KIT | KIT-Bibliothek | Impressum | Datenschutz

Vanishing Hysteresis in Carbon Nanotube Transistors Embedded in Boron Nitride/Polytetrafluoroethylene Heterolayers

Kumar, Sandeep 1; Dagli, Daghan 1; Dehm, Simone 1; Das, Chittaranjan 2; Wei, Li; Chen, Yuan; Hennrich, Frank 3; Krupke, Ralph ORCID iD icon 1,3
1 Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT)
2 Karlsruher Institut für Technologie (KIT)
3 Institut für QuantenMaterialien und Technologien (IQMT), Karlsruher Institut für Technologie (KIT)

Abstract:

Carbon nanotube field‐effect transistors fabricated on silicon wafers with thermal oxide often suffer from large gate‐voltage hysteresis, induced by charge trapping sites in oxides, surface hydroxyl groups, and the presence of water molecules. Surface functionalization and passivation, as well as vacuum annealing and reduced operating temperature, have shown to diminish or even eliminate hysteresis. Herein, the fabrication of nearly hysteresis‐free transistors on Si/SiO$_{2}$ by embedding carbon nanotubes and the connecting electrodes in a hexagonal boron nitride (h‐BN) bottom layer and a polytetrafluoroethylene (PTFE) top layer is demonstrated. The conditions at which catalyst‐free synthesis of h‐BN on SiO$_{2}$/Si with borazine is obtained, and the subsequent liquid‐phase deposition of PTFE, are discussed. Device transfer curves are measured before and after PTFE deposition. It is found that the hysteresis is reduced after PTFE deposition, but vanishes only after a waiting period of several days. Simultaneously, the on‐state current increases with time. The results give evidence for the absence of trap states in h‐BN/PTFE heterolayers and a high breakthrough field strength in those wafer‐scalable materials.


Verlagsausgabe §
DOI: 10.5445/IR/1000121053
Veröffentlicht am 08.07.2020
Originalveröffentlichung
DOI: 10.1002/pssr.202000193
Scopus
Zitationen: 5
Web of Science
Zitationen: 5
Dimensions
Zitationen: 5
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Nanotechnologie (INT)
Institut für QuantenMaterialien und Technologien (IQMT)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 08.2020
Sprache Englisch
Identifikator ISSN: 1862-6254, 1862-6270
KITopen-ID: 1000121053
HGF-Programm 43.21.03 (POF III, LK 01) Carbon Nanosystems
Erschienen in Physica status solidi / Rapid research letters
Verlag John Wiley and Sons
Band 14
Heft 8
Seiten Art.Nr. 2000193
Vorab online veröffentlicht am 16.06.2020
Nachgewiesen in Dimensions
Scopus
Web of Science
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page