KIT | KIT-Bibliothek | Impressum | Datenschutz

Experimental conditions affecting the measured fracture toughness at the microscale: Notch geometry and crack extension measurement

Saxena, Ashish Kumar; Brinckmann, Steffen; Völker, Bernhard; Dehm, Gerhard; Kirchlechner, Christoph

Abstract:

Experimental fracture mechanics at the microscale became an indispensable tool for understanding and developing advanced material systems. In case of linear elastic fracture mechanics, stringent requirements are typically only warranted for very brittle materials. The material properties of semi-brittle materials might be accessible by elasto-plastic fracture mechanics. However, challenges exist in determining the crack length, in producing geometry and notch geometry, in defining of the initiation toughness and in extracting the size independent crack resistance curves. In this study, we assess current approaches of measuring the fracture toughness of semi-brittle materials by elasto-plastic fracture mechanics. We investigate the notch geometry (through thickness notch and bridge notch), the notch depth and the method of determining in situ the crack length for ultrafine grained tungsten. Further challenges due to the overlap of sample size and crack process zone are identified. Finally, we propose a workflow for analyzing the elasto-plastic fracture toughness of material systems at the microscale.


Verlagsausgabe §
DOI: 10.5445/IR/1000120646
Originalveröffentlichung
DOI: 10.1016/j.matdes.2020.108582
Scopus
Zitationen: 30
Dimensions
Zitationen: 30
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte Materialien - Werkstoff- und Biomechanik (IAM-WBM)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 06.2020
Sprache Englisch
Identifikator ISSN: 0264-1275
KITopen-ID: 1000120646
HGF-Programm 43.22.01 (POF III, LK 01) Functionality by Design
Erschienen in Materials and design
Verlag Elsevier
Band 191
Seiten Art. Nr.: 108582
Schlagwörter Elasto-plastic fracture, Crack process zone, Bridge notch, Focused ion beam, Material properties
Nachgewiesen in Dimensions
Web of Science
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page