Abstract:
Energienetze bilden das Rückgrat unserer Gesellschaft, die unter anderem unsere Nahrungskette und andere wichtige Infrastrukturen, wie die Wasser- und Wärmeversorgung, bestimmen. Um die grundlegenden menschlichen Bedürfnisse zu befriedigen, müssen wir ein nachhaltigeres und umweltfreundlicheres Verhalten im Allgemeinen und in Energienetzen im Speziellen an den Tag legen. In dieser Arbeit geht es um Energienetze, wobei wir uns auf Stromnetze spezialisieren und uns darauf fokussieren, wie wir die vorhandene Infrastruktur besser ausnutzen können. Wir merken an, dass die Ergebnisse aus dieser Arbeit auch auf andere Energienetze übertragen werden können [Gro+19] und bestimmte auftretende Phänomene legen es nahe, dass sich einige Ergebnisse eventuell auch auf Verkehrsnetze übertragen lassen. ... mehrDiese Arbeit besteht aus vier inhaltlichen Teilen. Der erste Teil beschäftigt sich mit der Funktionsweise und Struktur von elektrischen Flüssen. Der zweite und dritte inhaltliche Teil der Arbeit beschäftigt sich jeweils mit der effizienten Ausnutzung der vorhandenen Energienetzinfrastruktur. Dabei verstehen wir hier unter effizienter Ausnutzung entweder die Maximierung der Gesamterzeugung und die damit verbundene Erweiterung des Betriebspunktes oder die Minimierung der Erzeugungskosten verstehen.
Das elektrische Netz besteht aus drei Spannungsebenen, die wir als Hoch-, Mittel-, und Niederspannungsebene bezeichnen. Das traditionelle elektrische Netz ist auf eine zentrale Energieversorgung ausgelegt, bei der die Erzeuger sich in der Hochspannungsebene befinden. Der elektrische Fluss im klassischen Sinne fließt von der Hoch- in die Mittel- und Niederspannungsebene. Die industriellen Verbraucher befinden sich zumeist auf der Mittelspannungsebene, während sich die Haushalte und kleineren Industrien in der Niederspannungsebene befinden. Durch nachhaltige Erzeuger, die ihre Energie aus erneuerbaren Energien wie beispielsweise Wind gewinnen, findet nun ein Paradigmenwechsel im elektrischen Netz statt. Diese nachhaltigen Erzeuger befinden sich zumeist im Nieder- und Mittelspannungsnetz und der elektrische Fluss könnte nun bidirektional fließen. Dieser Paradigmenwechsel kann zu Engpässen und anderen Problemen führen, da das elektrische Netz für ein solches Szenario nicht konzipiert ist.
Eine Hauptaufgabe dieser Arbeit war die Identifizierung von Problemstellungen in elektrischen Netzen. Die extrahierten Problemstellungen haben wir dann in graphentheoretische Modelle übersetzt und Algorithmen entwickelt, die oftmals Gütegarantien besitzen. Wir haben uns dabei zunächst auf die Modellierung von elektrischen Netzen und das Verhalten von Flüssen in diesen Netzen mit Hilfe von Graphentheorie konzentriert. Zur Modellierung des elektrischen Flusses nutzen wir eine linearisierte Modellierung, die mehrere vereinfachende Annahmen trifft. Diese linearisierte Modellierung ist für Hochspannungsnetze im Allgemeinen eine gute Annäherung und macht das Entscheidungsproblem für elektrische Flüsse, das heißt, ob ein gültiger elektrischer Fluss für eine bestimmte Konfiguration des Netzes und für einen bestimmten Verbrauch und eine bestimmte Erzeugung existiert, in Polynomialzeit lösbar.
Leistungsfluss. Fokusiert man sich auf das vereinfachte Zulässigkeitsproblem von elektrischen Flüssen und den Maximalen Leistungsflüssen, so existieren verschiedene mathematische Formulierungen, die den Leistungsfluss beschreiben. Auf allgemeinen Graphen ist es oftmals der Fall, dass graphentheoretischen Flüsse keine zulässigen Leistungsflüsse darstellen. Im Gegensatz zu graphentheoretischen Flüssen balancieren sich Leistungsflüsse. Wir diskutieren diese Eigenschaft aus graphentheoretischer Sicht. Die verschiedenen mathematischen Formulierungen geben uns strukturelle Einblicke in das Leistungsflussproblem. Sie zeigen uns die Dualität der zwei Kirchhoffschen Regeln. Diese nutzen wir um einen algorithmischen Ansatz zur Berechnung von Leistungsflüssen zu formulieren, der zu einem Algorithmus für Leistungsflüsse auf planaren Graphen führen könnte. Die Einschränkung auf planare zweifachzusammenhängende Graphen ist vertretbar, da elektrische Netze im Allgemeinen planar sind [COC12,S.13]. Zudem hilft uns diese Sichtweise, um Analogien zu anderen geometrischen Problemen herzustellen.
Kontinuierliche Änderungen. Da graphentheoretische Flüsse sich in vielen Fällen anders als elektrische Flüsse verhalten, haben wir versucht, das Stromnetz mittels Kontrolleinheiten so auszustatten, dass der elektrische Fluss den gleichen Wert hat wie der graphentheoretische Fluss. Um dieses Ziel zu erreichen, platzieren wir die Kontrolleinheiten entweder an den Knoten oder an den Kanten. Durch eine Suszeptanz-Skalierung, die durch die Kontrolleinheiten ermöglicht wird, ist es nun prinzipiell möglich jeden graphentheoretischen Fluss elektrisch zulässig zu machen. Dabei konnten wir zeigen, dass das gezielte Platzieren von Kontrolleinheiten die Kosten der Erzeugung von elektrischer Leistung durch Generatoren im elektrischen Netz senken kann und den Betriebspunkt des Netzes in vielen Fällen auch erweitert. Platziert man Kontrolleinheiten so, dass der verbleibende Teil (d.h. das Netz ohne die Kontrolleinheiten) ein Baum oder Kaktus unter geeigneter Begrenzung der Kapazitäten ist, so ist es möglich, jeden graphentheoretischen Fluss als elektrisch zulässigen Fluss mit gleichwertigen Kosten zu realisieren. Die Kostensenkung und die Erweiterung des Betriebspunktes konnten wir experimentell auf IEEE-Benchmark-Daten bestätigen.
Diskrete Änderungen. Die oben beschriebenen Kontrolleinheiten sind eine idealisierte, aktuell nicht realisierbare Steuereinheit, da sie den elektrischen Fluss im gesamten Leistungsspektrum einstellen können. Damit ist vor allem gemeint, dass sie den elektrischen Fluss auf einer Leitung von „Die Leitung ist abgeschaltet.“ bis zur maximalen Kapazität stufenlos einstellen können. Diese Idealisierung ist auch ein großer Kritikpunkt an der Modellierung. Aus diesem Grund haben wir versucht, unser Modell realistischer zu gestalten. Wir haben zwei mögliche Modellierungen identifiziert. In der ersten Modellierung können Leitungen ein- und ausgeschaltet werden. Dieser Prozess wird als Switching bezeichnet und kann in realen Netzen mittels Circuit Breakers (dt. Leistungsschaltern) realisiert werden. Die zweite Modellierung kommt der Kontrolleinheiten-Modellierung sehr nahe und beschäftigt sich mit der Platzierung von Kontrolleinheiten, die die Suszeptanz innerhalb eines gewissen Intervalls einstellen können. Diese wirkt im ersten Moment wie eine Verallgemeinerung der Schaltungsflussmodellierung. Nutzt man jedoch eine realistischere Modellierung der Kontrolleinheiten, so ist das Einstellen der Suszeptanz durch ein Intervall begrenzt, das das Ausschalten einer Leitung nicht mit beinhaltet. Sowohl ein optimales (im Sinne der Minimierung der Gesamterzeugungskosten oder der Maximierung des Durchsatzes) Platzieren von Switches als auch ein optimales Platzieren von Kontrolleinheiten ist im Allgemeinen NP-schwer [LGH14]. Diese beiden Probleme ergänzen sich dahingehend, dass man den maximalen graphentheoretischen Fluss, mit den zuvor genannten Platzierungen annähern kann.
Für Switching konnten wir zeigen, dass das Problem bereits schwer ist, wenn der Graph serien-parallel ist und das Netzwerk nur einen Erzeuger und einen Verbraucher besitzt [Gra+18]. Wir haben sowohl für den Maximalen Übertragungsschaltungsfluss (engl. Maximum Transmission Switching Flow; kurz MTSF) als auch für den optimalen Übertragungsschaltungsfluss (engl. Optimal Switching Flow; kurz OSF) erste algorithmische Ansätze vorgeschlagen und gezeigt, dass sie auf bestimmten graphentheoretischen Strukturen exakt sind, und dass auf anderen graphentheoretischen Strukturen Gütegarantien möglich sind [Gra+18]. Die Algorithmen haben wir dann auf allgemeinen Netzen evaluiert. Simulationen führen zu guten Ergebnissen auf den NESTA-Benchmark-Daten.
Erweiterungsplanung auf der Grünen Wiese. Eine vom Rest der Arbeit eher losgelöste Fragestellung war die Verkabelung von Windturbinen. Unter Verwendung einer Metaheuristik haben wir gute Ergebnisse im Vergleich zu einem „Mixed Integer Linear Program“ (MILP; dt. gemischt-ganzzahliges lineares Programm) erzielt, das wir nach einer Stunde abgebrochen haben. Die Modellierung der Problemstellung und die Evaluation des Algorithmus haben wir auf der ACM e-Energy 2017 veröffentlicht [Leh+17].
Schlusswort. Abschließend kann man sagen, dass mit dieser Arbeit allgemeine, tiefliegende Aussagen über elektrische Netze getroffen wurden, unter der Berücksichtigung struktureller Eigenschaften unterschiedlicher Netzklassen. Diese Arbeit zeigt wie das Netz ausgestaltet sein muss, um bestimmte Eigenschaften garantieren zu können und zeigt verschiedene Lösungsansätze mit oft beweisbaren Gütegarantien auf.
Abstract (englisch):
In this thesis, we study combinatorial problems in energy networks with the focus on power grids. At present we see a paradigm shift in power grids towards renewable energy, while making use of the traditional power grid. This shift changes the production pattern from a centralized way towards a distributed production, leading to bottlenecks and other problems. We try to efficiently exploit the existing infrastructure by analyzing the structure of and developing algorithms for electrical flows, placement problems, and layout problems to improve the existing power grid. We remark that the results of this work might be applicable to other energy networks as well [Gro+19] and certain phenomena such as the Braess's Paradox (i.e., for road network it means that adding a road to the traffic network can cause longer travel times) indicate that the provided techniques in this thesis could be used for traffic networks, too.
... mehr
One main task of this work was the identification of problem statements in energy networks. We first translate the problems to graph-theoretical models such that we are able to analyze the problems, study their complexity, develop algorithms, and evaluate them using either existing data sets or generated data if there are no publicly available suitable data sets. We develop algorithms that provide in most cases quality guarantees on certain graph classes that can be then used as good heuristics on general graphs. At first we focus on the modeling of power grids and the behavior of electrical flows in power grids using a linearized model that makes use of some simplifications. These simplifications are based on realistic assumptions for high-voltage power grids on which we lay our focus.
This thesis has four main content chapters. The first part focuses on algorithms to compute electrical flows. We describe the mathematical structure and focus on some major properties of electrical flows. Note that apart from solving a system of linear equations or an exponential time algorithm there are no known algorithms to compute electrical flows. One way to tackle this problem are electrical preserving transformations. Electrical preserving transformations are common techniques in the electrical flow analysis. Based on these transformations, we will present a first algorithm for electrical flows on s-t-planar biconnected graphs. In addition to that, we discuss different representations and formulations of electrical flows that increase the understanding of the electrical flow's behavior. We make use of these representations to describe the balancing property by separating the quadratic relationship of voltage and current. This leads us to the duality of the two Kirchhoff laws and another algorithmic approach.
The second and third part of this thesis focus on the increasing of the efficiency of the electrical network. We exploit the Braess' Paradox by switching lines (i.e., temporarily removal of a line or cable) or by using an edge weight scaling (i.e., susceptance scaling). We design novel algorithms that improve the throughput of the power grid or decrease the overall operating costs. These algorithms are the first that provide some quality guarantees or bounds. Each of these parts includes simulations to evaluate the algorithms on a realistic data set.
The last part of this thesis is about transmission network expansion planning on a greenfield motivated by the wind farm cabling problem. Algorithmically, it represents a layout problem. Within this part, we present a first proper model formulation for this particular problem, give a benchmark generator, and design a meta-heuristic approach to tackle the wind farm cabling problem that is then evaluated on a generated data set.