KIT | KIT-Bibliothek | Impressum | Datenschutz

Reinforcement learning: a control approach for reducing component damage in mobile machines

Brinkschulte, Lars; Graf, Marina ORCID iD icon; Geimer, Marcus ORCID iD icon

Abstract:

This paper presents an active component damage reducing control approach for driving manoeuvres of a wheel loader. For this purpose, the front and rear axle loads will be manipulated by force pulses induced into the machine chassis via the lifting cylinders of the function drive. The associated control approach is based on the principles of Reinforcement Learning. The essential advantage of such methods against linear control approaches is that no descriptive system properties are required, but the algorithm automatically determines the system behaviour. Due to the high number of necessary training runs, the algorithm is designed and taught using a validated wheel loader simulation model. After over 850 training runs, an optimal strategy for damping the axle loads could not yet be determined. In spite of the unprecedented convergence, initial improvements of the damage values have already been achieved on tracks that deviate from the training track. Some of these results show a 4.9 % lower component damage compared to a machine setting with no damping system. The results and limits of this strategy are discussed due to a comparison with other scientific active vibration damping approaches. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000120601
Veröffentlicht am 26.06.2020
Originalveröffentlichung
DOI: 10.25368/2020.50
Dimensions
Zitationen: 1
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Fahrzeugsystemtechnik (FAST)
Publikationstyp Proceedingsbeitrag
Publikationsdatum 26.05.2020
Sprache Englisch
Identifikator KITopen-ID: 1000120601
Erschienen in Symposium. Dresden : Technische Universität Dresden, 2020. Vol. 1
Veranstaltung 12th International Fluid Power Conference (IFK 2020), Dresden, Deutschland, 12.10.2020 – 14.10.2020
Verlag Technische Universität Dresden (TU Dresden)
Seiten 433-443
Externe Relationen Abstract/Volltext
Schlagwörter 12. IFK, Verstärkungslernen, aktive Schwingungsdämpfung, Schadensreduzierung, Radlader, Ganzheitliche Radladersimulation; 12th International Fluid Power Conference, Reinforcement Learning, Active Vibration Damping, Damage Reduction, Wheel Loader, Holistic Wheel Loader Simulation
Nachgewiesen in Dimensions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page