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1 Introduction

Studies of electroweak vector bosons play an important role in experiments at the Large

Hadron Collider (LHC). Large cross sections of processes with one and even two elec-

troweak gauge bosons and their clean leptonic decay signatures allow many precision tests

of the Standard Model (SM) [1, 2]. However, these same large cross sections imply that

processes with vector bosons are important backgrounds to searches for physics beyond the

Standard Model (BSM). For dark matter searches specifically, the most important among

them is pp→ Z(→ νν̄) + j (with j denoting a hadronic jet), where the produced neutrinos

escape detection and lead to the missing energy signature [3, 4]. It was pointed out in

ref. [5] that understanding this process to the degree required for dark matter searches

at the LHC can not rely on purely data-driven techniques and that theoretical input is

required. Interestingly, in spite of the fact that theoretical studies of Z+j production have

a long and successful history, it was argued recently [6] that one important ingredient is

still missing.

Indeed, to search for heavy O(1 TeV) dark matter particles, we look for events with

high-p⊥ jets and large missing energy; for the main background process pp → Z + j,

this O(1 TeV) missing energy is comparable to the transverse momentum of the vector
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Figure 1. Examples of Feynman diagrams that contribute to Z+j production at LO (top-left) and

virtual corrections at NLO QCD (top-middle), NLO EW (top-right), NNLO QCD (bottom-left)

and mixed NNLO QCD-EW (bottom-middle and -right).

boson p⊥ [7]. It is well-known that for processes with large p⊥, electroweak corrections

get enhanced by electroweak Sudakov logarithms log2 p⊥/mZ . Hence, although the QCD

corrections play a much more important role at small p⊥ than the electroweak ones, this

hierarchy becomes less obvious at high transverse momentum. As a consequence, a recent

state-of-the-art theoretical analysis of vector boson plus jet production [6] came to the

conclusion that unknown mixed QCD-electroweak corrections are among the largest sources

of uncertainty in a theoretical description of Z + j production at high p⊥ at the LHC. For

comparison, previous studies of Drell-Yan processes have shown significant impact of mixed

QCD-EW(QED) corrections on kinematic distributions, concluding that such corrections

are heavily desired [8–12]. Subsequently, the exact next-to-next-to-leading order (NNLO)

mixed QCD-EW correction to Drell-Yan production was computed in ref. [13] using the

master integrals recently published in refs. [14, 15]. Developing a better understanding of

these corrections in the case of Z+j production is the long-term physics goal of this paper.

The theoretical understanding of Z+j production in hadron collisions is very advanced.

Indeed, the QCD corrections to Z + j production are known to an impressive NNLO [16–

19]; at high p⊥, these corrections increase the next-to-leading-order (NLO) predictions

by about 50%. The electroweak corrections have been computed up to NLO [20–22] and

electroweak Sudakov logarithms, relevant at high p⊥ are known through next-to-leading

logarithmic terms at NNLO in the weak coupling constant [23–25].

The relevance of mixed QCD-electroweak corrections for dark matter searches was

quantified in ref. [6] by comparing a multiplicative and additive prescription for combining

NLO QCD and NLO electroweak corrections. It was found that the difference between the

two prescriptions leads to a 5–10% ambiguity in the total cross section at high p⊥ [6]. Since

the NLO QCD K-factors are large and the EW corrections can amount to up to a few tens

of percents due to the EW Sudakov logarithms [23, 26], it is crucial to accurately compute

the NNLO mixed QCD-EW corrections to achieve few-percent accuracy for future high-

luminosity LHC (HL-LHC) measurements. These corrections involve unknown two-loop

virtual Feynman integrals with massive propagators and an off-shell leg.
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In figure 1 we show some representative 2 → 2 Feynman diagrams that contribute to

Z + j production at the LHC at various orders in QCD and EW. The dominant partonic

contributions at LO are the qq̄ → Zg and qg → Zq processes. The majority of the missing

two-loop mixed QCD-EW diagrams are those where the LO graphs are supplemented with

an extra gluon, and either a massive V = W±, Z or massless photon exchange. There

are also contributions from closed quark loops (cf. bottom middle graph in figure 1), with

either a massive (top) or massless quark-loop.

In this paper we will include contributions of all massless quarks but systematically

neglect the contributions that involve the top quark, since these contributions contain

another scale and it is very difficult to compute them. However, at (very) large p⊥, the

top-quark contribution may, to some extent, be approximated by that of a massless quark

and we can check to what degree the top quark is relevant by simply including it in

the massless approximation. While not ideal, this will provide us an estimate of how

relevant the top-quark contribution is for mixed QCD-EW corrections to Z+ j production

at high p⊥.

In what follows, we compute the master integrals (MI) contributing to mixed QCD-

EW corrections to Z + j, treating all quarks as massless, in the limit of large p⊥. Note

that in the massless quark approximation, exchanges of a Higgs boson (cf. bottom-right

graph in figure 1) do not contribute. Furthermore, we take the Z and W boson masses to

be equal, mW± = mZ . A rough estimate of the error introduced by such an approximation

is (m2
Z −m2

W )/m2
Z ∼ 20% on the QCD-EW corrections, which corresponds to an error of

order 1% or less on the full Z+j prediction. The only place where this approximation may

be questioned is in the arguments of the Sudakov logarithms since their mass difference is

not p⊥-suppressed. However, even in this case, it leads to a tiny relative modification of

QCD-EW corrections by (mZ −mW±)/(mZ log(p2⊥/m
2
Z)) ∼ O(5%). Since this expansion

improves at higher p⊥, our results are certainly valid within 1% in the relevant p⊥ ∼ 600–

1500 GeV range where the statistical error is expected to be about 1–10% at the HL-LHC

and the theory errors associated to the missing QCD-EW corrections are about 2–5% [6].

The method of differential equations (DE) has been very fruitful for computing MI [27–

33]. We will follow ref. [34], where an algorithmic method for expanding in m2
top/(p

H
T )2 � 1

was used to compute the two-loop virtual amplitudes to the H+jet process at large Higgs

transverse momentum pHT including finite top-mass mtop effects (see also [35–39] for similar

expansions). In this method, the DE satisfied by the MI are expanded directly in the small

parameter m2
Z/p

2
⊥. This method has consistently shown to reduce the complexities of

computing MI with massive propagators [40]. The MI presented in this paper are expanded

through next-to-leading-power in the small parameter m2
Z/p

2
⊥ ∼ 10−2 for p⊥ ∼ 1 TeV.

The remainder of the paper is organized as follows. In section 2, we introduce the

notation used in this paper and describe the integral families required for computing the

mixed QCD-EW virtual Z+ j amplitude (with all quarks massless). Section 3 summarizes

the method of using differential equations to compute the MI as an expansion in m2
Z/ŝij ,

while the calculation of the boundary constants to fix the MI is explained in section 4. In

section 5 we give some brief details on how to analytically continue and cross our MI solu-

tions to other production channels and in section 6 we report on various numerical checks

– 3 –
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that were performed for the MI solutions. Finally, we conclude in section 7. Alongside this

paper, we include supplementary material that contain the solutions for our MI.

2 Definitions and topologies

As discussed in the introduction, we consider Feynman integrals that are needed to describe

the mixed QCD-EW two-loop corrections to Z + j production, in the approximation when

all quarks are massless. We also take the vector boson masses to be equal, mV := mZ = mW

and consider the external vector boson to be on the mass shell.

2.1 Kinematics

We choose the kinematics such that the three partons have (incoming) momenta p1, p2,

p3, and then the kinematic quantities are defined as

p21 = p22 = p23 = 0 , (p1+p2+p3)
2 = m2

V ,

(p1+p2)
2 = s , (p1+p3)

2 = t , (p2+p3)
2 = u = m2

V−s−t . (2.1)

Thus there are three scales in our problem: s, t, and mV . From these we can define an

overall dimensionful scale, and two dimensionless quantities

σ ≡ −s , χ ≡ t

s
, µ ≡ m2

V

−s . (2.2)

In the following we will mostly consider u-channel kinematics (corresponding to the

particles with momenta p2 and p3 being incoming). This implies

s, t < 0, u,m2
V > 0 (2.3)

or correspondingly

σ, χ, µ > 0. (2.4)

In the u-channel we have

|pT | =
√
ts/u =

√
σχ/(1 + χ+ µ) (2.5)

and high transverse momentum corresponds therefore to χ ∼ O(1) and |µ| � {1, |χ|},
justifying the expansion we use in our computations.

2.2 Integral families

In order to find the classes of integrals that need to be evaluated, we first look at the

positioning of the external Z boson. We find that there are six options (up to crossings)

for genuine seven-propagator sectors, shown in figure 2. These cases can be fitted into

two 9-propagator families, a planar and a non-planar. We choose the momenta of the

propagators in these families as

qpl1 = k1, qpl2 = k1+p1, qpl3 = k1+p1+p2,

qpl4 = k2+p1+p2, qpl5 = k2−p3, qpl6 = k2, (2.6)

qpl7 = k1−k2, qpl8 = k1−p3, qpl9 = k2+p1,

– 4 –
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Figure 2. The different top-sector Feynman integrals, in terms of the distribution of the external

massive leg.

Figure 3. Representative planar Feynman diagrams, contributing to the 0-mass, 1-mass, and

2-mass cases respectively. Thick lines indicate massive propagators.

for the planar sectors and

qnp1 = k1, qnp2 = k1+p1, qnp3 = k1+p1+p2,

qnp4 = k2+p1+p2, qnp5 = k2−p3, qnp6 = k1−k2+p3, (2.7)

qnp7 = k1−k2, qnp8 = k2, qnp9 = k1−k2−p2,

for the non-planar sectors.

We note that this discussion has not regarded internal masses. For a mixed QCD-

EW contribution, there has to be at least one internal electroweak boson in any diagram.

Either there can be one internal electroweak boson connecting two quark-lines directly, or

there can be two vector bosons that couple to the external vector boson and to quark-lines

through the W+W−Z vertex.

Since the internal vector boson can be a photon, it is possible for a diagram to have

no internal masses. For cases with one internal massive vector boson, it can be anywhere

in the diagram except on a line connecting to the external Z, and since the momenta

can always be chosen in such a way that the external Z connects to the corner formed by

momenta q4 and q5 (both in the planar and non-planar case) the single mass cases can have

the mass in any propagator except in propagators labeled as 4 and 5 in eqs. (2.6), (2.7).

Finally the two-mass cases have to have the masses on propagators 4 and 5 simultaneously,

see figure 3. This means that we have to consider 18 integral families in total: planar and

non-planar families eqs. (2.6), (2.7) modified by the presence of the internal mass m2
V on

one of the following sets of propagators{
{}, {1}, {2}, {3}, {6}, {7}, {8}, {9}, {4, 5}

}
. (2.8)

With this in mind, our convention for the Feynman integrals is the following dimensionless

combination

Ifa1,...,a9(d, χ, µ) ≡ e2εγE σa−d
∫
ddk1d

dk2

(iπd/2)2
1

P a1f1 · · ·P a9f9
, (2.9)
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where γE is the Euler Mascheroni constant, ε = (4− d)/2 is the dimensional regularization

parameter, a ≡ ∑9
i=1 ai, and Pfi is the ith propagator in a family f . Our convention for

the propagators is such that

Pi = m2 − q2i , (2.10)

where m2 may be either 0 or m2
V depending on the mass of the virtual particle.

2.3 Integral reductions and master integrals

It is well known that families of Feynman integrals can be expressed through a minimal basis

of independent integrals, referred to as “master integrals”. We perform the reductions to

master integrals for each family, using IBP technology [41, 42], with the program Kira [43].

Since Kira is able to identify identical integrals in different families, we treat our problem

as one big coupled system of linear equations rather than treating the families individually.

In total we use a basis of 468 master integrals, constructed in such a way that the integrals

in the 7-propagator sectors are independent under any permutation of s, t, and u.

3 Master Integrals from the differential equations

Integration by parts identities can be used to construct differential equations for the master

integrals. To solve these equations in the kinematic regime |µ| � {1, |χ|}, we use a series

ansatz [44]. The ansatz for an integral fn is of the form

fn(d, χ, µ) =
∑
ijk

cn,i,j,k(d, χ)µi+jε logk(µ). (3.1)

We call each individual expansion term that appears in the ansatz in eq. (3.1) a branch.

The accuracy of this approximate expression is formally determined by the maximal value

imax included in the i-sum. Once imax is chosen, all other limits in the sum are fixed from

the differential equations discussed below. For most of the integrals, the i-sum starts from

i = 0 but for some, divergences are present which make the i-sum start from a value as

low as i = −3. For the j sum only negative values appear, with all integrals having values

in the interval from −4 to 0. For the log-terms only k = 0 and k = 1 appear. Finally for a

few integrals i and j also appear with certain half-integer values [34].

In summary for the most general case we have to consider the following values of i, j, k

i ∈ {−3,−5
2 , . . . , 0, . . . , imax} , j ∈ {−4,−3,−5

2 , . . . , 0} , k ∈ {0, 1} . (3.2)

For the results provided with this paper, we choose imax = 1 for the top-sector integrals,

which requires1 us to choose at least imax ≥ 1 for the lower sectors in order to achieve this

level of accuracy.

1The reason for this is that mass-suppressed coefficients of the lower sectors enter the DE of the top-

sector at imax = 1. We therefore compute the µ-series expansion of the lower sectors up to an imax-value

required for reaching imax = 1 for the top-sector integrals.
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We solve for the the c-coefficients of eq. (3.1) using the method of differential equa-

tions [27]. We combine the ν = 468 MIs into a vector f and write

∂µf = A(d, χ, µ)f . (3.3)

Note that we can choose the order of the master integrals in such a way that the matrix A

takes a (lower) block triangular form, with the blocks consisting of integrals with the same

set of propagators. Since all the entries of A are rational functions of µ, it follows from

eq. (3.1) that terms with different j or k decouple; hence expanding the r.h.s. of eq. (3.3)

in µ allows us to extract relations between the coefficients cn,i,j,k in eq. (3.1) for each block,

j, and k at a time. At the end we are left with only ν = 468 unfixed coefficients.

At this point we have a valid solution for the µ differential equation eq. (3.3). The

next step is to insert that result into the corresponding χ differential equation for f , which

leads to a set of differential equations for the undetermined c-coefficients. Introducing a

new vector g for these unfixed coefficients, we get the differential equation

∂χg = B(d, χ)g. (3.4)

As this is a one-scale system, it can easily be2 brought into a canonical form [33] using

automatic public tools such as Fuchsia [45]. We find

∂χg̃ = εB̃(χ)g̃ (3.5)

along with rules for mapping between the old (g) and new (g̃) vectors. As the entries of

B̃ are in a d log-form, this equation system can easily be integrated, leading to results of

the form

g̃n =
4∑

w=0

εwg̃(w)n (χ) + O(ε5). (3.6)

The solutions g(w)(χ) are given in terms of generalized polylogarithms (GPLs) [46] of χ

with weights w and entries ā, G(ā, χ). Finally, to obtain a complete solution, boundary

values for the integrals are needed. Their computation is discussed in section 4.

As mentioned in the previous section, integrals can be separated into families with 0

or 1 internal masses, and integrals with 2 internal masses adjacent to the external massive

vector-boson. For integrals in the first category, all polylogarithms can be expressed as

GPLs with entries taken from3 the list {0, 1,−1}, making them equivalent to harmonic

polylogarithms [48]. We note that the entry 1 is spurious, in the sense that our integrals

have no divergence in the point χ = 1. In the two-mass category, the entries are taken

from {0,−1, r+, r−} where

r± = −1

2
±
√

3

2
i (3.7)

2Only for the integrals in the seven-propagator sectors, it was necessary to do this. For the lower

sectors the equations were simple enough that it was possible to integrate up eq. (3.4) with more traditional

methods.
3In our results as they appear in the supplementary material, we also have GPLs with the entries −2 and

− 1
2

appearing. However, integral transformations of the form discussed in ref. [47] allow for the mapping

of these GPLs to the HPL set, at the cost of introducing an argument different from χ.
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are third roots of unity, and the roots of the cyclotomic polynomial x2 + x + 1. Special

values4 of these functions appear in our expressions as the four transcendental constants

K2 = Im

(
Li2

(
1

2
+

√
3

2
i

))
, K3;1 = Im

(
Li3

(
1√
3
i

))
,

K4;1 = Im

(
Li4

(
1

2
+

√
3

2
i

))
, K4;2 = Im

(
Li4

(
1√
3
i

))
. (3.8)

Polylogarithms with such entries and their special values are well studied, and are discussed

in refs. [49–56].

The results have been checked numerically as discussed in section 6.

3.1 The supplementary material

Alongside this paper we include two files as supplementary material. The first file defi-

nitions.txt contains, in Mathemathica format, the definitions of the integral families, the

master integrals, and a few other definitions that are relevant to interpret the results. The

other file results.txt contains the solutions for the master integrals. They are presented

in the branch structure given by eq. (3.1), and the branches are expanded such that each

integral includes terms up to weight 4, as described above. Each branch contains an object

ORD indicating the missing ε-order, and branches that are not exact in µ contain an object

ALARM indicating the first missing power in the µ-expansion.

4 Boundary conditions

The differential equations in µ and χ in eqs. (3.3), (3.4) fix the coefficients cn,i,j,k(d, χ) that

enter the µ-expansion ansatz (cf. eq. (3.1)) up to 468 integration “constants” that only

depend on the dimensional parameter ε = (4− d)/2. The differential equations relate the

coefficients cn,i,j,k(d, χ) in branches with different i, n-values but same j, k to each other as

explained in the previous section. For this reason, the 468 constants that still need to be

computed appear in branches of several master integrals and we may compute a suitable

branch, in order to deduce the corresponding constant. We computed these constants

either by matching the appropriate branches to massless mV = 0 master integrals, or using

the so-called regularity conditions, or lastly by direct computation of specific branches at

a convenient phase space-point s, t, u. We illustrate these three methods below.

4.1 Massless solutions

A subset of the constants are fixed by the requirement that the massless branch coefficient

cn,0,0,0 in the ansatz in eq. (3.1), is equal to the massless master integral fn(mV = 0)

that is obtained when the vector-boson mass mV that appears in the propagators (cf.

eq. (2.10)) and in the off-shellness of the external leg, is set to zero at the integrand level.

These massless double-box (both planar and non-planar) integrals have been previously

computed in [33, 57–60] to weight 4 and we take the results for the coefficients cn,0,0,0
from there.

4This is in addition to the “usual” set of iπ, log(2), ζ(3), and Li4( 1
2
).
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4.2 Regularity conditions

For the planar master integrals, a large subset of the remaining constants is fixed by re-

quiring that any spurious poles or branch-points that arise from solving the differential

equations vanish. The physical poles and branch-points of Feynman integrals can be un-

derstood from their cuts. Unlike the non-planar integrals, the planar Feynman integrals

only have cuts in two of the three s, t, u Mandelstam variables, cf. figure 3. As it happens,

the differential equations for some of the planar master integrals allow solutions with poles

and branch-points that do not correspond to their physical cuts. Requiring that these

unphysical singularities vanish allows us to fix many constants in the planar sectors.

4.3 Direct computation of integration constants

After using the massless branch and regularity conditions described above, we are still left

with a few remaining constants, all of them appearing in branches of non-planar master in-

tegrals. We fix these remaining constants by computing suitable branches of some integrals

where the required constants appear, either at a regular kinematic point or taking limiting

values of s, t corresponding to a physical pole of the corresponding Feynman diagrams.

For the master integrals with up to six propagators, we chose to compute the relevant

branches at a regular point, which was either s = t = −1 (χ = 1) or s = −1, t = −2

(χ = 2), both not corresponding to any physical pole of the master integrals. These

branches were either computed by applying the method of expansion by regions [44, 61] to

the Feynman-parametric representation of the master integrals, or by applying the Mellin-

Barnes method. We refer to ref. [36] for a detailed example of a computation of a specific

branch of a seven-propagator integral through the use of Feynman parameters5 and to

ref. [34] for an example of a computation of an integral with six propagators using the

Mellin-Barnes method.

Unfortunately, the application of these methods did not allow us to compute ten con-

stants needed for non-planar integrals with seven propagators. For these cases we computed

the relevant branches in either the limit −t→ 0+ or u→ 0+. Since both limits correspond

to physical poles of the non-planar master integrals, their relevant branches typically be-

have as (−t)−1+l1ε or u−1+l2ε in these two limits. The branches that we computed were

chosen in such a way that the remaining unknown constants in the solutions multiplied a

χ-dependent factor that contained one (or both) of the two possible t, u singularities and

we chose to compute these branches in the limit where that χ-dependent factor has a pole,

either at −t→ 0+ or u→ 0+. We give now an example of a constant that we computed by

considering the −t→ 0+ limit of a relevant branch of a seven-propagator master integral,

using the method of Mellin-Barnes.

Let us consider the master integral Inp2110110111, shown in figure 4,

Inp2110110111 =

∫
DdkDdl

k21((k1 + p1)2 −m2
V )(k2 + p12)2(k2 − p3)2(k1 − k2)2k22(k1 − k2 − p2)2

,

(4.1)

5We performed some of the parametric integrals with the Maple-based package HyperInt [62].
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p3

−p123
[2]

[1] [9]

[7]

[4]

[5]

[8]

Figure 4. The diagram corresponding to Inp2110110111. Dashed (solid) lines represent massless (mas-

sive) propagators and [n] corresponds to the ordering in eq. (2.7).

where the measure DdkDdl is taken as in eq. (2.9). It has a branch µ−ε, whose coefficient

c449,0,−1,0 contains a constant that multiplies a factor ∝ t−1. We are therefore interested

in extracting that branch and computing its limit −t→ 0+. The integral in eq. (4.1) may

be expressed through a Feynman-parametric representation with Symanzik polynomials

as follows

Inp2110110111 = −
∫ ∞
0

(
7∏
i=1

dxi

)
δ(1− x1)Γ(2ε+ 3)

Γ(ε+ 1)2
U3ε+1F−2ε−3,

with u = m2
V − s− t and κ := −1− i0.6 The above Symanzik polynomials equal

U = (x1 + x2)(x3 + x4 + x5 + x6 + x7) + (x3 + x4 + x6)(x5 + x7), (4.2)

F = −i0 + (−s)
(
x1x3(x5 + x6) + x6(x2(x3 + x7) + x3(x5 + x7))

)
+(−t)x2x4x5 + (−u)x1x4x7

+m2
V

(
x2((x3 + x4 + x6)(x5 + x7) + (x1 + x2)(x3 + x4 + x5 + x6 + x7))

+κx4(x1x3 + (x5 + x7)x3 + x2(x3 + x7))
)
. (4.3)

We perform the integrals over the Feynman parameters by introducing Mellin-Barnes in-

tegrals, that split up terms inside the Symanzik polynomials as follows,

1

(x+ y)λ
=

1

2πi

∫ +i∞

−i∞
dz

yz

xz+λ
Γ(−z)Γ(λ+ z)

Γ(λ)
. (4.4)

The contour runs parallel to the imaginary axis in the complex z-plane and is chosen such

that the singularities of Γ(−z) and Γ(λ + z) are to the right (left), respectively of the

integration contour. We need to introduce seven Mellin-Barnes integrals to be able to

perform the integration over all seven Feynman parameters and we are left with,

Inp2110110111 = − Γ(−ε)
Γ(ε+1)2

∫ +i∞

−i∞

(
7∏
i=1

dzi

)
(−s)z3(−s− t)z2(−t)z1κz2+z4(m2

V )−2ε−z1−z2−z3−3

× Γ(−z1)Γ(−z2)Γ(−z4)Γ(−z5)Γ(z5+1)Γ(−z6)Γ(−z7)Γ(z3−z5+1)Γ(z5 − z3)
Γ(−z4−z6)Γ(−2ε+z5+z6)Γ(z1+z2+z3+z4+3)Γ(−ε+z1+z2+z3+z4+2)

6We introduce κ in order to keep track of the proper analytic continuation when performing the Mellin-

Barnes splittings introduced in eq. (4.4) below.
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× Γ(ε+ z1 − z6 + 1)Γ(−ε+ z5 + z6)Γ(z1 + z2 + z4 + 1)Γ(z2 + z5 + z7 + 1)

× Γ(−z4 − z6 + z7)Γ(−2ε− z2 + z6 − z7 − 1)Γ(z2 + z3 + z4 + z6 + 2)

× Γ(−z3 − z4 − z6 + z7 − 1)
Γ(2ε+ z1 + z2 + z3 + z4 + 3)

Γ(−z3 − z4 + z5 − z6 + z7)
. (4.5)

We put −s = 1 and first extract the µ−ε = (m2
V )−ε branch by closing appropriate integra-

tion contours to the left, picking up residues at −2ε− z1 − z2 − z3 − 3 = −ε. Afterwards,

we close contours such that we pick up residues at z1 = −1 + aε for any real-valued a.

The latter residues correspond to the leading power pole7 at −t → 0+. Finally, we ex-

pand the result in ε. All of these steps can be performed with the packages collectively

known as MBTools [63]. After expanding the result in ε, we are left with a sum of one-fold

Mellin-Barnes integrals that may be performed by closing the contours either to the left

or right, picking up a ladder of residues by the virtue of Cauchy’s theorem. The resulting

sum over residues may be then performed with the package XSummer [64]. We note that,

had we not taken the limit −t → 0+ but instead just evaluated the branch at a regular

point, e.g. −t = 1, the final expression after expanding in ε would have contained various

three-fold Mellin-Barnes integrals that would have made the final calculation much more

complicated.

The final result for the µ−ε branch of the Inp2110110111 at s = −1, in the limit χ = −t→ 0+
equals to weight four

Inp2110110111 ⊃
µ−ε

χ

{
− 4

ε4
+

3 log(χ)− 2
3 − 9iπ

ε3

+
−1

2 log2(χ) +
(
2
3 + 6iπ

)
log(χ) + 47π2

6 − 25iπ
3 + 2

ε2

+
−1

2 log3(χ) +
(
−1

3 − iπ
)

log2(χ) +
(
−2 + 25iπ

3 − 47π2

6

)
log(χ)

ε

+
22ζ3 + 26iπ3

3 + 9π2

2 + 23iπ − 6

ε
+

11 log4(χ)

24
+

1

9
(1− 6iπ) log3(χ)

+

(
1− 25iπ

6
+

47π2

12

)
log2(χ) +

(
−20ζ3 + 6− 23iπ − 9π2

2
− 26iπ3

3

)
log(χ)

+
28ζ3

3
+ iπ(88ζ3 − 65) +

44iπ3

9
− 27π2

2
− 1361π4

360
+ 18

}
. (4.6)

The above result is then matched to the solution for the coefficient c449,0,−1,0 in the point

s = −1 and the limit χ = −t→ 0+, which determines the required integration constant.

We used the same method explained above to compute all ten constants that appear in

branches of the non-planar master integral solutions with seven-propagators. Seven of these

branches are of integrals with only one massive propagator and there the above method

resulted in one-fold Mellin-Barnes integrals. For four of those seven branches (including

the one explained above) we could close the corresponding contours and compute the final

7One finds by closing contours that there is no t−2+aε or higher pole.
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residue sums analytically with the XSummer package. The remaining three sets of one-

fold Mellin-Barnes integrals were performed numerically with the package MBTools [63]

and we then used PSLQ [65] to match an integration constant onto a basis of transcendental

constants up to weight four. Finally, the last three of the ten constants appear in branches

of integrals with two massive propagators. These three constants were expressible in terms

of two-fold and three-fold Mellin-Barnes integrals. We followed the steps explained in [66]

to compute them, by mapping them onto parametric Euler-type integrals, at which point,

they could be calculated using standard methods.

5 Analytic continuation and crossings

The top-sector master integrals that we include in the supplementary material are inde-

pendent under crossings of the external momenta p1,2,3 and may be directly used in the

region where p2,3 are incoming, i.e. u > 0 and χ = t/s > 0. However, the physical two-loop

virtual mixed QCD-EW amplitudes describing the process i2(p2)i3(p3)→ i1(−p1)+V with

coloured partons i1,2,3, contain, after IBP reduction, also crossings of our chosen top-sector

and lower-sector master integrals.8 As explained in section 3, all our master integrals are

expressed in terms of GPLs with argument χ. In order to see any possible cancellations

among different crossed master integrals in the amplitudes, it is required to express them

also in terms of GPLs with the same argument χ. In this section we briefly explain how

these crossings can be performed in practice.

There are three physical scattering regions, defined in terms of the Mandelstam

invariants

(2a)+ : s > 0 , t, u < 0 , (5.1)

(3a)+ : t > 0 , s, u < 0 , (5.2)

(4a)+ : u > 0 , s, t < 0 , (5.3)

along with m2
V > 0. Since the master integrals are computed in Minkowski space, they

are imaginary and their imaginary pieces are fixed by providing the corresponding posi-

tive Mandelstam variable with an infinitesimal positive imaginary part according to the

Feynman prescription,

(2a)+ : s→ s+ i 0 , (5.4)

(3a)+ : t→ t+ i 0 , (5.5)

(4a)+ : u→ u+ i 0 . (5.6)

The integrals in the supplementary material included with this paper are all defined in the

region (4a)+. In ref. [59] it is explained how to perform the analytic continuation from the

region (4a)+ to the other two regions (2a)+, (3a)+ and we refer to that paper for details.

8Furthermore, in order to compute all helicity amplitudes one requires also integrals where p1,2 or p1,3
are incoming, corresponding to s > 0, t > 0 respectively, for which one would need to analytically continue

our master integrals.
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In order to compute the physical scattering amplitudes in the region (4a)+ (or the

other two), one will need all possible permutations of the external momenta

σij := pi ←→ pj , (ij) ∈ {(12), (13), (23)}, (5.7)

σijk := pi → pj , pj → pk, pk → pi, (ijk) ∈ {(123), (132)}. (5.8)

Consider now for example the crossing σ12, which maps χ → −1 − χ − µ and the region

(4a)+ to the region (3a)+. In order to compute the crossing σ12 of our master integrals, we

first map χ→ −1− χ− µ and expand the mapped integrals in small µ, resulting in GPLs

with argument −1 − χ. Then we express these GPLs in terms of GPLs with argument χ

using so-called supershuffling identities, as implemented for example in the Maple-based

package HyperInt [62]. This supershuffling step needs to be done assuming one is in region

(3a)+ and results in all GPLs having the argument χ. After this step, one follows ref. [59]

and analytically continues the final expression from region (3a)+ back to (4a)+ to get the

final result for the σ12-crossed master integrals as defined in the region (4a)+. Similar steps

can be performed for the other permutations in eqs. (5.7), (5.8).

We have implemented the above crossings and, in fact, used them to make various

non-trivial checks of our master integral solutions gathered in the supplementary material,

that we computed by solving the differential equations as explained in section 3. Namely,

many of the lower-sector integrals that we computed in the total list of 468 master integrals

are related by crossings of the external momenta p1,2,3. By applying the above crossing

steps, we have checked that these crossing relations are indeed satisfied by our master

integral solutions.

6 Validation of master integrals

We have performed multiple checks to make sure that the computed master integrals are

correct. To begin with, two “basic” checks were performed for almost all master integrals.

Firstly, the consistency of our analytic solution of a given master integral with its corre-

sponding µ- and χ- differential equations was checked. Secondly, upon deriving a boundary

constant analytically with the methods of section 4, it was validated against numerical in-

tegration using the Mellin-Barnes method as implemented in MBtools [63]. In addition to

these checks and the ones mentioned in the previous section, we employ two other which

are discussed below.

One straightforward and robust way of verifying our results is to compute the master

integrals numerically and compare them with their analytic solutions at a kinematic point.

To this end, we have used the computer programs pySecDec [67–70] and FIESTA [71],

that are based on the sector-decomposition method, to compute integrals numerically. In

this way, the master integrals with up to five denominators (t = 5) were systematically

compared against numerical results and the agreement at the per-mille level was obtained.

However, it was already difficult to achieve this precision for some master integrals with

five propagators, due to their specific kinematics. Typically, problematic integrals have

threshold singularities that are hard to treat with the sector decomposition method.
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Figure 5. We compare the real (top row) and imaginary parts (bottom row) of the analytic solution

(blue line) against the numerical results (red dots) for a finite integral I np2
210110011 in d = 6 at different

kinematic points. The numerical error bands are too small to be seen.

Even though there is an algorithm that is implemented in PySecDec,9 we opted for a

different approach that is known in the literature [73, 74] to deal with more sophisticated

integrals (t = 6, 7). To demonstrate it, consider a Feynman integral Id+2(~x; d) in d + 2

dimensions with ~x being a vector of Mandelstam variables and d = 4− 2ε. There exist di-

mensional recurrence relations (DRR) for dimensionally regularized Feynman integrals [75]

that read as

Id+2(~x; d) =
∑
i

R(~x; d)Idi (~x; d), (6.1)

where R(~x; d) are coefficients that are rational functions of Mandelstam variables that can

be computed following refs. [75, 76]; Idi (~x; d) are Feynman integrals defined in d dimensions

which belong to the same integral family as Id+2(~x; d).

If we choose Id+2 such that it is finite in the ε → 0 limit, DRRs can be used to put

constraints on lower-dimensional integrals. Indeed, if Id+2 is finite, then at the right hand

side of eq. (6.1) all poles in ε have to cancel exactly. Hence, to use DRR constraints in our

9We thank S.P. Jones and S. Jahn for pointing out the possibility to handle threshold singularities

within pySecDec and their help with our integrals. More details on threshold singularities can be found in

refs. [70, 72].
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case, Idi (~x; d) are expressed in terms of computed master integrals using integration-by-

parts identities. The exact cancellation of poles on the right hand side of eq. (6.1) provides

a non-trivial check of the computed MI. To check finite parts of the master integrals, we

computed finite Id+2 using pySecDec. We note that DRRs do not resolve the problem with

threshold singularities, but it was much easier to achieve per-mille numerical precision in

the case of finite Feynman integrals. An example of such a comparison is given in figure 5.

Various programs were used to pursue this check. To find d = 6 and 8 finite integrals,

the reduction program Reduze2 [77] that implements an algorithm of ref. [78] was used. To

generate the DRRs in eq. (6.1), we used the Mathematica-based package LiteRed [79]. To

perform reduction to our master integrals, we employed both Kira [43, 80] and Reduze2.

7 Conclusions

In this paper we computed the Feynman integrals needed for the double-virtual mixed

QCD-EW NNLO contribution to Z + j production at hadron colliders (disregarding con-

tributions from the top and the Higgs, as discussed previously). The computation was

performed as an expansion around mZ = 0, making the result valid in the high pT limit.

This makes it useful for background determination for certain types of new physics, such

as weakly interacting dark matter (see ref. [6] and the references therein).

Our results are presented as an expansion in µ = −m2
Z/s of the form given by eq. (3.1),

keeping terms up to O(µ), and with the coefficients of the expansion being expressed in

terms of generalized polylogarithms. The results are added as supplementary material as

described in section 3.1. We obtain numerical agreement with SecDec (with the help of

finite basis methods) as described in section 6. If higher accuracy is needed, there is no

conceptual barrier to extending the µ-expansion to higher orders.

Additionally we have computed the integrals (when normalized as in eq. (2.9)) up to

terms of transcendental weight 4. This is expected to correspond to the terms contributing

to the amplitude up to finite orders in ε. It could, however, happen that intricate cancel-

lations take place in such a way as to make higher ε-orders for some individual integrals

needed. In that case there is nothing conceptual that prevents us from continuing the

expansion to the required ε-order.

An obvious next step, is to use the integrals computed in this paper, to perform

the complete calculation of the NNLO mixed QCD-EW correction to the double-virtual

scattering amplitude for Z+j production. Additionally, one has to compute the real-virtual

and the double-real contributions, before being able to perform the infrared subtractions

and combine it all into a final result for the scattering cross-section. Moreover, we may

be able to estimate or even compute the top-mass contribution that were disregarded in

this paper as discussed in the introduction. Finally, we note that the integrals computed

in this paper have a large overlap with those needed for W± + j production, with only a

few extra integral families missing. All of this may be the subjects of future publications.
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