 2015) and by
enhancing the creation of secondary organic aerosols (SOA, Churkina et al., 2017). Around each PM station
coordinate, a windowwith an edge size of 20 km is established to reflect the local contribution of vegetation
to the total particle concentration. An edge size of 20 km is comparable to the mean representativeness of
the PM stations (EU, 2008). The mean NDVI of each window was used as a predictor.
2.1.3. NASANight Lights
The NASA night lights data set is included as a surrogate for population density. Based on the data from the
Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi National Polar-Orbiting Platform
(SNPP), the night-time lights product is available at 500mresolution (Román et al., 2018). Population density
is an important factor contributing to PM10 concentrations as it reflects human activity (Beloconi et al.,
2018; Park et al., 2019). The mean night light intensity of a 20 kmwindow around each PM station was used
as a predictor.
2.1.4. EEA DEM
Topography can have a marked influence on the accumulation of particles (Emili et al., 2011). Here, the
v1.1 EU-DEM is used, which is a hybrid product produced by the European Environment Agency (EEA)
based on SRTM and ASTER GDEM fused by a weighted averaging approach. It has a spatial resolu-
tion of 25*25m (more information and download at https://land.copernicus.eu/imagery-in-situ/eu-dem/
eu-dem-v1.1?tab=metadata). Station altitude and the dominant topography around each PM station are
incorporated as predictors. A topographic position index (TPI) is computed to provide information on the
topography of a pixel relative to its surrounding pixels. It employs the station altitude and subtracts themean
altitude of surrounding pixels in its vicinity. Positive values indicate a summit position, whereas negative
values indicate a valley position (Egli et al., 2018). Again, a window size of 20 km was chosen.
2.1.5. EEA Corine Land Cover
Data from the CORINE land cover (CLC) inventory for the years 2006 and 2012 are used (Bossard et al.,
2000), accessed via https://land.copernicus.eu/pan-european/corine-land-cover/view. In its finest thematic
accuracy, the CLC data set consists of 44 classes. For this study, a more simplistic classification in six land
cover types was chosen, which represent the most relevant land cover types influencing air quality (see
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Table 2
Original Labels and Aggregation of Corine Land Cover Classes Used in This Study

Code Label Original labels included
1 Artificial surfaces Continuous urban fabric, discontinuous urban fabric,

industrial or commercial units, road and rail networks
and associated land, port areas, airports, mineral extraction
sites, dump sites, construction sites, green urban areas

2 Agricultural areas Nonirrigated arable land, permanently irrigated land,
rice fields, vineyards, fruit trees and berry plantations,
olive groves, pastures, annual crops associated with
permanent crops, complex cultivation patterns, land
principally occupied by agriculture with significant
areas of natural vegetation, agro-forestry areas

3 Forest and seminatural areas Broad-leaved forest, coniferous forest, mixed forest,
natural grasslands, moors and heathland, sclerophyllous
vegetation, transitional woodland-shrub, beaches &
dunes & sands, bare rocks, sparsely vegetated areas,

burnt areas, glaciers and perpetual snow
4 Wetlands Inland marshes, peat bogs, salt marshes, salines,

intertidal flats
5 Water bodies Water courses, water bodies, coastal lagoons, estuaries,

sea and ocean
6 No data, unclassified No data, unclassified land surface, unclassified water

bodies, unclassified

Table 2). The data have a spatial resolution of 250m. Because the CLC data are categorical, a window of
20 km edge size was set up, and the number of occurrences of each type in that window was calculated. The
number of occurrences of each feature is used as predictor for the model.

2.2. Reanalysis Data
The Era-Interim reanalysis data by the ECMWF provides full spatial coverage for the whole study period
with an interpolated spatial resolution of 0.125 ◦ (Dee et al., 2011). The data set has been successfully used in
previous air quality studies (cf. Chen et al., 2018; Stafoggia et al., 2017; Zheng et al., 2017). To capture regional
transport of particles, ERA-Interim reanalysis wind components (m/s) in east-west and north-south direc-
tion (10m height) are used. Wind direction and speed can influence both particle concentrations (Beloconi
et al., 2018; Chudnovsky et al., 2013; Li et al., 2015) and the relationship between AOD and PM10 (Stirnberg
et al., 2018; Zheng et al., 2017). Wind direction and speed are included as instantaneous values and as the
mean of precedent days (72 hr). BLH data are employed to approximate the vertical distribution of aerosols
in the lower troposphere, implying that particles are well mixed within the boundary layer (Ansmann et al.,
2000; Gupta & Christopher, 2009a). Dispersion of particles within a high and well-mixed boundary layer
leads to reduced particle numbers near ground. If the BLH is low, particles accumulate and increase PM con-
centrations near ground as they are constrained to a smaller volume (Gupta & Christopher, 2009a; Wagner
& Schäfer, 2017). Era-Interim temperature in 2 m height is included as instantaneous values and as temper-
ature anomaly. Temperature anomalies are determined as the deviation of the expected value for each day of
the year. Expected values are calculated by averaging daily values over 30 years, then calculating a running
mean over 30 days to achieve a smooth sequence of the expected temperature. In addition to temperature,
downward surface solar radiation (SSRD) and convective potential energy (CAPE) are included to capture
potential secondary aerosol formation based on photochemical transformation processes (Wang & Martin,
2007) and to capture convective mixing in the atmosphere (Chudnovsky et al., 2013).
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Figure 2. Framework of this study: from input feature selection (i.e., separating important features from noise),
hyperparameter tuning, model training, and model evaluation to the interpretation of the results.

2.3. Ground-Based Data
2.3.1. UBA PM10
The focus here is on PM10 rather than PM2.5 because the latter excludes the fraction of larger particles,
which are nevertheless accountable for light extinction and thus contribute to AOD measured by the satel-
lite (Emili et al., 2011). In addition, PM10 measurements are more widely available. The PM stations are
maintained by the UBA and measure the hourly mean PM10 concentration. PM concentrations are deter-
mined by measuring the attenuation of 𝛽-radiation by a dust-coated filter (Umweltbundesamt, 2004) or
by the principle of oscillating micro weighing (TÜVRheinland, 2012). To avoid condensation, the particle
inlet is heated permanently. Thus, measurements are largely uninfluenced by temperature and humidity
(Umweltbundesamt, 2004). The uncertainty of the continuous measurements is prescribed to be below 25%
(Bundesministerium der Justiz und für Verbraucherschutz, 2010; VDI, 2002). Instructions by the European
Union prescribe site locations that avoid microenvironmental effects. Stations are classified as background,
industrial, or traffic and are designed to be representative for urban, rural, or suburban areas. Traffic sites
are generally situated relatively close to main roads or intersections (EU, 2008). Urban background sites are
assumed to capture the contribution of all sources near the site without one particularly dominating source.
Suburban background stations need to be placed downwind (referring to the main wind direction) of emis-
sion sources. Rural background stations should not be influenced by agglomerations or industrial sites closer
than 5 km (EU, 2008). The spatial distribution of station types and their altitudes are shown in Figures A1
and A2. UBA PM station coordinates are used as spatial reference for data collocation, that is, pixels from
continuous data grids are collocated with the position of these stations if below a distance threshold of 0.01 ◦

(∼0.7 km). Urban industrial stations are not considered in this study, as they are primarily influenced by
local emissions from point sources that cannot be adequately representedwith the available data. PM10 con-
centrations were checked for sudden peaks, which could be due to localized events. These are filtered out
by eliminating situations, where the PM10 concentration was more than double the mean of the previous
and following hours.
2.3.2. DWDMeteorological Data
Air pressure and relative humidity (RH) data were obtained from the German Meteorological Service
(DWD) (DWD Climate Data Center [CDC], 2017). Previous studies found a positive correlation of PM10
concentrations and air pressure. Higher air pressure indicates stable synoptic conditions, which favors the
accumulation of particles (Li et al., 2015). RH potentially enhances particle numbers by stimulating the
formation of aqueous SOA, forming in cloud or aerosol water (Ervens et al., 2011). In addition, RH can
influence the relationship between AOD and PM10, as higher levels of humidity lead to hygroscopic particle
growth. Moisture on particles increases their diameter, eventually causing a rise in AOD without affecting
PM10 measurements (Schwarz et al., 2017; Titos et al., 2014; Stirnberg et al., 2018).
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2.3.3. Continentality Factor
The relationship between AOD and PM10 as well as driving factors of PM10 concentrations may vary
in different climatic regions (Di et al., 2016). This is accounted for by the inclusion of a dimensionless
continentality factor k, which is calculated following the formula by Conrad (1946)

k = (1.7 ∗ A∕sin(𝜙 + 10◦)) − 14, (1)

where A corresponds to the difference between the hottest and coldest mean monthly temperature and 𝜙 to
the latitude in decimal degree. Here, k was calculated using the mean temperature of July (1980–2010) and
the mean temperature of January (1980–2010). Temperature data are provided by the DWD (DWD Climate
Data Center [CDC], 2018).
2.3.4. DWDRadolan Precipitation
The influence of precipitation on PM10 concentrations includeswash-out effects and the limitation ofmove-
ment of particles after precipitation events (Fuzzi et al., 2015; Li et al., 2015; Rost et al., 2009). In this study,
data from the Radar Online Adjustment project (RADOLAN) are used. The data set is produced by the DWD
and merges radar measurements with rain gauge data, also including orographic correction (Bartels et al.,
2004; Weigl, 2017). The data are available with high spatial coverage and are expected to be better suited for
the present analysis than the Era-Interim precipitation product, which has some known biases (de Leeuw
et al., 2015). In the statistical model, the time since the last precipitation event (hr) and its magnitude
(mm/hr) as well as the accumulated precipitation of the last 24 hr (mm) are included. Hourly means of pre-
cipitation around each PM station are averaged within a window of edge size 5 km. The chosen window size
is smaller than the previous ones, as precipitation effects typically vary on small scales.

2.4. Other Input Data
2.4.1. EEA Emission Database
Annual emissions of NOx, PM10, SO2, and NH3 (in tonnes, based on the year 2008) are included to approxi-
mate background pollution levels. The data are gathered by the European Environment Agency (EEA) and
described in Theloke et al. (2009). Diffuse air releases from traffic, agricultural, industrial, and residential
sources are covered. Strong emitters that fall under the European Pollutant Release and Transfer Register
(E-PRTR) are not included in this data set.
2.4.2. Spatiotemporal Information
Seasonality was shown to be an important factor in previous studies (Grange et al., 2018). Here, DOY is used
as seasonal proxy. To mirror the seasonal cycle, DOY was converted to a sine curve with +1 representing
summer solstice and −1 representing winter solstice (Park et al., 2019; Stolwijk et al., 1999). To further
approximate variability in emission strengths based on human activity, day of the week is included.

2.5. Gradient Boosted Regression Trees
2.5.1. Model Specifications
GBRT as implemented in python's scikit-learn module are used (Hastie et al., 2009; Pedregosa et al., 2012).
GBRT merge several statistical approaches found in machine learning applications: decision trees (1) and
boosting (2) with gradient descent (3).

1. Decision trees use decision nodes to split the predictor space in subsets, which provide the most homo-
geneous distribution, that is, the subsets' variance is minimized. For each subset, regression trees fit the
mean response of the observations that go into the model (Elith et al., 2008).

2. Similar to the RF method, GBRT consist of an ensemble of decision trees. In GBRT models, however,
the construction of the ensemble is different, as decision tree regressors are sequentially added to the
ensemble (Elith et al., 2008; Hastie et al., 2009; Rybarczyk, 2018). Each new tree that is added to the
ensemble boosts its predecessor with the goal to minimize a loss function, and existing trees are not
changedwhennew trees are added. The trees are fitted on a subset of the complete data set, which induces
a random component to the model to reduce overfitting (Elith et al., 2008; Hastie et al., 2009).

3. Each new predictor is fitted to the predecessor's previous residual error using gradient descent (Hastie
et al., 2009; Elith et al., 2008).

GBRT capture complex interactions and interactive effects between individual predictors (Brokamp et al.,
2017; Elith et al., 2008), which nevertheless need to be considered when interpreting the model outcome.
An advantage of tree-based methods such as RF or GBRT is that, compared to deep learning methods,
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Table 3
List of Hyperparameters and Parameter Grid That is Applied During the Grid Search

Hyperparameter Description Parameter grid
loss Loss function to be optimized fixed: least

squares regression
learning_rate Contribution of trees to ensemble [0.08,0.05,0.01]
n_estimators Number of boosting iterations [800, 1,800, 2,500, 4,000]
subsample Fraction of samples used for individual tree [0.6, 0.8]
min_samples_split Minimum number of samples used to split [6, 10, 14]

a decision node
min_samples_leaf Minimum number of samples [14, 18, 20]

required for a leaf node
max_depth Maximum depth for individual tree, [6, 10, 14]

i.e., maximum number of node layers
max_features Fraction of features to be considered when [0.5, 0.8]

searching for best split

Note. Hyperparameters determine the architecture of the GBRT model.

model decisions can be retraced and dependencies of the model outcome to input features can be quan-
tified, allowing for conclusions regarding physical processes. This makes GBRT an interpretable machine
learningmethod. GBRT theoretically produce results more effectively than the RFmethod, as trees are built
systematically and less iterations are required (Elith et al., 2008). GBRT have shown to have good predictive
power in previous studies (Elith et al., 2008; Fuchs et al., 2018; Just et al., 2018). The general framework
of setting up the model is shown in Figure 2 and includes input feature selection, hyperparameter tuning,
model training, and model validation.
2.5.2. Feature Selection: Recursive Feature Elimination
Redundant input features lack information and potentially degrade model performance by inducing mis-
leading information, thus weakening the target orientation of the model (Meyer et al., 2018). Therefore, a
feature selection is conducted to eliminate redundant predictors. A base model is initialized with a fixed
number of trees (500), a fixed learning rate (0.1), and all other hyperparameters on default settings. One fea-
ture is then excluded, and the data set is randomly split into a training data set (2/3) and a test data set (1/3)
50-fold. After 50 repetitions, the decrease in model performance on the test data set due to the exclusion of
the feature was determined using R2 as indicator. In the final model, the magnitude of the last precipitation
event, the accumulated rainfall of the last 24 hr, and the annual mean emission of SO2 are excluded, as their
exclusion did not lead to a decrease in model performance.
2.5.3. Hyperparameter Tuning, Model Training, andModel Evaluation
Hyperparameters refer to themodel architecture, for example, the number of trees or the number of decision
nodes. The determination of adequate model hyperparameters is essential to avoid overfitting of the model
but at the same time ensures that the model is able to generalize. A grid search is executed, where several
parameter combinations are tested. A list of tested parameters is provided in Table 3.

There are trade-offs between max_depth, n_estimators, and learning_rate. A lower learning_rate requires
a higher number of trees, as the contribution of each tree is decreased. The contribution of each tree is
effectively the step size of the gradient descent. Thus, if learning_rate is too large, the model cannot adapt to
the training data. The number of decision nodes in a tree (max_depth) also affects n_estimators: Increasing
max_depth reduces the number of necessary trees but increases the risk of overfitting.

The model penalizes erroneous predictions to improve accuracy. The calculation of the penalty value is
determined by the loss function. In this study, a least squares loss function is chosen. The least squares
loss function is sensitive to very high (low) values as it strongly penalizes large deviations between pre-
dictions and observations and will adjust the model accordingly. This is desirable, as the model should be
able to reproduce high concentrations of PM10. Model performance is validated using two kinds of valida-
tion strategies. The integrated scikit-learn split function creates a random training (2/3) and test data set
(1/3), ensuring a comparable distribution of both data sets. To test the spatial generalizability of the model,
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Figure 3. Scatter plot showing the full-year model predictions for hourly PM10 concentrations. Also shown are
coefficient of determination (R2), slope (red dotted line), and root mean square error (RMSE). The color range from
black (high) to orange (low) indicates the frequency of occurrence. The relatively high R2 shows that the model covers
the majority of occurring variance. However, an underestimation of higher PM10 concentrations leads to a lower slope.

a leave-location-out (LLO) approach is conducted. Therefore, one third of randomly chosen stations are
restrained for validation. If the model performance is lower compared to the random approach, the spatial
generalizability of the model is limited (Meyer et al., 2018).

For further analysis, four seasonal models are trained on seasonal subsets of the data (see also Figure 2)
using the hyperparameters determined in the full-year grid search. One input feature set representative for
all seasonal models and the full-year model is used to ensure their comparability. The only exception is the
EEA emission data set, which is only included in the yearly model, since it represents yearly emissions.

2.6. Model Interpretation: Isolation of Feature Contributions
2.6.1. Feature Importance
The relative feature importance reflects the explanatory power a feature provides to the model. Assuming
that the model is able to capture physical processes well, the feature importance represents a valuable qual-
itative measure to determine the relative magnitude of the influence of input features to predicted PM10
concentrations. The feature importance is calculated by repeated permutation of one feature (Strobl et al.,
2007).
2.6.2. Partial Dependence
To quantify the influence of input features on the model, the partial dependence (PD) of modeled PM10
concentrations on input features is calculated. PDs express the average effect of one input feature on the
modeled PM10 outcomewhile accounting for average effects of complement input features (Elith et al., 2008;
Hastie et al., 2009; Goldstein et al., 2015). The investigated input feature is gridded and the corresponding
average PM10 prediction is calculated with respect to complement features, which are varied over their
marginalized distributions (e.g., 1st–99th percentile). Thus, PD plots reflect the mean change of average
predicted PM10 concentrations based on one input feature. The isolated effects of input features on the
model response can be evaluated and put into context regarding their significance to physical and chemical
processes determining PM10 concentrations (Grange et al., 2018).
2.6.3. Individual Conditional Expectation
PD plots reflect the mean model response and neglect model heterogeneity. Model responses to single data
instances (i.e., one set of input features related to one PM10 observation) can be unwrapped and bundled in
one plot using individual conditional expectation (ICE). ICE plots reflect individual predicted responses as a
function of one data instance depending on correspondent feature observations. Model responses are com-
puted by keeping the complement features constant while the investigated feature varies, thus creating new

STIRNBERG ET AL. 9 of 34

Further appendices

188



Journal of Geophysical Research: Atmospheres 10.1029/2019JD031380

Figure 4. Scatter plot showing seasonal model predictions for hourly PM10 concentrations. Also shown are seasonal
R2, slope (red dotted line), normalized RMSE (NRMSE), and RMSE. The NRMSE was calculated by dividing the RMSE
by the mean of the corresponding seasonal subgroup of PM10 observations. Colors as in Figure 3.

data instances and predictions from the model. The average over all ICE lines yields the PD plot, allowing
model heterogeneity and mean model response to be depicted simultaneously (Goldstein et al., 2015).

3. Results and Discussion
3.1. Model Performance
The overallmodel performance is shown inFigure 3, depicting observed PM10 versus predicted PM10 for the
validation data. The full-yearmodel explains 77% of the variance. The slope (0.76) shows a slight overestima-
tion of low PM10 concentrations as well as an underestimation of high PM10 concentrations. Presumably,
the underestimation is due to processes not captured by the input features, that is, street-scale processes not
covered by AOD observations but still influencing PM10 observations, such as increased PM10 emissions
due to traffic jams or localized dust resuspension. In addition, the model possibly tends to underestimate
higher PM10 observations, because most valid data points are available for medium to low PM10 concen-
trations. Thus, the model is optimized to best reproduce these observations. This tendency was reduced by
the choice of the least squares loss function as describes in chapter 2.5.3 but likely still continues to affect
the model accuracy. The model performance is comparable to similar studies, also in its underestimation of
PM (Hu et al., 2017; Grange et al., 2018; Stafoggia et al., 2017; Zhang et al., 2018). Tenfold random train/test
splitswere conducted, resulting in 10models. Validation of thesemodels revealed very similar performances,
which is why only one model is shown and used for subsequent model analysis. Applying the LLO split
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Figure 5. Relative importance of input features based on repeated permutation (see section 2.6). The range represents
the standard deviation. Abbreviations correspond to those shown in Table 1.

approach slightly deteriorated model performance. Depending on the restrained stations, R2 ranged from
0.5 to 0.7. The model is considered as adequate to be used for further investigations. Nevertheless, note that
high PM10 values tend to be underestimated by the model (see Figure 3). The spatial distribution of the
model skill is shown in Figures B1 and B2.

Model performances vary seasonally (see Figure 4). The model performs best in winter and spring with
high R2 values (0.77) and low NRMSEs (0.32 and 0.3), while R2 is lowest in summer with an R2 of 0.63 and
a slightly increased NRMSE of 0.34. PM10 concentrations generally show less variance in summer, which
reduces the RMSE but possibly provides the model less variance to learn from and deteriorates its skill (i.e.,
R2). Obviously, processes governing PM10 concentrations in summer are not as well captured by the model.
This will be further addressed in the following chapters.

3.2. Information Content of Input Features
Temperature (anomaly and absolute), AOD, 3-day mean east-west wind component, DOY, and BLH are of
high importance to the model (see Figure 5). The importance of the DOY suggests that the model captures
the seasonality of PM10 concentrations, which are higher in winter and lower in summer. The relatively
high importance of AOD and the good model performance emphasize the suitability of AOD to infer on
PM10 concentrations when additional parameters are taken into account. A comparison to similar studies,
for example, by Grange et al. (2018) and Park et al. (2019), reveals comparable relative feature importances
of AOD, solar radiation (Park et al., 2019), DOY, and BLH (Grange et al., 2018; Park et al., 2019). The high
importance of the 3-day mean of the east-west wind component found in this study aligns with the high
importance of the back trajectory clusters in the study by Grange et al. (2018). Both parameters reflect
regional particle transport. However, there is a discrepancy regarding the importance of wind speed and
temperature.Wind speed is considered as instantaneous wind components in this study, which have limited
importance. While the importance of absolute air temperature is comparable, the high importance of tem-
perature anomalies found here shows that the approach of splitting temperature information into absolute
values and anomalies as pursued in this study provides additional information to the model. Since compar-
ing feature importance values can provide only limited insights into processes behind air pollution patterns,
further quantitative analyses are presented in the following chapters using the ICE approach.
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Figure 6. Partial dependence plot showing the mean model response to changes in 3-day mean east-west wind
component (m/s) as bold lines for the full-year model (a) and each season separately (b–e, DJF, MAM, JJA, and SON).
Shaded areas show the range of the individual conditional expectation (ICE) lines (10th to 90th percentiles). The
horizontal distance of dots on the bold line indicates the distribution of valid data points. Negative (positive) values
represent dominant inflow of eastern (western) air masses.

3.3. Model Sensitivity
3.3.1. MesoscaleWind Information
The PD of the 3-day mean east-west wind component shows a consistent pattern throughout all seasons.
Positive values (i.e., prevailing western direction of inflow) are associated with reduced concentrations of
PM10, whereas a negative east-west wind component (i.e., winds from the east) is associated with increased
model PM10 concentrations (Figure 6). For the full-year model themaximum difference inmean PM10 pre-
dictions is ∼10𝜇g/m3, while in winter, the maximum difference is ∼20𝜇g/m3. These numbers agree well
with results from van Pinxteren et al. (2019), who quantified the influence of eastern air masses on eastern
Germany. They found the contribution of trans-boundary transport from eastern European countries to be
13𝜇g/m3 on average, depending onmeteorological conditions. Air masses from continental eastern Europe
tend to transport higher amounts of particles, whereas western, moremaritime air tends to be cleaner due to
precipitation along the trajectories of air masses. Source regions of PM10 include industrial and residential
areas in Poland and the Czech Republic with heavy industries or extensive usage of solid fuels for residen-
tial heating (Beloconi et al., 2018; Kiesewetter et al., 2015; Reizer & Juda-Rezler, 2016; van Pinxteren et al.,
2019). Results by Grange et al. (2018) also show increased values of PM10 for northern and northeastern
wind directions, although to a lesser extent. In winter, the effect of particle transportation is strongest, pre-
sumably due to increased emissions from domestic heating in eastern Europe (Reizer & Juda-Rezler, 2016;
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Figure 7. PD plot showing the mean model response to changes in east-west wind component (m/s) as bold lines for
the full-year model (a) and each season separately (b–e, DJF, MAM, JJA, and SON). Negative (positive) values
represent dominant inflow of eastern (western) air masses. Description as in Figure 6.

van Pinxteren et al., 2019). A slight increase inmodeled PM10 at low values of instantaneous east-west wind
components is visible (see Figure 7). This could indicate insufficientmixing of the atmosphere, whichwould
lead to an accumulation of particles near ground (Chudnovsky et al., 2013). Overall, instantaneous wind
information has little influence on the model, causing the PD to remain relatively constant. The relatively
constant PD of instantaneous wind information implies little influence on PM10 predictions. This suggests
that wind information needs to be extended to a longer time scale to influence PM predictions.As shown in
Grange et al. (2018), wind speed aggregated for a daily period can substantially influence PM10 concentra-
tions, with lower speeds causing higher concentrations. Park et al. (2019) also found the maximum wind
speed of previous 3 hr to be of importance for their statistical predictions of PM10. The north-south wind
component PDs (instantaneous and 3 days) do not provide clear trends.
3.3.2. BLH and CAPE
The PD of BLH shows that the model is able to reproduce the pattern of decreasing particle concentrations
with increasing BLH (Gupta &Christopher, 2009a;Wagner & Schäfer, 2017).The shape of the full-year PD of
BLH shown in Figure 8a is similar to that provided by Grange et al. (2018) for observations in Switzerland.
They found a reduction of ∼8𝜇g/m3 for daily PM10 predictions. A reduction in mean PM10 predictions
of ∼10𝜇g/m3 for situations with higher BLH can be seen in Figure 8a. This similarity is encouraging and
proves the robustness of the modeling approach, since both studies use ERA-Interim BLH in a comparable
geographic setting.
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Figure 8. PD plot showing the mean model response to changes in instantaneous BLH (m) for the full-year model (a)
and each season separately (b–e, DJF, MAM, JJA, and SON). Description as in Figure 6.

For BLH values above ∼800m, the PD remains constant, that is, the influence of the boundary layer on PM
concentrations stagnates (Liu et al., 2018). Mean modeled PM10 concentrations increase slightly in condi-
tions with very high BLH (>2,000m). This pattern could be related to the formation of a deep, convective
boundary layer coinciding with high temperatures, enhancing the formation of secondary aerosols (Grange
et al., 2018). The abundance of radiation, high temperatures, and precursor gases at excess concentrations
would be needed therefore (Fuzzi et al., 2015). Indeed, the pattern is most prominent in summer, when
these prerequisites are most likely to be met. The PD of BLH in summer is almost constant, that is, lit-
tle information is provided to the model. Figure 8d reflects a shift of the frequency of occurrence of data
points toward higher BLH: During summer months, medium to high BLHs are more likely to occur due
to enhanced convection. As mentioned before, a BLH above 800m provides only little information to the
model, thus reducing its predictive ability. The accumulation effect of a lower BLH is most pronounced in
winterwith increasedmean PM10 predictions of almost 20𝜇g/m3. In addition, PM10 emissions are expected
to be higher in wintertime due to combustion of solid fuels for domestic heating. This has been shown for
Eastern European countries (Reizer & Juda-Rezler, 2016; van Pinxteren et al., 2019) and likely influences
PM10 concentrations in Germany. Thus, with higher locally produced or advected PM10 emissions, the
accumulation effect of a low BLH is more distinct in winter than in summer, where reduced emissions are
expected and an accumulation of particles is not expected (Wagner & Schäfer, 2017). A dependence ofmodel
PM10 on CAPE could not be identified using the PD approach.
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Figure 9. Two-way PD of umean and BLH, full-year model (a) and seasonal models (b–e, DJF, MAM, JJA, and SON).
Similar to the previously shown PD, the two-way PD shows the mean modeled PM10 (color coded from light orange to
black) to the isolated effects of umean and BLH. On top of the PD isolines, a probability density function (PDF) using
Gaussian kernel density estimates is added to indicate the qualitative frequency of occurrence of values from high
(yellow) to low (dark blue).

STIRNBERG ET AL. 15 of 34

Further appendices

194



Journal of Geophysical Research: Atmospheres 10.1029/2019JD031380

Figure 10. PD plot showing the mean model response to changes in temperature anomalies (K) for the full-year model
(a) and each season separately (b–e, DJF, MAM, JJA, and SON). Description as in Figure 6.

3.3.3. Two-Way PD: umean and BLH
Depicting the PD of BLH and the 3-day mean east-west wind component simultaneously allows for the
quantification of particularly high-polluted situations, considering combined effects of both features. A
probability density function (PDF) using Gaussian kernel density estimates is added to provide a qualita-
tive estimate of the frequency of occurrence of PD values. Values outside the PDF estimation as shown in
Figure 9 are extrapolated based on the trained model and do not represent observed data.

The two-way PD suggests mean modeled PM10 concentrations double due to changes in BLH and wind
flow, referring to the full-year model. Highest mean predictions (∼35𝜇g/m3) are modeled when eastern
winds coincide with shallow boundary layers, whereas lowest mean predictions occur during medium BLH
and western winds (∼17𝜇g/m3). Note that due to the tendency of the model to underestimate high PM10
levels, concentrations could be higher in reality. Patterns differ seasonally. In winter, highest mean PM10
predictions surpass 45𝜇g/m3 during shallow BLH conditions and wind flow from the east. In summer, this
is not the case. As mentioned in chapter 3.3.2, there is indication of elevated PM10 concentrations during
very high BLH (∼>2,000m) conditions, coinciding with eastern wind flow. Highest mean predictions in
summer do not surpass ∼22𝜇g/m3 (within the limits of the PDF estimation).
3.3.4. Thermal Influence on PM10
In spring, summer, and autumn, positive temperature anomalies cause a marked increase of mean model
PM10 predictions (see Figure 10). Presumably, higher temperatures in spring and summer (Figures 10c
and 10d) reflect enhanced biogenic activity, as vegetation is generally more active at higher temperatures.
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Figure 11. PD plot showing the mean model response to changes in instantaneous temperature (◦ C) for the full-year
model (a) and each season separately (b–e, DJF, MAM, JJA, and SON). Description as in Figure 6.

Consequently, emissions of primary particles such as debris or pollen and the emission of biogenic volatile
organic compounds (BVOCs) are stimulated (Laothawornkitkul et al., 2009). With higher BVOC emission,
an enhancement of secondary SOA formations is leveraged (Churkina et al., 2017; Megaritis et al., 2013).
In addition to increased biogenic activities, higher temperatures cause the soil to dry up more quickly, thus
increasing dust emissions (Hoffmann & Funk, 2015). In winter, positive anomalies have very little effect on
predicted PM10 concentrations (Figure 10b). This supports these hypotheses, since neither increased bio-
genic activity nor dried-up soils are to be expected in winter. Higher temperatures could reflect increased
photochemical oxidation processes, which trigger photochemical reactions leading to new particle forma-
tion processes (Birmili & Wiedensohler, 2000; Größ et al., 2018; Wiedensohler, 2000). However, there was
no trend in the partial dependence of SSRD, which shows a weak influence of SSRD on PM10 predictions
(see Figure C1). Note however that the lacking influence of SSRD could also be due to the fact that this study
is confined to cloud-free situations due to the availability of AOD. The variation of SSRD would be higher
when including cloudy days, which would likely improve the information content provided to the model by
including SSRD. Another possible explanation for increased PM10 concentrations at higher temperatures
could be that these situations are associated with stable synoptic conditions (at least in spring, summer,
and autumn), causing particles to accumulate in the atmosphere. PD trends for instantaneous tempera-
ture (Figure 11) are inverse to those described for temperature anomalies. The full-year model PD shows
a decrease in predicted PM10 concentrations for higher temperatures. Presumably, instantaneous temper-
ature reflects the annual cycle of PM10 (similar to DOY), which is why the seasonal PDs show no trends.
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Figure 12. PD plot showing the mean model response to changes in RH (%) for the full-year model (a) and each season
separately (b–e, DJF, MAM, JJA, and SON). Description as in Figure 6.

PD of air temperature as presented in Grange et al. (2018) reveal a different pattern. In their study, tem-
peratures below freezing are associated with high PM10 concentrations, medium temperature in the range
of 0–15 ◦ C with low PM10 concentrations, and temperature above 15 ◦ C with high PM10 concentrations.
However, when combining the effects of temperature anomalies and temperature presented in Figures 10a
and 11a, the emerging pattern would be similar. This suggests that the model presented in this study is able
to discriminate between the seasonal component of temperature and the immediate effect of temperature
on particle emissions, for example, due to new particle formation (cf. Birmili & Wiedensohler, 2000; Bressi
et al., 2013; Größ et al., 2018; Petetin et al., 2014; Wiedensohler, 2000)
3.3.5. RH and Precipitation
Increased RH is associated with higher PM10 predictions (see Figure 12). This is likely related to an increase
in AOD due to aerosol swelling in humid conditions (Crumeyrolle et al., 2014; Wang & Christopher, 2003).

Other than increasing AOD, the importance of RH could also be related to a correlation between BLH and
RH (see PDF estimate in Figure 13). Higher RH reduces the magnitude of turbulent vertical flux and subse-
quently reduces the BLH (Adamopoulos et al., 2007; Petäjä et al., 2016), which in turn could increase PM10
predictions. On the other hand, vertical transport of water vapor is impeded by a low BLH, which increases
RH and stimulates formation of aqueous secondary aerosols (Liu et al., 2018). To analyze the influences of
BLH and RH on predicted PM10, a two-way PD of RH and BLH is calculated (see Figure 13). It shows a
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Figure 13. Two-way PD of RH and BLH, full-year model. Description as in Figure 9.

changing pattern with increasing RH, visible in a change of line structure orientation from vertical to more
horizontal in the two-way PD plot. While BLH dominates during shallow boundary layer conditions (ver-
tical lines), the influence of RH is more prominent at higher BLH values (horizontal lines). This pattern
points to an influence of RH on PM10 predictions, which is decoupled from the BLH, as the influence of
BLH above 800m is marginal. A similar pattern is found for all seasons except for summer. In summer, the
model outcome does not show any response to changes in BLH, as there are rarely any BLH values below
800m (see Figure D1). A study by Belle et al. (2017) conducted in the United States found RH to have posi-
tive impact on PM2.5 concentrations during cloud-free conditions due to an increase in sulfate and nitrate
masses. However, they found PM2.5 to decrease with increasing RH during cloudy conditions.

The more time passed since the last precipitation event, the higher the PM10 prediction tends to be, reflect-
ing the accumulation of local emissions in the atmosphere. The influence of this effect on the model is not
pronounced and stagnates from about 100 hr (see Figure C2). The magnitude of the last precipitation event
and accumulated precipitation of last 24 hr were not included in the model due to lacking importance as
determined in the feature selection (see chapter 2.5.2). Note however that the low importance of precipita-
tion could be related to the consideration of only cloud-free days in this study. Thus, the immediate effect of
rainfall on particles in the atmosphere cannot be investigated. In addition, possible effects of precipitation
along the trajectories of advected air masses are not covered.
3.3.6. NDVI, Corine Land Cover, and Spatiotemporal Factors
The NDVI was of minor importance for the prediction of PM10 concentrations. No trends or seasonal dif-
ferences were found by application of the PD approach. However, with increasing number of pixels in the
vicinity of a PMstation classified as agricultural areas (2CLC), PM10 concentrations tend to be higher. Likely,
this is related to primary emission of dust from arable lands and the application of fertilizers (NH3), which
constitute important precursors for secondary particle formation (Hoffmann & Funk, 2015; Wagner et al.,
2015). For the other land cover classes, no trends were found using the PD approach. Lower PM10 concen-
trations are predicted on Saturdays and Sundays, indicating that reduced anthropogenic activity (less traffic,
reduced industrial production) has an immediate effect on PM10 concentrations. Increasing altitude slightly
reduces the mean PM10 prediction, possibly due to lower population density and more effective pollution
dispersion processes (Beloconi et al., 2018; Hu et al., 2014). The PDs of NH3, continentality, PM10 mean
annual emissions, and of the TPI do not show a distinct trend. SO2 was excluded from the model during the
feature selection process.
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Figure 14. PD plot showing the mean model response to changes in AOD for the full-year model (a) and each season
separately (b–e, DJF, MAM, JJA, and SON). Description as in Figure 6.

3.4. Determinants of the Relationship Between AOD and PM10
The full-yearmodel and the seasonalmodels associate increasingAODwith increasing PM10 (see Figure 14).
This pattern is less distinct in summer (except for very high AOD) when particles are generally more dis-
persed within a well-mixed boundary layer, and the AOD is largely determined by particles higher up in the
atmosphere, thus weakening the relation between AOD and PM10.

The relationship between AOD and PM10 is not bivariate and can be modified by ambient meteorol-
ogy (Gupta & Christopher, 2009a; Guo et al., 2009; Sorek-Hamer et al., 2017; Stirnberg et al., 2018). A
quantification of this effect is approached here by using the two-way PD method.

The two-way PD of AOD and BLH reveals a dependence of themodel on both AOD and BLH (see Figure 15).
The importance of interactive effects of these features can be illustrated by the following example: assume
an AOD of 0.2 and BLH of 2,000m versus an AOD of 0.2 and BLH of 200m. In the latter case, the mean
predicted PM10 concentration is ∼10𝜇g/m3 higher as the aerosol content determining AOD is closer to
the ground and thus more relevant for the PM10 prediction. In other words, a prediction based on AOD
(assuming that AOD is largely determined by attenuation in the boundary layer Schäfer et al., 2008) alone
would lead to erroneous PM10 predictions, as AOD does not fully capture the particle accumulation effect
of a shallow boundary layer (cf. Stirnberg et al., 2018). Similar effects can be observed for the two-way PD
of AOD and the 3-day mean east-west wind component (see Figure 15) and for the two-way PD of AOD and
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Figure 15. Two-way PD of AOD and BLH, full-year model. Description as in Figure 9.

temperature anomalies (plot not shown). The two-way PD of AOD and BLH shows only a minor seasonal
pattern, which is mostly driven by BLH (see Figure D2)

Westerly wind flow (positive umean) leads to substantially lower PM10 predictions when compared to sim-
ilar AOD values in situations dominated by easterly wind flow (negative umean). The two-way PD suggests
this effect to be as large as∼8𝜇g/m3 (see Figure 16). Airmasses from the east possibly carry a higher amount
of near-ground particles (Beloconi et al., 2018; Bonn et al., 2016; Reizer & Juda-Rezler, 2016), affecting PM10
observations more strongly than AOD. Another reason for the observed effect could be that western air
masses carry a relatively large amount of sea salts with a high hygroscopic growth factor. By effectively tak-
ing up water, these constituents enhance light scattering, thus increasing AOD without increasing PM10
measurements (Stirnberg et al., 2018; Zieger et al., 2014; Zieger et al., 2013). The seasonality for the two-way
PD of AOD and umean is weak (see Figure D3).

Figure 16. Two-way PD of AOD and umean, full-year model. Description as in Figure 9.

STIRNBERG ET AL. 21 of 34

Further appendices

200



Journal of Geophysical Research: Atmospheres 10.1029/2019JD031380

Figure 17. Schematic representation of different processes driving high pollution situations in winter (left) and summer (right).

4. Summary, Conclusions, and Outlook
A machine learning model is used to advance the understanding of drivers of near-ground PM10 and the
capability to use satellite AOD to infer on PM10. Parameters pertaining to meteorology, land cover, and
satellite-based AOD are considered and related to hourly PM10 concentrations. The model performs well
(overall R2 of 0.77, RMSE=7.44𝜇g/m3) and provides a basis to assess sensitivities. These allow for the
isolation and quantification of effects of ambient conditions on PM10. Overall, the model is more sensi-
tive to meteorological conditions than to land cover parameters. BLH, east-west winds, DOY, temperature,
and RH are identified as the important driving factors of PM10 variations. Representing regional particle
transport, the 3-day mean of the east-west wind component substantially modifies PM10 concentrations,

Figure A1. Spatial distribution, type, and representativeness of UBA PM measurement stations in Germany.
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Figure A2. Altitude (m.a.s.l.) of UBA PM measurement stations in Germany.

depending on the direction of inflow. Eastern inflow generally increases PM10 concentrations. Modeled
PM10 concentrations were also increased during higher than average temperatures. Possibly, this is due to
stimulated vegetation activity, increasing primary particle and precursor gas emissions. The influence of
BLH is most prominent at very low (∼<500m) values. However, there is indication that very high BLH val-
ues (∼<2,500m) influence PM10 concentrations as well. While the former threshold marks the effects of

Figure A3.Mean PM10 concentrations for measurement stations used in this study. Time period is the time frame
analyzed in this study (2007–2015).
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Figure A4. Standard deviation for PM10 concentrations for measurement stations used in this study. Time period is
the time frame analyzed in this study (2007–2015).

particle accumulation within a shallow boundary layer, the latter threshold could indicate the formation of
a deep boundary layer with stimulated formation of secondary aerosols as suggested by Grange et al. (2018).
If BLH is between these thresholds, its explanatory power is limited. In these situations, other processes
determine PM10 concentrations. Overall, the model outcome suggests that there are different meteoro-
logical boundary conditions that potentially cause elevated PM10 concentrations in winter and summer
(Figure 17).

Figure B1. Spatial distribution of R2.
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Figure B2. Spatial distribution of the RMSE.

In winter, very shallow boundary layers, coinciding with multiday easterly wind flow cause highest mean
PM10 predictions (>30𝜇g/m3). Mean PM10 predictions for these conditions are as high as 40𝜇g/m3 (see
Figure 9). This is probably related to higher anthropogenic emissions in winter and frequently low BLH.

In summer, higher temperatures associated with increased formation of secondary aerosols and coincid-
ing with multiday easterly wind flow lead to mean predicted PM10 concentrations >27𝜇g/m3 (figure not
shown). High PM10 concentrations in summer appear to be largely uncoupled from changes in BLH (see
Figure 8d). The model R2 decreases in summer, suggesting that the statistical model does not as well resolve
these processes. In addition, the relationship between AOD and PM10 is weaker in summer.

Results presented in this study suggest that meteorology plays a substantial role in the development of high
pollution situations. This has potential implications for plans toward better air quality in high-polluted
areas, as meteorological conditions need to be taken into account, for example, for temporary traffic bans.
In addition, there is a need to introduce measures to reduce air pollution on a regional scale. Measures lim-
ited to city scales can only decrease pollution levels associated with local emission sources, which can be
superimposed by transported particles.

The importance of AOD for the statistical model highlights the suitability of AOD for air quality stud-
ies. However, potential implications and limitations for the use of satellite AOD for air quality studies are
described. This study has shown that satellite-derived AOD can be used to infer street-level PM10 concen-
trations, if ambient meteorological conditions are taken into account explicitly. In particular, temperature
anomalies, the east-west regional wind component, and BLH modify the relationship between PM10 and
AOD.A drawback of includingAOD is the restriction to cloud-free situations, which potentially introduces a
bias due to nonrandomdata gaps (Belle et al., 2017). Depending on the situation and location, both an overes-
timation or underestimation of PM10 could be the consequence (Belle et al., 2017). In addition, the influence
of certain meteorological variables could be underestimated due to important processes under cloudy con-
ditions, which are not covered (Belle et al., 2017; Brokamp et al., 2018). The use of GBRT proved fruitful to
understand interconnected processes and the approach presented here can be potentially expanded to other
research questions focusing on the understandingmultivariate processes. Future efforts will further address
the determination of mechanisms leading to high pollution events usingmachine learning not only for total
PM10 concentrations but for individual aerosol species.
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Figure C1. PD plot showing the mean model response to changes in SSRD (W/m2s) for the full-year model (a) and
each season separately (b–e, DJF, MAM, JJA, and SON). Description as in Figure 6.

Appendix A: Distribution of UBA PM10 Station Types, Altitude, Mean
Concentrations, and Standard Deviations of PM10 Concentrations
The spatial distribution of PM10 measurement stations is shown in Figure A1. Overall, stations are dis-
tributed relatively homogeneously over the area of Germany. The number of stations is higher in urban
agglomerations. The majority of stations are classified as “urban” or “suburban.” “Rural” stations are rel-
atively rare. Most stations are labelled as representative for background conditions by the data provider.
Station altitudes (m.a.s.l.) are shown in Figure A2. Altitudes range from 0 to 970m.a.s.l.

Furthermore, mean PM10 concentrations and standard deviations of all stations for the study period
2007–2015 are shown inFiguresA3 andA4, respectively.Mean concentrations are highest in theRhine-Ruhr
area (north-west) and other urban areas such as Munich to the south, Berlin to the northeast, and Hamburg
to the north.

Appendix B: Spatial Distribution of Model Skill
Figures B1 and B2 show the spatial distribution of the coefficient of determination and the RMSE, respec-
tively. In the southwest and the northeast, R2 tends to be higher, and RMSE tends to be lower. In the
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Figure C2. PD plot showing the mean model response to changes in time since last precipitation (hr) for the full-year
model (a) and each season separately (b–e, DJF, MAM, JJA, and SON). Description as in Figure 6.

Rhine-Ruhr region (northwest), performance seems to be generally worse. These stations generally have
high mean PM10 concentrations (see Figure A3). However, it appears that other urban areas, which also
have high mean PM10 concentrations can be modeled quite well (e.g., Berlin in the northeast or Hamburg
in the north).

Appendix C: Further Individual Conditional Expectation Plots
Solar radiation (Figure C1) and time since the last precipitation (Figure C2) were analyzed using the ICE
method as described in chapter 2.6.3. Both input features show only minor influence on mean PM10 pre-
dictions. The ICE functions for time since last precipitation show particularly large variability of model
responses of the individual data instances (shown by the shaded areas beneath the bold lines), indicating
strong interactions with other features.

Appendix D: Seasonal Two-Way Partial Dependence Plots
In addition to Figure 13, which shows the full-year model two-way partial dependence of RH and BLH,
Figure D1 additionally depicts the two-way partial dependence of the seasonalmodels. Similarly, Figures D2
and D3 show the seasonal two-way partial dependence of AOD and BLH and AOD and umean, respectively.

STIRNBERG ET AL. 27 of 34

Further appendices

206



Journal of Geophysical Research: Atmospheres 10.1029/2019JD031380

Figure D1. Two-way PD of RH and BLH, full-year model (a) and seasonal models (b–e, DJF, MAM, JJA, and SON).
Description as in Figure 9.

Acronyms
AOD aerosol optical depth
BLH boundary layer height
BRF bidirectional reflectance factor
CAPE convective available potential energy
CLC Corine land cover
DEM digital elevation model
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Figure D2. Two-way PD of AOD and BLH, full-year model (a) and seasonal models (b–e, DJF, MAM, JJA, and SON).
Description as in Figure 9.

DOY day of year
DWDGerman Meteorological Service
EEA European Environmental Agency
ECMWF Centre for Medium-Range Weather Forecasts
GBRT gradient boosted regression trees
LLO leave location out
MAIAC multi-angle implementation of atmospheric correction
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Figure D3. Two-way PD of AOD and umean, full-year model (a) and seasonal models (b–e, DJF, MAM, JJA, and SON).
Description as in Figure 9.

MODIS moderate resolution imaging spectroradiometer
NDVI normalized difference vegetation index
PDF probability density function
PM particulate matter
RADOLAN Radar-Online-Aneichung
RF random forest
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RH relative humidity
RMSE root mean square error
SOA secondary organic aerosols
SSRD surface solar radiation downwards
TPI topographic position index
UBA German Environmental Agency
VIIRS Visible Infrared Imaging Radiometer Suite
SNPP Suomi National Polar-Orbiting Platform,
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Abstract. Air pollution, in particular high concentrations of particulate matter smaller than 1µm in diameter (PM1), continues

to be a major health problem, and meteorology is known to substantially impact atmospheric PM concentrations. However,

the scientific understanding of the complex mechanisms leading to high pollution episodes is inconclusive, as the effects of

meteorological variables are not easy to separate and quantify. In this study, a novel, data-driven approach based on empirical

relationships is used to quantify drivers of atmospheric concentrations of PM1 during high pollution episodes. A tree-based5

machine learning model is set up to predict concentrations of speciated PM1 at a suburban site southwest of Paris, France,

using meteorological variables as input features. The contributions of each meteorological feature to modeled PM1 concen-

trations are quantified using SHapley Additive exPlanation (SHAP) regression values. Meteorological contributions to PM1

concentrations are analysed in seasonal and high-resolution case studies. Model results suggest that winter pollution episodes

are mainly driven by shallow mixed layer heights (MLH), low temperatures, low wind speeds and inflow from northeastern10

wind directions. Contributions of MLHs to the winter pollution episodes are quantified to be on average ∼5µg/m3 for MLHs

below <500 m agl, and temperatures below freezing contribute as much as ∼9µg/m3. Northeasterly winds are found to ad-

vect particles, contributing ∼5µg/m3 to total PM1 concentrations (combined effects of u- and v-wind components). However,

in calm conditions (i.e. wind speeds < ∼2 m/s), the lack of dispersion leads to increased PM1 concentrations by ∼3µg/m3.

Summer peak PM1 concentrations are generally lower than in winter, and are characterised by a higher content of organics.15

Drivers of summer peak PM1 concentrations are temperatures above ∼25 ◦C (contributions of up to ∼2.5µg/m3), dry spells of

several days (maximum contributions of ∼1.5µg/m3) and wind speeds below ∼2 m/s (maximum contributions of ∼3µg/m3 ).

High-resolution case studies show a large variability of processes, which together lead to high PM1 concentrations. Processes

vary even within seasons. A high pollution episode in January 2016 is shown to be driven by a drop in temperature (maximum

contributions of 11µg/m3), which enhances formation of secondary inorganic aerosols (SIA) and likely causes an increase in20

local wood-burning emissions. In contrast, during December 2016, high PM1 concentrations are caused mainly by a shallow

MLH and particle advection. It is shown that an observed decrease in pollution levels is linked to a change in wind direc-

tion, advecting cleaner, maritime air to the PM measurement site (combined contributions of u- and v-wind-components of

∼-4µg/m3). The application of SHAP regression values within a machine learning framework presents a novel and promising

way of analysing observational data sets in environmental sciences.25
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1 Introduction

Air pollution has serious implications on human well-being, including damaging effects on the cardiovascular system and the

lungs (Hennig et al., 2018; Lelieveld et al., 2019), and an increased number of asthma seizures (Hughes et al., 2018). This

includes particles smaller than 1µm in diameter (PM1), which are associated with fits of coughing (Yang et al., 2018) and an30

increase in emergency hospital visits (Chen et al., 2017). The adverse health effect lead to an increase in mortality of people

exposed to high particle concentrations (Samoli et al., 2008, 2013; Lelieveld et al., 2015). People living in urban areas are

particularly affected by poor air quality and with ongoing urbanization, their number is projected to grow (Baklanov et al.,

2016; Li et al., 2019b). These developments have motivated several countermeasures to improve air quality. Proposed efforts

to reduce anthropogenic particle emissions include partial traffic bans (Su et al., 2015; Dey et al., 2018) and the reduction35

of solid fuel use for domestic heating (Chafe et al., 2014). Although anthropogenic emissions play an important role for PM

concentrations in the atmosphere, meteorological conditions related to large-scale circulation patterns as well as local-scale

boundary layer processes and interactions with the land surface are major drivers of PM concentrations as well (Cermak and

Knutti, 2009; Bressi et al., 2013; Megaritis et al., 2014; Dupont et al., 2016; Petäjä et al., 2016; Yang et al., 2016; Li et al.,

2017). It is therefore crucial to take atmospheric and environmental processes into account during the development of efficient40

pollution mitigation strategies. Wind speed and direction generally have a strong influence on air quality as they determine

the advection of pollutants (Petetin et al., 2014; Petit et al., 2015; Srivastava et al., 2018). Limiting the vertical exchange of

air masses, the mixed layer height (MLH) governs the volume of air in which particles typically disperse. Although some

authors indicate that mixed layer height cannot be related directly to concentrations of pollutants and that other meteorological

parameters and local sources need to be considered (Geiß et al., 2017), a lower MLH can increase PM concentrations as45

particles are not mixed into higher atmospheric levels and accumulate near the ground (Gupta and Christopher, 2009; Schäfer

et al., 2012; Stirnberg et al., 2020).

Higher MLHs in combination with high wind speeds increase atmospheric ventilation processes, thus decreasing near-surface

particle concentrations (Sujatha et al., 2016; Wang et al., 2018). Air temperature can influence PM concentrations in multiple

ways, e.g. by modifying the emission of secondary PM precursors such as volatile organic compounds (VOCs) during summer50

(Fowler et al., 2009; Megaritis et al., 2013; Churkina et al., 2017), and by condensating high saturation vapour pressure

compounds such as nitric acid and sulfuric acid (Hueglin et al., 2005; Pay et al., 2012; Bressi et al., 2013; Megaritis et al.,

2014). The wet removal of particles by precipitation is known to be an efficient atmospheric aerosol sink (Radke et al., 1980;

Bressi et al., 2013). Although all these atmospheric conditions and processes have been identified as drivers of local air quality,

it is usually a complex combination of meteorological and chemical processes that lead to the formation of high-pollution55

events (cf. Petit et al., 2015; Dupont et al., 2016; Stirnberg et al., 2020). The metropolitan area of Paris is one of the most

densely populated and industrialised areas in Europe. Thus, air quality is a recurring issue and has been at the focus of many

studies in the past years (Bressi et al., 2014; Petetin et al., 2014; Petit et al., 2015; Dupont et al., 2016; Petit et al., 2017;

2
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Srivastava et al., 2018). Results indicate that the Paris metropolitan region is often affected by mid- to long-range transport

of pollutants, as due to the city’s flat terrain, an efficient horizontal exchange of air masses is frequent (cf. Bressi et al.,60

2013; Petit et al., 2015). High-pollution events often occur in late autumn, winter, and early spring. Often, these episodes are

characterised by stagnant atmospheric conditions and a combination of local contributions, e.g. traffic emissions, residential

emissions, or regionally transported particles, e.g. nitrates from manure spreading, or sulfates from point sources (Petetin et al.,

2014; Petit et al., 2014, 2015; Srivastava et al., 2018). Air masses originating from continental Europe (Belgium, Netherlands,

West Germany) generally enhance particle concentrations, especially of secondary inorganic aerosols (SIA, Bressi et al. (2013);65

Srivastava et al. (2018). Advected particle contribution has been found to be in the range of 70 % for background concentrations

in Paris of particles with a diameter smaller 2.5µm (Petetin et al., 2014). Hence the variability between high-pollution episodes

in terms of timing, sources and meteorological boundary conditions is considerable (Petit et al., 2017). Previous approaches to

determine meteorological drivers of air pollution included, for example, the use of chemical transport models (CTMs), which,

however, require comprehensive knowledge on emission sources and secondary particle formation pathways and are associated70

with considerable uncertainties (Sciare et al., 2010; Petetin et al., 2014; Kiesewetter et al., 2015). Further methods rely on data

exploration, e.g. the statistical analysis of time-series (cf. Dupont et al., 2016), which can be coupled with positive matrix

factorization to derive PM sources (Petit et al., 2014; Srivastava et al., 2018). To take into account the interconnected nature

of PM drivers, multivariate statistical approaches such as principal component analysis (PCA) have been applied (Chen et al.,

2014; Leung et al., 2017). In recent years, machine learning techniques have been increasingly used to expand the analysis of75

PM concentrations with respect to meteorology, allowing to retrace general patterns (Hu et al., 2017; Grange et al., 2018).

Here, the multivariate and highly interconnected nature of the processes determining local PM1 concentrations is captured and

analysed in a data-driven way, capturing empirical relationships between PM1 concentrations and meteorological parameters.

A state-of-the-art explainable machine learning model is set up to predict PM1 concentrations, and is then used to advance

our process understanding of the complex mechanisms that lead to high pollution events in Paris. Localised and individualised80

attributions of feature contributions are performed using SHapley Additive exPlanation regression (SHAP) values (Lundberg

and Lee, 2017; Lundberg et al., 2018a, 2020). With the use of SHAP values, a detailed insight to the decisions of the statistical

model can be provided, hence allowing an advancement of previous ML approaches (cf. Hastie et al., 2009; Lundberg et al.,

2018a). The attribution of local (i.e. situation-based) statistical feature contributions enables quantitative estimates of drivers

of PM concentrations and allows to infer on processes driving PM concentrations at high temporal resolution. Meteorological85

effects on speciated PM1 concentrations are quantified and the roles of the most critical atmospheric variables for driving peak

particle concentrations are highlighted. The improved scientific understanding of processes is crucial for the assessment of the

effectiveness of measures towards better air quality, and therefore of high value to political decision makers.

2 Data sets

Seven years (2012-2018) of meteorological and air quality data from the Site Instrumental de Recherche par Télédétection90

Atmosphérique (SIRTA, Haeffelin et al., 2005) supersite are the basis of this study. The SIRTA Atmospheric Observatory is
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Figure 1. Location of the SIRTA supersite southwest of Paris. © OpenStreetMap contributors 2020. Distributed under a Creative Commons

BY-SA License.

located about 25km southwest of Paris (48.713◦N and 2.208◦E, Fig. 1). This study focuses on day-to-day variations of total and

speciated PM1. To separate diurnal effects e.g. the development of the boundary layer during morning hours (Petit et al., 2014;

Dupont et al., 2016; Kotthaus and Grimmond, 2018a) from day-to-day variations of PM1, mean concentrations of total and

speciated PM1 for the afternoon period 12-15 UTC are considered. The diurnal cycle of PM concentrations is thus not included95

in the data. In sections 2.1 and 2.2, the PM1 and meteorological data and preprocessing steps before setting up the machine

learning model are described. The applied machine learning model and data analysis techniques are presented in sections 3.1

and 3.2.

2.1 Submicron particle measurements

Aerosol chemical speciation monitorm (ACSM, Ng et al., 2011) measurements are conducted at SIRTA in the framework of100

the ACTRIS project. The ACSM provides continuous, near real-time and artifact-free measurements of the major chemical

composition of non-refractory submicron aerosols. A detailed description of its functionality can be found in (Ng et al., 2011;

Petit et al., 2014, 2015). Species measured include organics (Org), ammonium (NH4), sulfate (SO4), nitrate (NO3) and chloride

(Cl). In addition, black carbon (BC) is monitored by a seven-wavelength Magee Scientific Aethalometer (model AE31, Petit

et al., 2015), which measures light extinction on a collecting filter. Using the multispectral information, a differentiation into105

fossil fuel-based BC (BCff) and BC from wood burning (BCwd) is achieved (Sciare et al., 2010; Healy et al., 2012; Petit

et al., 2014). Here, the sum of all measured species is assumed to represent the total PM1 content (cf. Petit et al., 2014,

2015). The consistency of ACSM and Aethalometer measurements is checked by comparing the sum of all monitored species
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with measurements of a nearby Tapered Element Oscillating Microbalance equipped with a Filter Dynamic Measurement

System (TEOM-FDMS). While there is some inconsistency, in particular for low particle concentrations, the measurements110

are considered to be robust (Petit et al., 2014). As an additional input to the machine learning model, the fraction of NO3 of the

previous day is added (NO3_frac). Pollution events dominated by NO3 are often linked to regional-scale events, which depend

on anthropogenically-influenced processes in the source regions of NO3 precursors (Petit et al., 2017). This is approximated

by the inclusion of the fraction of NO3 of the previous day.

2.2 Meteorological data115

Meteorological variables included in this study are air temperature (in 2 m height, T), relative humidity (RH), air pressure

(AirPres), precipitation, wind speed (ws), wind direction (u, v) and total incoming solar radiation (TISR). Data are taken from

the quality-controlled and 1h averaged re-analysed observation (ReObs) dataset. Further information on the instrumentation

used for the acquisition of these variables is provided in Chiriaco et al. (2018). MLH is derived from automatic lidar and

ceilometer (ALC) measurements of a Vaisala CL31 ceilometer using the CABAM algorithm Characterising the Atmospheric120

Boundary layer based on ALC Measurements (Characterising the Atmospheric Boundary layer based on ALC Measurements,

Kotthaus and Grimmond, 2018a, b). Due to an instrument failure, during the period July to mid-November 2016, SIRTA

ALC measurements had to be replaced with measurements conducted at the Paris Charle de Gaulle Airport, which is located

northeast of Paris.

Meteorological factors are chosen as input features for the statistical model based on findings of previous studies (cf. section 1).125

Meteorological observations are converted to suitable input information for the statistical model (cf. section 3.1). Wind speed

(ws) is calculated from the ReObs u and v components [m/s] and the maximum wind speed of the afternoon period is included

in the model. U and v wind components are then normalised to values between 0 and 1, thus only depicting the direction

information. To reduce the impact of short-term fluctuation in wind direction, the 3-day mean wind direction is calculated

based on the normalised u and v wind components (umean and vmean). Hours since the last precipitation event (Tprec) are130

counted and used as input to capture the particle accumulation effect between precipitation events (Rost et al., 2009; Petit et al.,

2017).

3 Methods

3.1 Machine learning model: technique and application

Gradient Boosted Regression Trees (GBRT, used here in a python 3.6.4 environment with the scikit-learn module, Friedman,135

2002; Pedregosa et al., 2012) are applied to predict daily total and speciated PM1 concentrations. As a tree-based method,

GBRTs use a tree regressor, which sets up decision trees based on a training data set. The trees split the training data along

decision nodes, creating homogeneous subsamples of the data by minimizing the variance of each subsample. For each sub-

sample, regression trees fit the mean response of the model to the observations (Elith et al., 2008). To increase confidence in
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the prediction, decision trees are combined to form an ensemble prediction. Trees are sequentially added to the ensemble (Elith140

et al., 2008; Rybarczyk and Zalakeviciute, 2018) and each new tree is fitted to the predecessor’s previous residual error using

gradient descent (Friedman, 2002). This is an advantage of GBRT over standard ensemble tree methods (e.g. Random Forests

(RF), Just et al., 2018) as trees are built systematically and fewer iterations are required (Elith et al., 2008). Characteristics

of the meteorological training data set with respect to observed total and speciated PM1 concentrations are conveyed to the

statistical model. The learned relationships are then used for model interpretation and to produce estimates of PM1 based on145

unseen meteorological data to test the model. The architecture of the statistical model is determined by the hyperparameters,

e.g. the number of trees, the maximum depth of each tree (i.e., the number of split nodes on each tree) and the learning rate

(i.e., the magnitude of the contribution of each tree to the model outcome, which is basically the step size of the gradient

descent). The hyperparameters are tuned by executing a grid search, systematically validating testing previously defined hy-

perparameter combinations and determining the best combination via a three-fold cross validation. Note that PM1 data is not150

normally distributed, i.e. there is more data available for mid-range concentrations. To avoid that the model primarily optimizes

its predictions on these values, a least-squares loss function was chosen. This loss function is more sensitive to higher PM1

values (i.e. outliers of the PM1 data distribution), as it strongly penalises high absolute differences between predictions and

observations. Accordingly, the model is adjusted to reproduce higher concentrations as well.

For each PM species, a specific GBRT model is set up and used for the analysis of meteorological influences on individual155

PM1 species (see section 4.2). Additionally, a quasi-total PM1 model is used to predict the sum of all species at once, which

is used for an analysis of meteorological drivers of high-pollution events (see sections 4.3 and 4.4). Train and test data sets

to evaluate each model are created by randomly splitting the full data set. These splits, however, are the same for the species

models and the full PM1 model to ensure comparability between the models. Three quarters of the data are used for training

and hyperparameter tuning with cross-validation (n=1086), and one quarter for testing (n=363). In addition, the robustness160

of the model results is tested by repeating this process ten times, resulting in ten models with different train-/ test-splits and

different hyperparameters.

3.2 Explaining model decisions: SHapley Additive exPlanation (SHAP) values

While being powerful predictive models, tree-based machine learning methods also have a high interpretability (Lundberg et al.,

2020). In order to understand physical mechanisms on the basis of model decisions, the contributions of the meteorological165

input features to the model outcome are analysed. Feature contributions are attributed using SHAP values, which allow for an

individualised, unique feature attribution for every prediction (Shapley, 1953; Lundberg and Lee, 2017; Lundberg et al., 2018a,

2020). SHAP values provide a deeper understanding of model decisions than the relatively widely used partial dependence plots

(Hastie et al., 2009; Goldstein et al., 2015; Fuchs et al., 2018; Lundberg et al., 2018a; McGovern et al., 2019; Stirnberg et al.,

2020). Partial dependence plots show the global mean effect of an input feature to the model outcome, while SHAP values170

quantify the feature contribution to each single model prediction , accounting for multicollinearity. Feature contributions are

calculated from the difference in model predictions with that feature present, versus predictions for a retrained model, without

the feature. Since the effect of withholding a feature depends on other features in the model due to interactive effects between
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Figure 2. Conceptual figure illustrating the interaction of SHAP values and model output. Starting with a base value, which is the mean pre-

diction if all data points are considered, positive SHAP values (blue) increase the final prediction of total and speciated PM1 concentrations,

while negative SHAP values (red) decrease the prediction. The sum of all SHAP values for each input feature yields the final prediction.

Depending on whether positive or negative SHAP values dominate, the prediction is higher or lower than the base value (Lundberg et al.,

2018b). Adapted from https://github.com/slundberg/shap.

the features, differences are computed for all possible feature subset combinations of each data instance (Lundberg and Lee,

2017).175

Summing up SHAP values for each input feature at a single time step yields the final model prediction. SHAP values can be

negative since SHAP values are added to the base value, which is the mean prediction when taking into account all possible

input feature combinations. Negative (positive) SHAP values reduce (raise) the prediction below (above) the base value. The

higher the absolute SHAP value of a feature, the more distinct is the influence of that feature on the model predictions. The

sum of all SHAP values at one time step yields the final prediction of PM1 concentrations. An example of breaking down a180

model prediction into feature contributions using SHAP values is shown schematically in Fig. 2. The computation of traditional

Shapley Regression values is time consuming, since a large number of all possible feature combinations have to be included.

The SHAP framework for tree-based models allows a faster computation compared to full shapley regression values while

maintaining a high accuracy (Lundberg and Lee, 2017; Lundberg et al., 2018a) and is therefore used here. The shap python

implementation is used for the computation of SHAP values (https://github.com/slundberg/shap).185

Pairwise interactive effects between input features can be estimated using the SHAP approach. Interactive effects are defined

as the difference between the SHAP values for one feature when a second feature is present and the SHAP values for the one

feature when the other feature is absent (Lundberg et al., 2018a). SHAP values are a novel tool to better understand multivariate

natural systems, in particular when applied in state-of-the-art machine learning models as GBRT. So far, SHAP values have

been used in the fields of computer science (cf. Antwarg et al., 2019) and medical science (Lundberg et al., 2018b; Li et al.,190

2019a; Lundberg et al., 2020), but have yet to be applied to study environmental systems.
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Figure 3. Performance indicators for ten model iterations: coefficient of determination R2 against normalised Root Mean Squared Error

(NRMSE) for the separate species models and the total PM1 model. Vertical and horizontal lines indicate the maximum spread in R2 and

NRMSE, respectively.

4 Results and discussion

4.1 Model performance

The performance of the ten model iterations is assessed by comparing the coefficient of determination (R2) and normalised root

mean square error (NRSME) for independent test data (Fig. 3). While the models for BCwd, BCff and total PM1 show small195

spread, Cl and NO3 exhibit larger variations between model runs (indicated by horizontal and vertical lines in Fig. 3). This

suggests that while drivers of BCff concentration variations are well covered by the model, this is less so in the case of Cl and

NO3. Possible reasons for this are that no explicit information on anthropogenic emissions or chemical formation pathways

are included in the models. Still, the model performance indicators highlight that a large fraction of the variations in particle

concentrations are explained by the meteorological variables used as model inputs. Performances of model iterations of the200

species-specific and total PM1 are generally similar, suggesting a robust model outcome.
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Figure 4. Ranked median SHAP values of the model input features, i.e. the average absolute value that a feature adds to the final model

outcome, referring to the total PM1 model [µg/m3] (Lundberg et al., 2018b). Horizontal lines indicate the variability between model runs.

The mean input feature importance, ordered from high to low, of the total PM1 model run by means of the SHAP feature

attribution values is shown in Fig. 4, The NO3 fraction of the previous day has the highest impact on the model, followed by

temperature, wind direction information, and MLH. Hence, the impact of these meteorological variables on model decisions is

analysed in more detail in the following.205

4.2 Contribution of meteorological input features on modelled particle species and total PM1 concentrations

To gain insights on relevant processes governing particle concentrations in the Paris region, the contribution of input features

on species and total PM1 concentration predictions from the statistical model, i.e. the SHAP values, are plotted as a function

of absolute feature values (Figs 5-7). The contribution of an input feature to each (local) prediction of the species or total PM1

concentrations is shown while taking into account intra-model variability. Intra-model variability of SHAP values, i.e. different210

SHAP value attributions for the same feature value within one model, is shown by the vertical distribution of dots for absolute

input feature values. Intra-model variability is caused by interactions of the different model input features.
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4.2.1 Contribution of temperature

The impact of ambient air temperature on modelled species concentrations is highly non-linear (Fig. 5). All species show

increased contributions to predictions at temperatures below ∼4 ◦C while the contribution of high temperatures on model pre-215

dictions differs substantially between species. The statistical model is able to reproduce well-known characteristics of species

concentration variations related to temperature. For example, sulfate formation is enhanced with increasing temperatures (Fig.

5d) due to an increased oxidation rate of SO2 (cf. Dawson et al., 2007; Li et al., 2017) and strong solar irradiation due to

photochemical oxidation (Gen et al., 2019). Dawson et al. (2007) reported an increase of 34 ng/m3K for PM2.5 concentrations

using a CTM. The increase in sulfate at low ambient temperatures is not reported in this study. It is likely linked to increased220

aqueous phase particle formation in cold and foggy situations (Rengarajan et al., 2011; Petetin et al., 2014; Cheng et al., 2016).

Considerable local formation of nitrate at low temperatures (Fig. 5b) is consistent with results from a previous study in the area

by Petetin et al. (2014). Enhanced formation of ammonium nitrate at lower temperatures (Fig. 5c) by the shifting gas-particle

equilibrium has been previously reported by Clegg et al. (1998); Pay et al. (2012); Bressi et al. (2013); Petit et al. (2015); ?.

The increase in organic matter and BCwd concentrations at low temperatures (Fig. 5g) is likely related to human behaviour,225

as biomass burning is often used for domestic heating in the study area (Favez et al., 2009; Sciare et al., 2010; Healy et al.,

2012; Jiang et al., 2019). In addition, organic matter concentrations are linked to the condensation of semi-volatile organic

species at low temperatures (Putaud et al., 2004; Bressi et al., 2013). The sharp increase in modelled concentrations of organics

above 25◦C (Fig 5a) could be due to enhanced biogenic activity leading to a rise in biogenic emissions and secondary aerosol

formation (Guenther et al., 1993; Churkina et al., 2017; Jiang et al., 2019).230

The contribution of temperature on modelled total PM1 concentrations (Fig. 6h) is consistent with the response patterns to

changes in temperatures described for the individual species in panels 6a-6g, with positive contributions at both low (<4 ◦C)

and high air temperatures (>25 ◦C). For temperatures below freezing, the model allocates maximum contributions to modelled

total PM1 concentrations of up to 12µg/m3. The spread of SHAP values between model iterations is generally higher for low

temperatures (vertical grey bars in Fig. 6), where absolute values are of greater magnitude, but in all cases the signal contained235

in the feature contributions far exceeds the spread between model runs. The inter-model variability of the feature contribution

depends to some extent on the distribution of the different training data sets. This effect is particularly pronounced for BCff,

which shows very high variability at low temperatures. As BCff concentrations depend on anthropogenic emissions, BCff

predictions highly depend on the diversity of emissions included in the training data.

4.2.2 Contribution of MLH240

Variations in MLH can have a substantial impact on near-surface particle concentrations, as the mixed layer is the atmospheric

volume in which the particles are dispersed (cf. Klingner and Sähn, 2008; Dupont et al., 2016; Wagner and Schäfer, 2017). The

effect of MLH variations on modelled particle concentrations is highly nonlinear for all species (Fig. 6), with the magnitude

of the contribution varying by species. Possible reasons for this will be discussed in the following. Similar to the pattern

observed for temperature SHAP values, the inter-model variation of predictions is highest for low MLHs since predicted245
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Figure 5. Air temperature SHAP values (contribution of temperature to the prediction of species and total PM1 concentrations [µg/m3] for

each data instance) vs. absolute air temperature [◦C]. Inter-model variability of allocated SHAP values is shown as the variance of predicted

values between the ten model iterations and plotted as vertical grey bars. The dotted horizontal line indicates the transition from positive to

negative SHAP values.

particle concentrations then have the highest variation. Contributions of MLH to predicted particle concentrations are highest

for very shallow mixed layers due to the accumulation of particles close to the ground under shallow MLH conditions (Dupont
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et al., 2016; Wagner and Schäfer, 2017). A relatively distinct transition from positive contributions during shallow boundary

layer conditions (∼0-800 m) towards negative contributions at high MLHs is evident for all species except SO4. Modelled SO4

concentrations show a less distinct response to changes in MLH as they are largely driven by point sources and thus susceptible250

to particle advection, independent of MLH (Pay et al., 2012; Petit et al., 2014, 2015). The accumulation effect under low MLH

conditions is hence less important. Furthermore, an increase of SO4 concentrations with higher MLHs (>∼ 1500m agl) could

be due to a more effective transport of SO4 and its precursor SO2 under high MLH conditions (cf. Pay et al., 2012).

In agreement with results from previous studies focusing on PM10 (Grange et al., 2018; Stirnberg et al., 2020) or PM2.5 (Liu

et al., 2018), SHAP values do not change much for MLH above ∼800-900 m, i.e. boundary layer height variations above this255

level do not strongly influence submicron particle concentrations. Positive contributions for MLHs above ∼800-900 m have

been previously reported by Grange et al. (2018), who relate this pattern to enhanced secondary aerosol formation in a very

deep and dry boundary layer. The positive contributions of high MLHs on SO4 and organics could be explained following this

argumentation. Processes driving the positive contribution of high MLHs on BCff, however, remain inconclusive. For predicted

total PM1 concentrations, the maximum positive contribution of the MLH is as high as 5.5µg/m3 while negative contributions260

can amount to -2µg/m3. While the maximum contribution by MLH is lower than the maximum contribution determined for

air temperature, the frequency of shallow MLH is far greater than that of the minimum temperatures that have the largest

effect (Figs 5d & 6d). In addition to causing particles to accumulate near the surface, low MLH can also provide effective

pathways for local new particle formation. Secondary pollutants, such as nitrate and ammonium, are increased at low MLHs as

conditions favorable to the formation of nitrate usually coincide with shallow MLH conditions (i.e., low temperatures, often in265

combination with high RH, Pay et al., 2012; Petetin et al., 2014; Dupont et al., 2016; Wang et al., 2016). BC concentrations,

however, are mainly associated with primary emissions, as is a substantial fraction of organic matter (Petit et al., 2015). Hence,

the accumulation of these particles during low turbulence conditions can explain the strong influence of MLH on BCwd and

BCff.

4.2.3 Contribution of wind direction270

To analyse the contribution of wind direction to predicted particle concentrations, SHAP values of normalised 3-day mean u

and v wind components were added up and transformed to degrees (Fig. 7). Generally, contributions of wind are highest when

winds from the northern to northeastern sectors prevail, while negative values are evident for southwesterly directions. Given

the location of the measurement site, this pattern undoubtedly reflects the advection of particles emitted in the urban area of

Paris and from continental Europe versus cleaner marine air masses during southwestern inflow (Bressi et al., 2013; Petetin275

et al., 2014; Petit et al., 2015; Srivastava et al., 2018). Increased concentrations of organic matter are predicted for northerly,

northeasterly and easterly winds. These patterns suggest a significant contribution of advected organic particles from a specific

wind sector. This is in agreement with the findings of Petetin et al. (2014) who estimated that 69 % of the PM25 organic matter

fraction is advected by northeasterly winds, which is related to advected particles from wood burning sources in the Paris

area and SOA formation along the transport trajectories. While Petit et al. (2015) did not find a wind direction dependence280

of organic matter measured at SIRTA using wind regression, they reported the regional background of organic matter to be of
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Figure 6. As Fig. 5 for MLH SHAP values (contribution of MLH to the prediction of species and total PM1 for each data instance) vs.

absolute MLH values [m agl].

importance. Comparing upwind rural stations to urban sites, Bressi et al. (2013) concluded organic matter is largely driven by

mid- to long-range transport. Contributions to the SO4-model are highest for northeastern and eastern wind direction, which

aligns with previous findings by Pay et al. (2012); Bressi et al. (2014); Petit et al. (2017), who identified the Benelux region

and western Germany as strong emitters of sulfur dioxide (SO2). SO2 can be transformed to particulate SO4 (cf. Pay et al.,285
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2012) while being transported towards the measurement site. A further possible source is the Orly Airport to the east of SIRTA

as jet exhausts also contain SO2 (cf. Kapadia et al., 2016). Nitrate concentrations are affected by long-range transport from

continental Europe (Benelux, western Germany), which are imported towards SIRTA from northeastern directions (Petetin

et al., 2014; Petit et al., 2014). It is to be expected that the influence of mid- to long-range transport on the particle observations

at SIRTA is rather substantial, with most high pollution days affected by particle advection from continental Europe (Bressi290

et al., 2013). As shown by Petetin et al. (2014), SIA species like NO3, SO4 or NH4 are rarely formed within the Paris city area,

but advected from further away, at least during the spring and summer months. Concerning BCff and BCwd, model results

suggest a dependence on wind direction during northwestern to northeastern inflow. Although BC concentrations are expected

to be largely determined by local emissions (Bressi et al., 2013), e.g. from local residential areas, a substantial contribution of

imported particles from wood burning and traffic emissions from the Paris region (Laborde et al., 2013; Petetin et al., 2014)295

and continental sources is likely (Petetin et al., 2014).

4.2.4 Contribution of feature interactions

Pairwise interactive effects between MLH vs. time since last precipitation and MLH vs. maximum wind speed are investigated

in Figs 8a and 8b. SHAP interaction effects between MLH and time since last precipitation are most pronounced for MLHs

below ∼ 500 m agl (Fig. 8a). Interaction values are negative for low MLHs paired with time since last precipitation close to300

zero hours. With increasing time since last precipitation, interaction effects become positive, thus increasing the contribution

of Tprec and MLH to the model outcome. An explanation of this pattern concerning underlying processes could be that due

to the lack of precipitation, a higher number of particles is available in the atmosphere for accumulation, hence increasing the

accumulation effect of a shallow MLH. In case of recent precipitation, the accumulation effect of a shallow MLH is weakened.

For higher MLHs, interactive effects with time since the last precipitation event are marginal. Interactive effects between MLH305

and wind speed are shown in Fig. 8b. Positive SHAP values for maximum wind speeds below ∼2 m/s reflect stable situations,

favoring the accumulation of particles, whereas high wind speeds enhance the ventilation of particles (Sujatha et al., 2016).

This can also be deduced from Fig. 8b, which shows increased SHAP values for low wind speeds in combination with a low

MLH. Low wind speeds combined with a high MLH (>∼1000 m agl), on the other hand, result in decreased SHAP values.

Similarly, low MLHs combined with higher wind speeds (>∼2 m/s) also decrease predictions of total PM1 concentrations.310

4.3 Meteorological conditions of high-pollution events

To further identify conditions that favor high pollution episodes, the data set is split into situations with exceptionally high total

PM1 concentrations (>95th percentile) and situations with typical concentrations of total PM1 (interquartile range, IQR) for

the meteorological summer and winter seasons. Mean SHAP values refer to the total PM1 model, corresponding input feature

distributions and species fractions for the two subgroups are aggregated seasonally. This allows for a quantification of seasonal315

feature contributions to average or polluted situations. Figs 9 & 10 show mean SHAP values for typical (left) and high-pollution

(right) situations in the upper panel. The distribution of SHAP values are shown as box plots for each feature. Absolute feature

value distributions are given in the bottom of the figure. In the lowest subpanel, the chemical composition of the total PM1
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Figure 7. As Fig. 5 for wind direction SHAP values (contribution of 3-day mean wind direction to the prediction of species and total PM1

for each data instance) vs. absolute wind direction [◦].

concentration for each subgroup is shown. The largest contributor to high pollution situations in winter is air temperature

(Fig. 9). SHAP values for temperature are substantially increased during high pollution situations, when temperatures are320

systematically lower. Further contributing factors to high pollution situations are the MLH, wind speed, NO3 fraction of the

previous day and the wind direction components. In winter, the PM1 composition shows a relatively large fraction of nitrates,

which is increased during high pollution situations (Fig. 9, lower panel). High concentrations of nitrate in winter can be linked

to advection or to enhanced formation due to the temperature-dependent low volatility of ammonium nitrate (Petetin et al.,

2014). The organic matter fraction is slightly decreased during high pollution situations. MLH and maximum wind speed325

contributions to high pollution situations are linked to low ventilation conditions which are very frequent in winter (cf. (cf.
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Figure 8. MLH vs. a) time since last precipitation and MLH vs. b) maximum wind speed, respectively, colored by the SHAP interaction

values for the respective features.

Dupont et al., 2016). Positive contributions of wind direction for inflow from the northern and eastern sectors are dominant

during high pollution situations while inflow from the southern and western sectors prevails during average pollution situations

(see Fig. 7, Bressi et al., 2013; Petetin et al., 2014; Srivastava et al., 2018). Note that the time since the last precipitation is

increased during high pollution situations, but the effects on the model outcome is weak. This suggests that lacking precipitation330

is not a direct driver of modelled total PM1 concentrations, but increases the contribution of other input features (see Fig. 8a)

or is a meaningful factor in only some situations.

Summer total PM1 composition (Fig. 10) is characterised by a larger fraction of organics compared to the winter season (Fig.

9). As a considerable fraction of organic matter is formed locally (Petetin et al., 2014), the increased proportion of organics

could be due to more frequent stagnant synoptic situations that may limit the advection of transported SIA particles. In addition,335

the positive SHAP values of solar irradiation and temperature highlight that the solar irradiation stimulates transformation pro-

cesses and increases the number of biogenic SOA particles (Guenther et al., 1993; Petetin et al., 2014). As mean temperatures

are highest in summer, positive temperature SHAP values are associated with increased organic matter concentrations (Fig.

5). The higher importance (i.e. higher SHAP values) of time since the last precipitation event during high pollution situations

points to an accumulation of particles in the atmosphere. Dry situations can also enhance the emission of dust over dry soils340

(Hoffmann and Funk, 2015). The negative contribution of MLH during both typical and high pollution situations reflects sea-

sonality, as afternoon MLHs in summer are usually too high to have a substantial positive impact on total PM1 concentrations

(see Fig. 6). MLH is thus not expected to be a driver of day-to-day variations of summer total PM1 concentrations. Note that

the average MLH is higher during high pollution situations, which likely points to increased formation of SO4 (see Fig. 6).
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Figure 9. Mean feature contributions (i.e., SHAP values) for situations with low total PM1 concentrations (left) and situations with high

pollution (right), respectively, during winter (December, January, February). Respective range of SHAP values by species are shown as

box plots, with median (bold line), 25-75th percentile range (boxes), and 10-90th percentile range (whiskers). Both training and test data

are included. Absolute feature value distributions (given as normalised frequencies) as well as the chemical composition of the total PM1

concentration are shown in the subpanels. Colors of the box plots correspond to colors in the feature distribution subpanels. SHAP values

of the input features u_norm_3d and u_norm as well as v_norm_3d and v_norm were merged to u_norm, merged and v_norm, merged to

achieve better transparency.
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Figure 10. As Fig. 9 for mean feature contributions (i.e., SHAP values) for situations with low total PM1 concentrations (left) and situations

with high pollution (right), respectively, during summer (July, June, August).

4.4 Day-to-day variability of selected high pollution events345

Analysing the combination of SHAP values of the various input features on a daily basis allows for direct attribution of

the respective implications for modelled total PM1 concentrations (cf. Lundberg et al., 2020). Here, four particular pollution

episodes are selected to analyse the model outcome with respect to physical processes (Figs 11-14). The examples highlight the
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advantages but also the limitations of the interpretation of the statistical model results. The high pollution episodes took place

in winter 2016 (10th - 30th January and 25th November - 25th December), spring 2015 (11th - 31st March) and summer 2017350

(8th - 28th June). The upper panels in Figs 13-16 indicate the total PM1 prediction as horizontal black line with vertical black

lines denoting the range of predictions of all 10 models. The observed species concentrations are shown in the corresponding

colors. The subsequent panels show absolute values and SHAP values for the most relevant meteorological input features.

4.4.1 January 2016

Prior to the onset of the high-pollution episode in January 2016 (Fig. 11), the situation is characterised by MLHs in the range355

of 1000m, temperatures above freezing (∼5-10◦C), frequent precipitation and winds from the southwest. The organic matter

fraction dominates the particle speciation. The episode itself is reproduced well by the model. According to the model results,

the event is largely temperature-driven, i.e. SHAP values of temperature explain a large fraction of the total PM1 concentra-

tion variation (note the adjusted y-axis of the temperature SHAP values). On 18th January, temperatures drop below freezing,

coupled with a decrease in MLH. As a consequence, both modelled and observed PM1 concentrations start to rise. A further360

increase in total PM1 concentrations is driven by a sharp transition from stronger southwestern to weaker northeastern winds

(strong negative u component, weak negative v component) on January 19th. The combined effects of these changes lead to

a marked increase in total PM1 concentrations, peaking at ∼37µg/m3 on 20th January. On the following days, temperatures

increase steadily, thus the contribution of temperature decreases. At the same time, although values of MLH remain almost

constant, the contribution of MLH drops substantially from ∼5µg/m3 to ∼2µg/m3. This is due to interactive effects between365

MLH and the features wind speed, time since last precipitation and normalised v-wind-component. All of these features in-

crease the contribution of MLH on 20th January, but decrease its contribution on 21st-23rd January. The high pollution episode

ceases after a shift to southeastern winds and the increasing temperatures. The pollution episode is characterised by a relatively

large fraction of NO3 and NH4, which explains the strong feature contribution of temperature to the modeled total PM1 con-

centration, as the abundance of these species is temperature dependent (see Fig. 5) and points to a large contribution of locally370

formed inorganic particles. Still, the contribution of wind direction and speed also suggests that advected secondary particles

and their build-up in the boundary layer are relevant factors during the development of the high pollution episode (Petetin et al.,

2014; Petit et al., 2014; Srivastava et al., 2018).

4.4.2 December 2016

A high-pollution episode with several peaks of total PM1 is observed in November and December 2016. The first peak on 26th375

December is followed by an abrupt minimum in total PM1 concentrations on 28th November, and a build-up of pollution in a

shallow boundary layer towards the second peak on 2nd December with total PM1 concentrations exceeding 40µg/m3. In the

following days, total PM1 concentrations continuously decrease, eventually reaching a second minimum on 11th December.

A gradual increase in total PM1 concentrations follows, resulting in a third (double-)peak total PM1 concentration on 17th

December. Total PM1 concentrations drop to lower levels afterwards. Throughout the 3.5 week-long episode, high pollution is380

largely driven by shallow MLH (<∼500m), and weak north-northeasterly winds, i.e. a regime of low ventilation and advection
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Figure 11. Winter pollution episode in January 2016. (a): predicted total PM1 and observed PM1 species concentrations, with absolute input

feature values and corresponding SHAP values of (b) MLH, (c) temperature, (d) hours after rain, (e) maximum wind speed (f) normalised u

wind and (g) normalised v wind component.

of continental air. During the brief periods with lower total PM1 concentrations, these conditions are disrupted by a higher

MLH (∼28th November), or a change in prevailing winds (∼11th December). In contrast to the pollution episode in January

2016, this December 2016 episode is not driven by temperature changes. Temperatures range between ∼5-12◦C and have a

minor contribution to predicted total PM1 concentrations (see also Fig. 5), emphasizing the different processes causing air385

20

Further appendices

234



Figure 12. As Fig. 11 for a further winter pollution episode in December 2016.

pollution in the Paris region. The large contributions of wind direction and speed to the modeled total PM1 concentration

highlight the importance of advected particles during this period that continuously build-up in the shallow boundary layer to

produce these highly polluted conditions. Note that the model is not able to fully reproduce the pollution peak on December

2nd, which may be indicative of missing input features in the model. Judging from the PM1 species composition during this

time (relatively high fraction of NO3 and BC), it seems likely that missing information on particle emissions may be the reason390

for the difference between modeled and observed total PM1 concentration.
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4.4.3 June 2017

A period of above average total PM1 concentrations occurred in June 2017. The episode is very well reproduced by the model,

suggesting a strong dependence of the observed total PM1 concentration to meteorological drivers. Although absolute total

PM1 concentrations are substantially lower than during the previously described winter pollution episodes, the event is still395

above average for summer pollution levels. Organic matter particles dominate the PM1 fraction throughout the episode, with

a relatively high SO4 fraction. Conditions during this episode are characterised by strong solar irradiation (positive SHAP

values) and high MLHs (mostly negative SHAP values), which show low day-to-day variability and reflect characteristic

summer conditions. A lack of precipitation (no rain for a period of more than 2 weeks) and high temperatures also contribute

to the total PM1 concentrations during this episode. While solar irradiation and time since last precipitation are associated400

with positive SHAP values throughout this period, air temperature only has a positive contribution when exceeding ∼25 ◦C.

This aligns with patterns shown in Fig. 5, where increased concentrations of organic matter and SO4 are identified for high

temperatures. Peak total PM1 concentrations of ∼17µg/m3 are observed on June 20th and 21st. A change in the east-west

wind component from western to eastern inflow directions in conjunction with an increase in temperatures to above 30 ◦C

are the drivers of the modeled peak in total PM1 concentrations. MLH is also increased with values ∼2000 m agl, which are405

associated with slightly positive SHAP values. This observation fits with findings described in section 4.2.2 and is likely linked

to enhanced secondary particle formation (Megaritis et al., 2014; Jiang et al., 2019). As suggested by response patterns of

species to changes in MLH shown in Fig. 7, this effect is linked to an increase in SO4 concentrations. The main fraction of the

peak total PM1 values, however, is linked to an increase in organic matter concentrations due to the warm temperatures (cf.

Fig. 5).410

4.4.4 March 2015

High particle concentrations are measured in early March 2015 with high day-to-day variability. This modelled course of the

pollution episode is chosen to compare results to previous studies focusing on the evolution of this episode (Petit et al., 2017;

Srivastava et al., 2018). The episode is of particular interest, since it also shows some limitations of the statistical model setup.

The episode is characterised by high fractions of SIA particles, in particular SO4, NH4 and NO3 (Fig. 14, upper panel) and415

similar concentrations observed at multiple measurement sites in France (Petit et al., 2017). Contributions of local sources are

low and much of the episode is characterised by winds blowing in from the northwest, advecting aged SIA particles towards

SIRTA (Petit et al., 2017; Srivastava et al., 2018). A widespread scarcity of rain probably enhanced the large-scale formation of

secondary pollution across western Europe (in particular western Germany, The Netherlands, Luxemburg, Petit et al., 2017),

which were then transported towards SIRTA. This is reflected by the SHAP values of the u and v wind components, which are420

positive throughout the episode (see Fig. 14g & 14h). Concentration peaks of total PM1 are measured on 18th and 20th March.

Both peaks are characterised by a rapid development of total PM1 concentrations. As described in Petit et al. (2017), these

strong daily variations of total PM1, which are mainly driven by the SIA fraction, could be due to varying synoptic cycles,

especially the passage of cold fronts. The contribution of MLH and temperature is relatively small, which is consistent with the
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Figure 13. As Fig. 11 for an exemplary summer pollution episode in June 2017.

high influence of advection on total PM1 concentrations during the episode. The exceptional character of the episode (cf. Petit425

et al., 2017) partly explains the bad performance of the model in capturing total PM1 variability during the event. Unusual rain

shortage is observed in large areas of Western Europe prior to the episode (Petit et al., 2017). While time since precipitation at

the SIRTA-site is a large positive contributor to the model predictions (see Fig. 14d), it is not driving the day-to-day variations.

The unusual nature of this event and lacking information on emission in the source regions and formation processes along air

mass trajectories in the model likely explain why the model has difficulties in reproducing this pollution episode. While this430
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Figure 14. As Fig. 11 for an exemplary spring pollution episode in March 2015.

has implications for the application of explainable machine learning models for rare events, this is not expected to be an issue

for the other cases and seasonal results presented here.
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5 Conclusions and outlook

In this study, dominant patterns of drivers of PM1 species and total PM1 concentrations are identified and analysed using

a novel, data-driven statistical approach. A machine learning model is set up to predict measured speciated and total PM1435

concentrations based on meteorological measurements from the SIRTA supersite, southwest of Paris. The statistical model is

able to reproduce daily variability of particle concentrations well, and is used to analyse and quantify the atmospheric processes

causing high-pollution episodes during different seasons using a SHAP-value framework. Comparison of the results based on

the statistical model with findings of previous studies on air quality patterns in the Paris region shows good agreement. Peak

concentrations of total PM1 in winter are mainly driven by shallow MLHs, low temperatures and low wind speeds. These440

conditions are often amplified by northeastern wind inflow. A detailed analysis revealed different drivers of high-pollution

episodes in winter. For an episode in January 2016, model results show a strong contribution of temperature to the elevated

PM1 concentrations during this episode (up to 11µg/m3 are attributed to temperature), suggesting enhanced local, temperature-

dependant particle formation. During a different, prolonged pollution episode in December 2016, temperature levels were

relatively stable and had no influence. Here, contributions of MLHs (<500 m asl) were quantified to be the main driver of445

PM1 peak concentrations with contributions up to 6µg/m3, along with wind direction contributions of up to ∼6µg/m3. Total

PM1 concentrations in spring can be as high as 50µg/m3. These peaks in spring are not as well reproduced by the model

as winter episodes and are likely due to new particle formation processes along the air mass trajectories, in particular of

nitrate. Summer PM1 concentrations are lower than in other seasons. Model results suggest that summer peak concentrations

are largely driven by high temperatures, particle advection from Paris and continental Europe with low wind speeds and450

prolonged periods without precipitation. For an example episode in June 2017, temperatures above 30◦C contribute ∼3µg/m3

to the total PM1 concentration. On site scarcity of rain increases air pollution, but does not appear to be a main driver of

strong day-to-day variations in particle concentrations. Main drivers of day-to-day variability of predicted PM1 concentrations

are changes in wind direction, air temperature and MLH. These changes often superimpose the influence of time without

precipitation. Individual PM1 species are shown to respond differently to changes in temperature. While SO4 and organic455

matter concentrations are increased during both high and low temperature situations, NH4 and NO3 are substantially increased

only at low temperatures. Model results indicate that SIA particle formation is enhanced during shallow MLH conditions.

Many of the results presented here hold true for regions other than suburban Paris and are thus beneficial for the general

understanding of drivers of air pollution. This includes the importance of formation processes of secondary pollutants as well

as the dominant role of the MLH for PM1 concentrations. The contribution of wind direction furthermore highlights the role of460

advected pollution and emphasizes the need for large-scale measures against air pollution. The GBRT approach in combination

with the SHAP regression values presented here provides an intuitive tool to assess meteorological drivers of air pollution and

to advance the understanding of high pollution events by uncovering different physical mechanisms leading to high-pollution

episodes. To our knowledge, this is the first time that the SHAP-framework for explainable machine learning is applied in

atmospheric sciences. The results of this study are highly relevant for policy makers, e.g. by providing a basis for future clean465

air programs or by providing the potential of a statistically-based early warning system for high pollution episodes. Statistical
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models such as the one developed in the present study can be used to attribute changes in air quality to policy measures (cf.

Cermak and Knutti, 2009), and may help political decision makers develop and implement effective clean-air policies. This

study could be extended in the future, e.g. by including information on anthropogenic emissions or further stations down- and

upwind of SIRTA, which would allow further analysis of dominant advection patterns. Future efforts could also focus on the470

inclusion of short-time weather forecasts, thus providing an air quality forecast based on the statistical model.
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