
 

 Karlsruhe Reports in Informatics 2020,2 
Edited by Karlsruhe Institute of Technology,  
Faculty of Informatics   

 ISSN 2190-4782 
 
 
 
 
 
 
 

 
 

Using BERT for the Detection of 
Architectural Tactics in Code 

 
 
 
 
 

Jan Keim, Angelika Kaplan, Anne Koziolek, and Mehdi Mirakhorli 

 
 
 
 
 
 
 
 
 
 
 
 
 
 2020 
 

 

KIT –  University of the State of Baden-Wuerttemberg and National 

Research Center of the Helmholtz Association  



 

  
   

  
 
 
 
 
 
 
 
 
 

Please note: 
This Report has been published on the Internet under the following 
Creative Commons License: 
http://creativecommons.org/licenses/by-nc-nd/4.0/ 



Using BERT for the Detection of
Architectural Tactics in Code

Jan Keim, Angelika Kaplan, Anne Koziolek, and Mehdi Mirakhorli

{jan.keim, angelika.kaplan, koziolek}@kit.edu, mxmvse@rit.edu

Abstract. Quality-driven design decisions are often addressed by using
architectural tactics that are re-usable solution options for certain quality
concerns. However, it is not sufficient to only make good design decisions
but also to review the realization of design decisions in code. As manual
creation of traceability links for design decisions into code is costly,
some approaches perform structural analyses to recover traceability links.
However, architectural tactics are high-level solutions described in terms
of roles and interactions and there is a wide range of possibilities to
implement each. Therefore, structural analyses only yield limited results.
Transfer-learning approaches using language models like BERT are a
recent trend in the field of natural language processing. These approaches
yield state-of-the-art results for tasks like text classification. We intent to
experiment with BERT and present an approach to detect architectural
tactics in code by fine-tuning BERT. A 10-fold cross-validation shows
promising results with an average F1-Score of 90%, which is on a par with
state-of-the-art approaches. We additionally apply our approach to a case
study, where the results of our approach show promising potential but fall
behind the state-of-the-art. Therefore, we discuss our approach and look
at potential reasons and downsides as well as potential improvements.

Keywords: Software Architecture, architectural tactics, natural lan-
guage processing, transfer learning, traceability, language modeling, BERT.

1 Introduction

Software design is a process of making decisions, therefore, design decisions are
the core of every software and are essential to software development. However,
these design decisions not only have to be made, but their realization and effect
also needs to be checked and analyzed. Software traceability provides essential
support for software engineering activities like coverage analysis, impact analysis,
compliance verification, or testing. A problem of software traceability is the
expensive creation and maintenance of traceability links [9,17,21]. Automating
these tasks can lower costs, but automation is still challenging, especially for
tracing design decisions that are based on quality concerns such as security,
reliability, performance, and safety. These quality-driven design decisions are
often addressed by using architectural tactics [7,25,31]. Architectural tactics are
defined as re-usable solution options for a given quality concern. Therefore, these



tactics are ways to manipulate aspects of a quality attribute through architectural
design decisions [6]. For example, security concerns can be tackled with the use
of the architectural tactic authentication. Similarly, availability of a system can
be improved with the heartbeat tactic by monitoring critical components.

Although, the problem to detect architectural tactics is a special case of design
pattern recognition, it turns out to be more challenging. Unlike design patterns
that tend to be described in terms of classes and their associations [19], tactics
are described in terms of roles and interactions [7]. This means that a developer
can use a wide range of different designs and design patterns to implement a
single tactic. For example, there are at least four different ways to implement
the heartbeat tactic including the option to not follow any specific design pattern
[37]. Therefore, structural analyses only yield limited results.

Prior work by Mirakhorli et al. present an approach to detect architectural
tactics in code, to trace them to requirements, and to visualize them to properly
display the underlying design decision [37,38]. In their work, Mirakhorli et al.
describe their Tactic Detector that uses information retrieval (IR) and machine
learning (ML) techniques to train classifiers. The main idea is built on the
tendency of programmers to use meaningful terms to name variables, methods,
and classes as well as to provide meaningful comments. Using meaningful names
is a best practice [14] and is also used in other traceability approaches [3].

Recently, a lot of progress has been made in the domain of natural language
processing (NLP), including text classification. Most prominently, the perfor-
mance of (statistical) language models and their application has improved a
lot. Modern language models like Bidirectional Encoder Representations from
Transformers (BERT) [15] can be fine-tuned on tasks such as text classification
using so-called transfer learning. It has been shown that pre-training and fine-
tuning reduces the need for heavily-engineered task-specific architectures [15].
Another big advantage of fine-tuning is that less training data is needed to achieve
good results. For example, Ruder et al. [24] showed that their transfer-learning
approach could achieve the same performance than approaches that were trained
on 100x the data.

Overall, we want to find out if BERT can “understand” code when code
is used as input during fine-tuning. More precisely, we experiment with the
assumption that code is a special kind of text. This allows us to use transfer-
learning techniques to classify code, for example to detect architectural tactics.

This leads to our research question: Does BERT understand code? More
precisely: Can we use language models like BERT and their transfer-learning
capabilities to classify code for the detection of architectural tactics?

Our evaluation comes to the conclusion that our approach has potential
but cannot beat the best state-of-the-art approaches. However, we think that
our approach is still a valuable contribution for the community and that it is
important to publish our experiences. We share the view of others (cf. [35,42,44])
that publishing negative results is important to show new research directions.

In this technical report, we provide supplementary material and further
information for our study (cf. [27]).



The remainder is structured as follows: An introduction to BERT and other
NLP models is given in Section 2. In Section 3, we present an extended version
of related work in comparison to [27]. In more detail, we describe our approach
in Section 4 and present our evaluation in Section 5. Next, we discuss our results
and threats to validity. The final Section 7 concludes the technical report.

2 Introduction to Language Models and BERT

Statistical language models (LMs) aim to estimate the probabilities of sequences
of words and are therefore able to predict the likelihood that a given word or
sequence is following a certain sequence of words [20]. However, an important
aspect of LMs like BERT [15] is their transfer learning capability. This means
that LMs can be fine-tuned to a specific task other than the task they were
originally trained on. The advantage of this is the little effort and training data
that is needed for the fine-tuning task, as shown by Ruder et al. [24].

An important foundation of all state-of-the-art LMs are word embeddings such
as word2vec [36]. Mikolov et al. introduce a way to calculate lower-dimensional
vectors that represent words as numerical vectors based on all contexts a word
appeared in the training data. However, word2vec only consider the syntax of
a word, not its semantics, and thus disregards ambiguities. This problem is
tackled by Embeddings from Language Models (ELMo) [43], an approach for
contextualized word embeddings. The contextualization is achieved in ELMo
with the usage of a bidirectional long short-term memory (LSTM) neural network
with two layers in order to let the language model (LM) get a sense of the word in
the context of its previous and following words. The approach Universal Language
Model Fine-tuning for Text Classification (ULMFiT) [24] introduces additional
improvements to this technique. Furthermore, ULMFiT introduces the concepts
of pre-training and fine-tuning for transfer learning with LMs.

BERT by Devlin et al. [15] combines and adapts different concepts of previ-
ously released work. On release, fine-tuned BERT models outperformed state-
of-the-art results on eleven NLP tasks including sequence classification, named
entity recognition, and question answering [15]. To achieve this, BERT uses bidi-
rectional pre-training similar to ELMo to incorporate context in both directions
in contrast to the other unidirectional approaches, i.e., left-to-right architec-
tures. Additionally, BERT uses an adapted version of the so-called Transformer
architecture [49].

There are two models of BERT: the base and the large model. The base
model has twelve encoder-layers, uses 768 hidden units, and twelve attention
heads [15]. In comparison, the original Transformer used six encoder-layers, 512
hidden units, and eight attention heads [49]. BERT’s base model has a total of
110M parameters that need to be trained. The large model of BERT uses 24
encoder-layers with encoders having 1024 hidden units, 16 attention heads and
has 340M parameters in total. For both, there are additional cased variants that
consider the capitalization of words. For training of BERT, the authors introduce
masked language modeling [15], where about 15% of the input is masked. For



example, instead of the sentence “my dog is hairy” the input is “my dog is
[MASK].” One part of the (pre-) training task is the prediction of these masked
words. A second part of the training is the prediction of whether one sentence is
likely to succeed another sentence. For example, the sentence “The man went to
the store” is likely to be followed by “He bought a gallon of milk” but unlikely to
be followed by “Penguins are flightless birds.” For training, 50% of the sentences
were paired with actual subsequent sentences and 50% of the time with a random
sentence from the corpus. The authors choose these training tasks because the
combination of encoders and their self-attention layers with bidirectionality would
cause a problem in the proposed multi-layered context of BERT. In the usual
language modeling task, each word would indirectly see itself and the target word
and, therefore, could be trivially predicted. BERT is originally trained on the
English Wikipedia and the BooksCorpus [50]. Pre-trained models of BERT are
available that can directly be used for fine-tuning tasks.

Fine-tuned

Pre-trained

Tokenization

512

511

BERT

Classifier

11

2

3
4

5
…

[CLS]

[my]

[dog]

[is]
[cute]

[PAD]

Input

Output
(Classification)

6[SEP]

Fig. 1. Example procedure for using BERT for classification tasks (cf. [22])

BERT and similar approaches are more and more replacing traditional discrete
natural language processing pipelines [48]. However, an analysis of the different
layers and the underlying learned structures of BERT by Tenney et al. [48] shows
that BERT remodels similar structures as the traditional NLP pipeline in its
internals. An advantage of fine-tuning approaches is that they allow simpler
architectures while also needing less training data. This omits the need to create
heavily-engineered architectures for each task. Figure 1 shows how BERT can
be used for classification. The input is tokenized and then fed into the language
model. The first input token is always a special [CLS] token. For each input
token, BERT outputs a (contextualized) vector. However, only the output of the
first token ([CLS]), i.e., the pooled output is usually used for text classification
and similar downstream tasks. This pooled output can, for example, be fed into a
single-layer feedforward neural network that uses softmax to assign probabilities
to different classes for classification.



3 Related Work

In this section, we complement and give an extended overview of related work
with regard to [27].

The most relevant regarding the detection of architectural tactics is the work
by Mirakhorli et al. [37,38]. The authors use trained classifiers to detect the
presence of architectural tactics like heartbeat, scheduling, and authentication.

As the detection of architectural tactics can be seen as a special case of
design pattern recognition, we can also identify several related approaches in
this context of design pattern detection (cf. [4,13,18]). Although the problem
seems similar, there is a difference between the problem of tactic detection and
the detection of design patterns that should not be neglected: Architectural
tactics describe a higher-level problem that are implemented in code, resulting in
multiple different strategies to implement these tactics. Therefore, the commonly
used structural analyses for detection of design patterns cannot be used and is
thus more challenging.

Aside this work to detect architectural tactics or design patterns, there is
related work for the detection of architectural knowledge that can be divided into
the three main areas: documenting design rationales, reconstructing architectural
knowledge, and automated traceability.

There are different tools and techniques for documenting design decisions and
managing design decisions [5,31,39]. Some approaches even try to capture and
trace architectural knowledge [12,26] and Kruchten introduced an ontology of
architectural design decisions that can be used to classify design decisions [32].
However, manual labor is needed for these approaches and the cost and effort of
documenting design rationales are high. Existing solutions tend to focus on the
design rather than providing ways to trace the design decisions down to the code
level where they are implemented [39]. As a result, developers need to manually
and proactively look for information about rationale and design information.

Unfortunately, knowledge about design decisions and architectures are mostly
undocumented in many projects (cf. [23]). Therefore, researchers have developed
techniques to reconstruct architectural knowledge. Ducasse and Pollet collected
approaches in this research direction and constructed a taxonomy [16]. The
taxonomy classifies approaches into the five main axes goals, processes, inputs,
techniques, and outputs.

When documentation is present, approaches that create traceability links
can be used. Our approach is a special case of automated trace retrieval, similar
to the work by Antoniol et al. [3] that perform structural analyses to recover
traceability links. In our case, we want to trace architectural design patterns.

Additionally, there is some related work about the application of language
models like BERT to different problems like text classification that we see closely
related to our problem. One example is Docbert by Adhikari et al. [1]. The
authors create state-of-the-art results for document classification by fine-tuning
BERT. In a second step, the authors demonstrate that BERT can be divided
into a neural model that offers high accuracy with less computation costs.



Finally, approaches that are also related to this work are about building
language models for code. In context of code completion and suggestion, we
can find approaches that apply statistical and neural language models such
as recurrent neural networks (RNNs) and N-gram (cf. [33,45]). In addition to
that, further approaches also use transfer learning with code by learning on one
programming language and transfer to another language, e.g., in the context of
detecting code smells (cf. [46]). However, these approaches are bound to a certain
application. In the context of detecting architectural tactics we face the problem
that there is only limited amount of data. This makes transfer learning appealing
that learns on one task where more training data exists to another task, i.e., the
detection of architectural tactics.

4 Our Approach

Our method of detecting architectural tactics in code is using the BERT language
model fine-tuned for multi-class classification. Our approach is based on the
two assumptions. The first assumption is that programmers tend to program
similar functionality in a similar manner, thus, implement architectural tactics
in similar ways. This assumption is also used by different other approaches in
traceability research as is seen as best practice, i.e., for program understanding
and maintenance [3,10,11,14,41]. Secondly, we see code as text, especially when
we disregard execution semantics.

Our approach is divided into a training phase and the actual application. In
the training phase, we use the training data to fine-tune the BERT model for
classification. We train the model to classify the given input code into the given
architectural tactics. We also add the class Unrelated that should be used if the
input code is not related to one of the architectural tactics. After training, the
trained classifier model can be used to classify and thus, detect architectural
tactics in the input code. We describe fine-tuning and application in Section 4.2.
For both steps, the input has to be pre-processed that is described in the following.

4.1 Pre-processing of input

The inputs are classes and code snippets that should be classified for architectural
tactics. This input needs to be pre-processed first to remove some irrelevant parts
and parts that cannot be processed by BERT.

One issue with BERT is its limited input length. Currently, the released
pre-trained BERT models are only able to process input with a maximum length
of 512 tokens. Classes often exceed this limit of 512 tokens, therefore, the input
needs to be truncated in a second pre-processing step. For this, we employ two
methods: The first method is to simply truncate after the first 512 tokens; the
second method removes method bodies. If the output is still too long, we simply
truncate it after 512 tokens as in the first method.

Additionally, we apply further pre-processing beforehand: Removal of stop-
words and separating compound words. In text classification it is common to



remove stop words because they are common words that usually provide only
little value for processing text, especially when using statistical approaches. These
stop words include articles, possessive nouns, and pronouns like “the”, “a”, “his”,
“hers”, “he”, or “she”. Additionally, we remove specific keywords of the target
programming language. Besides stop words, we ignore lines containing only
information about licensing that can usually be found at the beginning of a file.

In code, identifiers that represent compound nouns are usually written in
some special kind: In camel case using capital letters to indicate a new word
(like in “camelCase”), in snake case using underscores to separate words (like
in “snake case”), or in kebab-case using hyphens (like in “kebab-case”). For
better processing and compatibility with BERT, we split up the identifiers that
represent compound nouns. Lastly, we remove symbols that BERT cannot deal
with, including semicolons, equal signs and (curly) brackets.

4.2 Fine-tuning BERT for detection of architectural tactics

For fine-tuning BERT for our approach, we use the pre-trained uncased base
model of BERT. The base model uses far less computational resources compared
to the large model. We use the the standard procedure (cf. Section 2): A model
with a classification head on top, i.e., a linear layer on top of the pooled output
which is the output of first token, i.e., the [CLS] token of the input. We feed
the pooled output of BERT into the classification head that consists of a single
layers of linear neurons in a feedforward neural network. The softmax function
gives us a probability distribution for the different outputs. The classification
head outputs a probability for each label-class in our classification.

During training, we use the cross-entropy loss-function. This means that we
try to quantify how close the predicted distribution is to the true distribution.
The cross-entropy loss-function punishes wrong or uncertain predictions and
analogously rewards confident predictions that are correct. This is captured in
the following formula:

H(p, q) = −
∑
x

p(x) log q(x) (1)

In this formula, x denotes the different labels, p(x) stands for the target probability,
and q(x) the actual probability for the label x. In our case, p(x) equals 1.0 for a
correct label and p(x) equals 0.0 for the incorrect labels.

An important component of (deep) neural networks is the optimizer that
updates the various weights within a network. Usually, weights are updated in
the network using a classical stochastic gradient descent. However, we use the
so-called AdamW -optimizer [34] that is an adaptation of the popular Adam-
optimizer [30]. AdamW implements a weight decay correction and does not
compensate for bias as in the regular Adam-optimizer and usually gives better
results in settings like ours. As optimizer setting, we do not use a warm-up phase
to increase the performance on sparse datasets.

We configure the parameters in the following way: We choose commonly used
(default) parameters because of promising first empirical evidence (cf. Section 5.2).



We use a weight decay of 0.01 and for the exponential decay rates we use a beta1
(first-moment estimates) of 0.9 for beta1 and a beta2 (second-moment estimates)
of 0.999. Additionally, we use a training rate of 2e-5 and a batch size of 2 to train
the classification head for our fine-tuning based on empirical selection as well
as tested parameters for text classification [47]. With these values, we train the
classifier for ten epochs.

Our approach currently uses a multi-class, but no multi-label classifier. There-
fore, we can only attach one label for each input. We do not see this as a major
drawback as the case study by Mirakhorli et al. [37] shows that less than 1%
of classes contain more than one architectural tactic. In the future, we plan to
extend our approach to support multiple labels as well.

After fine-tuning, the trained model can be used for classification. However,
classes implementing architectural tactics are less common than classes unrelated
to architectural tactics. For example, the analysis of Apache Hadoop for ten
architectural tactics in [37] shows that only 9.42% of classes are related to at least
one of the ten covered architectural tactics. Therefore, we also propose the usage
of a threshold to increase the precision of our approach: If the highest confidence
value of a classification is below the given threshold, the class is classified as
unrelated.

5 Evaluation

The evaluation of our approach is split into different parts. We first describe
the used (training) data in Section 5.1. Afterwards, we evaluate our approach
and compare it to state-of-the-art approaches. For this, we perform a 10-fold
cross-validation on the training data in Section 5.2. Furthermore, we evaluate the
performance of our approach on a case study and again compare the performance
of our approach to other approaches in Section 5.3. In these evaluations, we are
using the common evaluation metrics precision, recall, and F1-Score to enable
comparisons to the other approaches.

5.1 Training Set

One goal of our evaluation is to compare our results with previous results,
especially the results in [37]. Therefore, we reused the data set of Mirakhorli et
al. [37] as well as one older data set by Mirakhorli et al. [38]. As a results, we are
aiming to detect the following five architectural tactics (cf. [37,38]): Audit trail,
Authentication, Heartbeat, Resource Pooling, and Scheduling. For each of these
tactics, Mirakhorli et al. identified open-source projects that implement that
tactic and collected tactic-related and non-tactic-related source files. The first
data set by Mirakhorli et al. [38] consists of eleven examples for related classes
per architectural tactics (55 total) and 220 examples for unrelated classes in total.
The second, bigger data set by Mirakhorli et al. [37] consists of 50 examples for
related classes and 50 examples for unrelated classes for each architectural tactic.
The data sets are publicly available in an open-source repository (cf. [28]).



5.2 10-fold cross-validation

For evaluation, we first look at multiple 10-fold cross-validation experiments.
This means, we evaluate ten times using each time (different) 10% of the data
for evaluation and train on the other 90%. We performed multiple experiments
to evaluate different characteristics.

Table 1. Average precision (Prec.), recall (Rec.), and F1-Score for different configura-
tions including different amount of epochs (ep.), different confidence thresholds (thr.),
various batch sizes (bs.), and learning rates (lr.) of our approach.

Configuration Prec. Rec. F1

10 ep., thr. 0.9, lr. 2e-05, bs. 2 0.92 0.89 0.90
20 ep., thr. 0.9, lr. 2e-05, bs. 2 0.92 0.87 0.89

10 ep., thr. 0.9, lr. 2e-05, bs. 2 0.92 0.89 0.90
10 ep., thr. 0.5, lr. 2e-05, bs. 2 0.88 0.88 0.88
10 ep., thr. 0.0, lr. 2e-05, bs. 2 0.88 0.88 0.88

10 ep., thr. 0.9, lr. 2e-05, bs. 2 0.92 0.89 0.90
10 ep., thr. 0.9, lr. 3e-05, bs. 2 0.89 0.87 0.88

10 ep., thr. 0.9, lr. 2e-05, bs. 2 0.92 0.89 0.90
10 ep., thr. 0.9, lr. 2e-05, bs. 8 0.93 0.85 0.89

As first experiment, we evaluate the different configurations of our approach
in a 10-fold cross-validation with a fixed seed (904727489) for reproducibility
using the bigger data set. We compare different learning rates, amount of epochs,
as well as different confidence thresholds. We select common values for these
settings and aim to confirm our intuitions: Increasing the amount of epochs or
the batch size is likely to increase precision but decrease recall. Moreover, higher
thresholds increases the precision but may decrease the recall. In Table 1, the
average results for a selection of the different tested configurations are displayed.
We can confirm our intuition that increasing the amount of epochs increases the
precision but decreases the recall. More epochs causes the classifier to fit better
to the training data. However, an over-fitting probably takes place, causing the
decrease of recall. Similar results can be seen for the threshold value. A higher
threshold means the classifier needs a high confidence to label a class. As expected,
lowering the threshold decreases the precision and overall worsens the results.
The learning rate of 2e-05 performs best in our experiments. This confirms the
empirical evidence by Sun et al. [47] that showed best results for text classification
using this learning rate. Lastly, we look at different batch sizes. The batch size
determines the number of training samples that are processed before updating
the network, i.e., the weights. According to Keskar et al. [29], larger batches result
in lower quality of the model in regard to its ability to generalize. Here, we can
observe that increasing the batch size reduces the recall, but slightly increases
the precision. However, increasing the batch size also increases the memory
consumption on the GPU, so there are (hardware) limits for this parameter. The



best configuration in our case can be derived with a learning rate of 2e-05, a batch
size of two, ten epochs of training and a threshold of 0.9 during classification.

Table 2. Results for 10-fold cross-validation for different training data, including
Precision (Prec.), Recall (Rec.), and F1-Score

data set from [38] data set from [37]
Prec. Rec. F1 Prec. Rec. F1

Audit 0.60 0.70 0.65 0.89 0.89 0.89
Authentic. 0.57 0.60 0.58 0.89 0.87 0.88
Heartbeat 0.40 0.38 0.39 0.92 0.87 0.89
Pooling 0.30 0.25 0.27 0.97 0.93 0.95
Scheduling 0.25 0.30 0.27 0.94 0.87 0.90

Averages 0.42 0.45 0.43 0.92 0.89 0.90

Besides evaluating different parameters, we evaluate how different data sets
are influencing the performance. The results for the different data sets in Table 2
clearly show that the larger data set outperforms the smaller data set in this
setting. The average precision and recall more than doubles for the second data
set compared to the first. This comes to no surprise as larger data sets generally
perform better in deep learning approaches. We also evaluated the two truncation
methods that we used. Overall, both truncation methods are pretty close to each
other. The F1-Score for simple truncation is at 90% (Precision 92%, Recall 89%)
while the F1-Score for truncating method bodies is at 88% (Precision 92%, Recall
86%). In this scenario, precision is equal and recall for the truncation of method
bodies is slightly worse.

Table 3. 10-fold cross-validation of our approach (BERT) and comparison to approaches
by Mirakhorli et al. [37] using precision (P), recall (R), and F1-Score. (Previously
reported) F1-Scores with asterisks do not fit to their corresponding values for precision
and recall.

SVM Slipper J48 Bagging AdaBoost Bayesian Tactic Det. BERT

P R F1 P R F1 P R F1 P R F1 P R F1 P R F1 P R F1 P R F1

Audit .96 .46 .62 .85 .78 .81 .85 .85 .85 .88 .88 .88 .85 .85 .85 .94 .91 .92 .84 .92 .88 .89 .89 .89
Authentication .91 .58 .71 .96 .94 .95 .98 .98 .92* 1.0 .92 .96 .98 .98 .94* 1.0 .80 .89 .96 .98 .97 .89 .87 .88

Heartbeat .91 .62 .74 .84 .84 .84 .77 .88 .82 .89 .84 .87 .91 .86 .89 .92 .70 .80 .77 .92 .84 .92 .87 .89
Pooling .97 .66 .79 .94 .96 .95 .94 .96 .95 .94 .94 .94 .98 .96 .97 .94 .96 .95 .92 .98 .95 .97 .93 .95

Scheduler .98 .88 .93 .88 .92 .90 1.0 .98 .99 1.0 .98 .99 1.0 .98 .99 .96 .98 .97 .86 .88 .87 .94 .87 .90

Averages .95 .64 .76 .89 .89 .89 .91 .93 .92 .94 .91 .93 .94 .93 .93 .95 .87 .91 .87 .94 .90 .92 .89 .90

Table 3 presents the comparison of our results with the previously reported
results for the approaches (cf. [37]). As we use the same data set as Mirakhorli et
al. [37], we can directly compare our results to the reported results. Our approach



performs similar to other approaches. Overall, our approach yields relatively
stable results between the different tactics, meaning the results do not vary as
much between tactics compared to the other approaches.

We applied the Friedman non-parametric statistical test to figure out if the
results are significantly different. We disregard the clearly non-competitive SVM
approach for this test. The test results indicate that the difference between the
results is not statistically significant. Following this result, we conclude that
these classifiers perform mostly equivalently for the task of tactic detection when
considering 10-fold cross-validation. We also evaluated using undersampling and
oversampling, i.e., providing equal share of training data by randomly removing
or adding data until classes are equally sized. We come to the conclusion that
these techniques do not improve the results in our settings.

5.3 Case study

The main purposes of our approach is the detection of architectural tactics in
large-scale projects. Therefore, we apply our trained classifier to a case study to
evaluate the performance on a large-scale project. Additionally, we can test how
well the approach generalizes from the training data. We chose to replicate the
case study of Mirakhorli et al. [37], i.e., we aim to detect architectural tactics in
the Hadoop Distributed File System (HDFS)1.

Table 4. Comparative evaluation of previous approaches and of our approach (BERT)
for detecting architectural tactics in Hadoop using Precision (P), Recall (R), and
F1-Score.

SVM Slipper J48 Bagging AdaBoost Bayesian Tactic Det. BERT

P R F1 P R F1 P R F1 P R F1 P R F1 P R F1 P R F1 P R F1

Audit .08 .29 .13 .02 .29 .04 .03 .29 .06 1.0 .29 .44 .03 .29 .06 .04 .50 .07 1.0 .71 .83 .50 .50 .50
Authentication .14 .52 .22 .16 .61 .26 .57 .59 .58 .58 .56 .57 .17 1.0 .30 .15 .37 .21 .61 .70 .66 .29 .71 .41

Heartbeat .07 .11 .09 .31 .59 .41 .22 1.0 .36 .50 1.0 .67 .35 .96 .51 .07 .04 .05 .66 1.0 .79 .45 .73 .56
Pooling .71 .11 .19 .13 .44 .20 .89 .97 .93 .88 1.0 .93 .87 .87 .87 .16 .33 .22 .88 1.0 .93 .89 .39 .54

Scheduler .36 .63 .46 .65 .20 .30 .64 .87 .74 .65 .89 .75 .66 .77 .71 .32 .78 .46 .65 .94 .77 .62 .69 .65

Averages .27 .33 .22 .25 .43 .24 .47 .74 .53 .72 .75 .67 .42 .78 .49 .15 .40 .20 .76 .87 .80 .55 .60 .53

The results are displayed in Table 4 and compared against the results reported
by Mirakhorli et al. [37]. Our approach yields promising results in the previous
10-fold cross-validation, however the results do not transfer to this case study. The
Tactic Detection approach by Mirakhorli et al. [37] outperforms our approach.
However, compared to most other approaches within the paper by Mirakhorli et
al., apart from Bagging and the Tactic Detection approach, our approach still
performs similar or better. In this setting, we conclude that our approach is still
promising, but needs further work to compete with state-of-the-art.

1 See also https://hadoop.apache.org/docs/stable/

https://hadoop.apache.org/docs/stable/


Nevertheless, we think these results provide valuable information and lessons
learned. They demonstrate how important it is to also evaluate on different data
and case studies (for generalizability of an approach) as good cross-validation
results not necessarily transfer to case studies. Although transfer-learning ap-
proaches promise good generalization this does not seem to be the case here,
which is another key aspect to take away. Further discussions about our approach
can be found in Section 6.

6 Discussion

In this section, we want to briefly discuss our results, threats to validity, and
potential future improvements to tackle the downsides of our approach.

We applied and copied commonly used experimental designs to be able to
compare our approach to previous approaches as well as to mitigate potential
risks to construct validity. For reproducibility, we used a randomly selected fixed
seed for the random number generators.

To overcome bias, we did not create an own data set but reused established
data. On one hand, this enables us comparability and increases the internal
validity. On the other hand, however, this might affect the performance of our
approach. We believe that adding additional and more diverse data to the training
set will most likely increase the performance. Currently, there seems to be a
problem in generalizing from the training data. This can be seen in the different
performance for 10-fold cross-validation in comparison to the evaluation on the
case study. Similarly, when training on the smaller data set compared to training
on the bigger data set, we can see noticeable differences in the performance.
Therefore, applying our approach using a better and bigger training set is one of
the things we plan to do in future work.

Potential issues of our approach are the assumptions we made that might
be wrong. For example, we tried to detect architectural tactics on a class level
like previous approaches. However, some architectural tactics might need other
scopes. Furthermore, we assumed that the code is in Java and the developers use
expressive, non-abbreviated variable names. Abbreviations and non-expressive
terms are unlikely to be contained in BERT’s dictionary, therefore can also
influence the result negatively.

To use BERT, our approach also needs pre-processing like the removal of
certain features and characters. The pre-processing, though, can influence the
results (negatively). We tried to be as conservative as possible but the selection
still might skew the results in various ways. For example, truncating classes can
potentially remove parts that are relevant for a specific tactic. However, there
are some new ideas like the Longformer approach [8] that might remove this
limitation as it promises longer input lengths with similar results.

It is also possible that BERT is not particularly looking at the text itself
but at other characteristics. Niven and Kao discovered that statistical cues in
the (training) data can influence BERT’s performance heavily [40]. Evaluating



approaches on different and varying case studies might help in such cases and we
will look further in this potential threat.

We can draw the conclusion that code is not quite the same as a common
natural language text. BERT has proven to work well for text classification, but
this does not translate properly to code. This shows that code cannot simply be
treated like normal text. We have to look more detailed into how BERT works:
BERT contextualizes the input and is trained on normal text to “understand”
the relations between the words in the input. These relations are different in
normal text compared to code.

However, there are potential improvements to our idea of using BERT for
code classification. One way is to experiment with approaches like code2seq
[2] that transform code into a textual description in the pre-processing step. A
negative side to these approaches might be the chance that needed information in
the code gets obscured. Additionally, faults in these approaches will most likely
influence the outcome negatively (fault propagation). Another reasonable way is
to adapt BERT to our needs. We would need to adapt language models for code
and train them on code instead of natural language texts. However, adapting
language models for code is not trivial and still an open research topic. This is
mostly because code semantics, especially underlying execution semantics, are
hard to capture compared to semantics in text.

Overall, although our approach has limitations and does not bring state-of-
the-art results, we still think the results are valuable and some lessons can be
learned. The results are some first experiences of applying a language model like
BERT to code and bring forward the issues that such an approach brings. We
still think that transfer learning approaches are useful for tasks like the detection
of architectural tactics. A clear benefit is the capability to train a task with
a rather small data set. However, the underlying approach, e.g., the language
model must be suitable for the kind of input.

7 Conclusion

In this technical report, we gave supplementary material and more details for the
study in [27]. Based on our hypothesis that BERT can understand code similarly
to text after fine-tuning, we experimented with a transfer-learning approach
using such a natural language model to classify if classes implement certain
architectural tactics. We evaluated our approach using 10-fold cross-validation
with promising results. The approach could not compete with state-of-the-art
approaches in a case study using Hadoop. Nevertheless, we still think that these
results and experiences are important. Therefore, we discussed our approach in
more detail as we see a lot of potential in transfer-learning approaches for further
research.

References

1. Adhikari, A., Ram, A., Tang, R., Lin, J.: Docbert: BERT for document classification.
arXiv (2019), http://arxiv.org/abs/1904.08398

http://arxiv.org/abs/1904.08398


2. Alon, U., Brody, S., Levy, O., Yahav, E.: code2seq: Generating sequences from
structured representations of code. In: International Conference on Learning Repre-
sentations (2019), https://openreview.net/forum?id=H1gKYo09tX

3. Antoniol, G., Canfora, G., Casazza, G., De Lucia, A., Merlo, E.: Recovering
traceability links between code and documentation. IEEE TSE 28(10), 970–983
(Oct 2002). https://doi.org/10.1109/TSE.2002.1041053

4. Antoniol, G., Casazza, G., Di Penta, M., Fiutem, R.: Object-oriented design patterns
recovery. Journal of Systems and Software 59(2), 181–196 (2001)

5. Babar, M.A., Gorton, I.: A tool for managing software architecture knowledge. In:
2nd SHARK/ADI’07 (ICSE Workshops 2007). pp. 11–11. IEEE (2007)

6. Bachmann, F., Bass, L., Klein, M.: Deriving architectural tactics: A step toward
methodical architectural design. Tech. rep., Carnegie-Mellon Uni (2003)

7. Bass, L., Clements, P., Kazman, R.: Software architecture in practice. Addison-
Wesley Professional (2003)

8. Beltagy, I., Peters, M.E., Cohan, A.: Longformer: The long-document transformer.
arXiv:2004.05150 (2020)

9. Berenbach, B., Gruseman, D., Cleland-Huang, J.: Application of just in time tracing
to regulatory codes. In: Proceedings of the CSER (2010)

10. Biggerstaff, T.J.: Design recovery for maintenance and reuse. Computer 22(7),
36–49 (1989)

11. Biggerstaff, T.J., Mitbander, B.G., Webster, D.: The concept assignment problem
in program understanding. In: Proceedings of WCRE. pp. 27–43. IEEE (1993)

12. Capilla, R., Nava, F., Pérez, S., Dueñas, J.C.: A web-based tool for managing
architectural design decisions. ACM SIGSOFT 31(5), 4 (2006)

13. Chihada, A., Jalili, S., Hasheminejad, S.M.H., Zangooei, M.H.: Source code and
design conformance, design pattern detection from source code by classification
approach. Applied Soft Computing 26, 357–367 (2015)

14. Cleland-Huang, J., Berenbach, B., Clark, S., Settimi, R., Romanova, E.: Best
practices for automated traceability. Computer 40(6), 27–35 (June 2007).
https://doi.org/10.1109/MC.2007.195

15. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: Pre-training of Deep
Bidirectional Transformers for Language Understanding. In: Proceedings of the
2019 NAACL-HLT. pp. 4171–4186. ACL, Minneapolis, Minnesota (Jun 2019).
https://doi.org/10.18653/v1/N19-1423

16. Ducasse, S., Pollet, D.: Software architecture reconstruction: A process-oriented
taxonomy. IEEE TSE 35(4), 573–591 (2009)

17. Egyed, A., Biffl, S., Heindl, M., Grünbacher, P.: Determining the cost-quality trade-
off for automated software traceability. In: Proceedings of the 20th IEEE/ACM
International Conference on Automated Software Engineering. pp. 360–363. ASE
’05, ACM, New York, NY, USA (2005). https://doi.org/10.1145/1101908.1101970

18. Fontana, F.A., Zanoni, M., Maggioni, S.: Using design pattern clues to improve the
precision of design pattern detection tools. JOT 10(4), 1–31 (2011)

19. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Elements of reusable object-
oriented software. arXiv (1995)

20. Goldberg, Y.: Neural network methods for natural language processing. Synthesis
Lectures on Human Language Technologies 10(1), 1–309 (2017)

21. Gotel, O., Finkelstein, A.: Extended requirements traceability: results of an
industrial case study. In: Proceedings of ISRE ’97. pp. 169–178 (Jan 1997).
https://doi.org/10.1109/ISRE.1997.566866

22. Hey, T., Keim, J., Tichy, W.F., Koziolek, A.: Norbert: Transfer learning for require-
ments classification. In: 2020 IEEE 28th RE. IEEE (2020)

https://openreview.net/forum?id=H1gKYo09tX
https://doi.org/10.1109/TSE.2002.1041053
https://doi.org/10.1109/MC.2007.195
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1145/1101908.1101970
https://doi.org/10.1109/ISRE.1997.566866


23. Hoorn, J.F., Farenhorst, R., Lago, P., Van Vliet, H.: The lonesome architect. Journal
of Systems and Software 84(9), 1424–1435 (2011)

24. Howard, J., Ruder, S.: Fine-tuned language models for text classification. arXiv
(2018), http://arxiv.org/abs/1801.06146

25. Jansen, A., Bosch, J.: Software architecture as a set of architectural design decisions.
In: WICSA 2005. pp. 109–120 (Nov 2005). https://doi.org/10.1109/WICSA.2005.61

26. Jansen, A., Van Der Ven, J., Avgeriou, P., Hammer, D.K.: Tool support for
architectural decisions. In: WICSA 2007. pp. 4–4. IEEE (2007)

27. Keim, J., Kaplan, A., Koziolek, A., Mirakhorli, M.: Does BERT understand code?
– an exploratory study on the detection of architectural tactics in code. In: 14th
European Conference on Software Architecture (ECSA 2020). Springer International
Publishing (2020)

28. Keim, J., Kaplan, A., Koziolek, A., Mirakhorli, M.: Gram21/BERT4DAT (Jul
2020). https://doi.org/10.5281/zenodo.3925165

29. Keskar, N.S., Mudigere, D., Nocedal, J., Smelyanskiy, M., Tang, P.T.P.: On large-
batch training for deep learning: Generalization gap and sharp minima. arXiv
(2016), http://arxiv.org/abs/1609.04836

30. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv (2014),
http://arxiv.org/abs/1412.6980

31. Kruchten, P., Capilla, R., Dueñas, J.C.: The decision view’s role in soft-
ware architecture practice. IEEE Software 26(2), 36–42 (March 2009).
https://doi.org/10.1109/MS.2009.52

32. Kruchten, P.: An ontology of architectural design decisions in software intensive
systems. In: 2nd Groningen workshop on software variability. pp. 54–61 (2004)

33. Li, J., Wang, Y., Lyu, M.R., King, I.: Code completion with neural attention
and pointer networks. Proceedings of the Twenty-Seventh IJCAI (Jul 2018).
https://doi.org/10.24963/ijcai.2018/578

34. Loshchilov, I., Hutter, F.: Fixing weight decay regularization in adam. arXiv (2017),
http://arxiv.org/abs/1711.05101

35. Matosin, N., Frank, E., Engel, M., Lum, J.S., Newell, K.A.: Negativity to-
wards negative results: a discussion of the disconnect between scientific worth
and scientific culture. Disease Models & Mechanisms 7(2), 171–173 (2014).
https://doi.org/10.1242/dmm.015123

36. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient Estimation of Word Repre-
sentations in Vector Space. arXiv (Jan 2013), https://arxiv.org/abs/1301.3781

37. Mirakhorli, M., Cleland-Huang, J.: Detecting, tracing, and monitoring architectural
tactics in code. IEEE Transactions on Software Engineering 42(3), 205–220 (March
2016). https://doi.org/10.1109/TSE.2015.2479217

38. Mirakhorli, M., Shin, Y., Cleland-Huang, J., Cinar, M.: A tactic-centric ap-
proach for automating traceability of quality concerns. In: 2012 34th Interna-
tional Conference on Software Engineering (ICSE). pp. 639–649 (June 2012).
https://doi.org/10.1109/ICSE.2012.6227153

39. Mirakhorli, M., Cleland-Huang, J.: Tracing architectural concerns in high assurance
systems. In: Proceedings of the 33rd ICSE. pp. 908–911. ACM (2011)

40. Niven, T., Kao, H.Y.: Probing neural network comprehension of natural lan-
guage arguments. In: Proceedings of the 57th ACL. pp. 4658–4664 (Jul 2019).
https://doi.org/10.18653/v1/P19-1459

41. Oman, P.W., Cook, C.R.: The book paradigm for improved maintenance. IEEE
Software 7(1), 39–45 (1990)

http://arxiv.org/abs/1801.06146
https://doi.org/10.1109/WICSA.2005.61
https://doi.org/10.5281/zenodo.3925165
http://arxiv.org/abs/1609.04836
http://arxiv.org/abs/1412.6980
https://doi.org/10.1109/MS.2009.52
https://doi.org/10.24963/ijcai.2018/578
http://arxiv.org/abs/1711.05101
https://doi.org/10.1242/dmm.015123
https://arxiv.org/abs/1301.3781
https://doi.org/10.1109/TSE.2015.2479217
https://doi.org/10.1109/ICSE.2012.6227153
https://doi.org/10.18653/v1/P19-1459


42. Paige, R.F., Cabot, J., Ernst, N.A.: Foreword to the special section on negative
results in software engineering. Empirical Software Engineering 22(5), 2453–2456
(2017). https://doi.org/10.1007/s10664-017-9498-0

43. Peters, M.E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., Zettlemoyer,
L.: Deep contextualized word representations. In: Proc. of NAACL (2018)

44. Prechelt, L.: Why we need an explicit forum for negative results. Journal of Universal
Computer Science 3(9), 1074–1083 (1997)

45. Raychev, V., Vechev, M., Yahav, E.: Code completion with statistical lan-
guage models. In: Proceedings of the 35th ACM SIGPLAN PLDI. p.
419–428. Association for Computing Machinery, New York, NY, USA (2014).
https://doi.org/10.1145/2594291.2594321

46. Sharma, T., Efstathiou, V., Louridas, P., Spinellis, D.: On the feasibility of transfer-
learning code smells using deep learning. arXiv (2019), http://arxiv.org/abs/
1904.03031

47. Sun, C., Qiu, X., Xu, Y., Huang, X.: How to fine-tune bert for text classification?
arXiv (2019), http://arxiv.org/abs/1905.05583

48. Tenney, I., Das, D., Pavlick, E.: BERT Rediscovers the Classical NLP Pipeline.
In: Proceedings of the 57th ACL. pp. 4593–4601. ACL, Florence, Italy (Jul 2019).
https://doi.org/10.18653/v1/P19-1452

49. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
 L., Polosukhin, I.: Attention is all you need. In: Proceedings of the 31st International
Conference on Neural Information Processing Systems. pp. 6000–6010. NIPS’17,
Curran Associates Inc., Long Beach, California, USA (Dec 2017)

50. Zhu, Y., Kiros, R., Zemel, R., Salakhutdinov, R., Urtasun, R., Torralba, A., Fi-
dler, S.: Aligning Books and Movies: Towards Story-Like Visual Explanations by
Watching Movies and Reading Books. In: 2015 IEEE ICCV. pp. 19–27 (Dec 2015).
https://doi.org/10.1109/ICCV.2015.11

https://doi.org/10.1007/s10664-017-9498-0
https://doi.org/10.1145/2594291.2594321
http://arxiv.org/abs/1904.03031
http://arxiv.org/abs/1904.03031
http://arxiv.org/abs/1905.05583
https://doi.org/10.18653/v1/P19-1452
https://doi.org/10.1109/ICCV.2015.11

	2020,2_Titelbl.pdf
	Keim_2020-02_TR.pdf
	Using BERT for the Detection of  Architectural Tactics in Code


