KIT | KIT-Bibliothek | Impressum | Datenschutz

Optimizing the Power Production in an Osmotic Engine via Microfluidic Fabricated and Surface Crosslinked Hydrogels Utilizing Fresh and Salt Water

Jangizehi, Amir 1; Fengler, Christian ORCID iD icon 1; Arens, Lukas 1; Wilhelm, Manfred 1
1 Institut für Technische Chemie und Polymerchemie (ITCP), Karlsruher Institut für Technologie (KIT)

Abstract:

Salinity gradients between seawater and river water is a renewable source of energy having a worldwide potential capacity of about 3.1 TW. This energy can be extracted by e.g., an osmotic engine, using hydrogels with high water uptake capacity. Consecutive exposing hydrogels to fresh and saline water makes swelling–shrinking cycles, which can be utilized to move a piston in an osmotic engine. The production of power with this method is significantly suppressed by gelblocking, where voids between particles are blocked so that the water flow is limited and the absorbency significantly retarded. To improve the power production, the gelblocking is minimized within this article by using spherical mono‐dispersed hydrogels made by microfluidic technique. In this study mono‐disperse poly(acrylic acid‐co‐sodium acrylate) hydrogels with varying diameters (100‐600 µm) and varying degrees of neutralization (DN = 10–75 mol%) are synthesized. In addition, hydrogels with different DN are utilized for additional surface crosslinking to fabricate core–shell particles. The maximum power of 0.67 W kg$^{-1}$ is obtained for hydrogels with a diameter of 105 µm, degree of crosslinking (DC) = 1.7 mol%, DN = 75 mol%, and a core‐shell architecture, which is three times higher compared to hydrogels having undefined size without a core–shell framework.


Verlagsausgabe §
DOI: 10.5445/IR/1000120962
Veröffentlicht am 05.07.2020
Originalveröffentlichung
DOI: 10.1002/mame.202000174
Scopus
Zitationen: 5
Web of Science
Zitationen: 5
Dimensions
Zitationen: 6
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Technische Chemie und Polymerchemie (ITCP)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 07.2020
Sprache Englisch
Identifikator ISSN: 1438-7492, 1439-2054
KITopen-ID: 1000120962
Erschienen in Macromolecular materials and engineering
Verlag John Wiley and Sons
Band 305
Heft 7
Seiten Art.Nr. 2000174
Vorab online veröffentlicht am 09.06.2020
Nachgewiesen in Scopus
Dimensions
Web of Science
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page