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Abstract

Motivation: An automated counting of beads is required for many high-throughput experiments such as studying
mimicked bacterial invasion processes. However, state-of-the-art algorithms under- or overestimate the number of
beads in low-resolution images. In addition, expert knowledge is needed to adjust parameters.

Results: In combination with our image labeling tool, BeadNet enables biologists to easily annotate and process
their data reducing the expertise required in many existing image analysis pipelines. BeadNet outperforms state-of-
the-art-algorithms in terms of missing, added and total amount of beads.

Availability and implementation: BeadNet (software, code and dataset) is available at https://bitbucket.org/t_scherr/
beadnet. The image labeling tool is available at https://bitbucket.org/abartschat/imagelabelingtool.

Contact: tim.scherr@kit.edu or ralf.mikut@kit.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Ligand-coupled beads are often used in in vitro experiments to
mimic bacterial invasion processes (Braun et al., 1998; Hebert et al.,
2017; Jung et al., 2009). In the experiments that led to the develop-
ment of BeadNet, red fluorescent latex beads of 1 mm in size were
chemically coupled with a bacterial surface ligand, and their intern-
alization into human cells was investigated. To distinguish internal-
ized beads and beads that remained outside of cells, the cells were
fixed without permeabilization, and external beads were recognized
using a ligand-specific antibody coupled to a green fluorophore
(Fig. 1a).

The complexity of bead detection in low-resolution images may
lead biologists to either use an inefficient and user-biased manual
quantification or to use a user-friendly but inaccurate method. In
addition, the parameters of sophisticated analysis pipelines need to
be adjusted in case of changes in the experimental design. Even for
experts, it is often easier to annotate new images instead of adjusting
parameters for low-resolution and low signal-to-noise-ratio data.
Thus, we designed the bead detection and counting software
BeadNet to avoid parameter adjustments. For domain adaptation,
biologists only need to create new training images using a built-in
functionality and annotate them using our labeling tool. Despite its
simple use, BeadNet enables a nearly error-free bead detection on a

manually annotated low-resolution bead dataset. To our knowledge,
this is the first annotated 2D dataset and software tackling the prob-
lem of counting beads in low-resolution images with high accuracy.
The software combines a crucial upsampling preprocessing with a
deep learning-based detection. In addition, BeadNet provides a
graphical user interface for easy use, e.g. for generating new training
data. The upsampling step and the training data generation are often
missing in toolboxes, leaving users alone with the upsampling, the
normalization and the creation of new training samples. BeadNet
also provides the automatic calculation of evaluation measures and
overlays of the detection results.

2 Materials and methods

BeadNet consists of an upsampling preprocessing step for low-
resolution images and a deep learning-based bead detection with
subsequent counting. The bilinear upsampling, hereby, enables dis-
tinguishing touching beads (Fig. 1b and c). Furthermore, it eases the
annotation of a low-resolution dataset that is required for supervised
learning (Fig. 1d). Due to the upsampling preprocessing, centers of
touching beads do not share an edge anymore, and the bead detec-
tion can be treated as a semantic segmentation task. Thus, for the
bead detection, an adapted U-Net trained with a combination of
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binary cross-entropy and Dice loss is used (Milletari et al., 2016;
Ronneberger et al., 2015). Thereby, the traditional upsampling uti-
lizes prior knowledge enforcing the network to work at reasonable
scales. To improve the generalization ability of the trained model,
specific training data augmentations are applied online during train-
ing. To get a more robust seed detection, a morphological dilation
with a cross-like mask can be applied to the upsampled training
label images. This enlarges the seeds and reduces the number of
missing seed detections. However, depending on the resolution and
the seeds’ distances the number of missing detections may also
increase.

In the post-processing, the raw predictions are binarized using a
global threshold of 0.5, and the centroids of predicted beads are cal-
culated. Finally, the detected beads are counted. Additional informa-
tion concerning the processing steps and the U-Net model used can
be found in the Supplementary Information.

To use our BeadNet software, a user needs to select a predefined
bead diameter range required for the upsampling preprocessing. If a
retraining for domain adaptation is needed, i.e. the resulting seed de-
tection overlays are erroneous, new training data crops can be gener-
ated and annotated. Then, multiple models with and without the
dilation step are trained and evaluated. For inference, the on the test
dataset best performing model is selected automatically.

3 Low-resolution bead dataset

We annotated a low-resolution bead dataset consisting of 60 train-
ing, 15 validation and 25 test images with 2587 beads in total. The
bead diameters range from about 2 px to 4 px (Fig. 1b).
Neighboring seeds can touch each other and the center of beads is
not well-defined. This makes manual annotation of seeds in the ori-
ginal images very difficult. The application of a fourfold bilinear
upsampling and the use of 2 � 2 px seeds enable to annotate beads
quickly, to avoid touching seeds and to hit the center easily (Fig. 1c
and d).

4 Results

For performance measurements, the ground truth seeds are enlarged
(Fig. 1d). Then, the normalized amount of missing (no predicted
seed in a ground truth bead), split (multiple predicted seeds in a

ground truth bead) and added beads (predicted seed in the ground
truth background) can be counted. All shown metrics do not count
added seeds at the border area (only fully visible beads are anno-
tated, see Supplementary Information for the applied border
correction).

Table 1 shows quantitative results of BeadNet, of the Laplacian
of Gaussian-based seed detection of TWANG (Bartschat et al.,
2016; Stegmaier et al., 2014), of a Hough-transform-based detection
using MATLABs imfindcircles (Yuen et al., 1990) and of a simple
Otsu thresholding (Otsu, 1979) with Euclidean distance transform
on the (upsampled) test dataset. The median BeadNet prediction
outperforms the other methods in nearly every metric. More detailed
results including the single initializations, and a qualitative compari-
son with the FISH-quant software for the automatic counting of
transcripts in FISH images (Mueller et al., 2013) is provided in the
Supplementary Information.

5 Conclusion

BeadNet outperforms traditional bead detection methods, which
need expert knowledge to adjust them. The high detection rate
shows that no additional preprocessing toolbox is needed, e.g. a 2D
adaptation of the image restoration toolbox CSBDeep for the
denoising and isotropic recovery of 3D microscopy data (Weigert
et al., 2018). Combined with the integrated training data generation
enables the high detection rate a user-friendly end-to-end use of
BeadNet for the detection of poorly resolved objects, e.g. of ligand-
coupled beads or other spherical or non-spherical objects.
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Fig. 1. Exemplary application case and detection results of BeadNet. (a) A maximum intensity projection of red fluorescent beads (additional green fluorophore for beads out-
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Table 1. Results on the 25 test images of the bead dataset (670 beads)

Method F-Score QF Precision QP Recall QR Split Qsplit (%) Missing Qmiss (%) Added Qadd (%) Detections (%)

BeadNet 0.971 0.977 0.954 0.45 4.63 1.79 97.76

BeadNet (w. dilation) 0.977 0.979 0.976 0.15 2.39 2.09 99.70
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Note: For BeadNet, the median of five trained models is shown. The other methods are deterministic.
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